• Non ci sono risultati.

New analysis of ηπ tensor resonances measured at the COMPASS experiment

N/A
N/A
Protected

Academic year: 2021

Condividi "New analysis of ηπ tensor resonances measured at the COMPASS experiment"

Copied!
9
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

New

analysis

of

ηπ

tensor

resonances

measured

at

the

COMPASS

experiment

JPAC

Collaboration

A. Jackura

a

,

b

,

,

1

,

C. Fernández-Ramírez

c

,

2

,

M. Mikhasenko

d

,

3

,

A. Pilloni

e

,

1

,

V. Mathieu

a

,

b

,

4

,

J. Nys

f

,

4

,

5

,

V. Pauk

e

,

1

,

A.P. Szczepaniak

a

,

b

,

e

,

1

,

4

,

G. Fox

g

,

4 aPhysicsDept.,IndianaUniversity,Bloomington,IN47405,USA

bCenterforExplorationofEnergyandMatter,IndianaUniversity,Bloomington,IN47403,USA

cInstitutodeCienciasNucleares,UniversidadNacionalAutónomadeMéxico,CiudaddeMéxico04510,Mexico dUniversitätBonn,Helmholtz-InstitutfürStrahlen- undKernphysik,53115Bonn,Germany6

eTheoryCenter,ThomasJeffersonNationalAcceleratorFacility,NewportNews,VA23606,USA fDept.ofPhysicsandAstronomy,GhentUniversity,9000Ghent,Belgium

gSchoolofInformaticsandComputing,IndianaUniversity,Bloomington,IN47405,USA

COMPASS

Collaboration

M. Aghasyan

ae

,

R. Akhunzyanov

n

,

M.G. Alexeev

af

,

G.D. Alexeev

n

,

A. Amoroso

af

,

ag

,

V. Andrieux

ai

,

aa

,

N.V. Anfimov

n

,

V. Anosov

n

,

A. Antoshkin

n

,

K. Augsten

n

,

y

,

W. Augustyniak

aj

,

A. Austregesilo

v

,

C.D.R. Azevedo

h

,

B. Badełek

ak

,

F. Balestra

af

,

ag

,

M. Ball

j

,

J. Barth

k

,

R. Beck

j

,

Y. Bedfer

aa

,

J. Bernhard

s

,

p

,

K. Bicker

v

,

p

,

E.R. Bielert

p

,

R. Birsa

ae

,

M. Bodlak

x

,

P. Bordalo

r

,

8

,

F. Bradamante

ad

,

ae

,

A. Bressan

ad

,

ae

,

M. Büchele

o

,

V.E. Burtsev

ah

,

W.-C. Chang

ab

,

C. Chatterjee

m

,

M. Chiosso

af

,

ag

,

I. Choi

ai

,

A.G. Chumakov

ah

,

S.-U. Chung

v

,

9

,

A. Cicuttin

ae

,

10

,

M.L. Crespo

ae

,

10

,

S. Dalla Torre

ae

,

S.S. Dasgupta

m

,

S. Dasgupta

ad

,

ae

,

O.Yu. Denisov

ag

,

∗∗

,

L. Dhara

m

,

S.V. Donskov

z

,

N. Doshita

am

,

Ch. Dreisbach

v

,

W. Dünnweber

11

,

R.R. Dusaev

ah

,

M. Dziewiecki

al

,

A. Efremov

n

,

18

,

P.D. Eversheim

j

,

M. Faessler

11

,

A. Ferrero

aa

,

M. Finger

x

,

M. Finger jr.

x

,

H. Fischer

o

,

C. Franco

r

,

N. du Fresne von Hohenesche

s

,

p

,

J.M. Friedrich

v

,

∗∗

,

V. Frolov

n

,

p

,

E. Fuchey

aa

,

12

,

F. Gautheron

i

,

O.P. Gavrichtchouk

n

,

S. Gerassimov

u

,

v

,

J. Giarra

s

,

F. Giordano

ai

,

I. Gnesi

af

,

ag

,

M. Gorzellik

o

,

24

,

A. Grasso

af

,

ag

,

M. Grosse Perdekamp

ai

,

B. Grube

v

,

T. Grussenmeyer

o

,

A. Guskov

n

,

D. Hahne

k

,

G. Hamar

ae

,

D. von Harrach

s

,

F.H. Heinsius

o

,

R. Heitz

ai

,

F. Herrmann

o

,

N. Horikawa

w

,

13

,

N. d’Hose

aa

,

C.-Y. Hsieh

ab

,

14

,

S. Huber

v

,

S. Ishimoto

am

,

15

,

A. Ivanov

af

,

ag

,

Yu. Ivanshin

n

,

18

,

T. Iwata

am

,

V. Jary

y

,

R. Joosten

j

,

P. Jörg

o

,

E. Kabuß

s

,

A. Kerbizi

ad

,

ae

,

B. Ketzer

j

,

G.V. Khaustov

z

,

Yu.A. Khokhlov

z

,

16

,

Yu. Kisselev

n

,

F. Klein

k

,

J.H. Koivuniemi

i

,

ai

,

V.N. Kolosov

z

,

K. Kondo

am

,

K. Königsmann

o

,

I. Konorov

u

,

v

,

*

Correspondingauthor.

**

Correspondingauthors.

E-mailaddress:gerhard.mallot@cern.ch(G.K. Mallot).

1 SupportedbyU.S. Dept.ofEnergy,OfficeofScience,OfficeofNuclearPhysicsundercontractsDE-AC05-06OR23177,DE-FG0287ER40365.

2 SupportedbyPAPIIT-DGAPA(UNAM,Mexico)GrantNo. IA101717,byCONACYT(Mexico)GrantNo. 251817andbyRedTemáticaCONACYTdeFísicaenAltasEnergías (RedFAE,Mexico).

3 AlsoamemberoftheCOMPASSCollaboration.

4 SupportedbyNationalScienceFoundationGrantPHY-1415459.

5 Supportedasan‘FWO-aspirant’bytheResearchFoundationFlanders(FWO-Flanders). 6 SupportedbyBMBFBundesministeriumfürBildungundForschung(Germany). https://doi.org/10.1016/j.physletb.2018.01.017

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

V.F. Konstantinov

z

,

A.M. Kotzinian

ag

,

20

,

O.M. Kouznetsov

n

,

Z. Kral

y

,

M. Krämer

v

,

P. Kremser

o

,

F. Krinner

v

,

Z.V. Kroumchtein

n

,

7

,

Y. Kulinich

ai

,

F. Kunne

aa

,

K. Kurek

aj

,

R.P. Kurjata

al

,

I.I. Kuznetsov

ah

,

A. Kveton

y

,

A.A. Lednev

z

,

7

,

E.A. Levchenko

ah

,

M. Levillain

aa

,

S. Levorato

ae

,

Y.-S. Lian

ab

,

21

,

J. Lichtenstadt

ac

,

R. Longo

af

,

ag

,

V.E. Lyubovitskij

ah

,

A. Maggiora

ag

,

A. Magnon

ai

,

N. Makins

ai

,

N. Makke

ae

,

10

,

G.K. Mallot

p

,

S.A. Mamon

ah

,

B. Marianski

aj

,

A. Martin

ad

,

ae

,

J. Marzec

al

,

J. Matoušek

ad

,

ae

,

x

,

H. Matsuda

am

,

T. Matsuda

t

,

G.V. Meshcheryakov

n

,

M. Meyer

ai

,

aa

,

W. Meyer

i

,

Yu.V. Mikhailov

z

,

M. Mikhasenko

j

,

E. Mitrofanov

n

,

N. Mitrofanov

n

,

Y. Miyachi

am

,

A. Nagaytsev

n

,

F. Nerling

s

,

D. Neyret

aa

,

J. Nový

y

,

p

,

W.-D. Nowak

s

,

G. Nukazuka

am

,

A.S. Nunes

r

,

A.G. Olshevsky

n

,

I. Orlov

n

,

M. Ostrick

s

,

D. Panzieri

ag

,

22

,

B. Parsamyan

af

,

ag

,

S. Paul

v

,

J.-C. Peng

ai

,

F. Pereira

h

,

M. Pešek

x

,

M. Pešková

x

,

D.V. Peshekhonov

n

,

N. Pierre

s

,

aa

,

S. Platchkov

aa

,

J. Pochodzalla

s

,

V.A. Polyakov

z

,

J. Pretz

k

,

17

,

M. Quaresma

r

,

C. Quintans

r

,

S. Ramos

r

,

8

,

C. Regali

o

,

G. Reicherz

i

,

C. Riedl

ai

,

N.S. Rogacheva

n

,

D.I. Ryabchikov

z

,

v

,

A. Rybnikov

n

,

A. Rychter

al

,

R. Salac

y

,

V.D. Samoylenko

z

,

A. Sandacz

aj

,

C. Santos

ae

,

S. Sarkar

m

,

I.A. Savin

n

,

18

,

T. Sawada

ab

,

G. Sbrizzai

ad

,

ae

,

P. Schiavon

ad

,

ae

,

T. Schlüter

19

,

K. Schmidt

o

,

24

,

H. Schmieden

k

,

K. Schönning

p

,

23

,

E. Seder

aa

,

A. Selyunin

n

,

L. Silva

r

,

L. Sinha

m

,

S. Sirtl

o

,

M. Slunecka

n

,

J. Smolik

n

,

A. Srnka

l

,

D. Steffen

p

,

v

,

M. Stolarski

r

,

O. Subrt

p

,

y

,

M. Sulc

q

,

H. Suzuki

am

,

13

,

A. Szabelski

ad

,

ae

,

aj

,

T. Szameitat

o

,

24

,

P. Sznajder

aj

,

M. Tasevsky

n

,

S. Tessaro

ae

,

F. Tessarotto

ae

,

A. Thiel

j

,

J. Tomsa

x

,

F. Tosello

ag

,

V. Tskhay

u

,

S. Uhl

v

,

B.I. Vasilishin

ah

,

A. Vauth

p

,

J. Veloso

h

,

A. Vidon

aa

,

M. Virius

y

,

S. Wallner

v

,

T. Weisrock

s

,

M. Wilfert

s

,

J. ter Wolbeek

o

,

24

,

K. Zaremba

al

,

P. Zavada

n

,

M. Zavertyaev

u

,

E. Zemlyanichkina

n

,

18

,

N. Zhuravlev

n

,

M. Ziembicki

al

hUniversityofAveiro,Dept.ofPhysics,3810-193Aveiro,Portugal

iUniversitätBochum,InstitutfürExperimentalphysik,44780Bochum,Germany25,26

jUniversitätBonn,Helmholtz-InstitutfürStrahlen- undKernphysik,53115Bonn,Germany25

kUniversitätBonn,PhysikalischesInstitut,53115Bonn,Germany25

lInstituteofScientificInstruments,ASCR,61264Brno,CzechRepublic27

mMatrivaniInstituteofExperimentalResearch&Education,Calcutta-700030,India28

nJointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russia18

oUniversitätFreiburg,PhysikalischesInstitut,79104Freiburg,Germany25,26

pCERN,1211Geneva23,Switzerland

qTechnicalUniversityinLiberec,46117Liberec,CzechRepublic27

rLIP,1000-149Lisbon,Portugal29

sUniversitätMainz,InstitutfürKernphysik,55099Mainz,Germany25

tUniversityofMiyazaki,Miyazaki889-2192,Japan30

uLebedevPhysicalInstitute,119991Moscow,Russia

vTechnischeUniversitätMünchen,PhysikDept.,85748Garching,Germany25,11

wNagoyaUniversity,464Nagoya,Japan30

xCharlesUniversityinPrague,FacultyofMathematicsandPhysics,18000Prague,CzechRepublic27

yCzechTechnicalUniversityinPrague,16636Prague,CzechRepublic27

zStateScientificCenterInstituteforHighEnergyPhysicsofNationalResearchCenter‘KurchatovInstitute’,142281Protvino,Russia aaIRFU,CEA,UniversitéParis-Saclay,91191Gif-sur-Yvette,France26

abAcademiaSinica,InstituteofPhysics,Taipei11529,Taiwan31

acTelAvivUniversity,SchoolofPhysicsandAstronomy,69978TelAviv,Israel32

adUniversityofTrieste,Dept.ofPhysics,34127Trieste,Italy aeTriesteSectionofINFN,34127Trieste,Italy

afUniversityofTurin,Dept.ofPhysics,10125Turin,Italy agTorinoSectionofINFN,10125Turin,Italy

ahTomskPolytechnicUniversity,634050Tomsk,Russia33

aiUniversityofIllinoisatUrbana-Champaign,Dept.ofPhysics,Urbana,IL61801-3080,USA34

ajNationalCentreforNuclearResearch,00-681Warsaw,Poland35

akUniversityofWarsaw,FacultyofPhysics,02-093Warsaw,Poland35

alWarsawUniversityofTechnology,InstituteofRadioelectronics,00-665Warsaw,Poland35

amYamagataUniversity,Yamagata992-8510,Japan30

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received10July2017

Receivedinrevisedform20November2017 Accepted8January2018

Availableonlinexxxx Editor:M.Doser

We presentanew amplitudeanalysis ofthe

ηπ

D-wave inthereaction

π

p

ηπ

p measuredby COMPASS. Employingananalyticalmodel basedontheprinciplesofthe relativistic S-matrix,wefind two resonances that can be identified with the a2(1320) and the exciteda2(1700), and perform a

(3)

1±6)MeVand= (112±1±8)MeV,andfortheexcitedstatea2weobtainM= (1720±10±60)MeV and= (280±10±70)MeV,respectively.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The spectrum of hadrons contains a number of poorly de-termined or missing resonances, the better knowledge of which is of key importance for improving our understanding of Quan-tumChromodynamics(QCD),thefundamentaltheoryofthestrong interaction. Active research programs in this direction are being pursuedatvariousexperimentalfacilities,includingtheCOMPASS andLHCbexperimentsatCERN [1–4],CLAS/CLAS12andGlueX at JLab [5–7], BESIII at BEPCII [8], BaBar, andBelle [9]. In order to connecttheexperimentalobservableslikeangularandmomentum distributionsoffinal-stateparticleswiththecorrespondingdegrees offreedom ofthestronginteraction anamplitude analysisofthe experimentaldatais required.Traditionally, themass-dependence ofpartial-waves is described by a coherentsum ofBreit–Wigner amplitudesand,ifneeded,aphenomenologicalbackground.While generallyprovidingagoodfittothedata,suchaprocedure, how-ever,violatesfundamental principlesof S-matrixtheory.In order tobetterconstraintheformoftheamplitude,morereliable reac-tion modelswhich fulfill theprinciples ofunitarity and analytic-ity (which originate from probability conservation and causality,

7 Deceased.

8 AlsoatInstitutoSuperiorTécnico,UniversidadedeLisboa,Lisbon,Portugal. 9 AlsoatDept.ofPhysics,PusanNationalUniversity,Busan609-735,Republicof KoreaandatPhysicsDept.,BrookhavenNationalLaboratory,Upton,NY11973,USA.

10 AlsoatAbdusSalamICTP,34151Trieste,Italy.

11 SupportedbytheDFGclusterofexcellence‘Originand Structureofthe Uni-verse’(www.universe-cluster.de)(Germany).

12 SupportedbytheLaboratoired’excellenceP2IO(France). 13 AlsoatChubuUniversity,Kasugai,Aichi487-8501,Japan.

14 AlsoatDept.ofPhysics,NationalCentralUniversity,300JhongdaRoad,Jhongli 32001,Taiwan.

15 AlsoatKEK,1-1Oho,Tsukuba,Ibaraki305-0801,Japan.

16 AlsoatMoscowInstituteofPhysicsandTechnology,MoscowRegion,141700, Russia.

17 Presentaddress: RWTH Aachen University, III.Physikalisches Institut, 52056 Aachen,Germany.

18 SupportedbyCERN-RFBRGrant12-02-91500. 19 Presentaddress:LP-ResearchInc.,Tokyo,Japan.

20 AlsoatYerevanPhysicsInstitute,AlikhanianBr.Street,Yerevan,Armenia,0036. 21 Also at Dept. of Physics, National Kaohsiung Normal University, Kaohsiung County824,Taiwan.

22 AlsoatUniversityofEasternPiedmont,15100Alessandria,Italy. 23 Presentaddress:UppsalaUniversity,Box516,75120Uppsala,Sweden. 24 Supportedbythe DFGResearchTraining GroupProgrammes 1102and 2044 (Germany).

25 Supportedby BMBF Bundesministerium für Bildung und Forschung (Ger-many).

26 SupportedbyFP7,HadronPhysics3,Grant283286(EuropeanUnion). 27 SupportedbyMEYS,GrantLG13031(CzechRepublic).

28 SupportedbyB.Senfund(India).

29 SupportedbyFCTFundaçãoparaaCiênciaeTecnologia,COMPETEandQREN, GrantsCERN/FP116376/2010,123600/2011 andCERN/FIS-NUC/0017/2015 (Portu-gal).

30 Supported by MEXT and JSPS, Grants 18002006, 20540299, 18540281 and 26247032,theDaikoandYamadaFoundations(Japan).

31 SupportedbytheMinistryofScienceandTechnology(Taiwan). 32 SupportedbytheIsraelAcademyofSciencesandHumanities(Israel). 33 Supported by the Russian Federation program “Nauka” (Contract No. 0.1764.GZB.2017)(Russia).

34 SupportedbytheNationalScienceFoundation,Grantno.PHY-1506416(USA). 35 SupportedbyNCN,Grant2015/18/M/ST2/00550(Poland).

respectively) should be applied. When resonances dominate the spectrum, which is the case studied here, unitarity is especially important since it constrains resonance widths and allows us to determine thelocation ofresonancepolesin thecomplexenergy planeofthemultivaluedpartialwaveamplitudes.

In2014,COMPASSpublishedhigh-statisticspartial-wave analy-ses ofthe

π

p

η

()

π

p reaction, at p

beam

=

191 GeV[2].The waveswithoddangularmomentumbetweenthetwopseudoscalar particles in the final state have manifestly spin-exotic quantum numbers andwere foundto exhibit structuresthatmay be com-patiblewithahybridmeson[10,11].Theevenangular-momentum wavesshow strongsignalsofnon-exoticresonances.Inparticular, the D-waveof

ηπ

,withIG

(

JP C

)

=

1−

(

2++

)

,isdominatedbythe peak of the a2

(

1320

)

and its Breit–Wigner parameters were ex-tractedandpresentedinRef. [2].The D-wavealsoexhibitsahint ofthefirstradialexcitation,thea2

(

1700

)

[12].

In this letter we present a new analysis of the

ηπ

D-wave

based on an analytical model constrained by unitarity, which extends beyond the simple Breit–Wigner parameterization. Our modelbuildsonamoregeneralframeworkforasystematic anal-ysis of peripheral meson production, which is currently under development [13–15].Using the 2014COMPASS measurement as input, the modelisfitted tothe resultsof themass-independent analysisthatwasperformedin40MeVwidebinsofthe

ηπ

mass. The a2 anda2 resonance parameters are extractedin the single-channel approximation and the coupled-channel effects are esti-matedbyincludingthe

ρπ

finalstate.Wedeterminethestatistical uncertainties by meansofthebootstrap method[16–20],and as-sess thesystematicuncertainties inthepolepositions by varying model-dependentparametersinthereactionamplitude.

2. Reactionmodel

We consider the peripheral diffractive production process

π

p

ηπ

p (Fig. 1(a)), which is dominated by Pomeron (

P

) ex-changeathighenergiesoftheincomingbeamparticle.Thisallows usto assumefactorizationofthe “top”vertex, so thatthe

π

P

ηπ

amplituderesemblesan ordinaryhelicityamplitude[21].Itis a function of s and t1, the

ηπ

invariant mass squared and the invariantmomentumtransfersquaredbetweentheincomingpion andthe

η

,respectively.Italsodependsont,themomentum trans-ferbetweenthenucleontargetandrecoil.IntheGottfried–Jackson (GJ)frame [22],thePomeronhelicityin

π

P

ηπ

equals the

ηπ

total angular momentum projection M, and the helicity ampli-tudes aM

(s,

t,t1

)

canbe expandedinpartialwavesaJ M

(s,

t)with

total angular momentum J

=

L. The allowed quantum numbers ofthe

ηπ

partial wavesare JP

=

1−, 2+,3−

,

. . .

.Theexchanged Pomeron has natural parity. Parity conservation relates the am-plitudeswithoppositespinprojectionsaJ M

= −

aJM [23].Thatis,

theM

=

0 amplitudeisforbiddenandthetwoM

= ±

1 amplitudes aregiven,uptoasign,byasinglescalarfunction.

The assumptionaboutthePomerondominance canbe quanti-fied by themagnitudeofunnatural partialwaves.In theanalysis ofRef. [2],themagnitudeofthe L

=

M

=

0 wave, whichalso ab-sorbs other possible reduciblebackgrounds, was estimatedto be

<

1%.Weareunabletofurtheraddressthenatureoftheexchange fromthedataofRef.[2],sincetheanalysiswasperformedata

(4)

sin-Fig. 1. (a)Reactiondiagramofπpηπp viaPomeronexchange.(b)Unitarity diagram:theπP→ηπ amplitudeisexpandedinpartialwavesinthes-channelof theηπsystem,aJ M(s),with J=L andtteff.Unitarityrelatestheimaginarypart

oftheamplitudetofinalstateinteractionsthatincludeallkinematicallyallowed intermediatestatesn.

glebeamenergyandintegratedoverthemomentumtransfert.36

Analyzes suchasRef.[24]suggestthat f exchangecouldalso con-tribute.Sinceinouranalysiswedonotdiscriminatebetween dif-ferentnatural-parity exchanges,weconsideraneffectivePomeron whichmaybe amixtureofpurePomeronand f .Thepatternsof azimuthaldependenceinthecentralproductionofmesons[25–29]

indicatethat at low momentum transfer,t

0, the Pomeron be-havesasa vector [30,31],whichis inagreement withthestrong dominanceofthe

|

M

|

=

1 componentintheCOMPASSdata.37

The COMPASS mass-independent analysis [2] is restricted to partialwaveswithL

=

1 to6 and

|

M

|

=

1 (exceptforL

=

2 where alsothe

|

M

|

=

2 waveistakenintoaccount).Thelowest-mass ex-changesinthecrossedchannelsof

π

P

ηπ

correspondtothe a (in the t1 channel) and the f (in the u1 channel) trajectories, thushigherpartialwavesarenotexpectedtobesignificantinthe

ηπ

massregionofinterest,

s

<

2 GeV.Systematicuncertainties dueto truncationofhigherwaveswerefound tobe negligiblein Ref.[34].

Inordertocomparewiththepartial-waveintensitiesmeasured in Ref. [2], which are integrated over t from tmin

= −

1

.

0 GeV2 totmax

= −

0

.

1 GeV2, we use an effective value for the momen-tumtransferteff

= −

0

.

1 GeV2 andaJ M

(s)

aJ M

(s,

teff

)

.Theeffect of a possible teff dependence is taken into account in the esti-mateofthesystematicuncertainties. Thenatural-parity exchange partial-waveamplitudesaJ M

(s)

can beidentified withthe

ampli-tudes =1

LM

(s)

asdefinedinEq. (1)ofRef.[2],where

ε

= +

1 isthe

reflectivityeigenvaluethatselectsthenatural-parityexchange. Inthefollowingweconsiderthesingle, J

=

2,

|

M

|

=

1 natural-parity partial wave, which we denote by a(s), and fit its mod-ulus squared to the measured (acceptance-corrected) number of events[2]:

36 Forexample,Ref.[24]suggestedadominanceoff2exchangesfora2

(1320) pro-duction.Toprobethis,oneshouldanalyzethet andtotalenergydependences.We noteherethatCOMPASShaspublisheddatainthe3πchannel,whicharebinned bothin3πinvariantmassandmomentumtransfert[3],whichmaygivefurther insightintotheproductionprocess.

37 Atlow t,thePomerontrajectorypassesthrough J=1,whileatlarger, posi-tive t,thetrajectoryisexpectedtopassthough J=2 whereitwouldrelatetothe tensorglueball[32,33]. d

σ

d

s

I

(

s

)

=

tmax



tmin dt p

|

a

(

s

,

t

)

|

2

N

p

|

a

(

s

)

|

2

.

(1)

Here, I(s) is the intensity distribution of the D wave, p

=

λ

1/2

(s,

m2

η

,

m2π

)/(

2

s) the

ηπ

breakup momentum, and q

=

λ

1/2

(s,

m2

π

,

teff

)/(

2

s), which will be used later, is the

π

beam momentuminthe

ηπ

restframewith

λ(x,

y,z)

=

x2

+

y2

+

z2

2xy

2xz

2 yz beingtheKälléntrianglefunction.Sincethe physi-calnormalizationofthecrosssectionisnotdeterminedinRef.[2], theconstant

N

ontherighthandsideofEq.(1)isafree parame-ter.

Inprinciple,oneshouldconsiderthecoupled-channelproblem involving all the kinematically allowed intermediate states (see

Fig. 1(b)).Forthe2++ states,thePDGreportsthe3

π

(

ρπ

, f2

π

) and

ηπ

final states as dominant decay channels [12]. Far from thresholds, a narrow peak inthe data is generated by a pole in the closest unphysical sheet, regardless of the number of open channels. The residues (related to the branching ratios) depend ontheindividualcouplingsofeach channeltotheresonance,and thereforetheirextractionrequirestheinclusionofalltherelevant channels. However,thepolepositionisexpectedtobeessentially insensitivetotheinclusionofmultiplechannels.Thisiseasily un-derstoodintheBreit–Wignerapproximation,wherethetotalwidth extractedforagivenstateisindependentofthebranchingsto in-dividualchannels. Thus, wheninvestigatingthe poleposition,we restrict the analysisto theelastic approximation,where only

ηπ

canappearintheintermediatestate.Wewillelaborateonthe ef-fects of introducing the

ρπ

channel, which is known to be the dominant one of thedecay of a2

(

1320

)

[12], aspart of the sys-tematicchecks.

Intheresonanceregion,unitaritygivesconstraintsforboththe

ηπ

interactionandproduction.Denotingthe

ηπ

ηπ

scattering

D-waveby f

(s)

,unitarityandanalyticitydeterminetheimaginary partofbothamplitudesabovethe

ηπ

thresholdsth

= (

+

)

2:

Ima

ˆ

(

s

)

=

ρ

(

s

) ˆ

f

(

s

)

a

ˆ

(

s

),

(2)

Im

ˆ

f

(

s

)

=

ρ

(

s

)

| ˆ

f

(

s

)

|

2

,

(3)

with

ρ

(s)

=

2p5

/

s being the two-body phase spacefactor that absorbs the barrier factors of the D-wave. From the analysis of kinematicalsingularities[35–37]itfollowsthattheamplitudea(s)

appearing in Eq.(1) haskinematical singularitiesproportional to

K

(s)

=

p2q,and f

(s)

hassingularitiesproportional to p4.The re-ducedpartialwavesin Eqs.(2)and(3)are freefromkinematical singularities,anddefinedby e.g. a(s)

ˆ

=

a(s)/K

(s)

,

ˆ

f

(s)

=

f

(s)/

p4. NotethatEq.(2)istheelasticapproximationofFig. 1(b).

Wewrite

ˆ

f inthestandard N-over-D form,

ˆ

f

(s)

=

N(s)/D(s), with N

(s)

absorbing singularities fromexchange interactions, i.e.

“forces”actingbetween

ηπ

alsoknownasleft-handcuts,andD(s)

containing the right-hand cuts that are associated with direct-channelthresholds.UnitarityleadstoarelationbetweenD and N,

Im D

(s)

= −

ρ

(s)N(s)

,withthegeneralonce-subtractedintegral so-lution D

(

s

)

=

D0

(

s

)

s

π



sth ds

ρ

(

s 

)

N

(

s

)

s

(

s

s

)

.

(4) Here,thefunction D0

(s)

isrealfors

>

sth andcanbe

parameter-izedas

D0

(

s

)

=

c0

c1s

c2

c3

s

.

(5)

Note that the subtraction constant hasbeen absorbed into c0 of D0

(s)

.TherationalfunctioninEq.(5)isasumovertwoso-called

(5)

Castillejo–Dalitz–Dyson (CDD) poles [38], with the first pole lo-catedat s

= ∞

(CDD) andthe second one at s

=

c3. The CDD polesproducerealzerosoftheamplitude

ˆ

f andtheyalsoleadto polesof

ˆ

f inthecomplexplane(secondsheet).Sincethesepoles are introduced via parameters likec1, c2,rather thanbeing gen-erated through N (cf. Eq. (4)), they are commonly attributed to genuineQCDstates,i.e. statesthatdonotoriginate fromeffective, long-rangeinteractionssuch aspionexchange[39].Inordertofix thearbitrarynormalization ofN

(s)

and D(s), weset c0 to

O(

1

)

, sinceitisexpectedtobeoftheorderofthea2masssquared ex-pressedinunitsofGeV2.Onealsoexpectsc1 tobeapproximately equaltotheslopeoftheleading Reggetrajectory[40].Thequark model[41] andlatticeQCD [42] predicttwo statesinthe energy regionofinterest,so weuseonlytwo CDDpoles.It followsfrom Eq.(4)that thesingularitiesof N(s) (whichoriginatefromthe fi-niterangeoftheinteraction)willalsoappearonthesecondsheet in D(s),together withtheresonancepolesgeneratedby theCDD terms.WeuseasimplemodelforN(s),wheretheleft-handcutis approximatedbyahigher-orderpole,

ρ

(

s

)

N

(

s

)

=

g

λ

5/2

(

s

,

m2 η

,

m2π

)

(

s

+

sR

)

n

.

(6)

Here, g and sR effectivelyparameterize thestrength and inverse

range of the exchange forces in the D-wave, respectively. The powern

=

7 is ourmodel forthe left-handsingularities in N(s). Thisincludesthe effectsofthe finiterangeofinteraction,i.e. the

regularizationofthethresholdsingularitiesduetoK

(s)

=

p2q.The parameterizationof N(s)removesthe kinematical1

/s singularity

in

ρ

(s)

.Therefore,dynamicalsingularitiesonthesecondsheetare eitherassociatedwiththeparticlesrepresentedbytheCDDpoles, or the exchange forces parameterized by the higher order pole in N

(s)

.

Thegeneralparameterizationfora(s)

ˆ

,whichisconstrainedby unitarityinEq.(2),isobtainedfollowingsimilarargumentsandis givenbyaratiooftwofunctions

ˆ

a

(

s

)

=

n

(

s

)

D

(

s

)

,

(7)

where D(s) is given by Eq. (4) and brings in the effects of

ηπ

final-stateinteractions,whilen(s)describestheexchange interac-tionsin theproductionprocess

π

P

ηπ

andcontains the asso-ciated left-handsingularities. Inboth theproduction process and theelasticscatteringnoimportantcontributionsfromlight-meson exchangesareexpectedsincethelightestresonancesinthet1 and u1 channelsarethea2 and f2 mesons,respectively.Therefore,the numeratorfunctioninEq.(7)isexpectedtobeasmoothfunction ofs inthe complexplane nearthe physicalregion,withone ex-ception: the CDD poleat s

=

c3 produces a zeroin a(s)

ˆ

.Since a zerointheelasticscatteringamplitude doesnotingeneralimply azerointheproductionamplitude,wewriten(s)as

n

(

s

)

=

1 c3

s np



j ajTj

(

ω

(

s

)),

(8)

where the function to the right of the pole is expected to be analytical in s near the physical region. We parameterize it us-ing the Chebyshev polynomials Tj, with

ω

(s)

=

s/(s

+ )

ap-proximatingtheleft-hand singularitiesinthe productionprocess,

π

P

ηπ

.The realcoefficientsaj aredeterminedfromthefitto

the data. In the analysis, we fix

=

1 GeV2. We choose an ex-pansioninChebyshevpolynomialsasopposedto asimplepower

series in

ω

to reduce the correlations between the aj

param-eters. Since we examine the partial-wave intensities integrated over the momentum transfer t, we assume that the expansion coefficients are independent of t. The only t-dependence comes fromtheresidualkinematicaldependenceonthebreakup momen-tum q.

AcommentontherelationbetweentheN-over-Dmethodand the K -matrix parameterization is worth making. If one assumes that there are no left-hand singularities, i.e. let N(s) be a con-stant, then Eq.(4) is identical to that of the standard K -matrix

formalism [43]. Hence we can relate both approaches through

K−1

(s)

=

D0

(s)

. Itis alsoworth notingthat theparameterization inEq.(5)automaticallysatisfiescausality,i.e. therearenopoleson thephysicalenergy-sheet.

3. Methodology

Wefitourmodeltotheintensitydistributionfor

π

p

ηπ

p

inthe D-wave(56datapoints)[2],asdefinedinEq.(1),by min-imizing

χ

2. We fix the overall scale,

N =

106 (see Eq.(1)), and fitthecoefficientsaj (seeEq.(8)), whichare thenexpectedtobe O

(

1

)

, and also the parameters in the D(s) function. In the first stepweobtainthebestfitforagiventotalnumberofparameters, andinthesecondstepweestimatethestatisticaluncertainties us-ing the bootstrap technique [16–20].That is to say, we generate 105 pseudodata sets, each datapoint beingresampled according toa Gaussiandistributionhavingasmeanandstandarddeviation the original value and error, andwe repeat the fit for each set. Inthisway,weobtain105 differentvaluesforthefitparameters, andwetakethemeansandstandarddeviationsasexpectedvalues andstatisticaluncertainties, respectively.Theuseofthebootstrap methodallowsustodeterminethecorrelationsbetweenthepole positions andtheproductionparameters,providedas supplemen-tal material. As expected, the production parameters are highly correlated amongeachother,buttheir correlationswiththepole positions are rather low. This justifies the choice of Chebyshev polynomials;similarstudieswithastandardpolynomialexpansion showedlargercorrelationsbetweenproductionandresonance pa-rameters.

In order to assess the systematic uncertainties we study the dependence of the pole parameters on variations of the model. Specifically, we change i) thenumber ofCDD poles from1to 3,

ii)thetotalnumberoftermsnp intheexpansionofthe

numera-torfunctionn(s)inEq.(8),iii)thevalueofsR intheleft-hand-cut

model,i v)thevalueofteffofthetotalmomentumtransfered,and v) the addition of the

ρπ

channel to study coupled-channel ef-fects.

InordertodeterminesR,we scanthemodelwithvarious

val-ues of sR, ranging from 0.1 to 10.0 GeV2, and find that values

near sR

=

1

.

5 GeV2 give a minimum in

χ

2. This choice is also

justified by phenomenological studies where the finite range of strong interactions is ofthe order of 1 GeV. The fit withCDD only, shown in Fig. 2(a), for sR

=

1

.

5 GeV2 and np

=

6 (with a

total of 9 parameters), captures neither the dip at 1

.

5 GeV nor the bump at 1

.

7 GeV. In contrast, the fit with two CDD poles (11parameters),showninFig. 2(b),capturesbothfeatures,giving a

χ

2

/

d.o.f.

=

86

.

17

/(

56

11

)

=

1

.

91. The

χ

2

/

d.o.f. issomewhat large, dueto thesmall statisticaluncertainties ofthe data. How-ever, the residuals do not show anysystematic deviation, which supports the quality of the fit (see residuals normalized bin-by-bin to the corresponding uncertainty in Fig. 2). The parameters corresponding to the best fit with two CDD poles are given in

Table 1.The addition ofanother CDD poledoes notimprove the fit, as a fit to the intensity only is incapable of indicating any further resonances.Specifically the residueofthe additionalpole

(6)

Fig. 2. Intensitydistributionandfitstothe JP C=2++wavefordifferentnumberofCDDpoles,(a)usingonlyCDDand(b)usingCDDandtheCDDpoleats=c3.Red

linesarefitresultswithI(s)givenbyEq.(1).DataistakenfromRef.[2].Theinsetshowsthea2region.Theerrorbandscorrespondtothe3σ(99.7%)confidencelevel.The lowerplotshowstheresidualsnormalizedbin-by-bintothecorrespondinguncertainty.Thedashedlinesindicatethe3σdeviations.(Forinterpretationofthecolorsinthe figure(s),thereaderisreferredtothewebversionofthisarticle.)

Table 1

Bestfitdenominatorand productionparametersforthefit withtwoCDDpoles, sR=1.5 GeV2,N=106,c0= (1.23)2,and thenumberofexpansionparameters np=6,leadingtoχ2/d.o.f.=1.91.Denominatoruncertaintiesaredeterminedfrom

abootstrapanalysisusing105randomfits.Wereportnouncertaintiesonthe pro-ductionparametersastheyarehighlycorrelated.

Denominator parameters Productionparameters [GeV−2] c0 1.5129(fixed) GeV2 a0 0.471 c1 0.532±0.006 GeV−2 a1 0.134 c2 0.253±0.007 GeV2 a2 1 .484 c3 2.38±0.02 GeV2 a3 0 .879 g 113±1 GeV4 a4 2.616 a5 −3.652 a6 1.821

turns out to be compatible with zero, leaving the other fit pa-rameters unchanged. We associate no systematic uncertainty to that.

As discussed earlier, an acceptable numerator function n(s)

shouldbe“smooth”intheresonanceregion,i.e. withoutsignificant peaksordipson thescaleofthe resonancewidths.The parame-tersciandg ofthedenominatorfunctionarerelatedtoresonance

parameters, while sR controls thedistant second-sheet

singulari-tiesduetoexchangeforces.Theexpansioninn(s),showninFig. 3

forsR

=

1

.

5 GeV2 andtwoCDDpoles,hasasingularity occurring

ats

= −

1

.

0 GeV2becauseofthedefinitionof

ω

(s)

andourchoice of

.38Forvariationsinn(s)betweennp

=

3 andnp

=

7,wefind

thatthepolepositionsarerelativelystable,whichwediscusslater inoursystematicestimates.

Thedependence onteff isexpected to affectmostly the over-all normalization. Indeed,the variation from teff

= −

1

.

0 GeV2 to

0

.

1 GeV2 giveslessthan2% differenceforthea

2

(

1700

)

parame-ters,and

<

1

h

forthea2

(

1320

)

,andcanbeneglected compared totheotheruncertainties.

38 Notethattheproductiontermisnotwellconstrainedbelows1 GeV2,asthe phase-spaceandbarrierfactorshighlysuppressthenear-thresholdbehavior.The singularityats= −1 GeV2,however,persistsforeachn

psolution.

Fig. 3. Amplitudenumeratorfunction|np

j ajTj(ω(s))|fordifferentvaluesofnp.

Theabsolutevalueistakenasthereisaphaseambiguitybecausewefitonlythe intensity∼ |a(s)|2.Notethateachcurveisanindependentfitforaspecificnumber oftermsnp.Thecurvesfornp=4,5,and6allcoincideintheresonanceregion,as

shownintheinset. 4. Results

Thisanalysisallows ustoextract the

ηπ

ηπ

elastic ampli-tudeinthe D-wave.Byconstruction,theamplitudehasazeroat

s

=

c3. Fig. 4 shows the real and imaginary parts of

ˆ

f

(s)

, with the3

σ

errorbandsestimatedbythebootstrapanalysis.Resonance poles areextractedby analyticallycontinuingthedenominator of the

ηπ

elasticamplitude tothesecond Riemannsheet (II)across theunitaritycutusingDII

(s)

=

D

(s)

+

2i

ρ

(s)N

(s)

.Byconstruction, nofirst-sheetpolesare present.Wefindthreesecond-sheetpoles in the energy range of

(

+

)

s

3 GeV, two of which canbeidentifiedasresonances,asshowninFig. 5fornp

=

6 and sR

= {

1

.

0

,

1

.

5

,

2

.

0

,

2

.

5

}

GeV2.

The mass and width are defined as m

=

Re

sp and



=

2Im

sp, respectively, where sp is the pole position in the s

plane. Two ofthe poles found can be identified as thea2

(

1320

)

anda2

(

1700

)

resonances,respectively[12].The lighterofthetwo

(7)

Fig. 4. ThereducedηπηπpartialamplitudeintheD-wave, ˆf(s)=N(s)/D(s). Shownarethereal(red)andimaginary(blue)partsasafunctionoftheηπ invari-antmasswith3σ errorband(whichisvisibleinthe[1.5,2.0]GeV regiononly). Thenodeintheimaginarypartat1.7 GeVisduetothehighcorrelationbetween therealandimaginaryparts.

corresponds to the a2

(

1320

)

. For sR

=

1

.

5 GeV2, the pole has

mass and width m

= (

1307

±

1

)

MeV and



= (

112

±

1

)

MeV, respectively. The nominal value is the best-fit pole position, and theuncertaintyisthestatisticaldeviationdeterminedinthe boot-strapanalysis.ValuesofsR between1.0and2.5 GeV2leadtopole

deviationsofatmost

m

=

2 MeVand



=

3 MeV.The heav-ierpole corresponds to the excited a2

(

1700

)

. For sR

=

1

.

5 GeV2,

the resonance has mass and width m

= (

1720

±

10

)

MeV and



= (

280

±

10

)

MeV,respectively.Themaximal deviationsforthe different sR values are

m

=

40 MeV and



=

60 MeV. The a2

(

1320

)

and a2

(

1700

)

poles (see Fig. 5) are found to be sta-bleundervariationsof sR,whichmodulatesthe left-handcut.As

expected, there is a third pole that dependsstrongly on sR and

reflectsthesingularityin N(s)modeledasapole.Itsmassranges from1

.

4 to3

.

3 GeV,anditswidthvariesbetween1

.

3 and1

.

8 GeV assR changes from1 GeV2 to2

.

5 GeV2.In thelimit g

0,this

pole movesto

sR as expected, while the other two migrateto

therealaxisabovethreshold[44].

Changingthenumberofexpansion termsbetweennp

=

3 and np

=

7 does not in any significant way affect the a2

(

1320

)

or a2

(

1700

)

pole positions. The maximal deviations are

m(a2

)

=

5 MeV,

(a

2

)

=

7 MeV and

m(a2

)

=

40 MeV,

(a

2

)

=

30 MeVbetweenthreeandseventermsinthen(s)expansion.

Inordertodemonstratethatcoupled-channeleffectsdonot in-fluencethepolepositions,weconsideranextensionofthemodel toincludea second channelalso measuredby COMPASS,

ρπ

[3], andsimultaneouslyfitthe

ηπ

[2]andthe

ρπ

[3]finalstates.The branchingratioofthe a2

(

1320

)

is saturatedatthelevelof

85%

bythe

ηπ

and3

π

channels[12],withthe

ρπ

S-wavehavingthe dominant contribution.For simplicitywe consider the

ρ

to be a stableparticlewithmass 775MeV,thefinite widthofthe

ρ

be-ing relevant only for

s

<

1 GeV. Theamplitude isthen a

ˆ

j

(s)

=



k[D

(s)

]−jk1

(s)

nk

(s)

. The denominator is now a 2

×

2 matrix,

whose diagonal elements are of the form givenby Eq. (4),with the appropriate phase space for each channel. The off-diagonal term is parameterized as a single real constant. The production elements nk

(s)

are asinEq.(8),withindependentcoefficientsfor

each channel. We alsoperformeda K -matrixcoupled-channel fit and obtained results very similar to our main modelusing CDD poles, ascan be seenin Fig. 6.The coupled-channel effects pro-duce acompetitionbetweentheparameters inthenumeratorsto fitthebumpat1.6GeVin

ηπ

andthedipat1

.

8 GeVin

ρπ

atthe same time. The

ρπ

fitprefers notto have anyexcited a2

(

1700

)

, whichconverselyisevidentinthe

ηπ

data.Therefore,the uncer-tainty in the a2

(

1700

)

poleposition increases, asit is practically unconstrainedby the

ρπ

data.Note,however,thatinRef.[3]the dipat

s

1

.

8 GeV inthe

ρπ

dataist-dependent,whileweuse thet-integratedintensity,soitmaybeexpectedthattheeffectsof thea2 aresuppressedinourcombinedfit.

We find the following deviations in the pole positions rela-tive tothe single-channelfit:

m(a

2

)

=

2 MeV,

(a

2

)

=

3 MeV,

m(a

2

)

=

20 MeV and

(a

2

)

=

10 MeV. These deviations are rathersmallandwequotethemwithin oursystematic uncertain-ties.

5. Summaryandoutlook

Wedescribethe2++ waveof

π

p

ηπ

p reactionina single-channel analysisemphasizingunitarityandanalyticityofthe am-plitude. These fundamental S-matrixprinciples significantly con-strainthepossibleformoftheamplitudemakingtheanalysismore stable than standard ones that use sums of Breit–Wigner reso-nanceswithphenomenologicalbackgroundterms.

The robustness of the model allows us to reliably reproduce the data,and toextract pole positions byanalytical continuation tothecomplexs-plane. Weusethesingle-energypartialwavesin Ref. [2]toextract thepole positions.We findtwopoles that can be identified as thea2

(

1320

)

andthe a2

(

1700

)

resonances,with poleparameters

m

(

a2

)

= (

1307

±

1

±

6)MeV, m

(

a2

)

= (

1720

±

10

±

60)MeV,

(

a2

)

= (

112

±

1

±

8)MeV,

(

a2

)

= (

280

±

10

±

70)MeV, wherethe firstuncertaintyisstatistical(fromthebootstrap anal-ysis)andthesecondonesystematic.Thesystematicuncertaintyis obtainedaddinginquadraturethe differentsystematiceffects re-latedtothefitmodel,i.e. thedependenceonthenumberofterms

Fig. 5. Locationofsecond-sheetpolepositionswithtwoCDDpoles,np=6,andwithsRvariedfrom1.0 GeV2to2.5 GeV2.Polesareshownwith2σ(95.5%)confidencelevel

(8)

Fig. 6. Coupled-channelD-wavefit,(a) usingamodelbasedonCDDpoles,(b)usingthestandard K -matrixparameterization.Bothparameterizationsgivepolepositions consistentwiththesingle-channelanalysis.Theηπ dataistakenfromRef.[2]andtheρπdatafromRef.[3].

in the expansion of the numerator function n(s), on sR, on teff (negligible),andonthecoupled-channeleffects.Thea2 resultsare consistentwiththepreviousa2

(

1320

)

resultsfoundinRef.[2].

The third pole found tends to

sR in the limit of vanishing

coupling,indicatingthatthispolearisesfromthetreatmentofthe exchangeforces,andnotfromtheCDDpolesthataccount forthe resonances.

Inthefuturethisanalysiswillbeextendedtoalsoincludethe

η



π

channel[45],wherealargeexoticP -waveisobserved[2].

Additionalmaterialisavailableonlineassupplementalmaterial andthroughaninteractivewebsite[46,47].

Acknowledgements

WeacknowledgetheLillyEndowment,Inc.,throughitssupport fortheIndiana University PervasiveTechnologyInstitute, andthe IndianaMETACytInitiative.

Appendix A. Supplementarymaterial

Supplementarymaterialrelatedtothisarticlecanbefound on-lineathttps://doi.org/10.1016/j.physletb.2018.01.017.

References

[1] P.Abbon,et al.,The COMPASS setupfor physicswith hadron beams,Nucl. Instrum. Methods A779 (2015) 69–115, https://doi.org/10.1016/j.nima.2015. 01.035,arXiv:1410.1797.

[2] C.Adolph,etal.,Oddandevenpartialwavesofηπ− andηπ− inπp

η()πp at 191 GeV/c, Phys. Lett. B 740 (2015) 303–311, https://doi.org/

10.1016/j.physletb.2014.11.058,arXiv:1408.4286.

[3] C. Adolph, et al., Resonance production and π π S-wave in π−+p

πππ++precoilat190 GeV/c,Phys.Rev.D95 (3)(2017)032004,https://

doi.org/10.1103/PhysRevD.95.032004,arXiv:1509.00992.

[4] A.A.AlvesJr.,etal.,TheLHCbdetectorattheLHC,J.Instrum.3(2008)S08005, https://doi.org/10.1088/1748-0221/3/08/S08005.

[5] D.I.Glazier,HadronspectroscopywithCLASandCLAS12,ActaPhys.Pol.Supp. 8 (2)(2015)503,https://doi.org/10.5506/APhysPolBSupp.8.503.

[6] H.AlGhoul,etal., Firstresultsfromthe GlueXexperiment,AIPConf.Proc. 1735(2016)020001,https://doi.org/10.1063/1.4949369,arXiv:1512.03699. [7] H.AlGhoul,etal.,Measurementofthebeamasymmetry forπ0andη

pho-toproductionontheprotonat=9 GeV,Phys.Rev.C95 (4)(2017)042201,

https://doi.org/10.1103/PhysRevC.95.042201,arXiv:1701.08123.

[8] S.Fang,HadronspectroscopyatBESIII,Nucl.Part.Phys.Proc.273–275(2016) 1949–1954,https://doi.org/10.1016/j.nuclphysbps.2015.09.315.

[9] A.Bevan,etal.,ThephysicsoftheB factories,Eur.Phys.J.C74(2014)3026, https://doi.org/10.1140/epjc/s10052-014-3026-9,arXiv:1406.6311.

[10]B.Ketzer,Hybridmesons,PoSQNP2012(2012)025,arXiv:1208.5125.

[11] C.A. Meyer,E.S. Swanson,Hybrid mesons,Prog.Part. Nucl.Phys. 82(2015) 21–58,https://doi.org/10.1016/j.ppnp.2015.03.001,arXiv:1502.07276. [12] C.Patrignani,etal.,Reviewofparticlephysics, Chin.Phys.C40 (10)(2016)

100001,https://doi.org/10.1088/1674-1137/40/10/100001.

[13] M.Mikhasenko,A.Jackura, B.Ketzer,A.Szczepaniak,Unitarity approachto themass-dependentfitof3πresonanceproductiondatafromtheCOMPASS experiment,EPJWebConf.137(2017)05017,https://doi.org/10.1051/epjconf/ 201713705017.

[14] A. Jackura, M. Mikhasenko,A. Szczepaniak,Amplitude analysis ofresonant production inthree pions,EPJWebConf. 130(2016)05008,https://doi.org/ 10.1051/epjconf/201613005008,arXiv:1610.04567.

[15] J. Nys, V. Mathieu, C. Fernández-Ramírez, A.N. Hiller Blin, A. Jackura, M. Mikhasenko,A.Pilloni,A.P.Szczepaniak,G.Fox,J. Ryckebusch,Finite-energy sumrulesineta photoproductionoffanucleon, Phys.Rev.D95 (3)(2017) 034014,https://doi.org/10.1103/PhysRevD.95.034014,arXiv:1611.04658. [16]W.H.Press,S.A.Teukolsky,W.T.Vetterling,B.P.Flannery,NumericalRecipesin

FORTRAN:TheArtofScientificComputing,CambridgeUniversityPress,1992. [17] C. Fernández-Ramírez,I.V.Danilkin, D.M. Manley, V.Mathieu,A.P.

Szczepa-niak,Coupled-channelmodelforK N scattering¯ intheresonantregion,Phys. Rev. D 93 (3) (2016) 034029, https://doi.org/10.1103/PhysRevD.93.034029, arXiv:1510.07065.

[18] A.N. HillerBlin, C. Fernández-Ramírez,A. Jackura, V.Mathieu,V.I. Mokeev, A. Pilloni,A.P.Szczepaniak,StudyingthePc(4450)resonancein J/ψ

photopro-ductionoffprotons,Phys.Rev.D94 (3)(2016)034002,https://doi.org/10.1103/ PhysRevD.94.034002,arXiv:1606.08912.

[19] J.Landay,M.Döring,C.Fernández-Ramírez,B.Hu,R.Molina,Modelselection forpionphotoproduction,Phys.Rev.C95 (1)(2017)015203,https://doi.org/ 10.1103/PhysRevC.95.015203,arXiv:1610.07547.

[20] A.Pilloni,C.Fernández-Ramírez,A.Jackura,V.Mathieu,M.Mikhasenko,J.Nys, A.P. Szczepaniak, Amplitudeanalysisand the natureofthe Zc(3900),Phys.

Lett. B 772 (2017) 200–209, https://doi.org/10.1016/j.physletb.2017.06.030, arXiv:1612.06490.

[21] P.Hoyer,T.L.Trueman,Unitarityandcrossinginreggeon-particleamplitudes, Phys.Rev.D10(1974)921,https://doi.org/10.1103/PhysRevD.10.921. [22] K.Gottfried,J.D.Jackson,Ontheconnectionbetweenproductionmechanism

anddecayofresonancesathigh-energies,NuovoCimento33(1964)309–330, https://doi.org/10.1007/BF02750195.

[23] S.U.Chung,T.L.Trueman,Positivityconditionsonthespindensitymatrix:a simple parametrization,Phys. Rev.D11 (1975)633,https://doi.org/10.1103/ PhysRevD.11.633.

[24] C.Bromberg,etal.,StudyofA2productioninthereactionπpK0Kp at

50 GeV/c,100 GeV/c,175 GeV/c,Phys.Rev.D27(1983)1–11,https://doi.org/ 10.1103/PhysRevD.27.1.

[25] A.Kirk,etal.,NeweffectsobservedincentralproductionbytheWA102 exper-imentattheCERNomegaspectrometer,in:28thInternationalSymposiumon MultiparticleDynamics(ISMD98)Delphi,Greece,September6–11,1998,1998, arXiv:hep-ph/9810221, URL http://inspirehep.net/record/477305/files/arXiv: hep-ph_9810221.pdf.

[26] D. Barberis, et al., Experimental evidence for a vector like behavior of Pomeronexchange,Phys.Lett.B467(1999)165–170,https://doi.org/10.1016/ S0370-2693(99)01186-7,arXiv:hep-ex/9909013.

[27] D.Barberis,etal.,Astudyofthecentrallyproducedφφsysteminpp interac-tionsat450 GeV/c,Phys.Lett.B432(1998)436–442,https://doi.org/10.1016/ S0370-2693(98)00661-3,arXiv:hep-ex/9805018.

(9)

[28] D. Barberis,et al., Astudy ofpseudoscalarstates producedcentrally inpp interactionsat450 GeV/c,Phys.Lett.B427(1998)398–402,https://doi.org/ 10.1016/S0370-2693(98)00403-1,arXiv:hep-ex/9803029.

[29] F.E.Close,A.Kirk, Aglueball–qq filter¯ incentralhadron production,Phys. Lett. B397(1997) 333–338,https://doi.org/10.1016/S0370-2693(97)00222-0, arXiv:hep-ph/9701222.

[30] F.E.Close,G.A. Schuler, Centralproduction ofmesons:exotic states versus Pomeronstructure,Phys.Lett.B458(1999)127–136,https://doi.org/10.1016/ S0370-2693(99)00450-5,arXiv:hep-ph/9902243.

[31] T. Arens,O. Nachtmann,M. Diehl,P.V.Landshoff, Sometests for the helic-itystructureofthePomeroninep collisions,Z.Phys.C74(1997)651–669, https://doi.org/10.1007/s002880050430,arXiv:hep-ph/9605376.

[32] P.Lebiedowicz,O.Nachtmann,A.Szczurek,Exclusivecentraldiffractive produc-tionofscalarandpseudoscalarmesonstensorialvs.vectorialPomeron,Ann. Phys. 344 (2014) 301–339, https://doi.org/10.1016/j.aop.2014.02.021, arXiv: 1309.3913.

[33] P.Lebiedowicz,O.Nachtmann,A.Szczurek,Centralexclusivediffractive pro-ductionof π+π− continuum, scalar and tensor resonancesin pp and p¯p scatteringwithintensorPomeronapproach,Phys.Rev.D93 (5)(2016)054015, https://doi.org/10.1103/PhysRevD.93.054015,arXiv:1601.04537.

[34] T.Schlüter,TheπηandπηSystemsinExclusive190 GeVπp Reactions atCOMPASS(CERN),Ph.D.thesis,MunichU.,2012,URLhttps://inspirehep.net/ record/1296922/files/2012_phd_schlueter.pdf.

[35] T. Shimada, A.D. Martin, A.C. Irving, Double Regge exchange phenomenol-ogy, Nucl. Phys. B 142 (1978) 344–364, https://doi.org/10.1016/0550-3213(78)90209-2.

[36] I.V.Danilkin,C.Fernández-Ramírez,P.Guo,V.Mathieu,D.Schott,M.Shi,A.P. Szczepaniak,Dispersiveanalysisofω/φ→3π,π γ∗,Phys.Rev.D91 (9)(2015) 094029,https://doi.org/10.1103/PhysRevD.91.094029,arXiv:1409.7708.

[37] V.N. Gribov, Strong Interactions of Hadrons at High Energies, Gribov Lec-tures onTheoretical Physics,Cambridge UniversityPress,2012, URL http:// cambridge.org/catalogue/catalogue.asp?isbn=9780521856096.

[38] L.Castillejo,R.H.Dalitz,F.J.Dyson,Low’sscatteringequationforthecharged and neutralscalar theories,Phys. Rev.101(1956) 453–458,https://doi.org/ 10.1103/PhysRev.101.453.

[39] S.C.Frautschi,ReggePolesandS-MatrixTheory,FrontiersinPhysics,W.A. Ben-jamin,1963,URLhttps://books.google.com/books?id=2eBEAAAAIAAJ. [40] J.T.Londergan, J.Nebreda, J.R. Pelaez,A.Szczepaniak,Identificationof

non-ordinary mesonsfrom the dispersive connection between their poles and theirRegge trajectories:the f0(500)resonance,Phys.Lett.B729(2014)9–14, https://doi.org/10.1016/j.physletb.2013.12.061,arXiv:1311.7552.

[41] S.Godfrey,N.Isgur,Mesonsinarelativizedquarkmodelwith chromodynam-ics,Phys.Rev.D32(1985)189–231,https://doi.org/10.1103/PhysRevD.32.189. [42] J.J. Dudek, R.G. Edwards, B. Joo, M.J. Peardon, D.G. Richards, C.E. Thomas,

IsoscalarmesonspectroscopyfromlatticeQCD,Phys.Rev.D83(2011)111502, https://doi.org/10.1103/PhysRevD.83.111502,arXiv:1102.4299.

[43] I.J.R.Aitchison,K -matrixformalismforoverlappingresonances,Nucl.Phys.A 189(1972)417–423,https://doi.org/10.1016/0375-9474(72)90305-3.

[44] SeeSupplementalmaterial.Alsoonhttp://www.indiana.edu/~jpac/etapi-compass. php.

[45] JPACCollaboration,inpreparation.

[46] V. Mathieu,Thejointphysics analysiscenterwebsite, AIPConf.Proc. 1735 (2016) 070004, https://doi.org/10.1063/1.4949452, http://www.indiana.edu/ ~jpac/,arXiv:1601.01751.

Figura

Fig. 1. (a) Reaction diagram of π − p → ηπ − p via Pomeron exchange. (b) Unitarity diagram: the π P → ηπ amplitude is expanded in partial waves in the s-channel of the ηπ system, a J M ( s ) , with J = L and t → teff
Fig. 2. Intensity distribution and fits to the J P C = 2 ++ wave for different number of CDD poles, (a) using only CDD ∞ and (b) using CDD ∞ and the CDD pole at s = c3
Fig. 5. Location of second-sheet pole positions with two CDD poles, n p = 6, and with s R varied from 1
Fig. 6. Coupled-channel D-wave fit, (a) using a model based on CDD poles, (b) using the standard K -matrix parameterization

Riferimenti

Documenti correlati

Here, to make up for the relative sparseness of weather and hydrological data, or malfunctioning at the highest altitudes, we complemented ground data using series of remote sensing

This result strongly suggests that we are observing discrete shifts from part-time to full-time work, as conjectured by Zabalza et al 1980 and Baker and Benjamin 1999, rather

In this case a good algorithm, given the badly illuminated images, would output images with a low distance from the reference image.. To summarize, the main original contributions

We devised a strategy for the simultaneous estimate of the at- tributes by means of the coherence analysis, solving a global non-linear minimization problem for each coordinate (x 0

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Firenze, viale Morgagni 67/A, 50134 Firenze, Italy.. We denote by σ(n) the sum of the divisors of

The geometric consequence is a lower bound of the index by the first Betti number of the hypersurface which implies that, if the first Betti number is large, then the immersion is

We will relate the transmission matrix introduced earlier for conductance and shot noise to a new concept: the Green’s function of the system.. The Green’s functions represent the