• Non ci sono risultati.

Pedigree reconstruction of wine and table grape crossbreeds created in Italy by Giovanni Dalmasso

N/A
N/A
Protected

Academic year: 2021

Condividi "Pedigree reconstruction of wine and table grape crossbreeds created in Italy by Giovanni Dalmasso"

Copied!
6
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Scientia

Horticulturae

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s c i h o r t i

Pedigree

reconstruction

of

wine

and

table

grape

crossbreeds

created

in

Italy

by

Giovanni

Dalmasso

Stefano

Raimondi

a,∗,1

,

Antonio

Carlomagno

b,1

,

Paola

Ruffa

a

,

Sara

Oglietti

b

,

Vittorino

Novello

b

,

Anna

Schneider

a

aNationalResearchCouncilofItaly(CNR),InstituteforSustainablePlantProtection(IPSP)UnitGrugliasco,LargoP.Braccini2,10095Grugliasco,TO,Italy bDepartmentofAgriculture,ForestandFoodSciences(DiSAFA),UniversityofTurin,LargoP.Braccini2,10095Grugliasco,TO,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27October2016

Receivedinrevisedform24January2017 Accepted28February2017 Keywords: Microsatellites VitisviniferaL. Genotyping Parentageanalysis SSR

a

b

s

t

r

a

c

t

Startingin1931,GiovanniDalmassocarriedoutintensegrapevinebreedingactivity,creatingmorethan

100wineandtablegrapecrosses.HesoughttocontributetotheeconomicdevelopmentofItalian

viticulture,butalsoleftconsiderablegeneticmaterialforfurtherbreedingprograms.

Owingtothecurrentstronginterestinthegeneticimprovementofgrapevines,thepedigreesof

vari-etiesreleasedbybreedersmustbedetermined.Theaimofthisstudywastogeneticallycharacterizeand

verifythedisclosedpedigreesofDalmasso’scrosses(IDs).Nuclearmicrosatelliteprofiles(n-SSR)of42

IDaccessionsand22genotypesdeclaredasparentswereobtainedat22loci.Bycross-validationofallele

size,declaredparentageswereverified.Whenoneorbothdisclosedparentswerefoundtobe

incor-rectduetoinconsistentgeneticdata,putativeparent(s)weresoughtviaSSRprofilecomparisonwithin

thegrapevinemoleculardatabaseofCNR-InstituteforSustainablePlantProtection,andtheprobability

estimatedviaIDENTITYv.4.0software.

Throughmicrosatelliteanalysis,threeduplicatedgenotypeswerediscoveredandtwentyIDparentages

outof39wereconfirmed.In13IDs,oneparentwasincorrect,in2IDs,bothparentswereinconsistent

withmicrosatelliteprofiles,andin4IDsthepedigreecouldnotbeverifiedsincethepollendonorwas

notavailable.Apartfrominvalidatedcrosseslikelyduetopollencontamination,5accessionswere

mis-labelled,eitherwhenbothparentswereinvalidatedorwhentwospecimensofthesameoffspringwere

differentlylabelled.Verificationofbreeder’sdeclaredparentagesrevealed43%ofinvalidatedpedigrees

withintheinvestigatedwineandtablecross-breeds.Theresultsprovideadditionalinsightintograpevine

availablediversity,andmayaidthedevelopmentoffurtherbreedingprograms.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

VegetativepropagationofVitisspp.varietieshasbeenusedfor centuries,preservingthecharactersofthefounderplants.Except perhapsintheearlystagesofdomestication,orincasesofseed transportationbymigratingpopulations,reproductionfromseed hastendedtobeavoided,becauseoftheuncertaintraitsexhibited by descendants. The grapevine is a highly heterozygous cross-pollinatingspecies(Thisetal.,2006).However,cross-breedingis veryadvantageousfordevelopingvarietieswithfavourabletraits, especiallywhenpollinationcontrolandoffspring’sstrictselection areapplied.Asfarasis known,thefirstsuccessesingrapevine

∗ Correspondingauthor.

E-mailaddress:[email protected](S.Raimondi).

1 Theseauthorscontributedequallytotheworkandsharefirstauthorship.

genetic improvement by deliberate crossing date to the early nineteenthcentury,whenLouisBouschetobtainedthetwo flesh-colouredvarieties‘PetitBouschet’and‘GrosBouschet’(laterused todevelopotherflesh-colouredwinegrapevarieties)(Alabouvette, 1936),andwhenotherbreeders,suchasFosterintheUKandVibert inFrance,releasedimprovedtablegrapecultivars.

After these pioneering successes, intense breeding activity, startingfromthemid-nineteenthcentury,waschieflydirectedat obtaininghybrids(mainlyfromNorthAmericanspeciesandVitis viniferaL.)resistanttofungaldiseasesandphylloxera.Apartfrom breeding for resistance, during thelast 150 years many Italian geneticists(Bruni,Cosmo,Dalmasso,Manzoni,Pirovano,Prosperi, Rigotti,Terzi, andothers)aswellasthosefromothercountries (Branas,Gargiulo,Mathiasz,Müller,Olmo,Thomson,Truel,Vidal, toname a few)concentrated theircross-breedingprograms on VitisviniferaL.,aimingtoobtainnewtablegrapeswith

interest-http://dx.doi.org/10.1016/j.scienta.2017.02.044 0304-4238/©2017ElsevierB.V.Allrightsreserved.

(2)

126 S.Raimondietal./ScientiaHorticulturae219(2017)125–130 ingfeatures,andnewwinegrapecultivarsfromwhichtoproduce

appealingmarketablewines.

Amongthe scientists mentioned, GiovanniDalmasso started a cross-breedingprogram onwine and tablegrapesin 1931at theConeglianoViticultureExperimentalStation(Veneto, North-EasternItaly).TheprogramwascontinuedattheUniversityofTurin (Piedmont,North-WesternItaly). Theprogram concerningtable grapesaimed:a)toobtainimprovedgenotypesfromtraditional varieties;b)tomergethegrapequalitycharacteristicsfromtwoor moregenotypes(berryshape,colorandflavour)withresilienceand adaptability,c)tocreatenewgenotypessuitedalsotothecooler climateof NorthernItaly. Thewine grapeprogram was chiefly concentratedondevelopingnewcrossbreedscombiningpositive technologicalfeatures.AccordingtoProf.Dalmasso’soriginalnotes, duringtwentyyearsofactivitymorethan100wineandtablegrape crosseswereselected,leavingalargebodyofgrapediversityand considerablegeneticmaterialforfurtherbreeding.

Amongthesenewcultivars,14winegrapevarietiesand6table grapegenotypes are includedin theItalian NationalGrapevine VarietyCatalogue.Someofthem,likethewinegrape‘Albarossa’ producingremarkablewines,currentlyenjoythefavourof grow-ersandaregreatlyappreciatedbythemarket.Othershavenever emergedfromcollectionsorexperimentaltrials.

Amongthemostcommonlyusedmolecularmarkersforgenetic analyses in grapevines, microsatellite alleles are inherited in Mendelianco-dominantsegregation,confirmingtheirsuitability forgenomemappingandtoinvestigatehereditabilityand culti-varparentage (Thomas etal.,1994; Sefcetal., 2009).Theycan thusbeusedtoconfirmorinvalidatebreeder’sinformationonthe pedigreeofabreed.Beforetheuseofmolecularmarkers,the puta-tiveparentageofnewgrapecultivarswasretrievedfrombreeders’ notes,whichcouldbeincompleteor inaccurate.Severalstudies have usedmicrosatellite markers to clarifythe parentage rela-tionshipsbetweengrape cultivars, eithertraditional or modern (Thomasetal.,1994;Ciprianietal.,2010;Lacombeetal.,2013).In grape-breedingprograms,thefemaleparentiscertain,whilethe putativepollendonormightbemistakenbecauseof contamina-tionduringpollination.Thisopensthepossibilityofamaleparent notcorrespondingtothereportedpedigree(Dettweileretal.,2000; Ibà ˜nezetal.,2009;Vargasetal.,2009;Lacombeetal.,2013).Insome cases,duetomistakenvarietalidentity,thefemaleparentmayalso beincorrect(Akkaketal.,2007).In connectionwithDalmasso’s crossesinvolving‘Nebbiolo’asparent,TorelloMarinonietal.(2009)

discoveredthat,insteadofthetrue‘Nebbiolo’,Dalmasso acciden-tallyused‘NebbiolodiDronero’,asynonymfor‘Chatus’thatdiffers considerablyfrom‘Nebbiolo’.

Becauseof the aboveerrors, this study aimedto clarifythe pedigreesofbreedsobtainedbyProf.Dalmassothatarestill main-tainedincollectionsorcommerciallyexploited.Thesecondaryaim wastogeneticallycharacterizethesematerials,offeringreference geneticfingerprintsfor theuseofbreeders,grape growers,and thewineindustry.Duetotheeconomicrelevanceoftablegrape breeding,thereisworldwideinterestinknowingvarieties’correct pedigrees,becausethis informationhelpsbreederstoplantheir cross-breedingprograms.

Astothegrapevarietiesdiscussed,manyofthem,especially thetablegrapes,aresuitableforuseinfurtherbreedingprograms, becausetheyexhibitimprovedtraitsincomparisontotheir par-ents(Carlomagnoetal.,2014).Atthesametime,newvarietiesare morelikelytobeacceptedanddevelopedinthemoredynamictable grapemarket.Inrecentyears,muchresearchactivityisongoing attheDepartmentofAgriculture,ForestandFoodSciences (Uni-versityofTurin,Italy),aimedtocharacterizetheagronomicand qualitativebehaviourofDalmasso’stablegrapecrossesinvarious environments,intheattempttoencouragetheiruseatthelocal andnationallevel.

Apartfromtheirgeneticvalueasasourceofdiversity,newwine grapecultivarscouldplay aroleinthemoretraditionalistwine market,throughfavourablefeaturessuchasadaptabilitytoclimate change,orbyofferinganoriginal,appealingflavour.

2. Materialsandmethods 2.1. Plantmaterial

TheSSRprofilesof42Dalmassointerbreeds(IDs)andof22 cul-tivarsdeclaredasparentswereobtained.SamplesfrombothIDs anddeclaredparentsweretakenfromfieldcollections.Inonecase (‘Pirovano62’)itwasimpossibletoretrievesamplesofthedesired accession,becauseitwaslackinginknowncollections.

The varieties (IDs) under investigation were described in terms of vine morphological features during the AGERProject, 2010–2104, “An Italian Vitis database with multidisciplinary approach,forexploitationandvalorisationoftheregional geno-types”, employing themajor OIV descriptorsselected fromthe EuropeanVitisDatabase(http://www.eu-vitis.de),andcompared withpublishedreferences.

Mostoftheplantmaterialwastakenfromtwocollections main-tainedbytheUniversityofTurin,locatedatChieri(TurinProvince; plantedin1975)andatAlba(CuneoProvince;plantedin1984); 22accessionswerefromtheCNR-IPSPcollectionlocatedat Grin-zaneCavour(CuneoProvince;plantedin1992);twosampleswere kindlyprovidedbyCREA-VIT(Conegliano,Italy).Aftercheckingthe uniformityofallthevinesbymorphology,foreachaccessionone vinewaschosen,fromwhichtotakea sampleofyoungleaves, andthevinewaslabelledforfurthercontrols.Samplesconsisting of3–4youngleaveswerethenstoredat−80◦Cuntilextraction;

DNAextractionwasdonebytheThomasandScottprotocol(1993), slightly modified. Table 1 lists the 42 IDs analysed with their declaredparents.

2.2. SSRanalyses

ExtractedDNA sampleswereamplifiedbyPolymeraseChain Reaction(PCR)usingprimerslabelledwithfourdifferent fluores-centdyes(Fam,Ned,Pet,Hex).ThePCRreactionswererunina BIO-RADT100thermalcycler,withthefollowingthermalprofile: onecycleat95◦Cfor3min,followedby28cyclesat95◦Cfor30s each,52◦Cfor45s,72◦Cfor90s,andafinalstepof30minat72◦C. Amplificationproductswereanalysedona3130Genetic Ana-lyzer capillary sequencer (Applied Biosystems, Foster City, CA, USA).TheinternalGeneScansizestandard500LIZ(Applied Biosys-tems)wasincludedineachrun.Allele sizesintheoutputwere determinedusing GeneMapperv.4.0 software(Applied Biosys-tems),andallelesweredesignatedbytheirsizeinbasepairs(bp). Withregardtothemarkersused,atthefirststep,allIDsunder studyandtheirputativeparentswereanalysedbythe9SSR mark-ersselectedbytheinternationalscientificcommunityforcommon use(Thisetal.,2004;Grapegen06:http://www1.montpellier.inra.

fr/grapegen06/technical/index.html): VVS2 (Thomas and Scott,

1993),VvMD5,VvMD7(Bowersetal.,1996),VvMD25,VvMD27, VvMD28,VvMD32(Bowersetal.,1999),VrZag62andVrZag79(Sefc etal.,1999).

Declaredparentageswereverifiedbycross-validationofallele size.Whenoneorbothdisclosedparentswerefoundtobe incor-rect,duetoinconsistentgeneticdata,theputativeparent(s)were soughtviaSSRprofilecomparisonwithinthegrapevinemolecular databaseofCNR-InstituteforSustainablePlantProtection (CNR-IPSP),whichcontains850uniquegenotypesofEuropeancultivars (unpublished).Atthesecondstage,allinvestigatedIDs,their par-entsvalidatedbythefirst9markersused,andtheputativeparents

(3)

Table1

The42investigatedcultivarsissuedfromDalmasso’scrosses.

Cultivarcode Cultivarname Utilization Berrycolora Parentsaccordingtobreedernotations(varietynamesaccordingtoVIVCb)

II-26 Vega Wine B Furmint×MalvasiaCosolo(Malvasiaistriana)

II-32 Fubiano Wine B Furmint×Trebbianotoscano

III-3 Table B Moscatod’Amburgo(MuscatHamburg)×Reginabianca(AfusAli) III-32 Table B Moscatod’Amburgo(MuscatHamburg)×Reginabianca(AfusAli) III-34 Franca Table N Moscatod’Amburgo(MuscatHamburg)×Reginabianca(AfusAli)

IV-6 Table N Chasselasrosa(Chasselasrose)×PerladiCsaba(CsabaGyoengye)

IV-28 Cornarea Wine N Barbera×Nebbiolo

IV-31 Soperga Wine N Nebbiolo×Barbera

V-1 Table N Chasselasrosa(Chasselasrose)×PerladiCsaba(CsabaGyoengye)

VI-3 Emilia Table B Bicane×Reginabianca(Afusali)

VI-6 Table B Bicane×Reginabianca(Afusali)

VI-9 Table B Bicane×Reginabianca(Afusali)

VI-12 Table B Bicane×Reginabianca(Afusali)

VI-24 Table B Bicane×MoscatodiTerracina

VII-21 S.Martino Wine N Nebbiolo×Dolcetto

VIII-1 Table B Bicane×Moscatod’Amburgo(MuscatHamburg)

VIII-5 Bionda Table B Bicane×Moscatod’Amburgo(MuscatHamburg)

VIII-10 Table N Bicane×Moscatod’Amburgo(MuscatHamburg)

IX-2 Table B Schiavone(Schiavagrossa)×Zibibbo(MuscatofAlexandria)

X-4 Wine B Verdiso×Maddalenareale(Madeleineroyale)

X-10 Wine B Verdiso×Maddalenareale(Madeleineroyale)

X-12 Sirio Wine B Verdiso×Maddalenareale(Madeleineroyale)

XI-2 Table B Moscatod’Amburgo(MuscatHamburg)×Reginabianca(AfusAli)

XI-5 Table Rs Moscatod’Amburgo(MuscatHamburg)×Reginabianca(AfusAli)

XI-6 Table B Moscatod’Amburgo(MuscatHamburg)×Reginabianca(AfusAli)

XI-20 Table B Moscatod’Amburgo(MuscatHamburg)×Reginabianca(AfusAli)

XII-26 Wine B Furmint×Malvasiatrevigiana(Malvasiabiancalunga)

XII-30 Wine B Furmint×Trebbianotoscano

XII-37 Bussanello Wine B Rieslingitalico(Welschriesling)×Furmint

XII-40 Wine B Rieslingitalico(Welschriesling)×Rieslingrenano(Rieslingweiss) XIII-11 Covè Wine B Hàrslevelü×Malvasiatrevigiana(Malvasiabiancalunga)

XIV-4 Wine N Grignolino×Sangiovesegrosso(Sangiovese)

XIV-15 Wine N Grignolino×Sangiovesegrosso(Sangiovese)

XV-29 Nebbiera Wine N Nebbiolo×Barbera

XV-31 Albarossa Wine N Nebbiolo×Barbera

XV-34 S.Michele Wine N Nebbiolo×Barbera

XVI-8 Valentino Wine Rg Nebbiolo×Dolcetto

XVII-25 Passau Wine N Dolcetto×Nebbiolo

XVIII-3 Viola Table N Moscatod’Amburgo(MuscatHamburg)×I.P.62(Pirovano62) XVIII-12 Liana Table N Moscatod’Amburgo(MuscatHamburg)×I.P.62(Pirovano62) XVIII-21 Giovanna Table N Moscatod’Amburgo(MuscatHamburg)×I.P.62(Pirovano62) XVIII-24 Teresita Table B Moscatod’Amburgo(MuscatHamburg)×I.P.62(Pirovano62)

aB=white,Rg=red,N=black,Rs=rose.

bVitisInternationalVarietyCatalogue:http://www.vivc.de/index.php.

retrievedfromtheCNR-IPSPinternalSSRdatabase,wereanalysed byafurther13microsatelliteloci.Theseloci (belongingto var-iouslinkagegroups,differentfromthose oftheprevious9SSR) were:VvMD21,VvMD24,VvMD26(Bowersetal.,1999);VrZag64 (Sefcetal.,1999);VVIb01,VVIn73,VVIp31,VVIq52(Merdinoglu etal.,2005);VMC2h4,VMC7f2,VMC5g8,VMC1e8,andVMC3d12 (VitisMicrosatelliteConsortiummanagedbyAgrogeneSA,Moissy Cramayel,France).All19grapevinechromosomeswerecovered bythe22utilisedmarkers.Parentageconsistencywasevaluated statisticallyon290geneticprofilesobtainedat22SSRlocifrom: a)theinvestigatedcross-breeds(42accessions),b)thedeclared andputativeparents(21),andc)afurther227V.viniferacultivars. Parentageprobabilityandthemaingeneticparameterswere esti-matedviaIDENTITYv.4.0software(developedbyWagnerandSefc, 1999).IDENTITYcomputesthelikelihoodratios(bothcumulative andwithanupperconfidencelimitof95%)ontheallelefrequencies ofaproposedparentageversusotherpossibilities.PIC (Polymor-phismInformationContent)wascalculatedviaPOWERMARKER version3.25software(http://www.powermarker.net).

3. Resultsanddiscussion

TheuniqueSSRprofilesoftheinvestigatedIDsandtheir par-entsarereportedintheSupplementaryMaterial.Table2givesthe

Table2

Geneticparametersofa290-samplesetgenotypedwith22SSRloci.

LOCUS Na He Ho PI PIC VvMD5 9 0.822 0.855 0.054 0.800 VvMD7 13 0.798 0.821 0.066 0.773 VvMD25 11 0.766 0.772 0.093 0.727 VvMD27 8 0.799 0.769 0.070 0.770 VvMD28 15 0.876 0.907 0.028 0.864 VvMD32 13 0.797 0.841 0.065 0.774 VvS2 12 0.836 0.855 0.045 0.819 VrZAG62 10 0.845 0.890 0.043 0.826 VrZAG79 11 0.837 0.865 0.043 0.821 VvMD21 5 0.549 0.572 0.250 0.502 VvMD24 6 0.684 0.724 0.156 0.627 VvMD26 8 0.673 0.755 0.160 0.619 VrZAG64 15 0.839 0.879 0.045 0.820 VMC1e8 12 0.839 0.827 0.046 0.819 VMC2h4 16 0.787 0.759 0.068 0.764 VMC3d12 10 0.699 0.710 0.126 0.664 VMC5g8 8 0.710 0.762 0.127 0.667 VMC7f2 6 0.600 0.654 0.195 0.565 VVIb01 5 0.686 0.731 0.156 0.628 VVIn73 6 0.289 0.259 0.517 0.277 VVIp31 12 0.884 0.921 0.025 0.873 VVIq52 7 0.673 0.717 0.168 0.611 Cumulative 3.23×10−24 0.710 Na=numberofalleles,He=expectedheterozygosity,Ho=observedheterozygosity,

(4)

128 S.Raimondietal./ScientiaHorticulturae219(2017)125–130 maingeneticparametersofasetof290V.viniferacultivars

includ-ingthegenotypesinvestigated:numberofalleles,expected(He) andobserved(Ho)heterozygosity,probabilityofidentity(PI),and polymorphisminformationcontent(PIC).Thetotalnumberof alle-leswas218,andrangedfrom5to16foreachlocus,withanaverage of9.9;expectedheterozygosityvariedbetween28.9%and88.4%, whileobservedheterozygositywasbetween25.9%and92.1%.The probabilityoffindingdifferentgenotypeswiththesameprofileat 22SSRlociappearedtobeverylow(PI=3.23×10−24):therefore identicalgenotypes(i.e.synonyms)correspondtoidentical pro-files.Thehighdiscriminatingpoweramonggenotypesofthesetof markersusedisalsosupportedbythehighvalueofcumulativePIC (0.710).

Geneticanalysisrevealedthat‘VI-12’and‘VIII-5’(‘Bionda’)are thesamegenotype,asare‘VII-21’(‘S.Martino’)and‘VIII-10’,and ‘XII-26’and‘XII-30’.Thisfindingwasconfirmedbythe morpho-logicalcharacterization.Becauseoftheseduplicates,theunique genotypesstudiedwere39.Thethreecasesofmistakenlabelling couldhaveoccurredeitherduringmaterialpropagationorduring planting/duplicatingofcollections,ratherthaninseedling selec-tion.Unfortunately,thebreeder’snotesonthemorphologyofthe selectedoffspringweretooconcisetoaffordtruevariety identi-fication.Thequestionarisesaboutthecorrect labellingofthese duplicates,i.e.whether,forexample,thegenotypelabelledboth ‘VI-12’and‘VIII-5’actuallycorrespondstothetrue‘VI-12’ortothe true‘VIII-5’(‘Bionda’).Thisproblemwassolvedbycheckingthe consistencyofdeclaredparentages(Table1)withgeneticdata anal-ysis(SSRprofilesinSupplementaryMaterialsandTable3).Inthe exampleofthecontenders‘VI-12’and‘VIII-5’,duetothehigh like-lihoodratioinfavourofthecross‘Bicane’x‘Moscatod’Amburgo’, itcanbepostulatedthatthetruecrossrefersto‘VIII-5’,namely ‘Bionda’.Based onthesamereasoning, thegenotypeconsistent withbeingtheprogenyof‘Chatus’and‘Dolcetto’istheID‘VII-21’, i.e.‘S.Martino’,whilethetruedescendentof‘Furmint’and ‘Malva-siabiancalunga’is‘XII-26’(Table3),ID‘XII-30’beinginconsistent withthisparentage(SSRprofilesinSupplementaryMaterials).

For theother putativeparentages, thelikelihood ratios(LR) calculatedfor proposedparenthoods in relationtoother possi-blecombinationswereallquitehigh,and>theminimumvalue of8.39E+1for‘II-32’(‘Fubiano’)(Table3).Thisindicatesthatthe proposedparentsof‘Fubiano’areabout80timesmorelikelythan otheralternativecombinations.

Thepedigreesof20crossesof39obtainedbyProf.Dalmasso werevalidated(Table3).In13IDs,oneparent(femaleormale)was incorrect,whilefortwoIDsbothparentswereinconsistentwith microsatelliteprofiles.InfourIDsthepedigreecouldnotbeverified forbothparentsbecause,asmentionedabove,oneofthem,namely ‘Pirovano62’,wasmissing.However,moleculardataverifiedthe likelyparenthoodoftheothergenitor,‘MuscatHamburg’.

Inallthewinegrapevarietiesexamined,‘Nebbiolo’was invali-datedasparent,‘Chatus’beingthetruegenotype,enteringthecross eitherasmale orfemalepartner,ashasbeenreported(Torello

Marinonietal.,2009).Sinceone ofthemany Italian synonyms

fortheFrench‘Chatus’is‘Nebbiolo’(popular aroundthevillage ofDronero,hence‘NebbiolodiDronero’),thiscultivarmusthave beenutilisedinthecrossesinsteadofthetrue‘Nebbiolo’.Cipriani etal.(2010)indicated‘Nebbiolo’astheauthenticparentofthetwo IDs‘Cornarea’and‘Nebbiera’;however,thisdemonstratesthatthe accessionof‘Nebbiolo’theyanalysed(maintainedattheCREA-VIT ofConeglianocollectionandprobablythesameusedbyDalmasso) wasmistaken,clearlyactuallycorrespondingto‘Chatus’.

Theproposedparentages(Table1)werenotconfirmedforID ‘XIII-11’(‘Cové’)norfor‘XIV-4’,andnorwereotherpossible geni-tors(consistentwiththedescendent’sSSRprofiles)foundinthe CNR-IPSPgrape geneticdatabase.Thesetwo crosses arein fact

theresultofself-pollinationoftheplantchosenasfemaleparent Table

3 Declared and validated/invalidated parentages of the 39 unique Dalmasso’s interbreeds of wine and table grapes. Likelihood ratios of the proposed families are compared to other possibilities. Probabilities are based on allelic frequencies of 22 n -SSR loci from each genotype and (in brackets) with a 95% upper confidence threshold. X and Y: random cultivar; rel(1): close relative of Parent (1); rel(2): close relative of Parent (2). Accession code Cultivar name Declared parents (names according to VIVC) Parents resulting from genetic analyses Pedigree remarks Parent (1) Parent (2) X x Y (1) x X rel(2) x (1) (2) x X rel(1) x (2) II-26 Vega Furmint × Malvasia istriana Furmint Malvasia istriana 1.29E + 23 1.23E + 13 5.86E + 3 4.91E + 11 2.41E + 3 Validated (2.29E + 19) (1.52E + 11) (2.94E + 3) (7.47E + 9) (1.09E + 3) II-32 Fubiano Furmint × Trebbiano toscano Furmint Trebbiano toscano 3.88E + 12 7.84E + 6 2.36E + 2 8.82E + 7 1.88E + 2 Validated (8.94E + 9) (5.11E + 5) (1.04E + 2) (3.09E + 6) (8.39E + 1) III-3 Muscat Hamburg × Afus Ali Muscat Hamburg Afus Ali 2.75E + 16 8.02E + 7 6.25E + 2 3.18E + 11 2.93E + 3 Validated (4.08E + 13) (5.03E + 6) (2.84E + 2) (7.12E + 9) (1.39E + 3) III-32 Muscat Hamburg × Afus Ali Muscat Hamburg Afus Ali 2.46E + 15 6.56E + 6 4.16E + 2 1.08E + 11 1.50E + 3 Validated (3.89E + 12) (4.37E + 5) (1.75E + 2) (2.46E + 9) (7.21E + 2) III-34 Franca Muscat Hamburg × Afus Ali Muscat Hamburg Afus Ali 1.40E + 14 8.80E + 6 4.51E + 2 5.61E + 9 1.51E + 3 Validated (4.83E + 11) (6.85E + 5) (2.02E + 2) (2.60E + 8) (7.37E + 2) IV-6 Chasselas rose × Csaba Gyoengye Muscat Hamburg Schiava grossa 1.73E + 18 6.40E + 8 1.42E + 3 8.92E + 9 1.76E + 3 Both parents invalidated (2.51E + 15) (3.42E + 7) (6.55E + 2) (2.84E + 8) (7.83E + 2) IV-28 Cornarea Barbera × Nebbiolo Barbera Chatus 1.11E + 14 9.09E + 7 5.35E + 2 2.46E + 9 1.35E + 3 Male parent invalidated a (2.39E + 11) (4.90E + 6) (2.29E + 2) (1.02E + 8) (6.08E + 2) IV-31 Soperga Nebbiolo × Barbera Barbera Chatus 1.86E + 14 8.17E + 7 3.83E + 2 4.94E + 9 1.74E + 3 Female parent invalidated a (3.76E + 11) (4.50E + 6) (1.74E + 2) (2.03E + 8) (7.89E + 2) V-1 Chasselas rose × Csaba Gyoengye Schiava gentile Muscat of Alexandria 2.99E + 15 1.36E + 11 2.49E + 3 1.74E + 8 5.52E + 2 Both parents invalidated (4.86E + 12) (3.80E + 9) (1.17E + 3) (9.87E + 6) (2.63E + 2)

(5)

S. Raimondi et al. / Scientia Horticulturae 219 (2017) 125–130 129

Accessioncode Cultivarname Declaredparents(namesaccordingtoVIVC) Parentsresultingfromgeneticanalyses Pedigreeremarks

Parent(1) Parent(2) XxY (1)xX rel(2)x(1) (2)xX rel(1)x(2)

VI-3 Emilia Bicane×AfusAli Bicane AfusAli 6.88E+14 1.44E+7 3.33E+2 2.22E+10 1.68E+3 Validated

(1.46E+12) (1.02E+6) (1.50E+2) (6.88E+8) (7.96E+2)

VI-6 Bicane×AfusAli Bicane AfusAli 1.38E+16 3.24E+8 4.76E+2 2.08E+10 2.21E+3 Validated

(1.82E+13) (1.33E+7) (2.12E+2) (6.20E+8) (9.95E+2)

VI-9 Bicane×AfusAli Bicane AfusAli 6.64E+13 7.00E+6 3.63E+2 5.92E+9 1.27E+3 Validated

(1.67E+11) (4.73E+5) (1.53E+2) (2.22E+8) (6.08E+2)

VI-24 Bicane×MoscatodiTerracina Bicane Chasselas 3.16E+14 2.26E+8 6.48E+2 2.03E+8 6.75E+2 Maleparentinvalidated

(6.80E+11) (1.08E+7) (2.82E+2) (8.78E+6) (2.91E+2)

VII-21 S.Martino Nebbiolo×Dolcetto Chatus Dolcetto 4.28E+16 2.07E+10 2.39E+3 4.15E+10 2.75E+3 Femaleparentinvalidateda

(6.07E+13) (8.71E+8) (1.16E+3) (1.44E+9) (1.29E+3)

VIII-1 Bicane×MuscatHamburg Bicane MuscatHamburg 7.64E+16 1.82E+9 9.99E+2 3.64E+10 3.16E+3 Validated

(1.18E+14) (7.82E+7) (4.71E+2) (1.31E+9) (1.50E+3)

VIII-5 Bionda Bicane×MuscatHamburg Bicane MuscatHamburg 1.07E+17 4.02E+9 1.40E+3 1.02E+10 1.51E+3 Validated

(1.23E+14) (1.42E+8) (6.26E+2) (3.49E+8) (7.17E+2) IX-2 Schiavagrossa×Muscatof

Alexandria

Schiavagentile MuscatofAlexandria 1.30E+19 9.91E+13 7.98E+3 1.43E+9 8.97E+2 Femaleparentinvalidated (5.64E+15) (1.07E+12) (3.97E+3) (5.84E+7) (4.27E+2)

X-4 Verdiso×Madeleineroyale MadeleineRoyale Verdiso 6.58E+16 9.50E+10 3.34E+3 7.11E+8 1.17E+3 Validated (8.41E+13) (2.83E+9) (1.55E+3) (3.02E+7) (5.03E+2)

X-10 Verdiso×Madeleineroyale MadeleineRoyale Verdiso 7.58E+14 5.63E+9 1.01E+3 8.85E+6 4.79E+2 Validated (1.66E+12) (1.91E+8) (4.71E+2) (6.82E+5) (2.10E+2)

X-12 Sirio Verdiso×Madeleineroyale MadeleineRoyale Verdiso 2.32E+16 4.57E+8 6.09E+2 3.61E+10 2.81E+3 Validated

(3.05E+13) (2.08E+7) (2.74E+2) (1.14E+9) (1.30E+3)

XI-2 MuscatHamburg×AfusAli MuscatHamburg AfusAli 2.03E+16 3.29E+7 5.33E+2 1.20E+11 3.52E+3 Validated (3.64E+13) (2.03E+6) (2.33E+2) (3.54E+9) (1.67E+3)

XI-5 MuscatHamburg×AfusAli MuscatHamburg AfusAli 1.04E+17 4.42E+7 5.13E+2 7.84E+12 6.84E+3 Validated (1.32E+14) (2.81E+6) (2.30E+2) (1.43E+11) (3.41E+3)

XI-6 MuscatHamburg×AfusAli MuscatHamburg AfusAli 8.11E+17 3.06E+8 6.98E+2 1.10E+12 4.04E+3 Validated (7.03E+14) (1.28E+7) (3.10E+2) (2.21E+10) (1.94E+3)

XI-20 MuscatHamburg×AfusAli MuscatHamburg AfusAli 2.87E+16 1.42E+8 9.32E+2 2.95E+11 4.34E+3 Validated

(4.89E+13) (8.89E+6) (4.23E+2) (8.44E+9) (2.07E+3)

XII-26 Furmint×Malvasiabianca

lunga

Furmint Malvasiabiancalunga 2.02E+24 7.41E+14 6.06E+3 1.52E+13 5.37E+3 Validated (1.24E+20) (4.61E+12) (2.96E+3) (1.42E+11) (2.42E+3)

XII-37 Bussanello Welschriesling×Furmint Welschriesling Furmint 2.11E+20 1.13E+15 1.11E+4 1.51E+10 9.61E+2 Validated

(3.38E+16) (6.61E+12) (5.26E+3) (3.73E+8) (4.32E+2)

XII-40 Welschriesling×Riesling

weiss

Welschriesling Rieslingweiss 1.75E+18 3.73E+7 5.33E+2 2.38E+11 2.20E+3 Validated (9.41E+14) (1.76E+6) (2.12E+2) (3.50E+9) (1.04E+3)

XIII-11 Covè Harslevelue×Malvasiabiancalunga Harslevelue Harslevelue −b Maleparentinvalidated

(self-pollination)a

XIV-4 Grignolino×Sangiovese Grignolino Grignolino – – – – – Maleparentinvalidated

(self-pollination)a

XIV-15 Grignolino×Sangiovese Grignolino Moradella 2.12E+15 5.88E+8 6.35E+2 5.32E+10 3.18E+3 Maleparentinvalidated

(2.95E+12) (2.72E+7) (2.86E+2) (1.48E+9) (1.42E+3)

XV-29 Nebbiera Nebbiolo×Barbera Chatus Barbera 6.29E+15 1.22E+10 1.60E+3 1.01E+9 7.41E+2 Femaleparentinvalidateda

(7.89E+12) (4.02E+8) (7.25E+2) (4.02E+7) (3.25E+2)

XV-31 Albarossa Nebbiolo×Barbera Chatus Barbera 2.35E+17 4.36E+8 7.41E+2 1.57E+12 4.94E+3 Femaleparentinvalidateda

(1.83E+14) (1.87E+7) (3.19E+2) (2.97E+10) (2.34E+3)

XV-34 S.Michele Nebbiolo×Barbera Chatus Barbera 3.54E+12 1.56E+8 4.96E+2 1.24E+7 2.41E+2 Femaleparentinvalidateda

(1.13E+10) (7.79E+6) (2.22E+2) (7.99E+5) (1.09E+2)

XVI-8 Valentino Nebbiolo×Dolcetto Chatus Dolcetto 5.46E+17 3.41E+9 1.29E+3 4.06E+12 6.19E+3 Femaleparentinvalidateda

(4.49E+14) (1.38E+8) (5.85E+2) (7.74E+10) (2.97E+3)

XVII-25 Passau Dolcetto×Nebbiolo Dolcetto Chatus 2.31E+18 3.00E+13 7.94E+3 2.63E+9 1.23E+3 Maleparentinvalidateda

(1.31E+15) (3.60E+11) (3.71E+3) (1.14E+8) (5.59E+2)

XVIII-3 Viola MuscatHamburg×Pirovano62 MuscatHamburg – unverifiable

XVIII-12 Liana MuscatHamburg×Pirovano62 MuscatHamburg – unverifiable

XVIII-21 Giovanna MuscatHamburg×Pirovano62 MuscatHamburg – unverifiable

XVIII-24 Teresita MuscatHamburg×Pirovano62 MuscatHamburg – unverifiable

aConfirmationofpriorpublication.

(6)

130 S.Raimondietal./ScientiaHorticulturae219(2017)125–130 (asreportedbyCiprianietal.,2010for‘Cové’),likelybecauseofa

mistakeintheemasculationprocess.Inbothcrosses,but particu-larlyinthesecondone,theplant’svigourwasdepressed,andleaf morphologicalanomaliesaroseattimes.

In ‘VI-24’ and ‘XIV-15’, thepollen donor wasfound tobe a differentcultivarfromthatexpected,likelybecauseofpollen con-tamination.Asinthecaseof‘Chatus’beingmistakenfor‘Nebbiolo’, inone cross (‘IX-2’)the trueparentwas‘Schiava gentile’(alias ‘Urbanblau’),alesswidespreadcultivarthanthedeclaredgenitor ‘Schiavagrossa’,knownas‘Trollinger’and‘Frankenthal’inother centralEuropeancountries,andnamed‘Schiavone’inDalmasso’s notes.

Fortwotablegrapevines(‘IV-6’and‘V-1’),bothparentswere invalidated:thismightbeduetothemistakenidentityofboth par-entsor,morelikely,toamistakeinseedlinglabelling,orevenin materialpropagationfrommotherplants duringfieldcollection establishmentorduplication.Thelackofadetailedmorphological descriptionfromthebreederpreventstrue-to-typeverificationof seedlings.

As already mentioned, the descent of the four offspring of ‘Pirovano62couldnotbeingverified,since‘Pirovano62’appears tohavedisappearedfromEuropeancollections.InthelargeINRA collection at Domaine de Vassal (France), where ‘Pirovano 62’ shouldbemaintainedaccordingtotheVitisInternationalVariety Catalogue(www.vivc.de),theconservedaccessionprobably corre-spondsinsteadto‘Pirovano61’(asiblingof‘Pirovano62’),asINRA scientistssuspect(J.-M.Boursiquot,personalcommunication).

Verificationofparentages declaredby breeders,throughthe inheritanceofSSRmarkers,revealed43%ofinvalidatedpedigrees intheinvestigatedcross-breeds(15outof35verifiedpedigrees). Thispercentageishighcomparedtothosereportedinother stud-ies:Lacombeetal.(2013)analysed381moderncultivars,andfound breeder’sdatatobeinvalidin126genotypes(33%).Inthepresent study,theuseof‘Chatus’insteadof‘Nebbiolo’inasubstantial num-berofIDshad amultipliereffectontheinaccuracyofbreeder’s data.Vargasetal.(2009)alsofoundasimilarpercentageof incor-rectpedigrees(42%,13incorrectpedigreesversus18correct,as reportedintheliterature).

4. Conclusions

Alongsideinvalidatedcrosses,likelyduetopollen contamina-tion(whenthemaleparentwasincorrect),severalcasesofcultivar mislabelling(eitherwhenbothparentswereinvalidatedorwhen thesame genotypewas labelleddifferently) werefoundin the varietiesinvestigated.Thisindicatesthatfurthermislabelling dur-ingvegetativepropagationtoestablish/duplicatecollectionsmay havebeenaddedtopossiblecross-breedingerrors,makingvarietal identificationessentialfornewly-bredvarieties.

Theeconomicexploitationofnewbreedsbygrapefarmersand thewineindustrymaybeconsiderablyaffectedbytheircorrect identificationandparentage.Astobreeder’sactivity,in particu-larrelated totablegrapes,thecorrect information providedon thegeneticbasis ofthecrosses obtainedmaycontributetothe developmentoffurtherbreedingprograms.Lastly,theparentage verificationand genetic characterizationof 39 grapevine cross-breedsobtainedbyProf.Dalmassohasprovidedadditionalinsight intotheavailablegrapevinediversity.

Funding

ThisresearchwasfundedbytheAgriculturalResearch Founda-tion(AGER,Italy)[grantnumber2010-2104].

Acknowledgments

TheauthorsthanktheAgriculturalResearchFoundation(AGER, Italy) for financial support and Giovanni Dalmasso Foundation forpatronage.WearegratefultoMassimoGardimanofthe Con-siglioperlaRicercainAgricoltura(CREA-VIT),Conegliano(Italy) forproviding two samplesfromtheircollections.We gratefully acknowledgetheassistancegivenbyJ-M.Boursiquot(INRA, Mont-pellier, and Domaine de Vassal, France) who provided useful informationon‘Pirovano61’and‘Pirovano62’.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.scienta.2017. 02.044.

References

Akkak,A.,Boccacci,P.,Botta,R.,2007.‘Cardinal’grapeparentage:acaseofbreeding mistake.Genome50,325–328.

Alabouvette,L.,1936.Organisationgénéraledel’améliorationetdelasélectiondes plantesenFrance.In:CongrèsInternationaldeselectionneursdeplantes,22–27 June1936Netherlands[conferenceproceedings].BrillLeiden,p.49. Bowers,J.E.,Dangl,G.S.,Vignani,R.,Meredith,C.P.,1996.Isolationand

characteriza-tionofnewpolymorphicsimplesequencerepeatlociingrape(VitisviniferaL.). Genome39,628–633.

Bowers,J.E.,Dangl,G.S.,Meredith,C.P.,1999.Developmentandcharacterizationof additionalmicrosatelliteDNAmarkersforgrape.Am.J.Enol.Vitic.50,243–246. Carlomagno,A.,Ferrandino,A.,Kedrina,O.,Novello,V.,2014.Agronomicand qualita-tiveperformancesofsometablegrapeDalmassocrosses(VitisviniferaL.)grown inPiedmont(NWofItaly).In:Proc.of7thInternationalTableGrapeSymposium, Mildura–Victoria,Australia;12–14November,pp.127–129.

Cipriani,G.,Spadotto,A.,Jurman,I.,DiGaspero,G.,Crespan,M.,Meneghetti,S.,Frare, E.,Vignani,R.,Cresti,M.,Morgante,M.,Pezzotti,M.,Pe,E.,Policriti,A.,Testolin, R.,2010.TheSSR-basedmolecularprofileof1005grapevine(VitisviniferaL.) accessionsuncoversnewsynonymyandparentages:andrevealsalarge admix-tureamongstvarietiesofdifferentgeographicorigin.Theor.Appl.Genet.121, 1569–1585.

Dettweiler,E.,Jung,A.,Zyprian,E.,Topfer,R.,2000.Grapevinecultivar Müller-Thurgauanditstruetotypedescent.Vitis39,63–65.

Ibà ˜nez,J.,Vargas,A.M.,Palancar,M.,Borrego,J.,deAndrès,M.T.,2009.Genetic rela-tionshipamongtable-grapevarieties.Am.J.Enol.Vitic.60,35–42.

Lacombe,T.,Boursiquot,J.M.,Laucou,V.,DiVecchi-Staraz,M.,Pèros,J.P.,This,P., 2013.Large-scaleparentageanalysisinanextendedsetofgrapevinecultivars (VitisviniferaL.).Theor.Appl.Genet.126,401–414.

Merdinoglu, D., Butterlin, G.,Bevilacqua, L., Chiquet, V., Adam-Blondon, A.F., Decroocq, S., 2005. Development and characterization of a large set of microsatellitemarkersingrapevine(VitisviniferaL.)suitableformultiplexPCR. Mol.Breeding15,349–366.

Sefc,K.M.,Regner,F.,Turetschek,E.,Glössl,J.,Steinkellner,H.,1999.Identification ofmicrosatellitesequencesinVitisripariaandtheirapplicabilityforgenotyping ofdifferentVitisspecies.Genome42,1–7.

Sefc,K.M.,Peji ´c,I.,Maleti ´c,E.,Thomas,M.R.,Lefort,F.,2009.Microsatellitemarkers forgrapevine:toolsforcultivaridentificationandpedigreereconstruction.In: Roubelakis-Angelakis,K.A.(Ed.),GrapevineMolecularPhysiology& Biotechnol-ogy.,2ndedn.Springer,Dordrecht,pp.565–596.

This,P.,Jung,A.,Boccacci,P.,Borrego,J.,Botta,R.,Costantini,L.,Crespan,M.,Dangl, G.S.,Eisenheld,C.,Ferreira-Monteiro,F.,Grando,S.,Ibá ˜nez,J.,Lacombe,T., Lau-cou,V.,Magalhães,R.,Meredith,C.P.,Milani,N.,Peterlunger,E.,Regner,F.,Zulini, L.,Maul,E.,2004.Developmentofastandardsetofmicrosatellitereference allelesforidentificationofgrapecultivars.Theor.Appl.Genet.109,1448–1458. This,P.,Lacombe,T.,Thomas,M.R.,2006.Historicaloriginsandgeneticdiversityof

winegrapes.TrendsGenet.22,511–519.

Thomas,M.R.,Scott,N.S.,1993.MicrosatelliterepeatsingrapevinerevealDNA poly-morphismswhenanalysedassequence-taggedsites(STSs).Theor.Appl.Genet. 86,985–990.

Thomas,M.R.,Cain,P.,Scott,N.S.,1994.DNAtypingofgrapevines:auniversal methodologyanddatabasefordescribingcultivarsandevaluatinggenetic relat-edness.PlantMol.Biol.25,939–949.

TorelloMarinoni,D.,Raimondi,S.,Rolle,L.,Mannini,F,2009.Geneticandphenolic characterizationofseveralintraspecificcrosses(VitisviniferaL.)registeredin theItalianNationalCatalogue.In:Proc.IXConferenceonGrapeGeneticsand Breeding.PeterlungerEtAl.Eds.ActaHorticulturae827,ISHS.

Vargas,A.M.,deAndrès,M.T.,Borrego,J.,Ibà ˜nez,J.,2009.Pedigreesoffifty table-grapecultivars.Am.J.Enol.Vitic.60,525–532.

Riferimenti

Documenti correlati

[r]

Outcomes confirm the high reliability and accuracy of virtual surgical planning and grafts design, which, together with SmartBone® high performances, allow producing very precise

In details, by exploiting GreatSPN, a Java Graphic User Interface (GUI), it is possible to draw and build the ESSN model, then calling PN2ODE, a C/C++ program, the underlying

We decided to investigate the ability of sulfur monoxide (SO), which is one of the most abundant species in star forming regions, for probing the intensity of magnetic fields via

Oltre alle opere già citate (nella Reußenkönigstochter la fanciulla viene gettata in mare chiusa in una botte), si ricordino anche La comtessa lleial (abbandonata su una barca,

CLIL (Content and Language Integrated Learning) implies teaching subject-specific content through a target language (Marsh 1994): ex- ercises, activities and classroom

Si le De unitate connut une première carrière médiévale, dont à vrai dire nous ignorons presque tout, hors l’autorité que Jean de Ripa lui reconnaît, s’ouvrait ainsi à la fin

However, our results in vitro tend to exclude the possibility that TRPV1 receptors play a significant role in the modulation of nicotine effects, since their activation by mAEA,