• Non ci sono risultati.

Observation of nuclear modifications in W± boson production in pPb collisions at sNN=8.16TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Observation of nuclear modifications in W± boson production in pPb collisions at sNN=8.16TeV"

Copied!
24
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Observation

of

nuclear

modifications

in

W

±

boson

production

in

pPb

collisions

at

s

NN

=

8

.

16 TeV

.

The

CMS

Collaboration



CERN,Switzerland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received4May2019

Receivedinrevisedform26September 2019

Accepted18October2019 Availableonline24October2019 Editor:M.Doser Keywords: CMS Heavyions Electroweak Wboson pPb nPDF

The production of W± bosons is studied in proton-lead (pPb) collisions at a nucleon-nucleon

centre-of-mass energy of √sNN=8.16 TeV. Measurements are performed in the W±→

μ

±

ν

μ channel using

a data sample corresponding to an integrated luminosity of 173.4 ±6.1 nb−1, collected by the CMS Collaboration at the LHC. The number of positively and negatively charged W bosons is determined separately in the muon pseudorapidity region in the laboratory frame |

η

μlab|<2.4 and transverse momentum T >25 GeV/c.

The W

± boson differential cross sections, muon charge asymmetry, and

the ratios of W± boson yields for the proton-going over the Pb-going beam directions are reported as a function of the muon pseudorapidity in the nucleon-nucleon centre-of-mass frame. The measurements are compared to the predictions from theoretical calculations based on parton distribution functions (PDFs) at next-to-leading-order. The results favour PDF calculations that include nuclear modifications and provide constraints on the nuclear PDF global fits.

©2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Theproductionofelectroweak(EW)gaugebosonsisconsidered tobeapowerfulprobeofthepartondistributionfunctions(PDFs) of the proton [1]. Most recent proton PDF sets include W and Z boson production data fromthe Tevatron and the CERN Large HadronCollider(LHC) intheir globalfitanalyses [2–4]. Similarly, themeasurementsofEWbosonproductioninproton-nucleusand nucleus-nucleus collisions, available for the first time at centre-of-massenergiesof theTeV scale, provideconstraintson nuclear modifications ofthe PDFs [5–8]. The presenceof a nuclear envi-ronmentmodifiesthepartondensitiesinthenucleusascompared tothoseinafreenucleon.ThenuclearPDFs(nPDFs)areexpected tobeenhanced forpartonscarryinga momentumfractioninthe range5

×

10−2



x



10−1 inthe so-calledantishadowing region,

andsuppressedforx



10−2 intheshadowing region [9],withthe

modificationsdepending on thescale Q2.Because ofthelimited

amount andtype ofexperimental data sets available for nuclear collisions, the determination of the nuclear parton densities is lessprecise than forthe free-proton case. As a consequence,the nPDFuncertaintiesareoneofthemainlimitationsoftheprecision

 E-mailaddress:cms -publication -committee -chair @cern .ch.

of quantumchromodynamics (QCD) calculationsdescribing hard-scatteringprocessesinnuclearcollisionsathighenergies [7].

Since W bosons are predominantly produced via qq annihila-tionthroughud

W+anddu

W−processes,W boson produc-tioncanbeusedtoprobethelightquarkPDFs,bothfortheproton and nuclei. In addition, the asymmetries of the separate yields of W+ andW− bosons are known to be sensitive probes of the down-to-upquarkPDFratio [10–12].Consequently,their measure-ment mayallow forthe flavour decompositionof u andd quark distributionsinnuclei [13].Amongthepossibledecaychannelsof theW boson, theleptonicdecaysare lessaffectedby background processesthanhadronicdecays.Anotheradvantageoftheleptonic decays is that any possible effect due to the QCD medium pro-ducedinnuclearcollisions shouldbenegligible,since leptonsare notsubjecttomedium-inducedenergylossthroughthestrong in-teraction [14,15].

Studies of the W and Z boson production in PbPb collisions ata nucleon-nucleon centre-of-mass energyof

sNN

=

2

.

76 TeV,

performedby theATLAS [16–18] andCMS [19–21] Collaborations, have shown that the W and Z boson cross sections are con-sistent with no modification by the nuclear medium formed in these collisions. In pPb collisions, measurements of W produc-tionat

sNN

=

5

.

02 TeV have beenperformedby ALICE [22] and

CMS [13]. The comparisonwith next-to-leading-order (NLO) per-turbative QCD predictions favours the calculations that include

https://doi.org/10.1016/j.physletb.2019.135048

0370-2693/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

nPDFeffects. A similar observation is madefrom the analysisof theZ boson productioninpPbcollisions atthesameenergy [23,

24].These EW bosonmeasurements havebeen usedfor thefirst timeinaglobalfitanalysisofnPDFsets (EPPS16 [25]). Neverthe-less, a modest enhancement of the W− boson production cross section inthemostbackwardregion (Pb-goingdirection) showed some difference with theoretical calculations (with and without nPDFeffects),possibly pointingtodifferentnuclear modifications oftheup anddownquarkPDFs [13].Moreprecisemeasurements arethusneededinordertoclarifytheoriginofthisdiscrepancy.

This letterreports the results of measurements of W± boson production in pPb collisions at

sNN

=

8

.

16 TeV. The

measure-ments are performed in the W±

μ

±

ν

μ decay channel using

pPb data recorded with the CMS detector in 2016, correspond-ingtoatotalintegratedluminosityof173

.

4

±

6

.

1 nb−1.Thisdata setisroughly fivetimeslargerthantheone availableforthe pre-vious measurement at

sNN

=

5

.

02 TeV [13,26,27]. The W±

bo-son differential cross sections are presented as functions of the muonpseudorapidityinthenucleon-nucleoncentre-of-mass(CM) frame,

η

CM.In orderto fullyexploit theinformationprovided by

the data, two additional sets of observables are also measured asfunctionsof

η

CM: themuon charge asymmetry andthe muon

forward-backwardratios (RFB).The measurement ofasymmetries

hasacoupleofadvantages ascomparedto thatof thecross sec-tions.First,asymmetriesaremoresensitivetomodificationsofthe quarkPDFs [7]. Second,uncertaintiesintheintegratedluminosity andthetheoreticalscaledependencecancelinthemeasurementof theseasymmetries.TheresultsoftheW± bosondifferentialcross sectionsandasymmetriesarecomparedtoperturbativeQCD calcu-lationsbasedonNLOPDFswithandwithoutnuclearmodifications. Thetheoreticalpredictionsforfreeprotonsareobtainedusingthe CT14 [2] protonPDFset,whilethoseincludingnucleareffectsare derivedusingtwodifferentnPDFsetsforleadions:nCTEQ15 [28] andEPPS16 [25].

2. Experimentalmethods

2.1. Data-takingconditionsandtheCMSdetector

During the data-taking period, the directions of the proton andlead beamswere swapped after an integrated luminosity of 62

.

6 nb−1 wascollected.The beamenergieswere 6.5 TeVforthe protonsand2.56 TeVpernucleon forthelead nuclei.By conven-tion, the proton-(Pb-)going side defines the positive (negative)

η

region,labelledastheforward(backward)direction.Becauseofthe asymmetric collision system, massless particles produced in the nucleon-nucleoncentre-of-massframeatan

η

CMarereconstructed

at

η

lab

=

η

CM

+

0

.

465 inthelaboratoryframe.TheW±boson

mea-surements presentedin this letterare expressed in terms ofthe muonpseudorapidityintheCM,

η

CMμ .

Thecentralfeature oftheCMSapparatusisasuperconducting solenoidof6 minternal diameter,that provides a magneticfield of3.8 T.Withinthesolenoidvolume area siliconpixelandstrip tracker,aleadtungstatecrystalelectromagneticcalorimeter(ECAL), andabrass andscintillatorhadroncalorimeter(HCAL),each com-posedof abarrel andtwo endcapsections.Forwardcalorimeters extendthe

η

coverage providedby the barrelandendcap detec-tors. The hadron forward (HF) calorimeter uses steel as an ab-sorberandquartz fibresasthesensitive material.Thetwohalves of the HF are located 11.2 m from the interaction region, one on each end, and together they provide coverage in the range 3

.

0

<

|

η

|

<

5

.

2. They also serve as luminosity monitors. Muons are measuredinthe range

|

η

|

<

2

.

4,withdetection planesmade usingthreetechnologies:drifttubes,cathodestripchambers, and resistiveplatechambers. A moredetaileddescription ofthe CMS detector,togetherwitha definitionofthecoordinatesystemused andtherelevantkinematicvariables,canbefoundinRef. [29].

The particle-flow (PF)algorithm [30] aimsto reconstructand identify each individual particle in an event, with an optimised combinationofinformationfromthevariouselementsoftheCMS detector. The energyof photonsis obtainedfromthe ECAL mea-surement. Theenergyofelectronsisdeterminedfroma combina-tion oftheelectronmomentum attheprimary interactionvertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sumof all bremsstrahlung photons spatially compatiblewithoriginatingfromtheelectron track.The charge and momentumof muonsis obtainedfromthe curvature ofthe corresponding track.The energyofchargedhadronsis de-termined from a combination of their momentum measured in the tracker (assuming the charged-pion mass) and the matching ECALandHCALenergydeposits,correctedforzero-suppression ef-fectsandfortheresponsefunctionofthecalorimeterstohadronic showers. Finally, the energyof neutral hadrons isobtained from thecorrespondingcorrectedECALandHCALenergies.

2.2. Eventselectionandmuonreconstruction

Collision events are required to have at least one interaction vertex reconstructed usingtwo ormore tracks within a distance from the nominal collision point of 25 cm along the beam axis and2 cmalongitstransverseplane.Thecontaminationfrom back-groundeventsnotoriginatingfrominelastichadroniccollisions is further suppressed by requiring at leastone tower on each side of theHFcalorimeterwitha totalenergylarger than3 GeV. The lossofeventswithW±bosonscandidatesduetothispPbcollision eventselectionhasbeendeterminedtobelessthan0.2%.

The main signature of the W±

μ

±

ν

μ process is the

pres-ence of an isolated high-pT muon. Events of interest for offline

analysis are selected using a trigger algorithm [31] that requires the presence of at least one muon candidate of pT

>

12 GeV

/

c.

Moreover,toenhancethesignal purity [11,13],thefiducialregion of the analysis has been restricted to muons of pT

>

25 GeV

/

c

with

|

η

μlab

|

<

2

.

4.The muon candidatesare reconstructed inCMS withan algorithmthat combinestheinformationfromthe muon detectors and the tracker [32]. Muons are selected by applying thestandardtightselectioncriteriadescribedinRef. [32].Further, muonsarerequiredtobeisolatedfromnearbyhadronicactivityto reduce the jet background.The muon isolation parameter (Iμ)is definedasthepTsumofallPF-reconstructedphotons,chargedand

neutral hadrons, in a cone of radius R

=

(

η

)

2

+ (φ)

2

=

0

.

3 aroundthemuoncandidate,where



η

and

arethe pseudora-pidity andazimuthal (inradians)distancesto themuon.Amuon isconsideredisolatedifIμ islessthan15%ofthemuon pT.

Background processes yielding high-pT muons can be

classi-fiedasreducibleorirreducible.Thereduciblebackgroundincludes muon decays that can be tagged and removed from the signal. These events are mainly composed of

μ

+

μ

− pairs from Drell– Yanevents(Z

/

γ

∗),andhigh-pT muonsfromjetsproducedviathe

strong interaction, referred to as QCD multijet events.To further suppresstheformerprocesses,eventscontainingatleasttwo iso-lated oppositely charged muons, each with T

>

15 GeV

/

c, are removed. The irreduciblebackgroundsources comprisemuon de-cays that passtheanalysisselection criteriaandthereforecannot betaggedevent-by-event,includingZ

/

γ

τ

τ

+,W

τ ν

τ ,and

tt production. All backgrounds are estimated using Monte Carlo (MC) simulations, exceptQCD multijet,whichismodelled witha data-driventechniquedescribedbelow.

2.3. Signalyielddetermination

Leptonicdecaysof W bosonsincludeneutrinos,whichare not detected in CMS. Theirpresence isinferred fromtheoverall

(3)

mo-mentumimbalanceinthetransverseplane,knownasthemissing transverse momentum



pmissT ; its magnitude(pmissT ) is defined as themagnitudeofthesumofthenegative pT vectorsofall

recon-structedPFobjectsinanevent.Inthisanalysis,thepmissT distribu-tionisusedtoextractthesignalyieldsin24muon

η

μCM bins,each 0.2 units wide, except for four in the most backward (

2

.

86

<

η

μCM

<

2

.

60,

2

.

20

<

η

μCM

<

1

.

93,

1

.

93

<

η

CMμ

<

1

.

80), and forward(1

.

80

<

η

μCM

<

1

.

93) regions, becauseof thedetector ge-ometryandtheunbalancedbeamenergies.

The pmissT distributions of the signal and EW backgrounds are described using templates from MC simulations. The MC samples were generated using the NLO generator powheg v2 [33–35]. To include EW corrections, the powhegbox packages W_ew-BMNNP [36] and Z_ew-BMNNPV [37] areusedto generate the pp

ν

l andpp

Z

/

γ

l+l− processes,

respec-tively.Events from the pp

tt processare generated using the powhegboxpackagehvq[38],whichisaheavyflavourquark gen-erator. The simulation of pPb collisions is performed using the CT14 [2] PDF setcorrectedwiththe EPPS16 nuclearmodification factors,definedastheratiosoftheboundprotonPDFtothatofa freeproton,derivedforPbions [25].The partondensities of pro-tons andneutrons are scaled according to the mass andatomic numberoftheleadisotopes.

Thepartonshoweringis performedby hadronising theevents using pythia 8.212 [39] withtheCUETP8M1underlying-event(UE) tune [40,41]. To consider a morerealistic distributionof the un-derlyingenvironment presentinpPb collisions,the powheg sam-plesareembeddedinsimulatedpPbeventsgeneratedby epos lhc (v3400) [42],takingintoaccountthepPbboost.The epos lhc sim-ulation is tuned to reproduce the global eventproperties of the pPbdatasuchasthe

η

distributionsofchargedhadrons [43].The embedding of the signal andpPb UEs is performedby requiring thesamegeneratedinteractionpointwhensimulatingthedetector hits.Thetriggerdecisionsareemulatedandtheembeddedevents arereconstructedwiththesamealgorithmsasusedfordata.The detectorresponseissimulatedwith Geant4 [44].

The agreement between the EW simulations and the data is improved by weighting the EW boson pT distribution using a

pT-dependentfunction derived fromthe ratioof theZ boson pT

distributionsinZ

μ

+

μ

−eventsindataandsimulation. Further-more,thepPbeventactivityisreweighedby matchingthe simu-latedtotalenergydistribution reconstructedon both sidesofthe HFcalorimetersto theone observedin dataina Z

/

γ

μ

+

μ

sample.

TheshapeoftheQCD multijetbackgroundismodelledwitha functionalformdescribedbyamodifiedRayleighdistribution [45] definedas: f



pmissT



=

pmissT exp





pmissT



2



2



σ

0

+

σ

1pmissT

+

σ

2



pmissT



2



2



,

where

σ

0,

σ

1,and

σ

2 are free parametersto bedetermined. Itis

foundtoreproducewellthe pmiss

T shapeofdataeventscontaining

nonisolatedmuons,with

χ

2 valuesdividedbythenumberof

de-greesoffreedom(dof)closetoone.TheQCDshapeisextractedby fittingthedata infiverelative muon isolation (Iμ

/

T) bins with boundariesrangingfrom0.4to0.9.The

σ

0,

σ

1,and

σ

2 parameters

extractedfromthefitsarefoundtolinearlydependontherelative muon isolation andare extrapolated to the isolated muon signal region.

Because ofmomentum conservation, the production of Z and W bosonsisbalanced by a hadronicrecoilcomposed ofjets and particlesfromthepPbunderlyingactivity.The distributionofthe

hadronicrecoilsignificantlycontributestothepmissT resolution. Be-causeofthesimilarityoftheproductionprocessesoftheZ andW bosons,andtheirsimilarmasses,weassumethattherecoil distri-butionsarethesameforbothspecies.Therefore,thecorrectionof the simulatedrecoildistribution isderived in acontrol region of Z

μ

+

μ

− eventsusinga hadronicrecoiltechnique [46,47].The hadronicrecoilofZ

μ

+

μ

− events,u



T, isdefinedasthevector

pT sumofall PFcandidates,excluding thedecayproducts ofthe

Z boson.Thedistributionsofthehadronicrecoilcomponentsthat areparallel andperpendiculartothe Z bosontransverse momen-tum



pZ

Tarefittedinsimulationanddatausingaweightedsumof

twoGaussianfunctions.Themeanandresolutionvaluesextracted fromtherecoilfitsareusedtoscalethesimulatedhadronicrecoil distributionstomatchtheperformancemeasuredindata.The cor-rectedpmissT distributionisthenderivedintheEWMCsamplesas thevectorsumofthecorrectedhadronicrecoil



ucorr

T andthep



Tof

thereconstructedmuonsfromthedecayofZ andW bosons. The number of W±

μ

±

ν

μ events is extractedby

perform-ing an unbinned maximum likelihood fit of the observed pmissT

distribution in each muon

η

CM bin. The total fit modelincludes

sixcontributions: thesignal W±

μ

±

ν

μ template,theEW

back-ground Z

/

γ

μ

+

μ

−, W

τ ν

τ and Z

/

γ

τ

+

τ

− templates,

the tt background template, and the QCD background functional formderivedfromcontroldatasamples.Whenfittingthedata,the QCD shape parameters (

σ

i) are fixed to the extrapolated values,

whilethe ratioofthe EWand tt backgroundyields to thesignal yieldisfixedtotheresultsfromsimulation.Onlytwoparameters are left free inthe fit, the W boson signal and QCD background normalisations. Theobserved numbersofmuonscoming fromW bosondecaysovertheentire

η

μCMrangeare:97971

±

332

μ

+and 81147

±

301

μ

−,wheretheuncertaintyisstatistical.Examplesof theresultingpmissT distributionsinthemidrapidity(

0

.

2

<

η

μCM

<

0

.

0)andforward(1

.

80

<

η

μCM

<

1

.

93)bins,areshowninFig.1, af-terapplying all analysiscorrectionsandselection criteria. The fit modelisfoundtogiveagooddescriptionofthedata,with

χ

2/dof

valuesclosetoone.

ThesimulatedsampleofW±

μ

±

ν

μ embeddedinto epos lhc

isused toderive theefficiencyofthe muon trigger,isolation, re-construction, and selection criteria, as a function of

η

CMμ . These single-muonefficienciesarealsodirectlyestimatedfrompPbdata ina Z

μ

+

μ

− sample usingthe tag-and-probe (TnP)technique, asdescribedinRef. [48].ThedataandMCreconstruction efficien-cies are observed to be consistent with each other, whereas the triggerefficiencyislowerintheZ boson simulationby5%thanin data at

|

η

μlab

|

=

1

.

4.The muon isolation selection is found to re-jectfewermuonsinthesimulation,becauseofthesmallerpPbUE activity compared todata. In orderto correct forthe differences betweendataandsimulation,themuonefficiencycomputedfrom the W±

μ

±

ν

μ MC sample is multipliedby theTnPcorrection

factors event-by-event. Thesecorrection factors are computed, in binsofmuon pT and

η

lab,fromtheratioofthemuonefficiencies

measured in data to those calculated from simulations. The TnP scalefactorsproducechangesinthemuonefficiencyrangingfrom

3% inthemid-rapidityregion(

|

η

labμ

|

<

1

.

0)to

+

5% at

|

η

μlab

|

=

1

.

4. The TnP-corrected efficiencies vary with

η

μCM, from

(

81

±

1

)

% to

(

92

±

2

)

%.

2.4. Systematicuncertainties

The leading source of systematic uncertainty originates from the TnP efficiencycorrections. The uncertainties on the TnP cor-rections are determined by propagating the uncertainties on the muonefficienciesextractedfromdataandsimulation,derivedfrom thefitstotheinvariantmassofZ

μ

+

μ

−candidates.These un-certaintiesincludeastatisticalcomponentduetothefinitesizeof

(4)

thedatasample available, aswellasa systematiccomponent es-timated from variations in the fittingprocedure (different signal

Fig. 1. The missing transverse momentum pmiss

T distribution for W−→μνμ

eventswithinthe

0.2CMμ <0.0 (top)rangeandforW+→μ+νμeventswithin

the 1.80<ημCM<1.93 (bottom)range.Unbinnedfitstothe data (blackpoints)

areperformed with six contributions, stacked frombottom to top:tt (orange), Z∗→τ+τ−(darkblue),W±→τ±ντ(red),Z∗→μ+μ−(green),QCD

multi-jet(lightblue)andW±→μ±νμ (yellow).TheημCMregionsaredefinedsuchthat

theprotonismovingtowardspositivepseudorapidity.Errorbarsrepresent statis-ticaluncertainties.Thelowerpanelsdisplaythedatadividedbytheresultofthe fit.

and backgroundfunctions, anddifferent massrange used for fit-ting). Additionally, uncertainties are included to account for: (1) possible differencesin the reconstruction of muon tracks (0.6%), and(2) theimpact ofpileup andUE activity (0.3%).Another im-portantsourceofsystematicuncertaintyarisesfromthemodelling ofthe QCDmultijet pmiss

T distributionin thesignal region,which

isestimatedbyallowingtheQCDshapeparameterstovarywithin the root-mean-squareof the extrapolatedvalues in bins of

η

CMμ ,

andbychangingthepmissT modeltothatusedinRef. [13]. The uncertaintyinthenormalisationoftheEW backgroundis estimated fromthe nPDFuncertainty inthe Z over W boson in-clusivecross sectionsusingtheCT14protonPDF andtheEPPS16 nPDF for the lead ions, the uncertainty in the W and Z boson branching fractions to leptons [49], and the experimental uncer-tainty in the tt crosssection inpPb events [50]. The uncertainty in thevector boson pT reweighingisderived fromthe difference

of the results obtained applying and not applying the boson pT

correction. The uncertainty inthe binning ofthe pmiss

T MC

tem-plates is estimated by using a pmiss

T bin size of 1 GeV

/

c. The

impact of EW corrections in powheg is estimated from the dif-ference in the efficiency when computed using powheg without EWcorrections [51].Theuncertaintyinthe pmissT recoilcorrection isdetermined bychangingthemodelusedtofitthehadronic re-coildistributionandtheprofileoftherecoilmeanandresolution as a function of pZ

T. Finally, the mismodelling ofthe UE activity

in the simulation is estimated by reweighing the distribution of the trackmultiplicity instead of the energy deposited in the HF calorimeters. The integratedluminosity measurement uncertainty (3.5%) [27] only affects the W boson differential cross sections andcancels out in theasymmetry measurements. The maximum relative uncertaintyofthedifferentialcrosssectionsandabsolute uncertaintiesontheasymmetriesarepresentedforeachsourceof systematicuncertaintyinTable1.

3. Results

The W± bosondifferential productioncrosssections are com-puted as functions of

η

μCM. The differential W±

μ

±

ν

μ cross

sectionsaredeterminedfrom

d

σ

W±→μ±νμ d

η

μCM

η

CMμ

=

η

μCM

L



η

μCM

,

(1)

where

η

CMμ

isthe efficiency-correctedmuon yield inbinsof

η

μCM,

L

is the recorded integrated luminosity, and



η

μCM is the widthofthemeasuredbin.

The cross sections for the W

μν

μ decays for W+ and

W− bosons are compared in Fig. 2 with NLO perturbative QCD predictions calculated with the MC program mcfm v8.0 [52]

Table 1

MaximumuncertaintyinthemeasuredobservablesamongtheημCMbinsdeterminedforeachsource.Theuncertaintiesinthecrosssectionsarerelative,whereasthosefor

theasymmetriesareabsolute.Theglobalintegratedluminosityuncertaintyof

±

3.5%isnotincludedinthetotalsystematicuncertaintyinthecrosssections. Source W−ddησ CM [%] W + dσ dηCM[%] W −RFB W+RFB WRFB +−Nμ ++Nμ Boson pTreweighing 0.5 0.4 0.001 0.001 0.001 0.001 EW background 0.4 0.3 0.002 0.001 0.001 0.000 POWHEG EW correction 0.9 0.5 0.007 0.004 0.006 0.003 Efficiency 3.0 3.2 0.026 0.037 0.030 0.011

Event activity reweighing 0.6 0.4 0.002 0.002 0.001 0.002

pmiss

T template binning 0.1 0.1 0.002 0.001 0.001 0.001

QCD background 1.2 0.7 0.016 0.007 0.009 0.006

Hadronic recoil correction 0.2 0.3 0.002 0.004 0.002 0.002 Total systematic uncertainty 3.3 3.3 0.030 0.038 0.031 0.013 Statistical uncertainty 2.4 2.0 0.026 0.029 0.019 0.015

(5)

Fig. 2. Differentialproduction crosssectionsfor W+→μ+νμ (top)andW−→

μνμ(bottom),asafunctionofthemuonpseudorapidityinthecentre-of-mass

frame.Thesmallhorizontallinesrepresentthestatisticalandsystematic uncertain-tiessummedinquadrature,whereastheerrorbarsshowthestatisticaluncertainties only.Theglobalintegratedluminosityuncertaintyof

±

3.5%isnotshown.TheNLO calculationswithCT14PDF,andCT14+EPPS16andCT14+nCTEQ15nPDFs,arealso displayed,includingtheir68%confidenceintervalPDFuncertaintybands.The bot-tompanelsshowtheratioofdata,CT14+EPPS16andCT14+nCTEQ15withrespect toCT14.

using the CT14 [2] proton PDF. Also shown are two calcu-lations that include nuclear modifications in the PDF, based on the nCTEQ15 [28] and EPPS16 [25] nPDF sets (labelled as CT14+nCTEQ15andCT14+EPPS16, respectively). Both EPPS16 and nCTEQ15areHessianNLOnPDFsets,buttheformerincludesmore measurementsinthefit(containingLHCEWboson [13,23,24] and dijet [53] data), aswell asmore free parameters (20 forEPPS16, 17 for nCTEQ15). In addition, nuclear modifications of valence andseaquarks areallowed to be differentinEPPS16 for upand down quarks, while nCTEQ15 assumes flavour independence for thesea quarks. The nPDFuncertainties are propagated using the PDF4LHCrecommendationsforHessiannPDFsetsasprescribedin Ref. [1]. As can be seen in Fig. 2, the predicted CT14+nCTEQ15 andCT14+EPPS16crosssectionsaresystematically belowthe cal-culation using CT14 PDF at large positive muon rapidities be-cause of the depletion of the antiquark PDF in nuclei at small

x

= (

MW

/

sNN

)

exp

(

yW

)

 (

MW

/

sNN

)

exp

(

η

μCM

)

10−3.

Con-versely, the predicted cross sections from calculations including nPDFmodificationsare above thoseusingCT14 PDFin the nega-tiverapidity region,becauseof theslightquark antishadowingat

large x

0

.

1.Whencompared todata,all theoreticalcalculations reproduce the measurement at backward rapidity within uncer-tainties,whileatforwardrapidity thecalculationsincludingnPDF effectsappeartobefavoured.

The muon forward-backward ratios, defined as N±μ

(

+

η

μCM

)/

N±μ

(

η

CMμ

)

for both positive and negative muons, are compared in the upper panel of Fig. 3 to the CT14 PDF, and CT14+EPPS16 andCT14+nCTEQ15nPDFcalculations.Theseobservablesprobethe ratioofthenuclearmodificationsofthequarkPDFsinthePb nu-cleusfromsmallto large x values.Theresultsformuonsofboth chargesfavourthepredictionsincludingnuclearmodificationsover thefree-protonPDFcalculations.Basedontheprecisionofthe ex-perimentalresults,themeasurements provideconstraintsonboth theCT14+EPPS16andCT14+nCTEQ15nPDFsets, especiallyinthe proton-goingregion(smallx).

Theyields ofpositivelyandnegativelychargedmuonsare fur-ther combined to measure the forward-backward ratio for all muons

(

+

η

μCM

)/

(

η

μCM

)

.Thisobservablehasacoupleof ad-vantages compared to N±μ

(

+

η

μCM

)/

N±μ

(

η

μCM

)

: it is less sensitive to the quark content in the proton and nuclei, and it has bet-ter statistical precision. The results for this asymmetry are pre-sented in the right panel of Fig. 3, and they strongly deviate fromtheCT14PDF predictions,favouring theCT14+nCTEQ15and CT14+EPPS16nPDFsets.Moreover, theexperimentaluncertainties are significantly smaller than the theoretical nPDF uncertainties. Consequently,thesemeasurements couldconstrain thequark and antiquark distributions innuclei, and will be valuable inputs for globalfitstothedata.

Themuonchargeasymmetry,definedas

A

≡ (

Nμ+

Nμ

)/(

N+μ

+

Nμ

)

, reflects the differences in the production of W+ and W− bosons.Fig.4showsthemeasurementofthemuoncharge asym-metryasafunctionof

η

CMμ comparedtothe mcfm [52] predictions

calculated usingCT14 PDF aloneandincluding nuclear modifica-tionsdescribedbytheEPPS16andnCTEQ15nPDFs.Allcalculations reproduce the present measurements within uncertainties in the entiremuon

η

range,includingwhenthe CT14protonPDFset is used,because nuclearmodifications ofthePDFs mostlycancel in thisquantity.

Thetensionbetweendataandtheoreticalcalculationsreported atnegative muon

η

inpPb collisions at

sNN

=

5

.

02 TeV [13] is

notobservedinthepresentmeasurements.Thepresentuseofthe CT14protonPDFsetdecreasesthevalueofthechargeasymmetry comparedtothepredictionsbasedonCT10inRef. [13].Moreover, thetheoreticaluncertaintiesarealsoenlargedintheEPPS16nPDF setsandthetheoreticalcalculationsusingtheCT14+EPPS16nPDF sets agree better with the measurements at

sNN

=

5

.

02 TeV,

as compared to the EPS09 nPDF sets used in the analysis at

sNN

=

5

.

02 TeV. It has been shownin Ref. [54] that the

mea-surements of the lepton charge asymmetry at different collision energies(

s ) aresimplyrelatedbyashiftinthelepton pseudo-rapidity,

A(

η

l

,

s

)

=

A(

η

ref

,

s

)

,where

η

ref

=

η

l

+

ln

(

s

/

s

)

if

η

l

>

0 and

η

ref

=

η

l

ln

(

s

/

s

)

if

η

l

<

0.Theresultofthisshift

isshowninFig.5,demonstratingthatthepresentresultsandthe measurementsperformedat

sNN

=

5

.

02 TeV [13] obeythis

scal-ingproperty.

The agreement between data and theoretical calculations is quantifiedthrougha

χ

2 testperformedforeachobservabletaking

into account both experimental (including luminosity) and theo-reticaluncertaintiesandtheirbin-to-bincorrelations,obtained fol-lowingtheprescription forHessianPDFsets [55] and rescaledto 68% confidence intervals. The results of the

χ

2 test and the dof

of each observable are shown in Table 2. The CT14+EPPS16 and CT14+nCTEQ15nPDFpredictions provecompatiblewiththe data, whiletheCT14PDFcalculationsdonotdescribethemeasurements well. These experimental results thus provide for the first time

(6)

Fig. 3. Forward-backwardratios,N±μ(+ηCMμ)/N±μ(η μ

CM),forthepositively(left)andnegatively(middle)chargedmuons,andtheforward-backwardratioformuonsofboth

signs,Nμ(+ημCM)/Nμ(ημCM)(right),asafunctionofη

μ

CM.Thesmallhorizontallinesrepresentthestatisticalandsystematicuncertaintiessummedinquadrature,whereas

theerrorbarsshowthestatisticaluncertaintiesonly.TheNLOcalculationswithCT14PDF,CT14+EPPS16nPDF,andCT14+nCTEQ15nPDF,arealsodisplayed,includingtheir 68%confidenceintervalPDFuncertaintybands.

clearevidenceofthenuclearmodificationofquarkPDFsfromthe measurements ofEWbosonproductioninnuclear collisions. Bin-to-bincorrelationshavebeenfoundtohavealargeimpactonthe obtained

χ

2 values,especiallyfromnPDFuncertaintiesintheNLO

calculations,whicharestronglycorrelatedinsideeachofthe shad-owing (positive

η

μCM) and antishadowing (negative

η

CMμ ) regions, andanticorrelatedbetweenthesetworegions.

Furthermore,thepossible sources ofdifferencesbetweendata and the (n)PDFs are investigated. In the Hessian representation, a central PDF is given along witherror sets, each of which cor-respondstoan eigenvectorofthecovariancematrixinparameter space [56].Thevaluesof

χ

2/dofcorrespondingtothecompatibility

betweenthe crosssectionmeasurements andthecalculations us-ingeachoftheindividualsetsofCT14,nCTEQ15,andEPPS16(57, 33 and41 error sets, respectively) havebeen determined. Fig. 6

showsthedistributionofthe

χ

2/dofvaluesforthecentraland

er-rorsets.The

χ

2/dofvaluesobtainedareforindividualsets,thus

ig-noringtheoreticaluncertaintiesandtheircorrelations.Whilemost oftheEPPS16individualsets leadtoagoodagreementwithdata (with

χ

2/dof aroundunity),onlythose nCTEQ15setsthat exhibit

thesmallerquarkshadowingatsmallx aremorecompatiblewith the data, yet with

χ

2

/

dof



2. All CT14 PDF sets lead to a

nar-rowdistributioncentredaround

χ

2

/

dof



3,becauseofthestrong

constraints imposed by the large experimental data sets used to extractthem.ThecurrentmeasurementsofW± bosonproduction inpPbcollisionswillpermit furtherconstraintsonthequark and antiquarknPDFsandtheamountofquarkshadowinginthenuclei.

4. Summary

AstudyofW±bosonproductioninpPbcollisionsata nucleon-nucleon centre-of-mass energy of

sNN

=

8

.

16 TeV is reported,

using the muon decay channel for muons with transverse mo-mentagreaterthan25 GeV

/

c andforabsolutevaluesofthe pseu-dorapidity in the laboratory frame

|

η

μlab

|

<

2

.

4. The differential production cross sections for positively and negatively charged W

μν

μ decays, the muon charge asymmetry, and the muon

forward-backwardratios, are measured asfunctionsofthe muon pseudorapidityinthecentre-of-massframe,intherange

2

.

86

<

η

CMμ

<

1

.

93.

The measurements are compared to theoretical predictions frombothprotonpartondistributionfunctions(PDFs)(CT14)and nuclear PDF (CT14+EPPS16 , CT14+nCTEQ15) sets. The cross sec-tions and the forward-backward asymmetries exhibit significant deviations from the CT14 prediction,revealing nuclear modifica-tions of the PDFs unambiguously for the first time in the pro-duction of electroweak bosons in nuclear collisions. Both the

Fig. 4. Muonchargeasymmetry,(N+μNμ)/(N+μ+Nμ),asafunctionofthemuon

pseudorapidityinthecentre-of-massframe.Thesmallhorizontallinesrepresentthe statisticalandsystematicuncertaintiessummedinquadrature,whereastheerror barsshowthestatisticaluncertaintiesonly.TheNLOcalculationswithCT14PDF, CT14+EPPS16 nPDF, andCT14+nCTEQ15 nPDF, arealso displayed,including their 68%confidenceintervalPDFuncertaintybands.

CT14+EPPS16, and the CT14+nCTEQ15 calculations show a good overall agreement withthe data, withthe measurements favour-ingtheformernPDFset.Inthelattercase,onlytheindividualsets that exhibit the smallestnuclear PDF modifications atsmall val-uesofx (intheshadowingregion)turnouttobecompatiblewith experimentalmeasurements.Thesmallexperimentaluncertainties allowforasignificantreductioninthecurrentuncertaintiesonthe quarkandantiquarknuclearPDFsintherange10−3



x



10−1.

Acknowledgements

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technical andadministrativestaffs atCERNand atother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentresand personneloftheWorldwideLHCComputingGridfordeliveringso effectively thecomputinginfrastructure essentialto our analyses. Finally, we acknowledge the enduring support for the construc-tion andoperationofthe LHCandtheCMSdetectorprovided by the followingfundingagencies: BMBWFandFWF(Austria);FNRS

(7)

Table 2

Resultsoftheχ2statisticaltestbetweenthemeasurementsandthenPDFcalculationsfromtheCT14PDF,CT14+EPPS16nPDF,andCT14+nCTEQ15nPDFsets.Thevalueof

theχ2,thenumberofdegreesoffreedom(dof)andtheχ2probability(Prob.),arepresentedfortheW±bosondifferentialcrosssections,themuonchargeasymmetries,

thechargedmuonforward-backwardratios,andtheforward-backwardratiosofallmuons,respectively.

Observable CT14 CT14+EPPS16 CT14+nCTEQ15

χ2 dof Prob. [%] χ2 dof Prob. [%] χ2 dof Prob. [%]

dσ→μ±νμ(ημ CM)/dη μ CM 135 48 3×10−8 32 48 96 40 48 79 (N+μ)/(N+μ+) 23 24 54 18 24 80 29 24 23 N±μ(+ημCM)/N±μ(ημCM) 98 20 3×10−10 11 20 95 14 20 83 Nμ(+ημCM)/Nμ(ηCMμ ) 87 10 2×10−12 3 10 99 5 10 90

Fig. 5. Comparisonofthemuonchargeasymmetrymeasuredat√sNN=8.16 TeV

(circles)andat√sNN=5.02 TeV [13] (squares).Themuonpseudorapidityofthe

measurementsat 5.02 TeV hasbeenshifted(seetextfor details) [54].Thesmall horizontallinesrepresentthe statisticalandsystematicuncertaintiessummed in quadrature,whereastheerrorbarsshowthestatisticaluncertaintiesonly.TheNLO calculationswithCT14+EPPS16nPDFat8.16 TeV andat5.02 TeV,arealsodisplayed, includingtheir68%confidenceintervalPDFuncertaintybands.

Fig. 6. Distributionoftheχ2/dofvaluesfromthecomparisonofdata(crosssection

measurements)andtheoreticalcalculations,fortheCT14,nCTEQ15,andEPPS16 in-dividualerrorsets.Theverticaldashedlinesrepresentthepredictioncorresponding tothecentralsetofCT14,nCTEQ15,andEPPS16.

and FWO(Belgium); CNPq,CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES andCSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); AcademyofFinland,MEC,andHIP(Finland);CEAandCNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NK-FIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN(Italy);MSIPandNRF(RepublicofKorea);MES(Latvia);LAS (Lithuania);MOEandUM(Malaysia);BUAP,CINVESTAV,CONACYT, LNS,SEP,andUASLP-FAI(Mexico);MOS(Montenegro);MBIE(New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portu-gal);JINR (Dubna);MON, RosAtom, RAS, RFBR,and NRCKI (Rus-sia);MESTD(Serbia);SEIDI,CPAN,PCTI,andFEDER(Spain);MoSTR (Sri Lanka); Swiss Funding Agencies(Switzerland); MST (Taipei); ThEPCenter,IPST,STAR,andNSTDA(Thailand);TUBITAKandTAEK (Turkey);NASUandSFFR(Ukraine); STFC(United Kingdom);DOE andNSF(USA).

Individuals have received support from the Marie-Curie pro-gramme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440 and 765710 (European Union); the Leventis Foundation; the AlfredP. Sloan Foundation;the Alexan-der von Humboldt Foundation; the Belgian Federal Science Pol-icy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRSand FWO(Belgium) underthe “Excellence of Sci-ence – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z181100004218003; the MinistryofEducation, YouthandSports(MEYS) ofthe Czech Re-public; the Lendület (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sci-ences, the New National Excellence Program ÚNKP, the NKFIA researchgrants123842,123959,124845,124850,125105,128713, 128786, and 129058 (Hungary); the Council of Science and In-dustrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional DevelopmentFund, the MobilityPlusprogrammeof the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/ 02861,Sonata-bis2012/07/E/ST2/01406;theNationalPriorities Re-search Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de ExcelenciaMaríade Maeztu,grant MDM-2015-0509andthe Pro-grama Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF andthe Greek NSRF; theRachadapisekSompotFundforPostdoctoralFellowship, Chula-longkornUniversityandtheChulalongkornAcademic intoIts2nd CenturyProjectAdvancementProject(Thailand);TheWelch Foun-dation,contractC-1845;andtheWestonHavensFoundation(USA).

(8)

References

[1] J. Butterworth,et al.,PDF4LHC recommendationsforLHCRun II,J.Phys. G 43(2016)023001,https://doi .org /10 .1088 /0954 -3899 /43 /2 /023001,arXiv:1510. 03865.

[2] S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P.Nadolsky, J. Pumplin, C. Schmidt,D.Stump,C.P.Yuan,Newpartondistributionfunctionsfromaglobal analysisofquantumchromodynamics,Phys.Rev.D93(2016)033006,https:// doi .org /10 .1103 /PhysRevD .93 .033006,arXiv:1506.07443.

[3] R.D.Ball,V.Bertone,S.Carrazza,C.S.Deans,L.DelDebbio,S.Forte,A. Guf-fanti,N.P.Hartland,J.I.Latorre,J.Rojo,M.Ubiali,NNPDF,Partondistributions fortheLHCRunII,J.HighEnergyPhys.04(2015)040,https://doi .org /10 .1007 / JHEP04(2015 )040,arXiv:1410.8849.

[4] L.A.Harland-Lang,A.D.Martin,P.Motylinski,R.S.Thorne,Partondistributions intheLHCera:MMHT2014PDFs,Eur.Phys.J.C75(2015)204,https://doi . org /10 .1140 /epjc /s10052 -015 -3397 -6,arXiv:1412.3989.

[5] R.Vogt,Shadowingeffectsonvectorbosonproduction,Phys.Rev.C64(2001) 044901,https://doi .org /10 .1103 /PhysRevC .64 .044901,arXiv:hep-ph/0011242. [6] X.-F.Zhang,G.I.Fai,Z0productionasatestofnucleareffectsattheLHC,Phys.

Lett.B545(2002)91,https://doi .org /10 .1016 /S0370 -2693(02 )02558 -3,arXiv: hep-ph/0205155.

[7] H. Paukkunen,C.A.Salgado,Constraintsfor thenuclearpartondistributions from Z andW productionat theLHC,J. HighEnergyPhys. 03(2011)071,

https://doi .org /10 .1007 /JHEP03(2011 )071,arXiv:1010.5392.

[8] A.Kusina,F.Lyonnet,D.B.Clark, E.Godat,T.Jezo, K. Kovarik,F.I.Olness, I. Schienbein,J.Y.Yu,VectorbosonproductioninpPbandPbPbcollisionsatthe LHCanditsimpactonnCTEQ15PDFs,Eur.Phys.J.C77(2017)488,https:// doi .org /10 .1140 /epjc /s10052 -017 -5036 -x,arXiv:1610.02925.

[9] N.Armesto,Nuclearshadowing,J.Phys.G32(2006)R367,https://doi .org /10 . 1088 /0954 -3899 /32 /11 /R01,arXiv:hep-ph/0604108.

[10] T.Aaltonen,etal.,CDF,DirectmeasurementoftheW productioncharge asym-metryinpp collisionsat√s=1.96 TeV,Phys.Rev.Lett.102(2009)181801,

https://doi .org /10 .1103 /PhysRevLett .102 .181801,arXiv:0901.2169.

[11] CMSCollaboration,Measurementofthemuonchargeasymmetryininclusive pp→W+X productionat√s=7 TeV andanimproveddeterminationoflight partondistributionfunctions,Phys.Rev.D90(2014)032004,https://doi .org /10 . 1103 /PhysRevD .90 .032004,arXiv:1312.6283.

[12] CMSCollaboration,Measurementoftheelectronchargeasymmetryin inclu-siveW productioninppcollisionsat√s=7 TeV,Phys.Rev.Lett.109(2012) 111806,https://doi .org /10 .1103 /PhysRevLett .109 .111806,arXiv:1206.2598. [13] CMSCollaboration,StudyofW bosonproductioninpPbcollisionsat√sNN=

5.02 TeV,Phys.Lett.B750(2015)565,https://doi .org /10 .1016 /j .physletb .2015 . 09 .057,arXiv:1503.05825.

[14] Z.ConesadelValle,A.Dainese,H.-T.Ding,G.MartinezGarcia,D.C.Zhou,Effect ofheavy-quarkenergylossonthemuondifferentialproductioncrosssection inPb-Pbcollisionsat √sNN=5.5 TeV,Phys.Lett.B663(2008)202,https:// doi .org /10 .1016 /j .physletb .2008 .03 .073,arXiv:0712.0051.

[15] Z.ConesadelValle,Vectorbosonsinheavy-ioncollisionsattheLHC,Eur.Phys. J. C 61 (2009) 729, https://doi .org /10 .1140 /epjc /s10052 -009 -0980 -8, arXiv: 0903.1432.

[16] ATLASCollaboration,MeasurementofthecentralitydependenceofJ yields andobservationofZ productioninlead-leadcollisionswiththeATLAS detec-torattheLHC,Phys.Lett.B697(2011)294,https://doi .org /10 .1016 /j .physletb . 2011.02 .006,arXiv:1012.5419.

[17] ATLAS Collaboration,MeasurementofZ bosonproductioninPbPbcollisionsat

sNN=2.76 TeV withtheATLASdetector,Phys.Rev.Lett.110(2013)022301, https://doi .org /10 .1103 /PhysRevLett .110 .022301,arXiv:1210.6486.

[18] ATLASCollaboration,Measurementoftheproductionandleptoncharge asym-metryofW bosonsinPb+Pbcollisionsat√sNN=2.76 TeV withtheATLAS

detector,Eur.Phys.J.C75(2015)23,https://doi .org /10 .1140 /epjc /s10052 -014 -3231 -6,arXiv:1408.4674.

[19] CMSCollaboration,StudyofZ bosonproductioninPbPbcollisionsat nucleon-nucleoncentreofmassenergy=2.76 TeV,Phys.Rev.Lett.106(2011)212301,

https://doi .org /10 .1103 /PhysRevLett .106 .212301,arXiv:1102.5435.

[20] CMSCollaboration,StudyofZ productioninPbPbandppcollisionsat√sNN=

2.76 TeV inthedimuonanddielectrondecaychannels,J.HighEnergyPhys.03 (2015)022,https://doi .org /10 .1007 /JHEP03(2015 )022,arXiv:1410.4825. [21] CMSCollaboration,StudyofW boson productioninPbPbandppcollisions

at √sNN=2.76 TeV, Phys. Lett.B 715(2012) 66, https://doi .org /10 .1016 /j . physletb .2012 .07.025,arXiv:1205.6334.

[22] ALICE Collaboration, W and Z boson production in p-Pb collisions at

sNN=5.02 TeV,J.HighEnergyPhys.02(2017)077,https://doi .org /10 .1007 / JHEP02(2017 )077,arXiv:1611.03002.

[23] CMSCollaboration,StudyofZ bosonproductioninpPbcollisionsat√sNN=

5.02 TeV,Phys.Lett.B759(2016)36,https://doi .org /10 .1016 /j .physletb .2016 . 05 .044,arXiv:1512.06461.

[24] ATLAS Collaboration, Z boson production in p

+

Pb collisions at √sNN=

5.02 TeV measuredwiththeATLASdetector,Phys.Rev.C92(2015)044915,

https://doi .org /10 .1103 /PhysRevC .92 .044915,arXiv:1507.06232.

[25] K.J.Eskola,P.Paakkinen,H.Paukkunen,C.A.Salgado,EPPS16:Nuclearparton distributionswithLHCdata,Eur.Phys.J.C77(2017)163,https://doi .org /10 . 1140 /epjc /s10052 -017 -4725 -9,arXiv:1612.05741.

[26] CMS Collaboration, Luminosity calibration for the 2013 proton-lead and proton-proton data taking, CMS Physics Analysis Summary CMS-PAS-LUM-13-002(2014),http://cdsweb .cern .ch /record /1643269.

[27] CMSCollaboration,CMSluminositymeasurementusing2016proton-nucleus collisionsat√sNN=8.16 TeV,CMSPhysicsAnalysisSummary

CMS-PAS-LUM-17-002(2018),http://cdsweb .cern .ch /record /2628652.

[28] K.Kovaˇrík,A.Kusina,T.Ježo,D.B.Clark,C.Keppel,F.Lyonnet,J.G.Morfín,F.I. Olness,J.F.Owens,I.Schienbein,J.Y.Yu,nCTEQ15:Globalanalysisofnuclear partondistributionswithuncertaintiesintheCTEQframework,Phys.Rev.D93 (2016)085037,https://doi .org /10 .1103 /PhysRevD .93 .085037,arXiv:1509.00792. [29] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008)

S08004,https://doi .org /10 .1088 /1748 -0221 /3 /08 /S08004.

[30] CMS Collaboration,Particle-flowreconstruction andglobalevent description withtheCMSdetector,J.Instrum.12(2017)P10003,https://doi .org /10 .1088 / 1748 -0221 /12 /10 /P10003,arXiv:1706.04965.

[31] CMS Collaboration, The CMStrigger system,J. Instrum. 12 (2017) P01020,

https://doi .org /10 .1088 /1748 -0221 /12 /01 /P01020,arXiv:1609.02366. [32] CMSCollaboration,PerformanceoftheCMSmuondetectorandmuon

recon-structionwithproton-protoncollisionsat√s=13 TeV,J.Instrum.13(2018) P06015,https://doi .org /10 .1088 /1748 -0221 /13 /06 /P06015,arXiv:1804.04528. [33] S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithparton

showersimulations:thePOWHEGmethod,J.HighEnergyPhys.11(2007)070,

https://doi .org /10 .1088 /1126 -6708 /2007 /11 /070,arXiv:0709.2092.

[34] P.Nason, Anewmethodfor combiningNLOQCDwithshowerMonteCarlo algorithms,J.HighEnergyPhys.11(2004)040,https://doi .org /10 .1088 /1126 -6708 /2004 /11 /040,arXiv:hep-ph/0409146.

[35] S. Alioli, P.Nason, C.Oleari, E.Re,A general framework for implementing NLOcalculationsinshowerMonteCarloprograms:thePOWHEGBOX,J.High EnergyPhys. 06(2010)043,https://doi .org /10 .1007 /JHEP06(2010 )043, arXiv: 1002.2581.

[36] L.Barze,G.Montagna,P.Nason,O.Nicrosini,F.Piccinini,Implementationof electroweakcorrections inthePOWHEG BOX:singleW production, J.High EnergyPhys. 04 (2012)037,https://doi .org /10 .1007 /JHEP04(2012 )037, arXiv: 1202.0465.

[37] L. Barze,G.Montagna,P.Nason, O.Nicrosini,F.Piccinini,A.Vicini, Neutral current Drell–Yan with combined QCD and electroweak corrections in the POWHEGBOX, Eur.Phys. J. C73 (2013) 2474, https://doi .org /10 .1140 /epjc / s10052 -013 -2474 -y,arXiv:1302.4606.

[38] S.Frixione,P.Nason,G.Ridolfi,Apositive-weightnext-to-leading-orderMonte Carloforheavyflavourhadroproduction,J.HighEnergyPhys.09(2007)126,

https://doi .org /10 .1088 /1126 -6708 /2007 /09 /126,arXiv:0707.3088.

[39] T. Sjöstrand,S.Ask,J.R. Christiansen,R.Corke,N.Desai,P.Ilten,S. Mrenna, S.Prestel,C.O.Rasmussen,P.Z.Skands,AnintroductiontoPYTHIA8.2, Com-put.Phys.Commun.191(2015)159,https://doi .org /10 .1016 /j .cpc .2015 .01.024, arXiv:1410.3012.

[40] CMSCollaboration,Eventgeneratortunesobtainedfromunderlyingeventand multipartonscatteringmeasurements,Eur.Phys.J.C76(2016)155,https:// doi .org /10 .1140 /epjc /s10052 -016 -3988 -x,arXiv:1512.00815.

[41] CMSCollaboration,Studyoftheunderlyingeventatforwardrapidityinpp col-lisionsat√s=0.9,2.76,and 7 TeV,J.HighEnergyPhys.04(2013)072,https:// doi .org /10 .1007 /JHEP04(2013 )072,arXiv:1302.2394.

[42] T.Pierog,I.Karpenko,J.M.Katzy,E.Yatsenko,K.Werner,EPOSLHC:Testof col-lectivehadronizationwithdatameasuredattheCERNLargeHadronCollider, Phys. Rev.C 92 (2015) 034906, https://doi .org /10 .1103 /PhysRevC .92 .034906, arXiv:1306.0121.

[43] CMSCollaboration,Pseudorapiditydistributionsofchargedhadronsin proton-leadcollisionsat√sNN=5.02 and 8.16 TeV,J.HighEnergyPhys.01(2018)

045,https://doi .org /10 .1007 /JHEP01(2018 )045,arXiv:1710.09355.

[44] S.Agostinelli,et al.,GEANT4, Geant4 —asimulationtoolkit, Nucl.Instrum. MethodsA506(2003)250,https://doi .org /10 .1016 /S0168 -9002(03 )01368 -8. [45] CMSCollaboration,MeasurementofinclusiveW andZ bosonproductioncross

sectionsinppcollisionsat√s=8 TeV,Phys.Rev.Lett.112(2014)191802,

https://doi .org /10 .1103 /PhysRevLett .112 .191802,arXiv:1402.0923.

[46] CMS Collaboration, Missing transverseenergyperformance ofthe CMS de-tector, J. Instrum. 6(2011) P09001, https://doi .org /10 .1088 /1748 -0221 /6 /09 / P09001,arXiv:1106.5048.

[47] CMSCollaboration,Performanceofmissingenergyreconstructionin13 TeV pp collisiondatausingtheCMSdetector,CMSPhysicsAnalysisSummary CMS-PAS-JME-16-004(2016),http://cdsweb .cern .ch /record /2205284.

[48] CMSCollaboration,MeasurementsofinclusiveW andZ crosssectionsinpp collisionsat√s=7 TeV,J.HighEnergyPhys.01(2011)080,https://doi .org /10 . 1007 /JHEP01(2011 )080,arXiv:1012.2466.

[49] M.Tanabashi,etal.,ParticleDataGroup,Reviewofparticlephysics,Phys.Rev. D98(2018)030001,https://doi .org /10 .1103 /PhysRevD .98 .030001.

[50] CMSCollaboration,Observationoftopquarkproductioninproton-nucleus col-lisions,Phys.Rev.Lett.119(2017)242001,https://doi .org /10 .1103 /PhysRevLett . 119 .242001,arXiv:1709.07411.

(9)

[51] S.Alioli,P.Nason,C.Oleari,E.Re,NLOvector-bosonproductionmatchedwith showerinPOWHEG, J.HighEnergy Phys.07 (2008)060,https://doi .org /10 . 1088 /1126 -6708 /2008 /07 /060,arXiv:0805.4802.

[52] R.Boughezal,J.M.Campbell,R.K.Ellis,C.Focke,W.Giele,X.Liu,F.Petriello,C. Williams,ColorsingletproductionatNNLOinMCFM,Eur.Phys.J.C77(2017) 7,https://doi .org /10 .1140 /epjc /s10052 -016 -4558 -y,arXiv:1605.08011. [53] CMSCollaboration,Studiesofdijettransversemomentumbalanceand

pseu-dorapiditydistributionsinpPbcollisionsat √sNN=5.02 TeV,Eur.Phys.J.C

74(2014) 2951, https://doi .org /10 .1140 /epjc /s10052 -014 -2951 -y,arXiv:1401. 4433.

[54] F.Arleo,É.Chapon,H.Paukkunen,ScalingpropertiesofinclusiveW± produc-tionathadroncolliders,Eur.Phys.J.C76(2016)214,https://doi .org /10 .1140/ epjc /s10052 -016 -4049 -1,arXiv:1509.03993.

[55] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström,B. Page, M. Rüfenacht, M. Schönherr,G.Watt,LHAPDF6:partondensityaccessintheLHCprecisionera, Eur.Phys.J.C75(2015)132,https://doi .org /10 .1140 /epjc /s10052 -015 -3318 -8, arXiv:1412.7420.

[56] J.Pumplin,D.Stump,R.Brock,D.Casey,J.Huston,J.Kalk,H.L.Lai,W.K.Tung, Uncertaintiesofpredictionsfrompartondistributionfunctions.II. TheHessian method,Phys.Rev.D65(2001)014013,https://doi .org /10 .1103 /PhysRevD .65 . 014013,arXiv:hep-ph/0101032.

TheCMSCollaboration

A.M. Sirunyan,

A. Tumasyan

YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam,

F. Ambrogi,

E. Asilar,

T. Bergauer,

J. Brandstetter,

M. Dragicevic,

J. Erö,

A. Escalante Del Valle,

M. Flechl,

R. Frühwirth

1

,

V.M. Ghete,

J. Hrubec,

M. Jeitler

1

,

N. Krammer,

I. Krätschmer,

D. Liko,

T. Madlener,

I. Mikulec,

N. Rad,

H. Rohringer,

J. Schieck

1

,

R. Schöfbeck,

M. Spanring,

D. Spitzbart,

A. Taurok,

W. Waltenberger,

J. Wittmann,

C.-E. Wulz

1

,

M. Zarucki

InstitutfürHochenergiephysik,Wien,Austria

V. Chekhovsky,

V. Mossolov,

J. Suarez Gonzalez

InstituteforNuclearProblems,Minsk,Belarus

E.A. De Wolf,

D. Di Croce,

X. Janssen,

J. Lauwers,

M. Pieters,

H. Van Haevermaet,

P. Van Mechelen,

N. Van Remortel

UniversiteitAntwerpen,Antwerpen,Belgium

S. Abu Zeid,

F. Blekman,

J. D’Hondt,

I. De Bruyn,

J. De Clercq,

K. Deroover,

G. Flouris,

D. Lontkovskyi,

S. Lowette,

I. Marchesini,

S. Moortgat,

L. Moreels,

Q. Python,

K. Skovpen,

S. Tavernier,

W. Van Doninck,

P. Van Mulders,

I. Van Parijs

VrijeUniversiteitBrussel,Brussel,Belgium

D. Beghin,

B. Bilin,

H. Brun,

B. Clerbaux,

G. De Lentdecker,

H. Delannoy,

B. Dorney,

G. Fasanella,

L. Favart,

R. Goldouzian,

A. Grebenyuk,

A.K. Kalsi,

T. Lenzi,

J. Luetic,

N. Postiau,

E. Starling,

L. Thomas,

C. Vander Velde,

P. Vanlaer,

D. Vannerom,

Q. Wang

UniversitéLibredeBruxelles,Bruxelles,Belgium

T. Cornelis,

D. Dobur,

A. Fagot,

M. Gul,

I. Khvastunov

2

,

D. Poyraz,

C. Roskas,

D. Trocino,

M. Tytgat,

W. Verbeke,

B. Vermassen,

M. Vit,

N. Zaganidis

GhentUniversity,Ghent,Belgium

H. Bakhshiansohi,

O. Bondu,

S. Brochet,

G. Bruno,

C. Caputo,

P. David,

C. Delaere,

M. Delcourt,

A. Giammanco,

G. Krintiras,

V. Lemaitre,

A. Magitteri,

A. Mertens,

M. Musich,

K. Piotrzkowski,

A. Saggio,

M. Vidal Marono,

S. Wertz,

J. Zobec

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

F.L. Alves,

G.A. Alves,

M. Correa Martins Junior,

G. Correia Silva,

C. Hensel,

A. Moraes,

M.E. Pol,

P. Rebello Teles

(10)

E. Belchior Batista Das Chagas,

W. Carvalho,

J. Chinellato

3

,

E. Coelho,

E.M. Da Costa,

G.G. Da Silveira

4

,

D. De Jesus Damiao,

C. De Oliveira Martins,

S. Fonseca De Souza,

H. Malbouisson,

D. Matos Figueiredo,

M. Melo De Almeida,

C. Mora Herrera,

L. Mundim,

H. Nogima,

W.L. Prado Da Silva,

L.J. Sanchez Rosas,

A. Santoro,

A. Sznajder,

M. Thiel,

E.J. Tonelli Manganote

3

,

F. Torres Da Silva De Araujo,

A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

S. Ahuja

a

,

C.A. Bernardes

a

,

L. Calligaris

a

,

T.R. Fernandez Perez Tomei

a

,

E.M. Gregores

b

,

P.G. Mercadante

b

,

S.F. Novaes

a

,

Sandra

S. Padula

a

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov,

R. Hadjiiska,

P. Iaydjiev,

A. Marinov,

M. Misheva,

M. Rodozov,

M. Shopova,

G. Sultanov

InstituteforNuclearResearchandNuclearEnergy,BulgarianAcademyofSciences,Sofia,Bulgaria

A. Dimitrov,

L. Litov,

B. Pavlov,

P. Petkov

UniversityofSofia,Sofia,Bulgaria

W. Fang

5

,

X. Gao

5

,

L. Yuan

BeihangUniversity,Beijing,China

M. Ahmad,

J.G. Bian,

G.M. Chen,

H.S. Chen,

M. Chen,

Y. Chen,

C.H. Jiang,

D. Leggat,

H. Liao,

Z. Liu,

F. Romeo,

S.M. Shaheen

6

,

A. Spiezia,

J. Tao,

Z. Wang,

E. Yazgan,

H. Zhang,

S. Zhang

6

,

J. Zhao

InstituteofHighEnergyPhysics,Beijing,China

Y. Ban,

G. Chen,

A. Levin,

J. Li,

L. Li,

Q. Li,

Y. Mao,

S.J. Qian,

D. Wang,

Z. Xu

StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

Y. Wang

TsinghuaUniversity,Beijing,China

C. Avila,

A. Cabrera,

C.A. Carrillo Montoya,

L.F. Chaparro Sierra,

C. Florez,

C.F. González Hernández,

M.A. Segura Delgado

UniversidaddeLosAndes,Bogota,Colombia

B. Courbon,

N. Godinovic,

D. Lelas,

I. Puljak,

T. Sculac

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia

Z. Antunovic,

M. Kovac

UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,

D. Ferencek,

K. Kadija,

B. Mesic,

A. Starodumov

7

,

T. Susa

InstituteRudjerBoskovic,Zagreb,Croatia

M.W. Ather,

A. Attikis,

M. Kolosova,

G. Mavromanolakis,

J. Mousa,

C. Nicolaou,

F. Ptochos,

P.A. Razis,

H. Rykaczewski

UniversityofCyprus,Nicosia,Cyprus

M. Finger

8

,

M. Finger Jr.

8 CharlesUniversity,Prague,CzechRepublic

(11)

E. Ayala

EscuelaPolitecnicaNacional,Quito,Ecuador

E. Carrera Jarrin

UniversidadSanFranciscodeQuito,Quito,Ecuador

A. Ellithi Kamel

9

,

M.A. Mahmoud

10

,

11

,

Y. Mohammed

10

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

S. Bhowmik,

A. Carvalho Antunes De Oliveira,

R.K. Dewanjee,

K. Ehataht,

M. Kadastik,

M. Raidal,

C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola,

H. Kirschenmann,

J. Pekkanen,

M. Voutilainen

DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Havukainen,

J.K. Heikkilä,

T. Järvinen,

V. Karimäki,

R. Kinnunen,

T. Lampén,

K. Lassila-Perini,

S. Laurila,

S. Lehti,

T. Lindén,

P. Luukka,

T. Mäenpää,

H. Siikonen,

E. Tuominen,

J. Tuominiemi

HelsinkiInstituteofPhysics,Helsinki,Finland

T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon,

F. Couderc,

M. Dejardin,

D. Denegri,

J.L. Faure,

F. Ferri,

S. Ganjour,

A. Givernaud,

P. Gras,

G. Hamel de Monchenault,

P. Jarry,

C. Leloup,

E. Locci,

J. Malcles,

G. Negro,

J. Rander,

A. Rosowsky,

M.Ö. Sahin,

M. Titov

IRFU,CEA,UniversitéParis-Saclay,Gif-sur-Yvette,France

A. Abdulsalam

12

,

C. Amendola,

I. Antropov,

F. Arleo,

F. Beaudette,

P. Busson,

C. Charlot,

R. Granier de Cassagnac,

I. Kucher,

A. Lobanov,

J. Martin Blanco,

C. Martin Perez,

M. Nguyen,

C. Ochando,

G. Ortona,

P. Paganini,

P. Pigard,

J. Rembser,

R. Salerno,

J.B. Sauvan,

Y. Sirois,

A.G. Stahl Leiton,

A. Zabi,

A. Zghiche

LaboratoireLeprince-Ringuet,Ecolepolytechnique,CNRS/IN2P3,UniversitéParis-Saclay,Palaiseau,France

J.-L. Agram

13

,

J. Andrea,

D. Bloch,

J.-M. Brom,

E.C. Chabert,

V. Cherepanov,

C. Collard,

E. Conte

13

,

J.-C. Fontaine

13

,

D. Gelé,

U. Goerlach,

M. Jansová,

A.-C. Le Bihan,

N. Tonon,

P. Van Hove

UniversitédeStrasbourg,CNRS,IPHCUMR7178,Strasbourg,France

S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,

C. Bernet,

G. Boudoul,

N. Chanon,

R. Chierici,

D. Contardo,

P. Depasse,

H. El Mamouni,

J. Fay,

L. Finco,

S. Gascon,

M. Gouzevitch,

G. Grenier,

B. Ille,

F. Lagarde,

I.B. Laktineh,

H. Lattaud,

M. Lethuillier,

L. Mirabito,

S. Perries,

A. Popov

14

,

V. Sordini,

G. Touquet,

M. Vander Donckt,

S. Viret

UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France

A. Khvedelidze

8

GeorgianTechnicalUniversity,Tbilisi,Georgia

Z. Tsamalaidze

8

Riferimenti

Documenti correlati

Education, age, wage, quality of relations between managers- employees, years of experience, the area of the market the workplace is operated and the competition are

The pricing policies clearly reflect the corporate values inherited from the past: they were designed to give value to the quality of the production without forgetting

In NS stage, meningeal-derived cells express the specific marker of stemness, nestin; in Step Go1, meningeal-derived cells express the specific marker of oligodendrocyte

XMM-Newton observations of I Zw 1 in 2015 reveal the presence of a broad and blueshifted P Cygni iron K pro file, as observed through a blueshifted absorption trough at 9 keV and a

Trajectories of charged particles, here referred as tracks, are reconstructed in the LHCb using the hits of the tracking subdetectors [64] (VELO, TT and T-stations)..

In the present case the effect of radiation pressure, calculated in the Newtonian approximation, is that of increasing the angular momentum of the stable orbits near the

fumigata led to the isolation, from the more polar fraction of the butanol extract, of a new disulfated sterol, named phallusiasterol C (1, Figure 1), of which the structure