• Non ci sono risultati.

Combustion kinetics of coal in oxy-firing conditions

N/A
N/A
Protected

Academic year: 2021

Condividi "Combustion kinetics of coal in oxy-firing conditions"

Copied!
9
0
0

Testo completo

(1)

173

Bibliography

Ahn, D., Gibbs, B., Ko, K., & Kim, J. (2001). Gasification kinetics of an Indonesian sub-bituminous coal-char with CO2 at elevated pressure. Fuel , 1651-1658.

Al-Makhadmeh, I., Maier, J., & Scheffknecht, G. (2009). Coal pyrolysis and char combustion under oxy-fuel conditions. The 34th International Technical Conference on

Coal Utilization and Fuel Systems - Clearwater .

Andersson, K., & Johnsson, F. (2007). Flame and radiation characteristics of gas fired O2/CO2 combustion. Fuel , 656-668.

Andersson, K., Johansson, R., Hjarstam, S., Johnsson, F., & Leckner, B. (2008). Radiation intensity of lignite-fired oxy-fuel flames: implications for soot formation. Experimental

Thermal and Fuel Science , 67-76.

Annamalai, K., & Puri, J. (2007). Combustion science and engineering. Boca Raton: CRC Press/Taylor & Francis.

Baum, M., & Street, P. (1971). Predicting the combustion behaviour of coal particles.

Combustion Science and Technology , 231-243.

Bejarano, P., & Levendis, Y. (2008). Single coal particle combustion in O2/N2 and

O2/CO2 environments. Combustion and Flame , 270-287.

Biagini, E., & Tognotti, L. (2010). Review of solid fuels combustion models for the determination of reactivity parameters. IFRF Study Report N. G03/y/02 .

Biagini, E., Biasci, L., Marcucci, M., & Tognotti, L. (2010). Description of the Isothermal Plug Flow Reactor and the experimental procedures for combustion studies on solid fuels. IFRF Research Report N. G03/y/03 .

Biagini, E., Marcucci, M., & Tognotti, L. (2010). Review of methodologies for coal characterization. IFRF Study Report N.G03/y/01 .

Biasci, L., Faleni, M., & Tognotti, L. (2010). Prova funzionale IPFR in atmosfera di O2/CO2. IFRF Industial Application Report N. H48/y/05.7 .

Brix, J., Jensen, P. A., & Jensen, A. D. (2010). Coal devolatilization and char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres. Fuel , 3373-3380.

Buhre, B. J., Elliott, L. K., Sheng, C. D., Gupta, R. P., & Wall, T. F. (2005). Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and

(2)

174

Cabrejos, F., & Klinzing, G. (1994). Pickup and saltation mechanisms of solid particles in horizontal pneumatic transport. Powder technology , 173-186.

Chen, L., Yong, S. Z., & Ghoniem, A. F. (2012). Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Progress in Energy

and Combustion Science , 156-214.

Chiu, H., & Liu, T. (1977). Group combustion of liquid droplets. Combustion Science and

Technology , 127-142.

Croiset, E., & Thambimuthu, K. V. (2001). NOx and SO2 emissions from O2/CO2 recycle

coal combustion. Fuel , 2117-2121.

Croiset, E., Thambimuthu, K., & Palmer, A. (2000). Coal combustion in O2/CO2 mixtures

compared with air. The Canadian Journal of Chemical Engineering , 402-407.

Davis, S., Joshi, A., Wang, H., & Egolfopoulos, F. (2005). An optimized kinetic model of H2/CO combustion. Proceedings of the Combustion Institute , 1283-1292.

Dhaneswar, S. R., & Pisupati, S. V. (2012). Oxy-fuel combustion: The effect of coal rank and the role of char-CO2 reaction. Fuel Processing Technology , 156-165.

Dhungel, B., Moenckert, P., Maier, J., & Scheffknecht, G. (2007). Investigation of oxy-coal combustion in semi-technical test facilities. 3rd International Conference on Clean

Coal Technology .

Du, X., Gopalakrishnan, C., & Annamalai, K. (1995). Ignition and combustion of coal particle streams. Fuel , 487-494.

Edge, P., Gharebaghi, M., Irons, R., Porter, R., Porter, R. T., Pourkashanian, M., et al. (2011). Combustion modelling opportunities and challenges for oxy-coal carbon capture technology. Chemical Engineering Research and Design , 1470-1493.

Farley, M. (2006). Developing oxyfuel capture as a retrofit technology. Modeling Power

Systems , 20-22.

Field, M. (1969). Rate of combustion of size-graded fractions of char from a low-rank coal between 1200 and 2000 K. Combustion and Flame , 237-252.

Fleig, D., Normann, F., Andersson, K., Johnsson, F., & Leckner, B. (2009). The fate of sulfur during oxy-fuel combustion of lignite. Energy Procedia , 383-390.

Fry, A., Adams, B., & Shan, J. (2010). Oxy-burner retrofit principles for existing coal-fired utility boilers. The 35th International Conference on Clean Coal and Fuel Systems -

(3)

175

Geier, M., Shaddix, C., & Holzleithner, F. (2012). A mechanistic char oxidation model consistent with observed CO2/CO production ratios. Proceedings of the Combustion

Institute .

Gil, M., Riaza, J., Alvarez, L., Pevida, C., Pis, J., & Rubiera, F. (2012). Oxy-fuel combustion kinetics and morphology of coal chars obtained in N2 and CO2

atmospheres in an entrained flow reactor. Applied Energy , 67-74. Glassman, I. (1996). Combustion. San Diego: Academic Press.

Guo, X., Tay, H., Zhang, S., & Li, Z. (2008). Changes in char structure during the gasification of a Victorian brown coal in steam and oxygen at 800°C. Energy & Fuels , 4034-4038.

Harris, D., & Smith, I. (1991). Intrinsic reactivity of petroleum coke and brown coal char to carbon dioxide, steam and oxygen. Symposium (International) on Combustion , 1185-1190.

Hecht, E., Shaddix, C., Geier, M., Molina, A., & Haynes, B. (2012). Effect of CO2 and

steam gasification reactions on the oxy-combustion of pulverized coal char.

Combustion and Flame , 3437-3447.

Hecht, E., Shaddix, C., Molina, A., & Haynes, B. (2011). Effect of CO2 gasification

reaction on oxy-combustion of pulverized coal char. Proceedings of the Combustion

Institute , 1699-1706.

Hjartstam, S., Andersson, K., Johnsson, F., & Leckner, B. (2009). Combustion characteristics of lignite-fired oxy-fuel flames. Fuel , 2216-2224.

Hu, Y., Kobayashi, N., & Hasatani, M. (2003). Effects of coal properties on recycled-NOx reduction in coal combustion with O2/recycled flue gas. Energy Conversion and

Management , 2331-2340.

Hu, Y., Kobayashi, N., & Hasatani, M. (2001). The reduction of recycled NOx in coal

combustion with O2/recycled flue gas under low recycling ratio. Fuel .

Hu, Y., Naito, S., Kobayashi, N., & Hasatani, M. (2000). NOx and SO2 emissions from the

combustion of coal with high oxygen concentration gases. Fuel , 1925-1932.

Hurt, R., & Calo, J. (2001). Semi-global intrinsic kinetics for char combustion modeling.

Combustion and Flame , 1138-1149.

Hurt, R., Sun, J., & Lunden, M. (1998). A kinetic model of carbon burnout in pulverized coal combustion. Combustion and Flame , 181-197.

(4)

176

International Energy Agency. (2011). World Energy Outlook 2011. IEA.

Kajitani, S., Hara, S., & Matsuda, H. (2002). Gasification rate analysis of coal char with a pressurized drop tube furnace. Fuel , 539-546.

Karlstrom, O., Brink, A., Biagini, E., Hupa, M., & Tognotti, L. (2012). Comparing reaction orders of anthracite chars with bituminous coal chars at high temperature oxidation conditions. Proceedings of the Combustion Institute .

Karlstrom, O., Brink, A., Hupa, M., & Tognotti, L. (2011). Multivariable optimization of reaction order and kinetic parameters for high temperature oxidation of 10 bituminous coal chars. Combustion and Flame , 2056-2063.

Kiga, T., Takano, S., Kimura, N., Omata, K., Okawa, M., Mori, T., et al. (1997). Characteristics of pulverized-coal combustion in the system of oxygen/recycled flue gas combustion. Energy Conversion , S129-S134.

Kimura, N., Omata, K., Kiga, T., Takano, S., & Shikisima, S. (1995). The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery. Energy Conversion

and Management , 805-808.

Klostermann, M. (2008). Efficiency increase of the oxyfuel process by waste heat recovery considering the effects of flue gas treatments. 3rd Workshop of the IEA GHG

international oxy-combustion network .

Kobayashi, H., Howard, J., & Sarofim, A. (1977). Coal devolatilization at high temperatures. Symposium (International) on Combustion , 411-425.

Kutchko, B., & Ann, G. (2006). Fly ash characterization by SEM-EDS. Fuel , 2537-2544. Law, C. (2006). Combustion physics. New York: Cambridge University Press.

Li, Q., Zhao, C., Chen, X., Wu, W., & Lin, B. (2010). Properties of char particles obtained under O2/N2 and O2/CO2 combustion environments. Chemical Engineering and

Processing: Process Intensification , 449-459.

Liu, F., Guo, K., & Smallwood, G. (2003). The chemical effect of CO2 replacement of N2 in air in the burning velocity of CH4 and H2 premixed flames. Combustion and Flame ,

495-497.

Liu, H. (2009). A comparison of combustion of coal chars in O2/CO2 and O2/N2 mixtures

- Isothermal TGA studies. International Journal of Reactor Engineering .

Liu, H., Zailani, R., & Gibbs, B. (2005). Pulverized coal combustion in air and in O2/CO2

(5)

177

Liu, Y., Geier, M., Molina, A., & Shaddix, C. R. (2011). Pulverized coal stream ignition delay under conventional and oxy-fuel combustion conditions. International Journal of

Greenhouse Gas Control , S36-S46.

Mackrory, A., & Tree, D. (2008). NOx destruction experiments and modeling in oxy-fuel combustion. 33rd International Technical Conference on Coal Utilization and Fuel

Systems, Coal for the Future .

Maier, J., Dhungel, B., Moenckert, P., Kull, R., & Scheffknecht, G. (2008). Impact of recycled gas species (SO2, NO) on emission behaviour and fly ash quality during

oxy-coal combustion. Proceedings of the 33rd International Technical Conference on Coal

Utilization and Fuel Systems .

Man, C. K., & Gibbins, J. R. (2011). Factors affecting coal particle ignition under oxyfuel combustion atmospheres. Fuel , 294-304.

Mann, A., & Kent, J. (1994). A computational study of heterogeneous char reactions in a full-scale furnace. Combustion and Flame , 1185-1190.

Marcucci, M., & Tognotti, L. (2010). Procedure operative necessarie per la caratterizzazione con IPFR di combustibili solidi. IFRF Industrial Application Report N.

H48/y/05.4.2 .

Marcucci, M., & Tognotti, L. (2010). Prove IPFR: cinetiche di devolatilizzazione di 3 carboni d'interesse ENEL e cinetiche di combustione in atmosfere N2/O2 del char

prodotto a partire da 3 carboni di interesse ENEL. IFRF Industrial Application Report N.

H48/y/05.6.1 .

Mendiara, T., & Glarborg, P. (2009). Reburn chemistry in oxy-fuel combustion of methane. Energy Fuels , 3565-3572.

Mitchell, R., Hurt, R., Baxter, L., & Hardesty, D. (1992). Compilation of Sandia coal char combustion data and kinetic analyses. SAND92-8208 - Sandia National Laboratories . Mitchell, R., Kee, R., Glarborg, P., & Coltrin, M. (1991). The effect of CO conversion in the boundary layers surrounding pulverized-coal char particles. Symposium

(International) on Combustion , 1169-1176.

Moenckert, P., Dhungel, B., Kull, R., & Maier, J. (2008). Impact of combustion conditions on emission formation (SO2, NOx) and fly ash. 3rd workshop of the IEA GHG

International Oxy-Combustion Network .

Molina, A., & Shaddix, C. R. (2007). Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proceedings

(6)

178

Molina, A., Eddings, E. G., Pershing, D. W., & Sarofim, A. F. (2000). Char nitrogen conversion: implications to emissions from coal-fired utility boilers. Progress in Energy

and Combustion Science , 507-531.

Molina, A., Eddings, E. G., Pershing, D. W., & Sarofim, A. F. (2004). Nitric oxide destruction during coal and char oxidation under pulverized coal combustion conditions. Combustion and Flame , 303-312.

Molina, A., Murphy, A. A., Winter, F., Haynes, B. S., Blevins, L. G., & Shaddix, C. R. (2009). Pathways for conversion of char nitrogen to nitric oxide during pulverized coal combustion. Combustion and Flame , 574-587.

Murphy, J. J., & Shaddix, C. R. (2006). Combustion kinetics of coal chars in oxygen-enriched environments. Combustion and Flame , 710-729.

Murphy, J. J., & Shaddix, C. R. (2010). Effect of reactivity loss on apparent reaction order of burning char particles. Combustion and Flame , 535-539.

Normann, F., Andersson, K., Leckner, B., & Johnsson, F. (2009). Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science , 385-397.

Nozaki, T., Takano, S., Kiga, T., Omata, K., & Kimura, N. (1997). Analysis of the flame formed during oxidation of pulverized coal by an O2-CO2 mixture. Energy , 199-205.

Okazaki, K., & Ando, T. (1997). NOx reduction mechanism in coal combustion with

recycled CO2. Energy , 207-215.

Park, D., Day, S., & Nelson, P. (2005). Nitrogen release during reaction of coal char with O2, CO2, and H2O. Proceedings of the Combustion Institute , 2169-2175.

Perry, R., & Green, D. (1999). Perry's chemical engineers' handbook. McGrawHill. Pettinau, A., Ferrara, F., & Amorino, C. (2012). Techno-economic comparison between different technologies for a CCS power generation plant integrated with a sub-bituminous coal mine in Italy. Applied Energy , 32-39.

Ranz, W., & Marshall, W. (1952). Evaporation from drops, part I. Chemical Engineering

Progress .

Rathnam, R., Elliott, L., Wall, T., Liu, Y., & Moghtaderi, B. (2009). Differences in reactivity of pulverized coal in air (O2/N2) and oxy-fuel (O2/CO2) conditions. Fuel

Processing Technology , 797-802.

Richards, G., Slater, P., & Harb, J. (1993). Simulation of ash deposit growth in a pulverized coal-fired pilot scale reactor. Energy & Fuels , 774-781.

(7)

179

Ruiz, M., Annamalai, K., & Dahdah, T. (1990). An experimental study on group ignition of coal particle streams. Heat and Mass Transfer in Flames and Combustion Systems , 16-26.

Scheffknecht, G., Al-Makhadmeh, L., Schnell, U., & Maier, J. (2011). Oxy-fuel coal combustion - A review of the current state-of-the-art. International Journal of

Greenhouse Gas Control , S16-235.

Schnurrer, S., Elliott, L., Wall, T., & Liu, Y. (2008). Influence of oxy-fuel environment on sulphur species in ash from pulverized coal combustion. Impacts of fuel quality on

power production and the environment .

Senneca, O., & Cortese, L. (2012). Kinetics of coal oxy-combustion by means of different experimental techniques. Fuel .

Shaddix, C. R., & Molina, A. (2011). Fundamental investigation of NOx formation during

oxy-fuel combustion of pulverized coal. Proceedings of the Combustion Institute , 1723-1730.

Shaddix, C. R., & Molina, A. (2009). Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proceedings of the Combustion Institute , 2091-2098.

Sheng, C., & Li, Y. (2008). Experimental study of ash formation during pulverized coal combustion in O2/CO2 mixtures. Fuel , 1297-1305.

Sheng, C., Li, Y., Gao, X., & Yao, H. (2007). Fine ash formation during pulverized coal combustion: a comparison of O2/CO2 versus air combustion. Energy & Fuels , 435-440.

Smart, J., O'Nions, P., & Riley, G. (2010). Radiation and convective heat transfer, and burnout in oxy-coal combustion. Fuel , 2468-2476.

Smith, I. (1982). The combustion rates of coal chars: a review. Symposium

(International) on Combustion , 1045-1065.

Spinti, J., & Pershing, D. (2003). The fate of char-N at pulverized coal conditions.

Combustion and Flame , 299-313.

Stanmore, B., & Visona, S. (1998). The contribution to char burnout from gasification by H2O and CO2 during pulverized-coal flame combustion. Combustion and Flame , 274-276.

Suda, T., Masuko, K., Sato, J., Yamamoto, A., & Okazaki, K. (2007). Effect of carbon dioxide on flame propagation of pulverized coal clouds in CO2/O2 combustion. Fuel ,

(8)

180

Suriyawong, A., Gamble, M., Lee, M., Axelbaum, R., & Biswas, P. (2006). Submicrometer particle formation and mercury speciation under O2-CO2 coal

combustion. Energy & Fuels , 2357-2363.

Tan, Y., Croiset, E., Douglas, M. A., & Thambimuthu, K. V. (2006). Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel , 507-512. Taniguchi, M., Kobayashi, H., Kiyama, K., & Shimogori, Y. (2009). Comparison of flame propagation properties of petroleum coke and coals of different rank. Fuel , 1478-1484.

Toftegaard, M. B., Brix, J., Jensen, P. A., Glarborg, P., & Jensen, A. D. (2010). Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science , 581-625.

Tognotti, L., Longwell, J., & Sarofim, A. (1991). The products of the high temperature oxidation of a single char particle in an electrodynamic balance. Symposium

(International) on Combustion , 1207-1213.

Turns, S. (2000). An introduction to combustion: concept and applications. Boston: MacGraw-Hill.

Varhegyi, G., & Till, F. (1999). Comparison of temperature-programmed char combustion in CO2-O2 and Ar-O2 mixtures at elevated pressure. Energy Fuels , 539-540.

Varhegyi, G., Szabo, P., Jakab, E., Till, F., & Richard, J. (1996). Mathematical modeling of char reactivity in Ar-O2 and CO2-O2 mixtures. Energy Fuels , 1208-1214.

Wall, T. F. (2007). Combustion processes for carbon capture. Proceedings of the

Combustion Institute , 31-47.

Wall, T., Liu, Y., Spero, C., Elliott, L., Khare, S., Rathnam, R., et al. (2009). An overview on oxyfuel coal combustion - State of the art research and technology development.

Chemical Engineering Research and Design , 1003-1016.

Webb, P. (2012). Interpretation of particle size reported by different analytical techniques. Micromeritics Instrumentation Corp. , 1-10.

Weber, R. (1998). The spirit of IJMuiden. IJMuiden.

Wendt, J., Sternling, C., & Matovich, M. (1973). Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection. Proceedings of the Combustion Institute , 897-904.

Williams, A., Backreedy, R., Habib, R., Jones, J., & Pourkashanian, M. (2002). Modelling coal combustion: the current position. Fuel , 605-618.

(9)

181

Woycenko, D., Ikeda, I., & Van de Kamp, W. (1994). Combustion of pulverized coal in a mixture of oxygen and recycled flue gas. Technical Report Doc. F98/Y/1 - International

Flame Research Foundation .

Yong, S., Gazzino, M., & Ghoniem, A. (2012). Modeling the slag layer in solid fuel gasification and combustion - formulation and sensitivity analysis. Fuel , 162-170. Yu, J., Lucas, J., & Wall, T. (2007). Formation of the structure of chars during devolatilization of pulverized coals and its thermoproperties: a review. Progress in

Energy and Combustion Science , 135-170.

Zhang, J., Kelly, K., Eddings, E., & Wendt, J. (2011). Ignition in 40 kW co-axial turbulent diffusion oxy-coal jet flames. Proceedings of the Combustion Institute , 3375-3382. Zheng, L., & Furimsky, E. (2003). Assessment of coal combustion in O2+CO2 by

Riferimenti

Documenti correlati

In this study, we evaluated the ability of four sorption kinetic equations to describe sorption kinetics and the rate of expansion/contraction of cuboidal hard coal samples

Obtained results such as calorific value of sewage sludge and unit energy demand of briquetting process can useful during planning of design municipal power

The combustible gases supplied to the chamber of the pulverized coal-fired boiler can be used to stabilize coal dust combustion process at low boiler load. They can replace

The samples of coal blends burnt in the boilers and solid by-products of their combustion, i.e.: the average daily samples of fly ashes, ash-slag samples and products

Analysis of the results indicates that the major source of mercury (over 99%) is coal; the amount of mercury introduced with sorbent is negligible (less than 1%). As for

Because of the low share of sulphur in the chemical composition of biomass compared to the pure carbon sample, the concentration of H 2 S in biomass blends flue gas (0.03-0.04%

The measured levels of critical elements were compared with the so-called Clarke value in sedimentary rocks (the global average content of a specified element in sedimentary rocks)

To conduct calculations of the pulverized-coal fired boiler, the following processes as coal combustion including a devolatilization process, char and gas phase