• Non ci sono risultati.

Integrating modal analysis and seismic interferometry for structural dynamic response: The case study of giotto's bell tower in Florence (Italy)

N/A
N/A
Protected

Academic year: 2021

Condividi "Integrating modal analysis and seismic interferometry for structural dynamic response: The case study of giotto's bell tower in Florence (Italy)"

Copied!
11
0
0

Testo completo

(1)

 

Integra)ng  Modal  Analysis  and  Seismic  

Interferometry  for  full  structural  dynamic  

response:  Gio:o’s  Bell  Tower.

Giorgio  Lacanna

1

,  Renato  Lancello:a

 2

,  Maurizio  Ripepe

 1

 

 

 

1  Università  di  Firenze   2  Politecnico  di  Torino  

(2)

Ambient  Vibra)on  Test  

 

Classic  Method  Opera)onal  Modal  Analysis:    

Ø  OMA   is   passive   seismic   tool   for   Structural   frequencies,   Modal   shapes   and   Damping   iden)fica)on.   We   applied   the   Enhanced   Frequency   Domain   Decomposi)on  (EFDD)  

Ø  Calibrate  Numerical  Model  

Ø  Structural  Health  Monitoring  (SHM)  purposes.  

Ambient  Vibra)on  Test  is  commonly  used    to  iden)fy  the  dynamic  response   of  the  Building.  

Seismic  Interferometry  is  performed  on  the  same  seismic  data:    

Ø  IRFs  (Impulsive  Response  Func)on)  allow  to  es)mate  seismic  wave  velocity  (Vs   and  Vp).  

Ø  Vs  a  new  parameter  for  SHM  (Velocity  is  less  affect  by  SSI  than  frequency).  

Ø  Seismic   Wave   analysis   integrated   with   the   structural   frequencies   gives  

(3)

Dynamic  Monitoring  

 

10  Seismic  Sta)ons  equipped:  

• 

Broadband   3-­‐component  

seismometrs   (Lennartz   5s,  

Guralp  10s,  Guralp30s)  

• 

Digi)zer  24  bit  (Guralp,  CMG-­‐

DM24)  sampling  at  100Hz  

• 

Synchroniza)on  using  GPS  

(4)

Automa)c  Iden)fica)on  Modal  Parameters  –  EFDD    

 

Assump)on  -­‐-­‐>  Modal  Shapes  are  sta)onary  for  3  hours    

!(!!!!(! !), !!!!!!!!(!!)) = [!! !! !! ][!!!!!!!! !! ]! ! ([!!!! ! ! ][!!!! !! ])([!!!!!!!! !! ][!!!!!!!! !! ])

MODAL  

COHERENCE  

Rainieri  &  Fabrocino,  2010   Lacanna  et  al,  2016  

Mean  

C  

Standard  devia)on    

C  

First  singular  values

 

6  Modal  Frequencies  Iden)fied  

0.623  

0.647  

2.543  

3.081  

3.156  

5.731  

(5)

First  and  Second  Modal  Shapes  

 

1°  Longitudinal  -­‐  0.623  Hz   2°  Transversal  -­‐  0.647  Hz  

+  

=  

1°+2°  Shapes  Mode    

51°N  

141°N  

1°  and  2°  Shapes  Mode  moves    together  along  the  diagonal  of  the  square   plan  of  Gio:o’s  Bell  Tower  

The  two  first  Shapes  Mode  are  coupled  and  resul)ng  in  circular  movement   slightly  eccentric  in  North-­‐South  direc)on    

(6)

III°  -­‐IV°  -­‐V  °-­‐  VI°  Modal  Shapes  

 

III°  –  2.543  Hz   IV°  –  3.081  Hz   V°  –  3.156  Hz  

4°  and  5°  Shapes  Mode  as  the  first  two  modes  moves    approximately  

to  the  diagonal  of  the  square  plan  of  Gio:o’s  Bell  Tower    

(7)

Automa)c  Tracking  of  Modal  frequencies

   

Frequency (Hz)

Mean Frequency (Hz) Min (%) Frequency (Hz) Max (%)

0.623 0.618 (0.76) 0.628 (0.80)

0.647 0.642 (0.81) 0.652 (0.73)

2.543 2.520 (0.90) 2.573 (1.18)

3.081 3.052 (0.93) 3.105 (0.79)

3.156 3.134 (0.68) 3.174 (0.57)

A  posi)ve  correla)on  is  found   between  the  6  modal  frequencies  

and  temperature.  

Frequency  changes  ≤  1.1  %  

The   Modal   frequencies   are   detected   automa)cally   for   36   hours   and   compared  with  temperature  

(8)

Flexible  structure

 

  The  building  horizontal  displacement  is  a  sum  of  three  terms  

Transla=on     Rota=on    

Soil  founda=on     Deforma=on  of  Building    

(Luco  1987,  Todorovska  2008)  

The   modal   frequencies   extracted   with   OMA   (f0)   is   related   to   the   mechanical  

proper)es  of  the  building  but  is  also  affected  by  the  soil-­‐structure  interac)on     For  Flexible  structure  ffixed    is  given  by  basic  equa)on:    

    =4.26  m  Iner=a  radius  cross-­‐sec=on    

=84  m  Eleva=on  of  the  building     Compressional  P-­‐wave  velocity  

the  seismic  velocity

 

is  es)mated  by  interferomety  

 

(9)

Seismic  Interferometry

   

Evaluates  the  IRFs  through  the  deconvolu)on  of  the  signals:  

! ! = !!(!)!!"#

(!)

!!"#(!)

!

+ !

urefà  Sta=on  locate  to  the  Top  

Sneider  &  Safak,     BSSA  2006  

2040  m/s  

North  

Sta=ons   Sta=ons  South  

2040  m/s  

R

2

=0.99  

=0.70  Hz  

The  velocity  is  es)mated  from   the  slope  of  the  travel  )me  

Using  least  square  fit      

(10)

Rocking  Frequency

 

  OMA  tecnique   Interferometry   Geometrical  proper)es    

ROCKING  FREQUENCY:  

18  m   7  m  

Vs  =380  m/s  

The  soil  structure  interac)on  reduces  the  fixed-­‐base  frequency  by  8%  and  it   is  expected  by  considering  the  high  Vs=380  m/s  of  the  soil  founda)on  

Rocking  S)ffnnes  

(11)

Results  

 

 

Ø 

AutomaLc  idenLficaLon  EFDD  technique  on  GioRo’  Bell  Tower:  

Iden=fies  6  main  frequencies  and  associated  modal  shapes  

Ø  The  1°  -­‐  2°  modes  move  to  the  diagonal  of  the  square  plan  

Seismic  Interferometry  technique  on  GioRo’  Bell  Tower:  

Ø  Seismic  velocity  Vp=2040  m/s  à  Fixed  base  frequency      

IntegraLng  results  of  the  two  techniques  

Ø  Provides  detail  informa=on  on  the  degree  of  soil-­‐structure  interac=on.  

Ø  The   rocking   frequency   is   consistent   with   the   geotechnical   proper=es   and   it   reduces  the  fixed  base  frequency  of  10%  

Ø  The  value  fR=1.36  Hz  can  be  used  to  validate  analy=cal  rela=onship  to  compute  

the  rocking  s=ffness  for  advanced  seismic  analysis  

Conclusions  

 

The  full  structural  dynamic  iden)fica)on  (OMA-­‐  Interferometry)  shows  a   Weak  contribu)on  of  soil-­‐structure  interac)on  

Riferimenti

Documenti correlati

It has been observed that among non-motile stalk bacteria, sacrificial cells also appear (before the motile ones) and undergo cell lysis, thus liberating their DNA.. This

In the Planned condition, in each round subjects go through the following sequence of events: first, they choose between the investment X and the investment Y ; second, they define

One data set contains information about the accident itself (e.g. location, particular circumstances, road type, accident type, light conditions, road conditions

Beamforming, Estimation of the Direction of Arrival, Antenna Diversity, Spatial Filtering, MIMO Techniques, Space-Time Coding, Space Time Coded Modulation, Space Time Block

According to the HVCI scores, the most hesitant departments are the intensive care unit, emergency room, and oncohematology department, while the most hesitant professional profiles

� p < 0.05 for comparison of P+ with P-.. the pulmonary rib cage compartment volume is reduced in both groups when compared to healthy subjects, and this pattern was also observed

This patient had a 2-month history of skin lesions and pruritus, the type of lesions was atypical for scabies but compatible with crusted scabies, and other cases of scabies

and variable amplitude. It is also possible to use a mechanical exciter made of a single rotating mass. A more complex system is instead the hydraulic one, using