• Non ci sono risultati.

Epidemiological modelling for the assessment of bovine tuberculosis surveillance in the dairy farm network in Emilia-Romagna (Italy)

N/A
N/A
Protected

Academic year: 2021

Condividi "Epidemiological modelling for the assessment of bovine tuberculosis surveillance in the dairy farm network in Emilia-Romagna (Italy)"

Copied!
9
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Epidemics

jo u rn al h om ep age : w w w . e l s e v i e r . c o m / l o c a t e / e p i d e m i c s

Epidemiological

modelling

for

the

assessment

of

bovine

tuberculosis

surveillance

in

the

dairy

farm

network

in

Emilia-Romagna

(Italy)

Gianluigi

Rossi

a,∗

,

Giulio

A.

De

Leo

b

,

Stefano

Pongolini

c

,

Silvano

Natalini

d

,

Simone

Vincenzi

e,f

,

Luca

Bolzoni

c,g

aDipartimentodiBioscienze,UniversitàdiParma,ParcoAreadelleScienze11/A,I-43124Parma,Italy bStanfordUniversity,HopkinsMarineStation,PacificGrove,CA93950,USA

cIstitutoZooprofilatticoSperimentaledellaLombardiaedell’Emilia-Romagna,ViadeiMercati,13/A,ParmaI-43122,Italy

dServizioVeterinarioeIgieneAlimentiAssessoratoPoliticheperlaSaluteRegioneEmilia-Romagna,VialeAldoMoro21,BolognaI-40127,Italy eCenterforStockAssessmentResearch,DepartmentofAppliedMathematicsandStatistics,UniversityofCalifornia,SantaCruz,CA95064,USA fDipartimentodiElettronica,InformazioneeBioingegneria,PolitecnicodiMilano,ViaPonzio34/5,I-20133Milan,Italy

gDepartmentofBiodiversityandMolecularEcology,ResearchandInnovationCentreFondazioneEdmundMach,SanMicheleall’Adige,Trento,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received17March2014

Receivedinrevisedform11February2015 Accepted25February2015

Availableonline6March2015 Keywords: Epidemiologicalmodel Diseasesurveillance Networkmodel Bovinetuberculosis SEImodel

a

b

s

t

r

a

c

t

Assessingtheperformanceofasurveillancesystemforinfectiousdiseasesofdomesticanimalsisa chal-lengingtaskforhealthauthorities.Therefore,itisimportanttoassesswhatstrategyisthemosteffective inidentifyingtheonsetofanepidemicandinminimizingthenumberofinfectedfarms.

Theaimofthepresentworkwastoevaluatetheperformanceofthebovinetuberculosis(bTB) surveil-lancesysteminthenetworkofdairyfarmsintheEmilia-Romagna(ER)Region,Italy.AbTB-freeRegion since2007,ERimplementsanintegratedsurveillancestrategybasedonthreecomponents,namely rou-tineon-farmtuberculinskin-testingperformedevery3years,tuberculinskin-testingofcattleexchanged betweenfarms,andpost-morteminspectionatslaughterhouses.Weassessedtheeffectivenessof surveil-lancebymeansofastochasticnetworkmodelofbothwithin-farmandbetween-farmbTBdynamics calibratedondataavailableforERdairyfarms.Epidemicdynamicsweresimulatedforfivescenarios: thecurrentERsurveillancesystem,anosurveillancescenariothatweusedasthebenchmarkto charac-terizeepidemicdynamics,threeadditionalscenariosinwhichoneofthesurveillancecomponentswas removedatatimesoastooutlineitssignificanceindetectingtheinfection.Foreachscenarioweran MonteCarlosimulationsofbTBepidemicsfollowingtherandomintroductionofaninfectedindividual inthenetwork.Systemperformanceswereassessedthroughthecomparativeanalysisofanumberof statistics,includingthetimerequiredforepidemicdetectionandthetotalnumberofinfectedfarms duringtheepidemic.

Ouranalysisshowedthatslaughterhouseinspectionisthemosteffectivesurveillancecomponentin reducingthetimefordiseasedetection,whileroutinesurveillanceinreducingthenumberofmulti-farms epidemics.Ontheotherhand,testingexchangedcattleimprovedtheperformanceofthesurveillance systemonlymarginally.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Bovine tuberculosis (bTB) caused by Mycobacterium bovis is amongthemajordiseasethreatstofarmanimalsworldwide(Skuce etal.,2012).bTBisachronicdiseasecharacterizedbyavariable andgenerallylongincubationperiod,anditsaetiologicalagenthas anexceptionallywiderangeofhosts,includinghumans,domestic

∗ Correspondingauthor.

E-mailaddress:gianluigi.rossi@nemo.unipr.it(G.Rossi).

andwildanimals,aswellashighpersistenceintheenvironment (Morrisetal.,1994).Besidesitsdirectimpacttothecattle indus-try,bTBisazoonoticdiseaseofgreatconcern.Forthesereasons, regulatoryrestrictionsareinplacetopreventthetradeofinfected animalsandtheirproductswithinandbetweencountriesandto reducetheriskofspilloverfromtheanimaltothehuman compart-ment.Mostcountriesandtransnationalareas(suchastheEuropean Union)withathrivingcattleindustryhavedevelopedsurveillance systemstopreventbTBoutbreaks(Cousins,2001).Despitethe con-trolefforts,bTBisstillendemicinmanycountries,bothdeveloped anddeveloping(WorldOrganizationforAnimalHealth,2008)and http://dx.doi.org/10.1016/j.epidem.2015.02.007

(2)

itseradicationhasprovedtobeverychallenging(Fitzgeraldand Kaneene,2013;IndependentScientificGroup,2007).Therefore,it isessentialtodevelopsurveillancestrategiesthatallowforarapid detectionofinfectedanimalsbothinendemicandbTB-freeareas. Theorganizationandthecomponentsneededforaneffective surveillancesysteminagiventerritorydependonbTB epidemi-ology,which islargely determinedbythecharacteristicsofthe farmingsysteminplace.Howthesefactorsmayinterplayto deter-minetheriskofoutbreaksinthespecificcaseofbTBhasbeenwell documentedintheUKandIreland,wheretherisingincidenceof theinfectioninthelast20yearshascausedsignificanteconomic losses(Abernethyetal.,2013;Reynolds,2006).Thedirectcosts ofbTBforUKtaxpayersin2009wereestimatedinaround

£

63M (about95MUSD)andover25,000cattlewereculled(Johnstonetal., 2011).Outdoorfarming,acommonbreedingsystemintheUKand Ireland,favourscontactsbetweenanimalsofdifferentherds,one ofthepathwaysforbTBtransmission.Inaddition,thisfarming sys-temexposescattletothepossiblyinfected wildlife,suchasthe Europeanbadger(Melesmeles)whosepopulationisendemically infectedbyM.bovisinlargeareasoftheBritishisles(Cheeseman etal.,1989;Griffinetal.,2005;Morrisetal.,1994).Anotherfactor associatedwithrecurrent bTBoutbreaksintheUK is between-farmmovementofliveanimals(Johnstonetal.,2011;Reillyand Courtenay,2007).Therefore,preventingcontactsbetweencattle of different herds and between cattle and wildlife are consid-eredeffectivemeasurestocontrolbTBriskintheUKandIreland (Johnstonetal.,2011;Phillipsetal.,2003;ReillyandCourtenay, 2007).

Incountrieswhereindoorfarmingisthemostcommonbreeding practice,suchasItaly,bTBtransmissionrarelyoccursthrough con-tactswithinfectedwildlife.AstudyonbTBriskfactorsinNorthern ItalyshowedthatthemainriskfactorforbTBbreakdownwas cat-tlemovementbetweenfarms(Marangonetal.,1998).bTBisstill endemic,thoughatverylowprevalence,insomeItalianregions whileithasbeeneradicatedinothers.

Amongthelatter,Emilia-Romagna(ER),locatedontheright sideoftheriverPovalley(NorthernItaly),hasbeendeclared offi-ciallyfreefrombovinetuberculosis(UEDecisionn◦2007/174/CE). ThisRegionhasanimportantfood-farmingindustrycharacterized byan intensivedairy production, and istheregionof originof Parmigiano-Reggianocheese.Accordingtothelatestofficial statis-tics(ItalianNationalStatisticsInstitute,2010),about550,000cattle arerearedin7343farmsinER.AsanepidemicofbTBinthisRegion wouldhave severeeconomic consequences, theregionalhealth authorities have implemented, in compliance with EU regula-tions(UEDecision2002/677/CE),anintegratedsurveillancesystem topreventbTB re-emergencein dairy cattle (Regional decision GPG/2010/1049).Thesystemisbasedonthreedetectionmethods, namely:(i)periodicroutineskin-testonallanimalsagedover24 months(RS);(ii)systematicskin-testonallexchangedcattle(ECT) atthedestinationfarm;and(iii)inspectionforbTBlesionsofall slaughteredanimals(SI).WhileERRegionhasmanagedtoremain bTB-freesofar,theeffectivenessoftheintegratedsurveillance sys-tem(anditsindividualcomponents)inthecaseofre-introduction oftheinfectionhasneverbeenassessed.

Thegoalofthisworkistoquantitativelyassesstheperformance ofthecurrentsurveillancesystemanditsindividualcomponentsin termsof(i)timeneededtodetectaprospectivenewlyintroduced bTBepidemicinthedairyfarmsofER,and(ii)themagnitudeofthe epidemic,intermsofnumberoffarmsinfectedbeforethedetection oftheepidemic.

SinceERhasbeenfreefrombTBformanyyears,noempirical dataontheepidemiologicaldynamicsoftheinfectionisavailable. Therefore,inordertotesttheperformanceofthethree surveil-lancemethodscurrentlyinplaceintheRegion,wedevelopedan individual-basedepidemicmodelcapableofsimulatingthespread

Dairy farms size (#individuals)

Frequency 0 500 1000 1500 0 250 500 750 1000 1250 1500 1750 2000

a)

Sample farms size (#individuals)

Frequency 05 0 150 250 0 500 1000 1500 2000

b)

Fig.1. DistributionofEmilia-Romagnadairyfarmssize.Everybarcorrespondstoa sizeintervalof50individuals(0–50,51–100,etc.).(a)Alldairyfarmssize distribu-tion(Min=1,Median=63,Mean=101.9,Max=1889);(b)sampleddairyfarmssize distribution(Min=1,Median=74,Mean=126.6,Max=1889).

ofbTBintheregionalnetworkofdairyfarmsfollowingtherandom introductionofinfectedanimalsinthesystem.

Considering that therearing systemin placein ERand that thecomponentsof bTBsurveillancedescribedabovearelargely widespreadin severaldeveloped countries, ourfindingscan be applicabletomanyfarmingandsurveillancesystemsworldwide.

2. Materialsandmethods

Toassesstheperformanceofthecurrentsurveillancesystem andeachofitscomponents,webuiltadata-driven,stochastic net-workmodelthatsimulatesbothwithin-farmandbetween-farm bTBdynamics.Weassumedthatthecontributionoftransmission routesotherthancattleexchanges–suchasairbornetransmission ortransmissionmediatedbywildlifeorfomites–wasnegligible withintheregionalsystemof industrialindoorfarms.Thus,we consideredcattleexchangesastheonlytransmissionrouteforbTB amongdairyfarms.

Since bTB is a chronic diseasecharacterized by slow trans-missiondynamics (see Agustoet al., 2011; Huang et al.,2013; Brooks-Pollocketal.,2014)theassumptionofendemicequilibrium withinagivenfarmisunrealistic.Then,weexplicitlyaccountedfor within-farmdiseasedynamicsdescribinghow epidemicsevolve insidefarmsfollowingtheintroductionofinfectedanimals.

WerepresentedthesystemofcattleexchangesofERasa con-tactnetworkwherenodesrepresentfarmsanddirectionaledges representbetween-farmanimalmovements.Wereproducedthe network of4353dairy farmsand 20 intermediarytrader farms (ITF)byusinginformationfromthecattlemovementdatasetas describedhereafter.

Allstatisticalanalysesandmodelsimulationswereperformed usingthesoftwareRwith“MASS”,“triangle”and“poilog”packages (http://www.r-project.com).

2.1. Cattletrademovementdata

Cattle movementdatawereprovidedbytheItalian National Bovinedatabase.Attheendof2010,4353dairyfarmsand20 inter-mediarytraderfarms(ITF)wereinoperationinER.Forallofthem wecollectedthefarmsize,i.e.numberofanimalsperfarm(Fig.1). ForalltheITFandasubsetof837dairyfarmswealsocollected individualrecordsofeverycattlemovement,incomingand outgo-ing,overa100-weektimespan(fromthebeginningofFebruary

(3)

Table1

Detaileddataonsampleddairyfarmsandintermediarytraderfarms(ITF).

Cattlemovementdairyfarmsdata(February-2009/December-2010) CattlemovementITFdata(February-2009/December-2010) TotaldairyfarmsinEmilia-Romagna 4353 TotalITFinEmilia-Romagna 20

Samplesdairyfarms 837 SampleITF 20

Sampleindividualrecords 106,499 Sampleindividualrecords 3571

Incomingindividuals Incomingindividuals

Total 9173 Total 3571

F1romERdairyfarms 7036 FromERdairyfarms 1774

Fromotherregions/countries 2137 Fromotherregions/countries 1797

Outgoingindividuals Outgoingindividuals

Total 28,954 Total 3476

Totaltofarms 6328 Totaltofarms 3211

TootherERdairyfarms 5597 TootherERdairyfarms 2136

Tootherregions/countries 731 Tootherregions/countries 1075

Totaltoslaughterhouse 21,851 Totaltoslaughterhouse 230

ToERslaughterhouse 10,195 ToERslaughterhouse 147

Tootherregionsslaughterhouse 11,656 Tootherregionsslaughterhouse 83

Death/otherdestinations 775 Death/otherdestinations 35

Samplefarmsmeanin-degree 1.91(SE±0.096) ITFmeanin-degree 24.50(SE±7.185) Samplefarmsmeanout-degree 1.67(SE±0.075) ITFmeanout-degree 19.25(SE±5.537)

2009totheendofDecember2010).Thefarmsweresampled strat-ifiedbyprovinceandtheobtainedsampleisrepresentativeofthe farmssizedistributionobservedintheregion(Fig.1and Supple-mentarymaterialsS1.1fordetails).Eachindividualrecordhada uniqueidentifiercodefortheanimal,thebirthdate,sexandrace oftheanimal,identifiercodesforthefarmsoforiginand desti-nation,codesforfarmsproductionsector(beef,dairyormixed), andthemovementdate.Weconsideredthemovementsbetween dairyfarmsonly,andweexcludedthemovementsofyoungcalves orend-of-lifecattlesenttobeeffarmsordirectlytothe slaughter-house.Thefinaldatasetwascomposedof15,501individualrecords reportinganimalmovement(Table1).

ITFactivityconsistsintradingcattle,notinrearingthem.Asa consequence,animalsstayinITFforjustafewdays(median2days, lower[upper]quartile1[8]days)beforebeingmovedtoa desti-nationdairyfarm,amuchshortertimecomparedtothetimethat individualsspendindairyfarms(1815days,onaverage).In addi-tion,thenumberofanimalssimultaneouslyheldinITFsisusually verylow(median0,lower[upper]quartile0[5]animals).Given thelimitednumberofanimalsandtheshorttimethatindividuals spendinsidethem,weassumedthatthebTBtransmissioninside ITFswasnegligiblecomparedtodairyfarms(asensitivityanalysis ontheeffectofthisassumptiononbTBdynamicsandthe effec-tivenessofsurveillanceisshownintheSupplementarymaterials, SectionS3.4).

Wedefinedthein-degreeandtheout-degreeforfarmiasthe numberoffarmsfromwhichfarmireceivesandthenumberof farmstowhichfarmisendscattle,respectively.Altogether,thejoint setsofin-andout-degreesarereferredtoasthein-andout-degree distributionsofthenetworkofdairyfarms.Sincemovementdata wereavailableforallITFsinoperationinER,wedirectlyderived thein-andout-degreeofeachITFinthenetworkaswellastheir distributions.

RegardingfarmsotherthanITFs,movementdatawere avail-ableonlyfor asubsetof837farmsoutofthetotal4353inthe ERnetwork.Thus,wederivedthein-andout-degreedistributions ofthissubset.Then,weestimatedtheparametersofasetof can-didateprobabilitydistributions(namely:power-law,log-normal, PoissonandYule)ontheavailabledataandselectedthe distribu-tionthatbestfittedthedatabyusinglog-likelihoodratio(LLR)test asshowninVuong(1989)andClausetetal.(2009).Finally,we usedtheselectedprobabilitydistributiontogenerateasynthetic networkof4353farmshavingthesametopologicalproperties(i.e. thein-andout-degreedistributions)observedinthesubsetof837 dairyfarms.Theprocedurefornetworkgenerationisdescribedin thefollowingsection.

2.2. Networkmodel

Togenerateanetworkof4353farmswiththesame topologi-calpropertiesobservedinthesubsetof837dairyfarms,wefirst assigned in- and out-degreesindependentof each othertothe 4353nodesinthenetwork(asin-andout-degreeswereweakly correlated,seeSupplementarymaterialsS1.3).Moreover,asboth in-degreesandout-degreeswereveryweaklycorrelatedwithfarm sizeintheobserveddataset,theywereassignedtonodes irrespec-tiveoffarm size(seeSupplementarymaterialsS1.3). According totheavailablemovementdata,weassumedthatneitherthe in-degreenortheout-degreecouldbelargerthanthenodesize,i.e. thenumberofanimalsinthefarm.

Onceweassignedtoeachnodeanin-degreeandanout-degree, weusedaheuristicalgorithmtoexactlymatchthenumberof out-goingconnectionsfromfarmsinthenetworktothatofingoing connectionstofarmsinthesamenetwork(Supplementary mate-rialsS2).Then,wecompletedthenetworkbyadding20additional nodesrepresentingthe20ITFandassignedtoeachofthemthe observedin-andout-degrees.

2.3. Within-farmmodel

Wedescribedthewithin-farmbTBdynamicsthrougha com-partmentalstochasticSusceptible–Exposed–Infected(SEI)model with homogeneous frequency dependent transmission (Agusto etal.,2011;Brooks-Pollocketal.,2014).Thecompartmentofthe susceptible individuals (S) representscattlethat have notbeen infectedyet.Followingsuccessfulinfection,eachindividualis clas-sifiedasexposed(E)butnotinfectiousyet.Theincubationperiod endswhentheinfectedindividualbecomesalsoinfectious(I).Then, theinfectiondynamicsforfarmicanberepresentedbythe follow-ingsystemofordinarydifferentialequations:

˙Ei=ˇiNSiIi i −(+)Ei−



j/=i ijEi+



j/=i jiEj ˙Ii=Ei−Ii−



j/=i ijIi+



j/=i jiIj (1)

wherefarmsizeNi,i.e.thenumberofcattleinfarmi,wasassumed

constantintime,andthenumberofsusceptibleanimalsinfarm iwascomputedasSi=Ni−Ei−Ii;ˇirepresentsthewithin-farm

transmissionrate;therateatwhichexposedindividualsbecome infectious;ijthemovementrateofindividualsfromfarmitofarm

j,whichisproportionaltofarmiout-degree;andtherateatwhich individualsleavethefarmsystem,eitherbecausetheyaresentto

(4)

Table2

Thelistandratesofthepossibleeventsforthestochasticmodel.

Eventinfarmi Transition Rateatwhich eventoccurs Infection Ei→Ei+1 ˇSiIi/Ni Exposedindividualbecome

Infectious

Ei→Ei−1,Ii→Ii+1 Ei Exposedindividualissent

tofarmj

Ei→Ei−1,Ej→Ej+1 iEi Exposedindividualleaves

thesystem

Ei→Ei−1 Ei Infectiousindividualsent

tofarmj

Ii→Ii-1,Ij→Ij+1 iIi Infectiousindividualleaves

thesystem

Ii→Ii−1 Ii

slaughterhouse,tofarmsoutsidetheERsystem,orbecausethey die.

Toexplicitlyaccountforthestochasticnatureofthecontactand transmissionprocessesinalargenetworkoffarms,weran stochas-ticsimulationsthroughanevent-drivenapproachinwhichtime stepsbetweentwoconsecutiveeventsweredescribedthrougha Poissonprocesswithexponentiallydistributedmeans(Gillespie, 1977;Rohanietal.,2002).Alltheeventssimulatedbythestochastic infectionmodelarereportedinTable2.

2.4. Parameterestimation

The basic reproduction number represents the mean num-berofsecondaryinfectionscausedbyasingleinfectedindividual introducedintoacompletelysusceptible population(Diekmann etal.,1990).AsERisanofficiallybTB-freeregionsince7years,there arenoavailableoutbreaksdatatoestimateawithin-farmbasic reproductionnumber,R0.Thus,wesetR0valueinoursimulations

usingestimatesforbTBfoundintheliterature(Brooks-Pollockand Keeling,2009;Agustoetal.,2011;Conlanetal.,2012;O’Hareetal., 2014).Inparticular,wedescribedtheuncertaintyinR0by

assum-ingatriangulardistributionwithmode2.40(whichcorresponds tothemeanvalueofliteratureestimates),lowerlimit0.83,and upperlimit4.9(whichcorrespondtotheextremevaluesfound), seeSupplementarymaterialsS3.1for details.Infurther simula-tionswetestedtheeffectofR0variability,comparingtheobtained

resultsagainstthoseofsimulationsranusingafixedR0value(see

SupplementarymaterialsS3.2).

Moreover,inordertotesttherobustnessofourresultsagainst possiblevariationsinthewithin-farmbTBbasicreproduction num-ber,werunfurthersimulationsusingasfixedvaluethehighest (R0,i 4.9)andthelowest(R0,i 0.83)oftheliteratureestimates

(seeSupplementarymaterialsS3.3).

Theithfarmtransmissionrate,ˇi,wasindirectlyderivedfrom

theexpressionforthewithin-farmbasicreproductionnumberof model(1),i.e.assuminginfectioninithfarmonly,byusingNext GenerationMatrixtechniques(Diekmannetal.,1990):

ˇi=R0

(



j/=iij+)(



j/=iij++)

 (2)

FollowingBarlowetal.(1997),wesetthemeantime(=1/) spentintheexposedclassEto202days.Likewise,parametersand mean[ij]wereestimatedfrommovementdataastheinverseofthe

meantimethatanimalsspentinsidethefarmbeforebeingmoved outofthesystemandtowardsotherERdairyfarms,respectively.

ITFsarecharacterizedbysubstantialdifferentbehaviourswith respecttodairyfarms.AsweassumedthatthereisnobTB trans-missioninsidethesefarms,wesetˇITF=0andweestimatedITF

specificmovement(ITF)andexit(ITF)ratesfromavailabledata.

2.5. Assessmentofthesurveillancesystem

WeusedthestochasticmodeldescribedinTable2toassessthe effectivenessofthethreesurveillancecomponentsofthecurrent surveillancesystemimplementedinERRegion.Specifically:(i)a systematiccontroloneveryfarmbasedonatuberculinskin-tests (RS).Thisisperformedoneveryindividualinthefarmolderthan24 months,whichrepresentsabout60%ofthetotalfarmpopulation. FollowingcurrentlegislationforbTB-freeareasinERallcattleherds aretestedwithaturnaroundperiodofthreeyears;(ii)askin-test performedatthedestinationfarmonmovedcattlewithin45days afterthearrival(ECT);(iii)avisualinspectionforbTBcharacteristic lesionsoncattleslaughtered(SI).

TosimulatetheRSweassumedthat,withinaturnaroundperiod, farmsaretestedinarandomorder(withafrequencyofabout4 farmsaday).Tosimulatetheothersurveillancecomponents,we assumedtotestallindividualsmovedbetweendairyfarmsand toallindividualssenttoslaughterhouses.Whenananimaltests positivetothetuberculinskin-test,bothforRSandECTcases,the procedurestoverifywhethertheanimalistrulyinfectedbyM.bovis lastusually2months.Theseproceduresconsistinacarcass inspec-tionforbTBtypicallesionsandinabacteriologicalexamination. Duringthisconfirmationperiod,cattlefromthesamefarmcannot betransferredtootherfarms.Thisprotocolwassimulatedinthe modelbyassumingthat,whenapositiveindividualisdetectedby theskin-test,thefarmcannothaveanycontactwithotherfarms, butthesimulationofdiseasedynamicslastsforother2months.

Theskin-testcurrentlyinuseinItalyisthecervicalSingle Intra-dermalTest(SIT).Intheirreview,delaRua-Domenechetal.(2006) showed that theSIT sensitivity estimates fallbetween 0.7 and 1.However,on-farmtestsensitivitycanbesubstantiallysmaller than in controlledlaboratoryexperiment trials asother factors than theimperfect natureof thetest may affecttest outcome, suchasthetraininglevel,careand experienceofthe veterinar-ianandtheactualprotocolused.Therefore,followingWelbyetal. (2012),wesimulatedtheuncertaintyintestsensitivitiesby ran-domlydrawingsensitivity values froma beta distributionwith mean0.60andcoefficientofvariation0.10.AnalogouslytoBarlow etal.(1997),weassumedareductionoftestsensitivityininfective butnotinfectiousanimals(meanvalue0.54).Sensitivityof post-morteminspectionattheslaughterhousescanalsobeveryvariable (Assegedetal.,2004;Fischeretal.,2005;Smithetal.,2013;van Asseldonketal.,2005;Welbyetal.,2012).Therefore,similarlyto Welbyetal.(2012),wesimulatedtheuncertaintyinpost-mortem inspectionasabetadistributionwithmean0.60andcoefficientof variation0.10(withareductionofsensitivityforexposedanimals asintuberculinskin-test).

In addition, with the intent to simulate different levels of accuracyandawarenessinthetestingprocedures,werana sen-sitivityanalysistoassesstheeffectofpost-morteminspectionand tuberculinskin-testsensitivityvaluesonsurveillancesystem per-formance (Hadorn and Stärk, 2008; Humblet et al., 2011).The resultsareshowninSupplementarymaterialsS4.

Diseasedynamicsfollowingtheintroductionofaninfected indi-vidualinthenetworkofdairyfarmsofERwereassessedunder fivescenarios.Firstly,wesimulatedabaselinescenarioofbTB epi-demicsspreading without surveillanceso astounderstand the potentialimpactsofuncontrolledbTBepidemicsonthesystem. Secondly,weransimulationsontheintegratedsurveillance sys-temcurrentlyinplace,whichincludesallthethreesurveillance components(Scenario1).Then,inordertoassesstheperformances ofeachcomponentofthesurveillancesystem,weanalyzedthree alternativescenariosinwhichweremovedoneofthethree com-ponentsatatimeandsimulatedepidemicdynamicswiththeother twosystemsinplace.InScenario2a,Scenario2bandScenario2c weremovedRS,ECTandSIcomponents,respectively(Fig.2).

(5)

Fig.2.Differentsurveillancesystemscenariossimulated.

Foreachscenarioweran10thousandstochasticMonteCarlo simulationsof diseasedynamicsuntil infectiondetectionor up to10 years at most.For each simulation we generated a net-workof4535dairyfarmsasdescribedaboveandassumed that aninfectedbutnotinfectiveindividualwasrandomlyintroduced inthenetwork.Tosimulatevariabletestsensitivity,thevaluesof skintestandpost-morteminspectionsensitivityweredrawnfrom therespectivebetadistributionseachtimeatestwasperformed. Then,the10thousandreplicateswereusedtoderiveanumberof statisticsondiseasedynamicsandontheperformanceofthe spe-cificsurveillancesystemunderassessment.Inparticular,foreach scenariowederived:(i)themeanand95thpercentileofthetime foranepidemictobedetected(whensurveillanceisinplace);(ii) themeanand95thpercentileofthenumberofinfectedfarms;(iii) thenumberofepidemicsthatinvolvedmorethanonefarm(i.e. multi-farmsepidemics);(iv)thenumberofundetectedepidemics after10years;and(v)thenumberofepidemicsthatwentnaturally extinctinlessthan10years.

3. Results

3.1. Farmsize,in-andout-degreedistributions,andparameters estimations

Thesizeof the4353ERcattlefarmswasquitevariable and rangedfromjustfewindividualstoalmosttwothousands:farm sizedistributionwashighlyskewedwithmeanequalto102and median63(Fig.1).

Theaveragenumberofoutgoing[ingoing]linksinthe837 sam-pledfarmswas1.67[1.91],themedian1[1]andthemaximum number23[29].Thein-degreeandout-degreedistributionswere not significantly different (Kolgomorov-Smirnov test, D=0.044, p=0.387)andwerebestfittedbyadiscretelog-normal distribu-tion(Fig.3andTable3).In-degreeandout-degreewereweakly correlatedwithfarmsize(Kendall’s=−0.028and0.20, respec-tively). The correlation between in- and out-degrees was also very weak(Kendall’s =−0.064). Therefore, for each of the 10 thousandrunswe generateda networkof 4353farmsby inde-pendently drawingfarms’ in-degree and out-degree fromtheir corresponding distributions, assuming no correlation between

1 2 5 10 20 12 5 1 0 2 0 5 0 100 200

log(sampled farms degree)

log(frequency)

Data in−degree Data out−degree Lognormal fit Power−law fit Poisson fit Yule fit

Fig.3.Pointsrepresentstheobservedin-(circles)andout-degree(triangles) dis-tributionsofthesampleddairyfarms.Linesrepresentthefittingfordifferent distributionstotheempiricaldata:discretelog-normal(solidline),Yule(dashed line),discretepower-law(dottedline)andPoisson(dashed-dottedline).

1 2 5 10 20 50 100 1 5 50 500 5 000

log(outbreaks size

)

log(counts)

Fig.4. Thedistribution(inlog–logscale)ofmaximumnumberofinfectedfarms (outbreaksize)ineachsimulatedoutbreak.

them.Theresultingnetworkswereweaklyconnected,withaverage densityof5.2×10−4(SD±8.7×10−6).Thevalueofparameters andmean[ij]estimatedfrommovementdatawas0.240y−1(S.E.

±0.044)and0.043y−1(S.E.±0.008),respectively,fordairyfarms and,19.981y−1(S.E.±1.499)and15.901y−1(S.E.±1.192)forITFs.

3.2. Thebaselinescenario:nosurveillance

In theabsenceof anysurveillancesystem,about halfofthe epidemicslastedfor10yearsormore(56.05%),whiletheothers (43.95%)naturallyfadedoutin amedian timeof14.92months (lower[upper]quartile5.95[32.89]months).Epidemicsizewas highlyskewed(Fig.4):themeannumberofinfectedfarmswas 2.91(S.E.±0.05),but62.66%oftheepidemicsinvolvedonlyasingle farm.Intheworst5%ofthecasesmorethan11farmsgotinfected, withamaximumof89.

(6)

Table3

TheresultoftheVuongtestonthedegreedatafordiscretelog-normaldistributionvs.discretepower-law,PoissonandYuledistributions.

Discretelog-normaldistribution loglike.ratio mean.LLR sd.LLR Vuong p-Value

vs.Powerlaw 158.903 0.151 0.647 7.57 3.6e−14

vs.Poisson 314.182 0.299 1.735 5.58 2.4e−08

vs.Yule 107.584 0.102 0.583 5.69 1.3e−08

Table4

Themainindicatorforthesurveillancesystemperformances.Resultsfor5differentsurveillancescenarios:nosurveillance,1:currentsurveillance,2a:RSremoved,2b:ECT, 2c:SIremoved.

Scenario Mean(and95p)timeto detection(months)

Mean(and95p)numberof infectedfarms %ofmulti-farm epidemics %ofepidemicover10 years %ofepidemic extinct Nosurveillance – 2.91(11) 37.34% 56.05% 43.95% Scenario1 27.04(59.20) 1.12(2) 10.15% 0.10% 14.55% Scenario2a 33.77(76.91) 1.20(2) 16.80% 0.70% 16.23% Scenario2b 27.52(60.09) 1.11(2) 9.61% 0.14% 14.80% Scenario2c 35.45(71.34) 1.15(2) 12.01% 0.18% 33.57%

3.3. Performanceofthecurrentsurveillancesystem

Fig.5showsthecumulateddistributionofthetimeofepidemic detectioncomputedasthefractionofepidemicsmonthlydetected bythecurrentsurveillancesystem.Themeandetectiontimewas 27.04months(S.E.±0.19). Epidemicswereidentified more fre-quentlybyroutinesurveillance,RS,andbypost-morteminspection attheslaughterhouse,SI.In10years,RSidentified41.66%ofthe epidemicsand SIthe38.59%.Only5.10%oftheepidemicswere firstdetectedbyECT,i.e.intra-dermaltestingofexchanged cat-tle;14.55%oftheepidemicsfadedoutunreportedwhileonly0.1% oftheepidemicslasted10yearsormore.Theaveragenumberof infectedfarmsduringtheepidemicswas1.12(S.E.±0.003);the worst5%oftheepidemicslastedmorethan59.20monthsaffecting from2to5farmsatmost.Multi-farmepidemicsoccurredin10.15% ofthereplicates.Theperformancesofthecurrentsurveillanceand thealternativescenarios describedhereafteraresummarizedin Table4.

3.4. Performanceofalternativesurveillancesystems

Fig.6showsthecumulativefractionofmonthlydetected epi-demicsregisteredforasurveillancesystemimplementingonlytwo

0 20 40 60 80 100 120 0.0 0 .2 0.4 0 .6 0.8 1 .0 Time (months) Cumulativ e fraction of epidemics Total detected RS ECT SI 1 − extinct

Fig.5.Thecumulatedfractionofsimulatedepidemicsmonthlydetectedbythe cur-rentsurveillancesystem.Differentcolourscorrespondtothefractionofepidemics detectedbyeachsurveillancestrategy:inlightgreybyslaughterhouseinspection (SI),indarkgreybyroutinesurveillance(RS)andinblackbyexchangedcattletesting (ECT).Thesolidlinerepresentsthefractionoftotalofdetectedepidemicswhilethe dashedlinerepresentsthefractionofepidemicsnotnaturallyfadedout,orextinct, atanygiventime.

ofthethreesurveillancemethodscurrentlyinplace.Ouranalysis showed that removing RS testing from the integrated surveil-lance system (Scenario 2a) ledto an almost 7-monthdelay in thedetectiontimedrivenbyasignificantreductioninthe num-berofepidemicsdetectedstartingfromthesecondyear(Fig.6). Comparedwiththecurrent integrated surveillancesystem,this scenariowascharacterizedbyasmallincreaseinthemean num-berofinfectedfarms,inthetotalnumberofunreportedepidemics lasting10yearsormore(from0.10%to0.70%),andinthenumber ofunreportedepidemicsnaturallyfadingoutbeforetheendofthe simulationtime(from14.55%to16.23%).Intheworst5%ofthe cases,theepidemicsremainedundetectedforabout6andahalf years(76.91months)andinvolved2–5farms.

Removing the ECT (Scenario 2b) did not cause significant changesinanyoftheperformanceindicators.Intheworst5%ofthe casesthetimetodetectionwasabout60monthsandthenumber ofinfectedfarmsbetween2and7.

TheremovalofSI(Scenario2c)ledtoamorethan8months increaseinthemeandetectiontimemostlydrivenbyasignificant reductioninthedetectionratesincethefirstmonths.Thenumber ofundetectedepidemicsstillongoingafter10yearsdidnot signifi-cantlychange,whilethefractionofmulti-farmepidemicsincreased from10.15%inScenario1to12.01%.Thelargestchangein sce-nario2cwasrepresentedbythenumberofunreportedepidemics thatnaturallyfadedout,increasedfrom14.55%intheScenario1

0 20 40 60 80 100 120 0.0 0 .2 0.4 0 .6 0. 1 8 .0 Time (months) Cumulativ e

fraction of detected epidemics

Scenario 1 Scenario 2a Scenario 2b Scenario 2c

Fig.6.Thecumulatedfractionofsimulatedepidemicsmonthlydetectedbythe surveillancesysteminScenario1(solidline);Scenario2a(onlyECTandSI compo-nents,dottedline);Scenario2b(onlyRSandSIcomponents,dashed-dottedline); andScenario2c(onlyRSandECTcomponents,dashedline).

(7)

tothe33.57% inScenario2c,thatexplainsthelowernumberof totallydetectedepidemics(Fig.6).Intheworst5%ofthecases,the epidemicsremainedundetectedfor71monthsandinvolved2–7 farms.

4. Discussion

Thegoalofthis studywastoassesstheeffectiveness ofthe currentbTBsurveillancesysteminEmilia-Romagna(ER)andthe specificroleplayedbyitsthreecomponents:on-farmroutine test-ing,exchangedanimaltesting,andslaughterhouseinspection.To assesstheperformanceofthebTBsurveillancesystemwe com-putedtwomainindicators:thetimeneededtodetectaprospective newlyintroducedbTBepidemicinthedairyfarmsofER;andthe magnitudeoftheepidemic,intermsofnumberoffarmsinfected beforethedetectionoftheepidemic.Thetimetoepidemic detec-tionisaveryimportantmeasureofthesurveillanceperformance (HadornandStärk,2008);firstly,becauseanearlydetectionofthe epidemiclimitsthenumberofbothanimalsandfarmsinfected; secondly,becauseaccordingtoItalianandEuropeanlegislationsat least6monthswithoutbTBcasesarerequiredforfarmstoregain theirdisease-freestatus.Indeed,thetraderestrictionsfollowing anepidemicrepresentoneoftheworstconsequencesforthe cat-tleindustry(Gordon,2008).Themagnitudeoftheepidemicallows ustoassessthedamagescausedbyabTBincursionquantifying thenumber ofinfected farmsand, consequently,thetotal eco-nomicburden (i.e.lossofearnings,costsforanimal cullingand re-stocking).

Ouranalysisshowedthat theintegratedsurveillancesystem currentlyinplaceinERcaneffectivelyreducethenumberoffarms involvedina potentialepidemicofbTBwithrespecttoa base-linescenariowithnosurveillance(seeTable4).Themodelpredicts thataboutthe15%oftheepidemicscannotbedetectedbythe sys-tem.However,theundetectedepidemicsusuallyfadedoutduring thefirstninemonthsaftertheintroductionoftheinfectionand generallyinvolvedoneorfewindividualsinasinglefarm.

Numericalsimulationsalsoshowedthatpost-morteminspection attheslaughterhouse(SI)andon-farmroutinetesting(RS)werethe mosteffectivesurveillancemethods.Thesemethodswere signifi-cantlymoreeffectiveindetectingbTBintheERnetworkofdairy farmsthantestingcattleuponmovingtoanewfarm(ECT). Consid-eringthatthecattleexchangesweretheonlyhypothesizedroute ofbetween-farmtransmissioninthemodel,thisresultseems,at firstsight,unexpected.However,itcanbeexplainedbythelow bTBtransmissionrateandsomespecificproprietiesoftheERcattle system(suchasthelownetworkdensityandthelownumberof cattletraded).

Slaughterhouseinspectionturnedouttobeparticularly effec-tiveasanearlydetectiontooloftheepidemics.Thisseemedtobe duetothefairlyregularflowofcattlesentouttoslaughterhousesat theendoftheirproductivecycle,onaverageat5yearsofage. There-fore,whenanoutbreakoccurredinafarm,SIwaslikelytheearliest diagnosticinterventionabletodetectitcomparedtoECTandRS. However,thelargenumberofepidemicsthatnaturallyfadedout whenSIwasabsent(Scenario2c)pointsoutthatmostofthe out-breaksthatremainedundetectedattheendofthefirstyearwere likelytogetextinctafterwardswithoutdevelopingintosignificant epidemics.

On-farmroutine surveillancewas themosteffective in pre-ventingmajor,ormulti-farm,outbreaks.Thiswasprobablydue tothelow valueofwithin-farmbTBbasicreproductionnumber (R0).Indeed,alowwithin-farmR0 isfollowedbyalow number

ofinfectedindividualsinsidefarms,thatmeansalownumberof infectedindividualsexchangedorsenttoslaughterhouses.Inthese epidemiologicalconditions,RSwasthemosteffectivemethodto

detectoutbreaksbeforebTBspreadstootherfarms.Moreover,this methodwasalsothemosteffectiveindetectingthesmallportion ofminorepidemicsthatcanpersistunnoticedformanyyears.

TheperformancesofSIandRS,bothwithregardtotimetobTB detectionandtofractionofmulti-farmepidemics,were compara-bleandwhichoneperformedbetterdependedonthevalueofthe basicreproductionnumber(R0),seeSupplementaryMaterialsS3.3,

andonthevaluesofskin-testandSIsensitivity,seeSupplementary materialsS4.2.

AstheR0 valueincreased,thenumberofdetectedepidemics

bytheSItendedtoincreasecomparedtothenumberofepidemics detectedbyRS(seeSupplementarymaterialsS3.3).Thisresultcan beexplainedconsideringthatalargerwithin-farmdisease preva-lence,asaconsequenceofalargerwithin-farmR0,impliesahigher

probabilityofsendinginfectedindividualstotheslaughterhouse intheearlystagesofepidemics,speedingupbTBdetection,while thetimingofRSisnotaffectedbyfarmprevalence.

Thevaluesofskin-testandcarcassinspectionsensitivityplayed animportantroleaswell.Thiswasparticularlysignificantinthe caseofslaughterhouseinspection,sinceaverylargerangeofvalues ofinspectionsensitivityhasbeenestimatedindifferentcontexts, from0.1to0.65(Assegedetal.,2004;Fischeretal.,2005;Smith etal.,2013;vanAsseldonketal.,2005;Welbyetal.,2012).

TheRSturnaroundperiod,i.e.thetimeframeinwhichallfarms aretestedonceforbTB,wassetto3years,ascurrentlyisinER region.Theregionaladministrationdecidedtomovethisperiod from2to3yearsin2010.Ourresultssuggestedthatthischange hada negligible impactontheoverall surveillancesystem per-formanceand, moreover,thatmoving itto4 yearswould have marginalimpactaswell(SupplementarymaterialsS5).

ThelimitedperformanceimprovementprovidedbyECTraised questions about its usefulness and whether it could be safely droppedoutfromERintegratedsurveillancesystemwithout sig-nificantlyweakeningit.Ofcourse,thiskindofdecisionshouldalso bebasedoncost-benefitanalysis.Ontheotherhand,theroleof ECTonanimalsenteringabTB-freeregionisnotnegligible, espe-ciallyforcattleoriginatingfromregionswherebTBisendemicand ifpre-movementtesting-incontrasttopost-movementtesting– isadoptedtopreventtheriskofdiseaseintroduction(Cleggetal., 2008;Schilleretal.,2011).

Inagreementwithourresults,Shittuetal.(2013)showedthat SIplaysanimportantroleinbTBdetectionintheUK,bothinlow incidenceandendemicareas,butishighlyinfluencedby inspec-tionsensitivity.AnotherstudyconductedinBelgiumbyWelbyetal. (2012)showedthatSIisoneofthemosteffectivesurveillance strat-egyforbTB.However,furtheranalysesperformedwithourmodel showedthattheuseoftheSIcomponentonlydetermineda signif-icantreductioninthesurveillancesystemperformancecompared toasurveillancebasedonSIcoupledwithroutineskin-testing(see SupplementarymaterialsS6).Thisresultisinagreementwith find-ingsbyFischeretal.(2005)andvanAsseldonketal.(2005),who showedthatSIsurveillancealoneisineffectiveindetectingbTBin TheNetherlands.ThiswasconfirmedbySchöningetal.(2013)on UScattleherds,whoshowedhowSIneededtogoalongwiththe skin-testcomponentinordertoprovideaneffectivesurveillance system.

Inthisstudy,cattlemovementdatawereavailableforasubsetof thenetworkofdairyfarmsinER.Thesedatawereusedtoinferthe fundamentaltopologicalpropertiesofthewholesysteminterms ofconnectivity,soastogeneratesyntheticnetworksofthesame sizeoftheERone.Whileweareconfidentthatourapproach pro-videsasolidpreliminaryunderstandingofbTBdynamicsonthe networkofdairyfarmsinER,wedidnothavethepossibilityto derivemoresophisticatedmetrics,suchastheclustering coeffi-cientandtheDiseaseFlowCentrality,thatwouldhelptohavemore detailedpredictiononhowdiseasesspreadthroughthenetwork,

(8)

asshownbyBajardietal.(2011)andNataleetal.(2011).We simu-lateddiseasedynamicsonastaticnetwork,ignoringseasonalityin cattlemovementandthedynamicalnatureofcattletrade. Dynam-icalnetworkscaneffectivelyrepresentthetime-varyingstructure ofthenetwork–whichiscrucialtosimulatethedynamicsofacute andhighlycontagiousdiseases,suchasFood-and-MouthDisease (Bajardietal.,2011,2012;VernonandKeeling,2009).However, sincebTBischaracterizedbyslowinfectiondynamicsanditisable toremainunnoticedforalongperiodoftime,webelievethatitis notessentialtotrackthesmallstructuralchangesoccurringona shorttimescaleforsuitablydescribebTBdynamics.

Otherstudieswerepreviouslyconductedoncattlemovements inItalybyNataleetal.(2009,2011).Inparticular,theyfoundthat thedegreedistributionofcattlemovementwasbestapproximated byafat-tailedpower-lawprobabilitydistribution.Ourdegree dis-tributionsbestfittingwasobtainedthroughadiscretelog-normal distribution,characterizedbylowerright-tailsthanthepower-law (Fig.3).Thiscouldbeaconsequenceofisolatingthedairysystem, i.e.bynotconsideringthemovementstowardsfatteningfarmsand slaughterhouses.

Thisstudywasspecificallyperformedonthedairycattle sys-tem,ignoringthebeefsector.ThemainreasonwasthatthebTB surveillancesysteminERisinplaceonthedairysectoronly. More-over,furtherreasonssupportedthischoice:(i)thehighereconomic valueofthedairysectorintheRegion;(ii)thefactthatgenerally beeffarmsdonotexchangeanimalswithotherfarms,theyonly receivemalecalveswithin100daysofagefromdairyfarmsand sendanimalstoslaughterhousesattheendofthefattening pro-cess;(iii)thetwosystemsarealmostfullyseparated,sothereis nopossibilityofspill-overfromthebeeftothedairysystem;and (iv)dairycattlelivesubstantiallylongerthanbeefcattle,i.e.upto 5yearsvs.2respectively,thusepidemicshavemorepossibilityto developinthedairysystembecauseofbTBlongincubationperiod. Our analysesshowedthat thefarms in-degree and the out-degreewerenotcoupled.Inotherwords,farmshavingahigher in-degree,i.e.thatimportrelativelymorecattlefromotherfarms intheRegion,donotnecessarilyhaveahighout-degree,andvice versa.AsimilarresultisoutlinedinVolkovaetal.(2010)onScottish farms,suggestingthatthiscouldbearecurrentpatternforcattle herdsindifferentmanagementcontexts.

IntheUKand inother countrieswhere bTBisendemic,the highcostofthesurveillanceanderadicationprogramme,namely

£

74–99million ayear forUK (Smithand Clifton-Hadley, 2008; TorgersonandTorgerson,2008)hasbeenputunderscrutiny.Our resultsindicatethataproposalforsimplificationorstrengthening ofanintegratedsurveillancesystemshouldbealwaysbasedona rigorous,quantitativeunderstandingoftheroleplayedbyeachof itscomponents.Infactunderstandingtheactualeffectivenessof aspecificcontrolstrategy,isnotalwaysstraightforward,andcan beaffectedbyfactorslikenetworktopology,thetradingsystem, rearingmethods,testfrequencyandtestsensitivity.Moreover,the increasingdensityofungulatesandotherpotentialwildlife reser-voirspeciesoccurringin severalEuropeancountriesposesnew challengesfortheexistingsurveillancesystemseveninareasthat arecurrentlybTB-free(Schöningetal.,2013).

A priori information on the network structure of cattle exchangesduringnon-emergencyperiodscanhelporienting con-trolstrategiestopreventepidemicsinareascharacterizedbyahigh numberofindustrialfarms(Bajardietal.,2012;Gilbertetal.,2005). Ourframework,basedonamathematicalmodellingapproach, pro-videddecision-makerswithapowerfulcost-effectivetooltoassess theeffectivenessofthecurrentbTBsurveillancesysteminER,by highlightingstrengthsandweaknessesitsdifferentcomponents.

Moreover, the methodological approach proposed here will allowthehealth authoritiestoassesstheeffectivenessoffuture alternative strategies for bTB detection that are not currently

implementedinER,suchasantigendetectingtests(ELISA)onmilk andbloodsample(vanAsseldonketal.,2005).Furthermore,by tak-ingintoconsiderationthecostofdifferenttestingstrategies,itwill bepossibletouseourmodellingapproachtoruncost-effectiveness analysesofdifferentoptionsofsurveillance(Andersonetal.,2013; Cameron,2012).

Acknowledgements

We would like to thank Marco Tamba for the constructive discussionsaboutbovinetuberculosissurveillanceandtheherd systemofEmilia-Romagna.

Thisstudywasfunded byIZSLERwithintheresearchproject AUTIFIN-TBC-EMILIA-2011 ‘Development of an Epidemiological ModelforBovineTuberculosisinEmilia-Romagna’.

AppendixA. Supplementarydata

Supplementarymaterialrelatedtothisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.epidem.2015.02.007.

References

Abernethy,D.A.,Upton,P.,Higgins,I.M.,McGrath,G.,Goodchild,A.V.,Rolfe,S.J., Broughan, J.M., Downs, S.H.,Clifton-Hadley, R.,Menzies, F.D., de la Rua-Domenech,R.,Blissitt,M.J.,Duignan,A.,More,S.J.,2013.Bovinetuberculosis trendsintheUKandtheRepublicofIreland,1995–2010.Vet.Rec.172,312.

Agusto,F.B.,Lenhart,S.,Gumel,A.B.,Odoi,A.,2011.Mathematicalanalysisofamodel forthetransmissiondynamicsofbovinetuberculosis.Math.MethodsAppl.Sci. 34,1873–1887.

Anderson,D.P.,Ramsey,D.S.L.,Nugent,G.,Bosson,M.,Livingstone,P.,Martin,P.A.J., Sergeant,E.,Gormley,A.M.,Warburton,B.,2013.Anovelapproachtoassessthe probabilityofdiseaseeradicationfromawild-animalreservoirhost.Epidemiol. Infect.141,1509–1521.

Anonymous,2008.Bovinetuberculosis.In:ManualofDiagnosticTestsand Vac-cinesforTerrestrialAnimals.WorldOrganizationforAnimalHealth(OIE),Paris, France,pp.683–697.

Asseged,B.,Woldesenbet,Z.,Yimer,E.,Lemma,E.,2004.Evaluationofabattoir inspectionforthediagnosisofMycobacteriumbovisinfectionincattleatAddis Ababaabattoir.Trop.Anim.HealthProd.36,537–546.

Bajardi,P.,Barrat,A.,Natale,F.,Savini,L.,Colizza,V.,2011.Dynamicalpatternsof cattletrademovements.PLoSONE6,e19869.

Bajardi,P.,Barrat,A.,Savini,L.,Colizza,V.,2012.Optimizingsurveillanceforlivestock diseasespreadingthroughanimalmovements.J.R.Soc.Interface9,2814–2825.

Barlow,N.D.,Kean,J.M.,Hickling,G.,Livingstone,P.G.,Robson,A.B.,1997.A simu-lationmodelforthespreadofbovinetuberculosiswithinNewZealandcattle herds.Prev.Vet.Med.32,57–75.

Brooks-Pollock,E.,Keeling,M.J.,2009.Herdsizeandbovinetuberculosispersistence incattlefarmsinGreatBritain.Prev.Vet.Med.92,360–365.

Brooks-Pollock,E.,Roberts,G.O.,Keeling,M.J.,2014.Adynamicmodelofbovine tuberculosisspreadandcontrolinGreatBritain.Nature511,228–231.

Cameron,A.R.,2012. Theconsequencesofrisk-basedsurveillance:developing output-basedstandardsforsurveillancetodemonstratefreedomfromdisease. Prev.Vet.Med.105,280–286.

Cheeseman,C.L.,Wilesmith,J.W.,Stuart,F.A.,1989.Tuberculosis:thediseaseandits epidemiologyinthebadger,areview.Epidemiol.Infect.103,113–125.

Clauset,A.,Shalizi,C.,Newman,M.,2009.Power-lawdistributionsinempiricaldata. SIAMRev.51,661–703.

Clegg,T.A.,More,S.J.,Higgins,I.M.,Good,M.,Blake,M.,Williams,D.H.,2008.Potential infection-controlbenefitforIrelandfrompre-movementtestingofcattlefor tuberculosis.Prev.Vet.Med.84,94–111.

Conlan,A.J.K.,McKinley,T.J.,Karolemeas,K.,Pollock,E.B.,Goodchild,A.V.,Mitchell, A.P.,Birch,C.P.D.,Clifton-Hadley,R.S.,Wood,J.L.N.,2012.Estimatingthehidden burdenofbovinetuberculosisinGreatBritain.PLoSComput.Biol.8,e1002730.

Cousins,D.V.,2001.Mycobacteriumbovisinfectionandcontrolindomesticlivestock. Rev.Sci.Tech.20,71–85.

delaRua-Domenech,R.,Goodchild,A.T.,Vordermeier,H.M.,Hewinson,R.G., Chris-tiansen,K.H.,Clifton-Hadley,R.S.,2006.Antemortemdiagnosisoftuberculosis incattle:areviewofthetuberculintests,gamma-interferonassayandother ancillarydiagnostictechniques.Res.Vet.Sci.81,190–210.

Diekmann,O.,Heesterbeek,J.,Metz,J.,1990.Onthedefinitionandthe compu-tationofthebasicreproductionratioR0inmodelsforinfectiousdiseasesin

heterogeneouspopulations.J.Math.Biol.28,365–382.

Fischer,E.A.J.,vanRoermund,H.J.W.,Hemerik,L.,vanAsseldonk,M.A.P.M.,de Jong,M.C.M.,2005.Evaluationofsurveillancestrategiesforbovinetuberculosis (Mycobacteriumbovis)usinganindividualbasedepidemiologicalmodel.Prev. Vet.Med.67,283–301.

Fitzgerald,S.D.,Kaneene,J.B.,2013.Wildlifereservoirsofbovinetuberculosis world-wide:hosts,pathology,surveillance,andcontrol.Vet.Pathol.50,488–499.

(9)

Gilbert,M.,Mitchell, A.,Bourn, D.,Mawdsley,J., Clifton-Hadley,R.,Wint, W., 2005.CattlemovementsandbovinetuberculosisinGreatBritain.Nature435, 491–496.

Gillespie,D.,1977.Exactstochasticsimulationofcoupledchemicalreactions.J.Phys. Chem.93555,2340–2361.

Gordon,S.,2008.BovineTB:stoppingdiseasecontrolwouldblockallliveexports. Nature456,700.

Griffin,J.M.,Williams,D.H.,Kelly,G.E.,Clegg,T.A.,O’Boyle,I.,Collins,J.D.,More,S.J., 2005.Theimpactofbadgerremovalonthecontroloftuberculosisincattleherds inIreland.Prev.Vet.Med.67,237–266.

Hadorn,D.,Stärk,K.,2008.Evaluationandoptimizationofsurveillancesystemsfor rareandemerginginfectiousdiseases.Vet.Res.39,57–68.

Huang,Z.Y.X.,deBoer,W.F.,vanLangevelde,F.,Xu,C.,Jebara,K.B.,Berlingieri,F., Prins,H.H.T.,2013.Dilutioneffectinbovinetuberculosis:riskfactorsforregional diseaseoccurrenceinAfrica.Proc.R.Soc.B280,20130624.

Humblet,M.-F.,Moyen,J.-L.,Bardoux,P.,Boschiroli,M.L.,Saegerman,C.,2011.The importanceofawarenessforveterinariansinvolvedincattletuberculosisskin testing.Transbound.Emerg.Dis.58,531–536.

Italian National Statistics Institute (ISTAT), 2010. 6◦ Censimento Generale

dell’Agricoltura.http://censimentoagricoltura.istat.it/

Johnston,W.T.,Vial,F.,Gettinby,G.,Bourne,F.J.,Clifton-Hadley,R.S.,Cox,D.R.,Crea, P.,Donnelly,C.A.,McInerney,J.P.,Mitchell,A.P.,Morrison,W.I.,Woodroffe,R., 2011.Herd-levelriskfactorsofbovinetuberculosisinEnglandandWalesafter the2001foot-and-mouthdiseaseepidemic.Int.J.Infect.Dis.15,e833–e840.

IndependentScientificGroup,2007.BovineTuberculosis:TheScientificEvidence. DEFRAPublications,London.

Marangon,S.,Martini,M.,DallaPozza,M.,Neto,F.,1998.Acase-controlstudyon bovinetuberculosisintheVenetoRegion(Italy).Prev.Vet.Med.34,87–95.

Morris,R.S.,Pfeiffer,D.U.,Jackson,R.,1994.TheepidemiologyofMycobacteriumbovis infections.Vet.Microbiol.40,153–177.

Natale,F.,Giovannini,A.,Savini,L.,Palma,D.,Possenti,L.,Fiore,G.,Calistri,P.,2009.

NetworkanalysisofItaliancattletradepatternsandevaluationofrisksfor potentialdiseasespread.Prev.Vet.Med.92,341–350.

Natale,F.,Savini,L.,Giovannini,A.,Calistri,P.,Candeloro,L.,Fiore,G.,2011. Evalua-tionofriskandvulnerabilityusingaDiseaseFlowCentralitymeasureindynamic cattletradenetworks.Prev.Vet.Med.98,111–118.

O’Hare,A.,Orton,R.,Bessell,P.R.,Kao,R.R.,2014.Estimatingepidemiological param-etersforbovinetuberculosisinBritishcattleusingaBayesianpartial-likelihood approach.Proc.R.Soc.B281,1783.

Phillips,C.J.C.,Foster,C.R.W.,Morris,P.A.,Teverson,R.,2003.Thetransmissionof Mycobacteriumbovisinfectiontocattle.Res.Vet.Sci.74,1–15.

Reilly,L.A.,Courtenay,O.,2007.Husbandrypractices,badgersettdensityandhabitat compositionasriskfactorsfortransientandpersistentbovinetuberculosison UKcattlefarms.Prev.Vet.Med.80,129–142.

Reynolds,D.,2006.AreviewoftuberculosisscienceandpolicyinGreatBritain.Vet. Microbiol.112,119–126.

Rohani,P.,Keeling,M.J.,Grenfell,B.T.,2002.Theinterplaybetweendeterminismand stochasticityinchildhooddiseases.Am.Nat.159,469–481.

Schiller,I.,Waters,W.R.,Vordermeier,H.M.,Jemmi,T.,Welsh,M.,Keck,N.,Whelan, A.,Gormley,E.,Boschiroli,M.L.,Moyen,J.L.,Vela,C.,Cagiola,M.,Buddle,B.M., Palmer,M.,Thacker,T.,Oesch,B.,2011.BovinetuberculosisinEuropefromthe perspectiveofanofficiallytuberculosisfreecountry:trade,surveillanceand diagnostics.Vet.Microbiol.151,153–159.

Schöning,J.M.,Cerny,N.,Prohaska,S.,Wittenbrink,M.M.,Smith,N.H.,Bloemberg,G., Pewsner,M.,Schiller,I.,Origgi,F.C.,Ryser-Degiorgis,M.-P.,2013.Surveillance ofbovinetuberculosisandriskestimationofafuturereservoirformationin wildlifeinSwitzerlandandLiechtenstein.PLoSONE8,e54253.

Shittu,A.,Clifton-Hadley,R.S.,Ely,E.R.,Upton,P.U.,Downs,S.H.,2013.Factors asso-ciatedwithbovinetuberculosisconfirmationratesinsuspectlesionsfoundin cattleatroutineslaughterinGreatBritain,2003–2008.Prev.Vet.Med.110, 395–404.

Smith,N.H.,Clifton-Hadley,R.,2008.BovineTB:don’tgetridofthecatbecausethe micehavegone.Nature456,700.

Smith,R.L.,Schukken,Y.H.,Lu,Z.,Mitchell,R.M.,Grohn,Y.T.,2013.Developmentof amodeltosimulateinfectiondynamicsofMycobacteriumbovisincattleherds intheUnitedStates.J.Am.Vet.Med.Assoc.243,411–423.

Skuce,R.A.,Allen,A.R.,McDowell,S.W.J.,2012.Herd-levelriskfactorsforbovine tuberculosis:aliteraturereview.Vet.Med.Int.2012,621210.

Torgerson,P.,Torgerson,D.,2008.Doesrisktohumansjustifyhighcostoffighting bovineTB?Nature455,1029.

vanAsseldonk,M.A.P.M.,vanRoermund,H.J.W.,Fischer,E.A.J.,deJong,M.C.M., Huirne,R.B.M.,2005. Stochasticefficiency analysisofbovine tuberculosis-surveillanceprogramsintheNetherlands.Prev.Vet.Med.69,39–52.

Vernon,M.,Keeling,M.J.,2009.RepresentingtheUK’scattleherdasstaticand dynamicnetworks.Proc.R.Soc.B:Biol.Sci.276,469–476.

Volkova,V.V.,Howey,R.,Savill,N.J.,Woolhouse,M.E.J.,2010.Potentialfor transmis-sionofinfectionsinnetworksofcattlefarms.Epidemics2,116–122.

Vuong,Q.,1989.Likelihoodratiotestsformodelselectionandnon-nested hypothe-ses.Econom.J.Econom.Soc.57,307–333.

Welby,S.,Govaerts,M.,Vanholme,L.,Hooyberghs,J.,Mennens,K.,Maes,L.,VanDer Stede,Y.,2012.BovinetuberculosissurveillancealternativesinBelgium.Prev. Vet.Med.106,152–161.

Riferimenti

Documenti correlati

In 1942, even though the Legislator anticipated some abnormalities, had adopted the rule one share one vote, not considering the interference in the

The Greek Islands are generally subdivided into two groups, according to the location: the Ionian Islands (including Kerkira, Cephalonia, Lefkas, Zakinthos,

Naturalmente un sistema a basso costo deve per definizione essere molto semplice, facile da dislocare e allo stesso tempo deve comunque assicurare delle

zione un’ampia varietà di filtri per l’estrazione di dati epidemiologici e di sorveglianza. Sia i filtri predefiniti che quelli configurabili dall’utente hanno mostrato le

The resulting binary images are input into the spline-based algorithm for diameter estimates and the measurements performance against REVIEW is reported in Table 8.. The removal

La tesi si è data il compito di presentare una ricostruzione organica della riflessione politica di Miguel Antonio Caro, colui che può essere considerato, dopo «el padre de la

Le scelte degli autori dei testi analizzati sono diverse: alcuni (per esempio Eyal Sivan in Uno specialista) usano materiale d’archivio co- me fotografie e filmati, altri invece

Here, to make up for the relative sparseness of weather and hydrological data, or malfunctioning at the highest altitudes, we complemented ground data using series of remote sensing