• Non ci sono risultati.

A laplace type problem for irregular lattice with fundamental cell composed by three triangles and a trapetium

N/A
N/A
Protected

Academic year: 2021

Condividi "A laplace type problem for irregular lattice with fundamental cell composed by three triangles and a trapetium"

Copied!
9
0
0

Testo completo

(1)

http://dx.doi.org/10.12988/ams.2015.5157

A Laplace Type Problem for Irregular Lattice

with Fundamental Cell Composed by Three

Triangles and a Trapetium

D. Barilla

Department of Economic Science and Quantitative Method University of Messina - Italy

F. Grasso

Department Cognitive Sciences Educational and Cultural Studies University of Messina - Italy

Copyright c 2015 D. Barilla and F. Grasso. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribu-tion, and reproduction in any medium, provided the original work is properly cited.

Abstract

In the previous papers, [1], [2], [3], [4],[5], [6], [7], [8], [9], [10], [11], [12], [13] and [14] the authors studies some Laplace problem for differ-ent lattices. In this paper paper we determine the probability that a random segment of constant length intersects a side of the lattice with fundamental cell represented in fig. 1.

(2)

A B C D E F a a a a a a G fig.1

With the rotations of this figure we can write that C0 = C01∪ C02∪ C03∪ C04

and [

ABE = [AEB = \DEF = π

5, \CBE = \DEB = \EDF = \EF D = 2π 5 , \ BCD = \CDE = 3π 5 , BAG = [[ EAG = 3π 4 , (1) |BG| = |EG| = a cosπ 5, |BE| = 2a cos π 5, |AG| = a sin π 5, (2) |DF | = a 2 cosπ5, areaC0 = a2 2 sin π 5  2 cosπ 5 + 1 2 . (3)

We want to compute the probability that a segment s of random position and of constant length l, with l < 4 cosa π

5

, intersects a side of the lattice < (a), i.e. the probability Pint that s intersects a side of the fundamental cell C0.

The position of the segment s is determined by center and by the angle ϕ that it formed with the line CF .

In order to compute the probability Pint we consider the limit positions of

the segment s, for a fixed value of ϕ, in the cells C0i, (i = 1, 2, 3, 4). We have

(3)

A B C D E F G A1 A 2 A3 A' A'' A4 B' B'' B1 B2 G ' G 1 G2 G 3 a1 a2 a4 a3 b1 b2 b3 b4 b5 E '' E ' E1 E2 E3 E4 E5 F1 F2 F ' D ' D1 D2 D '' C ' ϕ c1 c2 c3 c 4 c5 c6 d1 d2 d3 d 4 d5 Cˆ03(ϕ ) Cˆ01(ϕ ) Cˆ02(ϕ ) Cˆ04(ϕ ) fig.2 and the relations

area bC01(ϕ) = areaC01− 5 X j=1 areaaj(ϕ) , (4) area bC02(ϕ) = areaC02− 5 X j=1 areabj(ϕ) , (5) area bC03(ϕ) = areaC03− 5 X j=1 areacj(ϕ) , (6) area bC04(ϕ) = areaC04− 5 X j=1 areadj(ϕ) . (7)

By fig.1 and fig.2 we have that: areaa4(ϕ) = l2 4 sin 2ϕ, areaa3(ϕ) = al 2 cos π 5sin ϕ − l2 4 cos ϕ, areaa1(ϕ) = l2cos ϕ sin π5 − ϕ 2 cos π5 ,

(4)

areaa2(ϕ) = al 2 sin π 5 − ϕ  −l 2cos ϕ sin π 5 − ϕ  2 cosπ5 , areaa5(ϕ) = al 2 sin π 5 cos ϕ − l2 4 sin 2ϕ − l2cos ϕ sin π5 − ϕ 2 cosπ5 . We obtain that: area bC01 = areaC01− A1(ϕ) , where A1(ϕ) = al sin π 5 cos ϕ − l2 4tg π 5 (1 + cos 2ϕ) . In order to compute area bC2(ϕ) we have that:

areab4(ϕ) = l2sin ϕ sin π 5 + ϕ  2 sinπ5 , areab3(ϕ) = al 2 cos π 5sin ϕ − l2sin ϕ sin π 5 + ϕ  2 sinπ5 , areab1(ϕ) = l2cos ϕ sin π 5 + ϕ  2 cosπ5 , areab2(ϕ) = al 2 sin π 5cos ϕ − l2cos ϕ sin π 5 + ϕ  cosπ5 , areab5(ϕ) = al 2 sin π 5 + ϕ  − l2 2 sin2π5  1 − cos2π 5 cos 2ϕ + sin2π5 2 sin 2ϕ  . We obtain that: area bC02 = areaC02− A2(ϕ) , where A2(ϕ) = al sin π 5 + ϕ  − l 2 2 sin2π5  1 − cos2π 5 cos 2ϕ + 1 2sin 2π 5 sin 2ϕ  .

To compute area bC03(ϕ) we have that

areac4(ϕ) =

l2sin ϕ sin 2π 5 − ϕ

 2 sin 2π5 ,

(5)

areac3(ϕ) = al 2 sin ϕ − l2sin ϕ sin 2π 5 − ϕ  2 sin2π5 , areac1(ϕ) = l2sin ϕ sin 2π 5 + ϕ  2 sin 2π5 , areac2(ϕ) = al 2 sin  2π 5 + ϕ  −l 2sin ϕ sin 2π 5 + ϕ  2 sin2π5 , areac5(ϕ) = al 2 sin  2π 5 − ϕ  −l 2sin ϕ sin 2π 5 − ϕ  2 sin2π5 , areac6(ϕ) = al cos π 5sin ϕ − l2sin ϕ sin 2π 5 + ϕ  2 sin2π5 . We obtain that area bC03(ϕ) − A3(ϕ) , where A3(ϕ) = al 2  2 sin2π 5 cos ϕ +  1 + 2 cosπ 5  sin ϕ  − l 2 2 sin 2ϕ. To compute now the area bC04(ϕ).

aread4(ϕ) = l2sin ϕ sin 2π 5 + ϕ  2 sin2π5 , aread3(ϕ) = al sin(ϕ) 4 cosπ5 − l sin 2π5 + ϕ sin2π5 , aread1(ϕ) = l2sin 2π 5 − ϕ sin 2π 5 + ϕ  2 sinπ 5 , aread2(ϕ) = al 2 sin  2π 5 − ϕ  −l 2sin 2π 5 − ϕ sin 2π 5 + ϕ  2 sinπ5 , aread5(ϕ) = al 2 sin  2π 5 + ϕ  − l 2sin 2π 5 − ϕ sin 2π 5 + ϕ  2 sinπ5 − l2sin ϕ sin 2π 5 + ϕ  2 sin2π5 .

(6)

We obtain that: area bC04(ϕ) = areaC04− A4(ϕ) , where A4(ϕ) = al  sin2π 5 cos ϕ + sin ϕ 4 cos2π5  − l2 4 sin2π5  2 cosπ 5 − cos 2π 5  cos 2ϕ + sin2π 5 sin 2ϕ + 4 cos 2 π 5 + 1  .

Denoting with Mi, (i = 1, 2, 3, 4), the set of segments s that have the center

in the cell C0iand with Ni the set of the segments s completely in C0i, we have

that [16]: Pint = 1 − P4 i=1µ (Ni) P4 i=1µ (Mi) , (8)

where µ is the Lebesgue measure in the euclidean plane.

In order to compute µ (Mi) and µ (Ni) we use the kinematic measure of

Poincar´e [15]:

dK = dx ∧ dy ∧ dϕ,

where x, y are the coordinates of middle point of s and ϕ the fixed angle. We can write: µ (Mi) = π 5 Z 0 dϕ Z Z {(x,y)∈C0i} dxdy = π 5 Z 0 (areaC0i) dϕ = π 5areaC0i, (i = 1, 2, 3, 4) and µ (Ni) = π 5 Z 0 dϕ Z Z {(x,y)∈ bC0i} dxdy = π 5 Z 0 h area bC0i(ϕ) i dϕ = π 5 Z 0 [areaC0i− Ai(ϕ)] dϕ = π 5areaC0i− π 5 Z 0 [Ai(ϕ)] dϕ, (i = 1, 2, 3, 4) .

By these two relations give us:

4 X i=1 µ (Mi) = π 5areaC0, (9)

(7)

and 4 X i=1 µ (Ni) = π 5areaC0− π 5 Z 0 " 4 X i=1 Ai(ϕ) # dϕ. (10) follow that: 4 X i=1 Ai(ϕ) = al  sinπ 5  2 + 3 cosπ 5  cos ϕ +8 cos 2 π 5 + 2 cos π 5 + 1 4 cosπ5 sin ϕ  − l2 4  tgπ 5 − 3ctg 2π 5 + 1 sinπ5 

cos 2ϕ + 2 sin 2ϕ + 4 cos2 π 5 + tg π 5 + 3 sin2π5  , then π 5 Z 0 " 4 X i=1 Ai(ϕ) # dϕ = al 9 4− 3 cos 3 π 5 − 4 cos 2 π 5 − 9 2cos π 5 + 1 4 cos π5  − l2 4  9 2+ cos π 5 − 6 cos 2 π 5 + π 5  4 cos2π 5 + tg π 5 + 3 sin2π5  . (11) We obtain that: Pint = 10 πa2sinπ 5 2 cos π 5 + 1 2  al 9 4− 3 cos 3 π 5 − 4 cos 2 π 5 − 9 2cos π 5+ 1 4 cosπ5  −l 2 4  9 2 + cos π 5 − 6 cos 2 π 5 + π 5  4 cos2 π 5 + tg π 5 + 3 sin2π5  .

References

[1] D. Barilla, M. Bisaia, G. Caristi, A. Puglisi, On Laplace type problems (II), Far East Journal of Mathematical Sciences vol. 58 n. 2 , pp. 145-155. [2] D. Barilla, G. Caristi, A. Puglisi, A Laplace Type Problem for an Irreg-ular Trapetium Lattice and Body Test Rectangle, Applied Mathematical Sciences, Vol. 7, 2013, no. 10, 487 - 501.

[3] D. Barilla, G. Caristi, A. Puglisi, A Buffon - Laplace type problems for an irregular lattice and with maximum probabil-ity. Applied Mathematical Sciences, Vol. 8, no. 165, 8287-8293. http://dx.doi.org/10.12988/ams.2014.411916

(8)

[4] D. Barilla, G. Caristi, A. Puglisi, M. Stoka, Laplace type problems for a triangular lattice and different body test, Applied Mathematical Sciences, 2014, Applied Mathematical Sciences, Vol. 8, no. 103, pp. 5123 - 5131. http://dx.doi.org/10.12988/ams.2014.46423

[5] D. Barilla, G. Caristi, E. Saitta, A Laplace type problems for a lattice with cell composed by three quadrilaterals and with maximum proba-bility. Applied Mathematical Sciences, Vol. 8, no. 165, pp. 8279 - 8286. http://dx.doi.org/10.12988/ams.2014.411915

[6] D. Barilla, G. Caristi, E. Saitta, M. Stoka, Laplace type problem for lattice with cell composed by two quadrilaterals and one trian-gle, Applied Mathematical Sciences vol 8, 2014, no 16, pp. 789-804. http://dx.doi.org/10.12988/ams.2014.37407

[7] D. Barilla, A. Puglisi, E. Saitta, M. Stoka, A Laplace type problems for a lattice with cell composed by two triangles and a trapezium, Applied Mathematical Sciences, Vol. 8, 2014, no. 9, pp. 441 - 461. http://dx.doi.org/10.12988/ams.2014.37408

[8] D. Barilla, A. Puglisi, E. Saitta, A Buffon type problem for a lat-tice with fundamental cell composed by two triangles and two trapezi-ums. Applied Mathematical Sciences, Vol. 8, no. 165, pp. 8271 - 8278. http://dx.doi.org/10.12988/ams.2014.411914

[9] D. Barilla, A. Puglisi, E. Saitta, Laplace type problems for irregular lattice with cell ”Pentagon + Triangle”, International Mathematical Forum, Vol. 8, no. 23, pp. 1131 - 1142. http://dx.doi.org/10.12988/imf.2013.3232 [10] G. Caristi, Laplace Problem for Regular Lattices, Recent Advances in

Ap-plied Mathematics, editors Cornelia A. Bulacea, Valeri Mladenov, Monica Leba, Nikos Mastorakis, proceedings of the 14th WSEAS International Conference on Applied Mathematics Puerto de la Cruz, SPAIN, ISBN 9789604741380, pp. 27-33.

[11] G. Caristi, Buffon-Laplace Type Problems for Three Regular Lattices and ”Body Test” a Parallelogram, International Mathematical Forum, Vol. 8, 2013, no. 6, 245 - 271.

[12] G. Caristi, A. Puglisi, M. Stoka, A Laplace type problem for a regular lattices with octagonal cell, Far East Journal Mathematical Sciences vol. 48 n.1, pp. 103-118.

[13] G. Caristi, M. Stoka, A Laplace type problem for a regular lattices with irregular hexagonal cell, Far East Journal Mathematical Sciences vol. 50 n.1, pp. 23-36.

(9)

[14] G. Caristi, M. Stoka, A Buffon - Laplace type problem for an irregular lattice and ”body test” rectangle. Applied Mathematical Sciences, Vol. 8, no. 168, pp. 8395 - 8401. http://dx.doi.org/10.12988/ams.2014.411927 [15] H. Poincar´e, Calcul des probabilit´es, ed.2, Gauthier Villars, Paris, 1912. [16] M. Stoka , Probabilit´es g´eom´etriques de type Buffon dans le plan euclidien,

Atti Acc. Sci. torino, 110 (1975-1976), pp. 53-59.

Riferimenti

Documenti correlati

KEY WORDS: continuous dopaminergic stimulation, deep brain stimulation, levodopa/carbidopa intestinal gel infusion, Parkinson’s disease, patient selection.. Introduction Levodopa is

Il problema di determinare una funzione u armonica dentro la regione R, quando sono noti i valori della sua derivata normale sul contorno, va sotto il nome di problema di Neumann.

The discovery, study and description of this species is not only an example of how biodiversity is still only partially known but also of how, during

The proposed methodological framework consists of three main stages: (i) deriving a water depth map through a DEM-based geomorphic method using a linear binary classification;

Nei  tubi  elastici  (vasi)  la  relazione DP/F  non  è  lineare,  esiste  un  valore  minimo  di  P  = Pc  (pressione  critica  di  chiusura),  al  di 

It is now a classical result that the hyperbolic Cauchy problem for a linear par- tial differential operator with analytic coefficients is well posed in the framework of

[r]

A differential equation is correctly oriented (with an integral causality ) if the output variable of the system is the variable which has the maximum degree of time-derivatives