• Non ci sono risultati.

Development of a wear model for the prediction of wheel and rail profile evolution in railway systems

N/A
N/A
Protected

Academic year: 2021

Condividi "Development of a wear model for the prediction of wheel and rail profile evolution in railway systems"

Copied!
18
0
0

Testo completo

(1)

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

(2)

ContentslistsavailableatSciVerseScienceDirect

Wear

j o ur n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / w e a r

Development

of

a

wear

model

for

the

prediction

of

wheel

and

rail

profile

evolution

in

railway

systems

M.

Ignesti

a

,

M.

Malvezzi

b

,

L.

Marini

a

,

E.

Meli

a,∗

,

A.

Rindi

a aDepartmentofEnergyEngineering,UniversityofFlorence,ViaS.Martan.3,50139Firenze,Italy bDepartmentofInformationEngineering,UniversityofSiena,ViaRoman.56,53100Siena,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received25May2011 Receivedinrevisedform 22December2011 Accepted3January2012 Available online 24 January 2012 Keywords:

Multibodymodeling Wheel–railcontact Wheel–railwear

a

b

s

t

r

a

c

t

Thepredictionofthewearatthewheel–railinterfaceisafundamentalproblemintherailwayfield, mainlycorrelatedtotheplanningofmaintenanceinterventions,vehiclestabilityandthepossibilityof researchingspecificstrategiesforthewheelandrailprofileoptimization.InthisworktheAuthorspresent amodelspecificallydevelopedfortheevaluationofthewheelandrailprofileevolutionduetowear, whoselayoutismadeupoftwomutuallyinteractivebutseparateunits:avehiclemodelforthedynamic analysisandamodelforthewearestimation.Thefirstoneismadeupoftwopartsthatinteractonline duringthedynamicsimulations:a3DmultibodymodeloftherailwayvehicleimplementedinSimpack Rail(acommercialsoftwarefortheanalysisofmultibodysystems)andaninnovative3Dglobalcontact model(developedbytheAuthorsinpreviousworks)forthedetectionofthecontactpointsbetweenwheel andrailandforthecalculationoftheforcesinthecontactpatches(implementedinC/C++environment). Thewearmodel,implementedintheMatlabenvironment,ismainlybasedonexperimentalrelationships foundinliteraturebetweentheremovedmaterialandtheenergydissipatedbyfrictionatthecontact. Itstartsfromtheoutputsofthedynamicsimulations(positionofcontactpoints,contactforcesand globalcreepages)andcalculatesthepressuresinsidethecontactpatchesthroughalocalcontactmodel (FASTSIMalgorithm);thenthematerialremovedduetowearisevaluatedandthewornprofilesofwheel andrailareobtained.Thisapproachallowstheevaluationofboththequantityofremovedmaterialand itsdistributionalongthewheelandrailprofilesinordertoanalyzethedevelopmentoftheprofilesshape duringtheirlifetime.

Thewholemodelisbasedonadiscreteprocess:eachdiscretestepconsistsinonedynamicsimulation andoneprofileupdatebymeansofthewearmodelwhile,withinthediscretestep,theprofilesare supposedtobeconstant.Thechoiceofanappropriatestepisfundamentalintermsofprecisionand computationalload.Moreoverthedifferenttimescalescharacterizingthewheelandrailwearevolution requirethedevelopmentofasuitablestrategyfortheprofileupdate:thestrategyproposedbytheAuthors isbasedbothonthetotaldistancetraveledbytheconsideredvehicleandonthetotaltonnageburdenon thetrack.TheentiremodelhasbeendevelopedandvalidatedincollaborationwithTrenitaliaS.p.A.and ReteFerroviariaItaliana(RFI),whichhaveprovidedthetechnicaldocumentationandtheexperimental resultsrelatingtosometestsperformedwiththevehicleDMUAln501MinuettoontheAosta-PreSaint Didierline.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Thewearatthewheel–railinterfaceisanimportantproblem

intherailwayfield.Theevolutionoftheprofileshapeduetowear

hasadeepeffectonthevehicledynamicsandonitsrunning

stabil-ity,leadingtoperformancevariationsbothinnegotiatingcurves

and instraight track. Thereforethe originalprofiles have tobe

∗ Correspondingauthor.

E-mailaddresses:ignesti@mapp1.de.unifi.it(M.Ignesti),malvezzi@dii.unisi.it

(M.Malvezzi),marini@mapp1.de.unifi.it(L.Marini),meli@mapp1.de.unifi.it

(E.Meli),rindi@mapp1.de.unifi.it(A.Rindi).

periodicallyre-establishedbymeansofturning:particularly,from

asafetyviewpoint,thearisingofacontactgeometrywhichmay

compromisethevehiclestabilityorincreasethederailmentriskhas

tobeavoided.Areliablewearmodelcanalsobeusedtooptimize

theoriginalprofilesofwheelandrailandtoobtainamoreuniform

wear.Inthiswaytheoverallamountofremovedmaterialcanbe

reducedinordertoincreasethemeantimebetweentwo

mainte-nanceintervalsand,atthesametime,thedynamicalperformance

ofthewheel–railpaircanbekeptapproximatelyconstantbetween

twoturnings.

Becauseofallthesereasons,thedevelopmentofamathematical

modelforthepredictionofthewearatthewheel–railinterface

representsapowerfultool.

0043-1648/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.wear.2012.01.020

(3)

Fig.1.Generalarchitectureofthemodel.

InthisworktheAuthorswillpresentaproceduretoestimatethe

evolutionofthewheelandrailprofileduetowearbasedonamodel

thatcombinesmultibodyandwearmodeling.More specifically,

thegenerallayoutofthemodelconsistsoftwo mutually

inter-activeparts:thevehiclemodel(multibodymodeland3Dglobal

contactmodel)andthewearmodel(localcontactmodelandwear

evaluation and profiles update). Concerning thevehicle model,

themultibodymodel,implementedintheSimpackRail

environ-ment,accuratelyreproducesthedynamicsofthevehicle,taking

intoaccountallthesignificantdegreesoffreedom.The3Dglobal

contactmodel,developedbytheAuthorsinpreviousworks[1,2],

detectsthewheel–railcontactpointsbymeansofaninnovative

algorithmbasedonsuitablesemi-analyticprocedures andthen,

foreachcontactpoint,calculatesthecontactforcesthroughHertz’s

andKalker’stheory[3–5].Thankstothenumericalefficiencyofthe

newcontactmodel,thetwomodelsinteractdirectlyonlineduring

thesimulationofthevehicledynamics.

Asregardsthewearestimation,themodelisbasedonalocal

contactmodel(inthiscasetheKalker’sFASTSIMalgorithm)and

onanexperimentalrelationshipforthecalculationoftheremoved

material[6,7].Thewearmodel,startingfromtheoutputsofthe

vehiclemodel(contactpoints,contactforcesandglobalcreepages),

calculatesthetotalamountofremovedmaterialduetowearand

itsdistributionalongthewheelandrailprofiles.Theremovalofthe

materialiscarriedoutconsideringthethreedimensionalstructure

ofthecontactbodiesandthedifferenttimescalescharacterizing

thewearevolutiononthewheelandontherail.

Oneofthemostcriticalaspectsinthedevelopmentofawear

modelistheavailabilityofexperimentaldataforthevalidationof

themodel,becausethewearisalong-termphenomenonwhich

requiresseveralmonthsofmonitoringtocollectthedata.Ifonline

experimentalmeasurementcannotbecarriedout,theproblemcan

beovercomeusingtoolsprovidedbysoftware[8]orcarryingout

experimentalproofsonascaledtestrig[6].

Inthisworktheentiremodelhasbeenvalidatedbymeansof

theexperimentaldataprovided byTrenitaliaS.p.A.andRFI;the

dataconcerntheAosta-PreSaintDidierrailwaylineandthe

vehi-cleALSTOMDMUAln501Minuettowhich,inthisscenery,exhibits

seriousproblemsintermsofwear.

2. Generalarchitectureofthemodel

Thewholemodelconsistsoftwodifferentparts:thevehicle

modelandthewearmodel.Thegeneralarchitectureisshownin

theblockdiagraminFig.1.

Thevehiclemodelrepresentsthedynamicanalysisblockandis

composedbythemultibodymodelof thestudiedrailway

vehi-cle(inthisworktheALSTOMDMUAln501Minuetto)andthe3D

globalcontactmodelthat,duringthedynamicsimulation,interact

directlyonlinecreatingaloop.Ateachtimeintegrationstepthe

firstoneevaluatesthekinematicvariables (position,orientation

andtheirderivatives)relativetothewheelsetandconsequentlyto

eachwheel-railcontactpair.Startingfromthesequantities,the

secondonecalculatestheglobalcontactvariables(contactpoints

and contactforces, contactareasand globalcreepages).The 3D

globalcontactmodelisbasedbothonaninnovativealgorithmfor

thedetectionofthecontactpoints(developedbytheAuthorsin

previousworks[1,2])andonHertz’sandKalker’sglobaltheories

fortheevaluationofthecontactforces[3].Theglobalcontact

vari-ablesarethenpassedtothemultibodymodelinordertocarryon

thesimulationofthevehicledynamics.

The main inputs of the dynamic analysis block are the

rail-waytrackandthemultibodymodeloftheconsideredvehicle:in

thisresearchactivity,accordingtothespecificationsrequiredby

Trenitalia,thetrackisrepresentedbyastatisticalanalysisofthe

Aosta-PreSaintDidierlinebymeansofanensembleofNc

curvi-lineartracks,eachoflengthequaltoltrack.Thestatisticalanalysis

hasbeencarriedoutsplittingtheconsideredtrackinradiusclasses

andsuperelevationclasses.Thestatisticalapproachhasbeen

intro-ducedbecauseofthecomplexityandthelengthoftheAosta-Pre

SaintDidiertrack:forthesereasonsthesimulationoftheentireline

wouldhavecauseddifficultybothintermsofmultibodymodeling

andintermsofnumericalefficiency(computationalloadand

mem-oryconsumption).Theoutputsofthevehiclemodelaretheglobal

contactvariablesevaluatedduringalltheNcdynamicsimulations

andrepresenttheinputsofthewearmodel.

ThedynamicsimulationshavebeenperformedinSimpackRail.

Morespecifically,themultibodymodelhasbeenbuiltusingdirectly

the SimpackRail environmentwhile the globalcontact model,

implementedinC/C++,hasbeencustomizedbymeansofthe

Sim-packUserRoutinemodule(implementedinFORTRANenvironment)

thatallowstohandletheinteractionbetweenSimpackandroutines

definedbytheuser.Thewearmodelismadeupofthreedistinct

phases:thelocalcontactmodel,thewearevaluationandtheprofile

update.Initiallythelocalcontactmodel(basedbothonHertz’slocal

theoryandonsimplifiedKalker’salgorithmFASTSIM),startingfrom

theglobalcontactvariables,evaluatesthelocalcontactvariables

(contactpressuresand localcreepages) and dividesthecontact

patchintoadhesionareaandcreeparea.Then,thedistributionof

removedmaterial(hypothesizingthecontactindryconditionsas

requiredbyTrenitaliaandRFI)iscalculatedbothonthewheeland

ontherailsurfaceonlywithinthecreepareausingan

experimen-tallawbetweentheremovalmaterialandtheenergydissipatedby

frictionatthecontactinterface[6,7].Finallytheprofilesofwheel

andrailareupdated:thenewprofilesaretheoutputsofone

dis-cretestepofthewholemodelloopandhavetobepassedbackto

thevehiclemodelinordertocontinuethewearcycledescribedin

Fig.1andtosimulatethevehicledynamicswithupdatedprofiles.

Theevolutionofthewheelandrailprofilesisthereforeadiscrete

process.Inthisresearchthechoiceofthediscretestepsisoneof

themainissuesandhastoconsiderthedifferenceoftimescales

betweenthewheelandrailwearevolutionrate(aswillbeclarified

inthefollowing).Forthewheelwearthefollowingconsiderations

arevalid:

1. thetotalmileagekmtottraveledbytheconsideredvehiclehas

beensubdividedinconstantstepsoflengthequaltokmstep;

2.withineachdiscretestepofthewholemodel(correspondingto

kmstepkilometerstraveledbythevehicle)thewheelprofileis

(4)

Table1

Inertiapropertiesofthemultibodymodel.

MBSbody Mass(kg) Rollinertia

(kgm2) Pitchinertia (kgm2) Yawinertia (kgm2) CoachM 31,568 66,700 764,000 743,000 CoachT 14,496 30,600 245,000 236,000 Bogiem 3306 1578 2772 4200 Bogiet 3122 1674 3453 5011 Wheelsetm 2091 1073 120 1073 Wheelsett 1462 1027 120 1027

Thedepthoftherailweardoesnotdependonthedistance trav-eledbyvehiclebutonthenumberofvehiclesmovingonthetrack. Thereforeadifferentapproachforevaluatingthediscretestepfor therail,basedonthetotaltonnageburdenonthetrackMtot,is

needed:

1.dividingthetotaltonnageMtotbythevehiclemassMv,the

cor-respondingvehiclenumberNtothasbeencalculated;thenNtot

hasbeensubdividedinconstantstepsequaltoNstep;

2.withineachdiscretestep(correspondingtoNstepvehicles

mov-ingonthetrack)therailprofileissupposedtobeconstant. Finallythefollowingconsiderationsholdbothforthewheeland theraildiscretizationsteps:

• thenumberofdiscretizationstepsaffectsthemodelprecisionand thecomputationalload.Moreparticularly,increasingthestep number,themodelprecisionincreasesbut,atthesametime,the computationalloadincreasestoo:agoodcompromisemustbe researched;

• varioustypesofprofileupdatestrategiesareavailablein litera-ture[9,10]:theconstantstepandtheadaptivestepstrategiesare

themainones.Inthefirstoneaconstantupdatestepisdefined,

whilethesecondoneisbasedonthedefinitionofathreshold

valuethatimposesthemaximummaterialquantitytoremoveat

eachupdateoftheprofiles.Thetwomethodshavebeencompared

andthefirstonehasbeenchosenduetothefollowingreasons:

1.thephysicalphenomenonofthewearevolutionhasusuallyan

almostlinearcharacteristicandthusiswellsuitedtoaconstant

updatestep;

2.thetwomethodsleadtoverysimilarsystemevolutions(both

qualitativelyandquantitatively)butthefirstoneis

computa-tionallymoreefficient.

ThewearmodelhasbeenfullyimplementedintheMatlab

envi-ronment.

3. Thevehiclemodel

Inthissectionabriefdescriptionofthevehiclemodel

(com-posedbythemultibodymodelandtheglobalcontactmodel)is

given. In particular the global contact model willallow to the

detectionofthecontactpointsbetweenthewheelandrailand,

subsequently,ofthecontactforcesandtheglobalcreepagesinthe

contactpatch.

3.1. Themultibodymodel

TheDMUAln501Minuetto,apassengertransportunitwidely

usedontheItalianRailways,hasbeenchosenasbenchmark

vehi-cleforthisresearch;thephysicalandgeometricalcharacteristicsof

thevehiclecanbefoundinliterature[11,12].InTable1theinertia

propertiesofthevehicleareshown:motorsandgearboxeshave

notbeenmodeledandtheirinertiapropertieshavebeenincluded

inthemotorbogieandinthemotorwheelset(indicatedinTable1

Fig.2.Globalviewofthemultibodymodel.

withBogiemandWheelsetmrespectively)inordertotakeinto

accounttheirdifferentinfluenceontheunsprungandsprungmass.

ThemultibodymodelhasbeenrealizedintheSimpackRail

envi-ronment(seeFig.2)andconsistsofthirty-onerigidbodies:

• threecoaches;

• fourbogies:theintermediateones,interposedbetweentwo

suc-cessivecoaches,aretrailerbogieswhiletheotheronesaremotor

bogies;

• eightwheelsets:twoforeachbogie;

• sixteenaxleboxes:twoforeachwheelset.

Therigidbodiesareconnectedbymeansofappropriate

elas-tic and damping elements;particularly thevehicleis equipped

withtwosuspensionstages.Theprimarysuspensionsconnectthe

wheelsetstothebogies(seeFig.3)andcomprisetwospringsand

two verticaldampers,whilethesecondarysuspensionsconnect

thebogiestothecoaches(seeFig.4)andcomprisethefollowing

elements:

• twoairsprings;

• sixdampers(lateral,verticalandanti-yawdampers);

• onetractionrod;

• therollbar(notvisibleinthefigure);

• twolateralbumpstops.

(5)

Table2

Mainlinearstiffnesspropertiesofthesuspensions.

MBSelement Longitudinalstiffness

(N/m) Lateralstiffness (N/m) Verticalstiffness (N/m) Rollstiffness (Nm/rad) Pitchstiffness (Nm/rad) Yawstiffness (Nm/rad) Primary 1,259,600 1,259,600 901,100 10,800 10,800 1000 Suspension Spring Secondary 120,000 120,000 398,000 – – – Suspension Airspring Secondary – – 2,600,000 – – – Suspension Rollbar

Fig.4.Bogieandsecondarysuspensions.

Boththestagesofsuspensionshavebeenmodelledbymeansof three-dimensionalviscoelasticforceelementstakingintoaccount allthemechanicalnonlinearities(bumpstopclearance,dampers androdbehavior).Themainlinearcharacteristicsofthe suspen-sionsareshowninTable2whilethenonlinearcharacteristicsare

imposedasafunctionofdisplacementandvelocityforthesprings

andthedampersrespectively(seeFigs.5and6).

Fig.5.Exampleofnonlinearcharacteristic:verticaldampingoftheprimary sus-pension.

3.2. Theglobalcontactmodel

Dynamicsimulationsofrailwayvehiclesneedareliableand

effi-cientmethodtoevaluatethecontactpointsbetweenwheeland

rail,becausetheirpositionhasa considerableinfluencebothon

thedirectionandonthemagnitudeofthecontactforces.Inthis

workaspecificcontactmodelhasbeenconsideredinsteadofthat

implementedinSimpackRailinordertoachievebetterreliability

andaccuracy[1,2].Theproposedcontactmodelisdividedintwo

parts:inthefirstonethecontactpointsaredetectedbymeansofan

innovativealgorithmdevelopedbytheAuthorsinpreviousworks

[1,2],whileinthesecondonetheglobalcontactforcesactingatthe

wheel–railinterfaceareevaluatedbymeansofHertz’sandKalker’s

globaltheories[3–5].

Thealgorithmforthecontactpointsdetectionstartsfromthe

standardideathatthecontactpointsmakestationarythedistance

betweenthewheelandrailsurfaces(seeFig.7(a));inmoredetails

thedistancehasapointofrelativeminimumifthereisno

pen-etrationbetweentheconsideredsurfaces,whileithasarelative

maximumintheothercase(seeSection3.2.1fortheanalytic

for-mulation of the problem).The main features ofthe innovative

adoptedalgorithmarethefollowing:

• itisafully3Dmodelthattakesintoaccountallthesixrelative

degreesoffreedom(DOF)betweenwheelandrail;

• itisabletosupportgenericrailwaytracksandgenericwheeland

railprofiles;

• itassuresageneralandaccuratetreatmentofthemultiple

con-tactwithoutintroducingsimplifyingassumptionsontheproblem

geometryandlimitsonthenumberofcontactpointsdetected;

Fig.6. Exampleofnonlinearcharacteristic:lateralbumpstopstiffnessofthe sec-ondarysuspension.

(6)

Fig.7.Distancemethod.

• itassureshighlynumericalefficiencymakingpossibletheonline

implementation within the commercial multibody software

(Simpack-Rail,Adams-Rail);inthiswayalsothenumerical

per-formanceofthecommercialmultibodysoftwareareimproved.

Twospecificreferencesystemshavetobeintroducedinorderto

simplifythemodel’sequations:theauxiliaryreferencesystemand

thelocalreferencesystem.TheauxiliarysystemOrxryrzrisdefined

ontheplaneoftherailsandfollowsthemotionofthewheelset

duringthedynamicsimulations:thexraxisistangenttothecenter

lineofthetrackintheoriginOr,whosepositionisdefinedsothat

theyrzrplanecontainsthecenterofmassGwofthewheelset,and

thezraxisisperpendiculartoplaneoftherails.Thelocalsystem

Owxwywzwisrigidlyconnectedtothewheelsetexceptforthe

rota-tionarounditsaxisandthexwaxisisparalleltothexryrplane(see

Fig.7(b)).Inthefollowing,forthesakeofsimplicity,thevariables

referredtothelocalsystemwillbemarkedwiththeapexw,while

thosereferredtotheauxiliarysystemwiththeapexr;the

vari-ablesbelongingtothewheelandtotherailwillbeindicatedwith

thesubscriptswandrrespectively.

Thankstothesereferencesystems,thedefinitionofthewheel

andrailgeometricalsurfacesis easy.Inthelocalreference

sys-temthewheelsetcanbeconsideredasasimplerevolutionsurface

arounditsaxisyw(seeEq.(2));thegeneratingfunction,indicated

byw(yw),issupposedtobeknown(inthiswork,theprofileORES

1002forasinglewheelhasbeenchosen(seeFig.8)).Similarlythe

trackcanbelocallydescribedintheauxiliaryreferencesystemas

anestrusionsurfacealongthexraxis(seeEq.(3));thegenerating

function,indicatedbyr(yr),isknown(theprofileUIC60,with

lay-ingangle˛pequalto1/20rad,hasbeenchosenforasinglerail(see

Fig.8)).

WithreferencetoFig.1,theglobalcontactmodelcanbethought

ofasablackboxhavingthefollowinginputsandoutputs:

• Inputs: the kinematic variables evaluated by the multibody

model,i.e.thepositionOrw,theorientationmatrixRrw,theabsolute

velocity ˙Orwandtheabsoluteangularvelocityωrwofthewheel

sys-temandtheanalogousquantitiesoftherailsystemOrr=0,Rr

r=I,

˙Orandωrr;

• Outputs:theglobalcontactvariablesrelativetothewheel–rail

interface,likethepositionsPrwandPrrofthecontactpoints,the

contactforces(thenormalcomponentNrandthetangential

com-ponentsTr

x andTyr),theglobalcreepagesεx,εyandεspandthe

contactpatch’sdimensionsa,b.

3.2.1. Thedistancemethodalgorithm

In this subsection thealgorithmusedfor detectingthe

con-tactpointswillbedescribed.Thedistancemethodalgorithm(see

Fig.7(a))isbasedonaclassicalformulationofthecontactproblem

inmultibodyfield:

nrr(Prr)∧nrw(Prw)=nrr(Prr)∧Rrwnww(Pww)=0 (1a)

nrr(Prr)∧dr=0 (1b)

where:

• Pw

wandPrrarethepositionsofthegenericpointonthewheel

sur-faceandontherailsurfaceexpressedintheirreferencesystems:

Pww(xw,yw)=



xw yw −



w(yw)2−x2w



T (2) Prr(xr,yr)=(xr yr r(yr))T (3) • nw

wandnrraretheoutgoingnormalunitvectorstothewheeland

railsurfacerespectivelyandaredefinedasfollows:

nw w(Pww)= −

Pww

xw ∧

Pww

yw





Pww

xw ∧

Pww

yw





, n r r(Prr)=

Prr

xr ∧

Prr

yr





Prr

xr ∧

Prr

yr





(4) • Rr

wistherotationmatrixthatlinksthelocalreferencesystemto

theauxiliaryone;

• dristhedistancevectorbetweentwogenericpointsonthewheel

surface andontherailsurface (bothreferred totheauxiliary

system)anditisequalto:

dr(xw,yw,xr,yr)=Pwr(xw,yw)−Prr(xr,yr) (5)

wherePrwisthepositionofthegenericpointofthewheelsurface

expressedintheauxiliarysystem:

Prw(xw,yw)=Orw+RrwPww(xw,yw). (6)

Thefirstcondition(Eq.(1a))ofthesystem(1)imposesthe

paral-lelismbetweenthenormalunitvectors,whilethesecondone(Eq.

(1b))requirestheparallelismbetweenthenormalunitvectorto

therailsurfaceandthedistancevector.

Alternatively,otherclassicalformulationsofthecontact

prob-lemcanbeused,byexampleimposingtheorthogonalitybetween

thedrvectorandthetangentialplanestothewheelandrailsurfaces

(respectivelyw andr);howeverthis approachleadstomore

complexandlessmanageablecalculationsandforthisreasonhas

notbeadopted.

The system (1) consists of six nonlinear equations in the

unknowns(xw,yw,xr,yr)(onlyfourequationsareindependentand

(7)

Fig.8. Wheelandrailprofiles.

ofthefourvariables(inthiscase(xw,xr,yr))asafunctionofyw,

reducingtheoriginal4Dproblemtoasimple1Dscalarequation.

Thereductionoftheproblemdimensionusingappropriate

ana-lyticalproceduresisthemostinnovativeaspectoftheproposed

method.ThesecondcomponentofEq.(1a)leadstothefollowing

equation:

r13



w(yw)2−xw2 =r11xw−r12w(yw)w(yw) (7)

where rij are the elements of the Rrw matrix. Calling A=r13,

B=w(yw),C=r11andD=r12w(yw)w(yw),thepreviousequation

becomes:

A



B2x2

w=Cxw−D. (8)

Hence,removingtheradicalandsolvingforxw:

xw1,2(yw)=

CD±



C2D2(A2+C2)(D2A2B2)

A2+C2 ; (9)

ascanbeseen,therearetwopossiblevaluesofxwforeachyw.

FromthefirstcomponentofEq.(1a)thefollowingrelationfor

r(yr)holds: r(yr)1,2 = r21xr1,2(yw)−r22w(yw)w(yw)−r23



w(yw)2−xw1,2(yw)2 r32w(yw)w(yw)+r33



w(yw)2−xw1,2(yw)2 . (10)

Ifr(yr)1,2isadecreasingmonotonousfunction(considering

sep-aratelythesidesofthetrack),Eq.(10)isnumericallyinvertible

andasinglepairyr 1,2(yw)existsforeachywvalue;otherwisethe

numericalinversionisstillpossiblebutwillproduceafurther

mul-tiplicationofthesolutionnumber.

BythesecondcomponentofEq.(1b)theexpressionofxr1,2(yw)

canbeobtained:

xr1,2(yw)=r11xw1,2(yw)+r12yw−r13



w(yw)2−xw1,2(yw)2. (11)

Finally,replacingthevariablesxw1,2(yw),xr1,2(yw)andyr1,2(yw)in

thefirstcomponentofEq.(1b),thefollowing1Dscalarequation

canbewritten: F1,2(yw) = −r



Gmz+r32yw−r33



w2x w1,22−b



+ −



Gmy+r21xw1,2+r22yw−r23



w2x w1,22 −yr1,2



=0 (12)

whereGwx,Gwy,Gwzarethecoordinatesofthewheelsetcenterof

massintheauxiliarysystem.Theexpression(12)consistsoftwo

scalarequationsinthevariableywthatcanbeeasilysolvedwith

appropriatenumericalalgorithms.

Theadvantagesofthisapproachbasedonthereductionofthe

algebraicproblemdimensionaremanyandcanbesummarizedas

follows:

• thereductionofthealgebraicproblemdimensionfrom4Dto1D

allowstoobtainanhighnumericalefficiencythatmakes

pos-sibletheonlineimplementationofthenewmethodwithinthe

multibodyvehiclemodels;

• theanalyticalapproachassuresanhighdegreeofaccuracyand

generality;

• the1Dproblemassuresaneasiermanagementofthemultiple

solutionsfromanalgebraicandanumericalpointofview;

• in1Dproblemalsoparticularlyelementarynumericalalgorithms

likethegridmethodarequiteefficient.

Thus, onceobtainedthegenericsolution(indicatedwiththe

subscript i) ywi of Eq. (12),the complete solution (xwi,ywi, xri,

yri)ofthesystem(1)andconsequentlythecontactpointsPrwi=

Prw(xwi,ywi)andPrri=Prr(xri,yri)canbefoundbysubstitution.

However,sinceEqs.(1a)and(1b)containirrationalterms,the

genericsolution(xwi,ywi,xri,yri)mustsatisfythefollowing

analyt-icalconditions:

• thesolutionmustbereal;

• thesolutiondoesnothavetogeneratecomplexterms(thatcould

becausedbytheradicalsintheequations);

• thesolutionmustbeaneffectivesolutionofthesystem(1)(check

necessarybecauseoftheradicalremovalbysquaring).

Furthermore,fromaphysicalpointofview,alsothenextchecks

(8)

Fig.9. Convexityconditions.

• themultiplesolutionsobtainedfromtheanalyticalresolutionof

Eq.(12)mustbeindividuatedanderasedbecausetheyhaveno

physicalmeaning;

• thefollowingconvexityconditionsmustbesatisfiedsothatthe

contactisphysicallypossible:

k1,wi+k1,ri>0

k2,wi+k2,ri>0

(13)

wherek1,wi,k2,wiarethenormalcurvatureofthewheelsurfacein

longitudinalandlateraldirection(referredtotheauxiliarysystem

andevaluatedintheithcontactpoint(xwi,ywi,xri,yri))whilek1,ri,

k2,riaretheanalogousquantitiesfortherailsurface.Becauseof

theproblemgeometry,thefirstoneofEq.(13)isalwayssatisfied

andthusonlythesecondonemustbeverified(seeFig.9).

• thegenericsolutionofthesystem(1)canbeaneffectivecontact

pointonlyifthenormalpenetration ˜pnbetweenthesurfacesof

wheelandrailisnegative(accordingtotheadoptedconvention),

i.e.theremustbeeffectivepenetrationbetweenthebodies:

˜pni=dri·nrr(Prri)=−d

r

nrw(Prwi)<0. (14)

3.2.2. Thecontactforces

Then,foreachcontactpoint,thenormalandtangentialcontact

forcesandtheglobalcreepagesonthecontactpatcharedetermined

(seeFig.10).

ThenormalforcesNr(expressedintheauxiliarysystem)are

calculatedbymeansofHertz’stheory[5,13]:

Nr=



−kh

˜pn

 +kv|

v

n| sign (

v

n)−1 2



sign(˜p n)−1 2 (15) where:

• ˜pnisthenormalpenetrationdefinedbyEq.(14);

• istheHertz’sexponentequalto3/2;

• kvisthecontactdampingconstant(kv= 105Ns/m);

v

n=V·nrristhenormalpenetrationvelocity(Visthevelocityof

thecontactpointrigidlyconnectedtothewheelset);

Fig.10. Globalforcesactingatwheelandrailinterface.

• khisthehertzianconstant,functionbothofthematerial

prop-ertiesandofthegeometryofthecontactbodies(curvaturesand

semiaxesofthecontactpatch)[14,2].

Theglobalcreepagesε(longitudinalεx,lateralεyandspin

creep-ageεsp)arecalculatedasfollows:

εx= V· ir





˙Orw





, εy= V· tr r

Prr





˙Orw





, εsp= ωr w· nrr

Prr





˙Orw





(16)

whereVisthevelocityofcontactpointrigidlyconnectedtothe

wheelset, ˙Orwisthewheelsetcenterofmassvelocity(takenasthe

referencevelocityforthecalculationoftheglobalcreepages),ωr

w

istheangularvelocityofwheelsetexpressedinauxiliarysystem,ir

istheunitvectorinlongitudinaldirectionoftheauxiliarysystem

andtrristhetangentialunitvectortotherailprofile.

The tangentialcontact forces ˜Tr

x, ˜Tyr and thespin torqueMspr

(expressedintheauxiliarysystem)arecalculatedbymeansofthe

Kalker’sglobaltheory:

˜

Tr

x=−f11εx, T˜yr=−f22εy−f23εsp

(17)

Mspr =f23εy−f33εsp (18)

wherethecoefficientsfijarefunctionbothofthematerialsandof

thesemiaxesofthecontactpatch:

f11=abGC11, f22=abGC22

f23=(ab)3/2GC23, f33=(ab)2GC33 (19)

inwhichGisthewheelandrailcombinedshearmodulusandCijare

theKalker’scoefficientsthatcanbefoundtabulatedinliterature

[3].Atthispoint,itisnecessarytointroduceasaturationonthe

tangentialcontactforces ˜Tr=[ ˜Tr

x T˜yr]T,inordertoconsiderthe

adhesionlimit(nottakeninaccountbythelinearKalker’stheory):



Tr



≤cNr (20)

wherecisthekineticfrictioncoefficient.Consequentlythe

satu-ratedtangentialforcesTrwillhavethefollowingexpression:

Tr=



˜Tr (21)

inwhichthesaturationcoefficient



canbeevaluatedasfollows

[15,16]: =

cNr ˜ Tr



˜ Tr cNr



−1 3



˜ Tr cNr



2 + 1 27



˜ Tr cNr



3



if ˜Tr3cNr cNr ˜ Tr if ˜T r>3 cNr (22) where ˜Tr=





˜T r





.

4. Thewearmodel

Inthissectionthethreephases,inwhichthewearmodelhas

beendivided,willbedescribedindetails:thelocalcontactmodel,

theevaluationoftheamountofremovedmaterial(assumingdry

contactconditions)andthewheelandrailprofileupdate.

4.1. Thelocalcontactmodel

Thepurposeofthelocalcontactmodelisthecalculationofthe

localcontactvariables(normalandtangentialcontactstressespn,

ptandlocalcreeps,allevaluatedwithinthecontactpatch)starting

fromthecorrespondingglobalvariables(contactpointsPrw,Prr,

con-tactforcesNr,Tr

x,Tyr,globalcreepageεandsemiaxesofthecontact

(9)

Fig.11.Contactpatchdiscretization.

ThismodelisbasedontheKalker’slocaltheoryinthe

simpli-fiedversionimplementedinthealgorithmFASTSIM;thisalgorithm

contains an extremely efficient version (although necessarily

approximate)oftheKalkertheoryandthereforeiswidelyusedin

railwayfield[17].

Forthelocalanalysisanewreferencesystemisdefinedatthe

wheel–railinterfaceonthecontactplane(i.e.thecommontangent

planebetweenthewheelandrailsurfaces):thexandyaxesare

thelongitudinalandthetransversaldirectionofthecontactplane

respectively(seeFigs.11and13).Thealgorithmisbasedonthe

pro-portionalityhypothesisbetweenthetangentialcontactpressurept

andtheelasticdisplacementsu,bothevaluatedwithinthecontact

patch:

u(x,y)=Lpt(x,y), L=L(ε,a,b,G,) (23)

wheretheflexibilityL(functionoftheglobalcreepagesε,the

semi-axesofthecontactpatcha,b,thewheelandrailcombinedshear

modulusGandthewheelandrailcombinedPoisson’sratio)can

becalculatedasfollows:

L=|εx| L1+

εy

L2+c

εsp

L3

(ε2

x+ε2y+c2ε2sp)

1/2 (24)

withL1=8a/(3GC11),L2=8a/(3GC22),L3=a2/(4GcC23)andc=

√ ab

(theconstantsCij,functionsbothofthePoisson’sratioandofthe

ratioa/b,aretheKalker’sparametersandcanbefoundinliterature

[17]).

Thelocalcreepagesscanbecalculatedbyderivationconsidering

boththeelasticcreepagesandtherigidones:

s(x,y)=u(x,• y)+V



εx εy



(25)

whereV=





˙Orw





isthelongitudinalvehiclespeed.Atthispoint

itisnecessarytodiscretizetheellipticalcontactpatchinagridof

pointsinwhichthequantitiespn,ptandswillbeevaluated.Initially

thetransversalaxis(withrespecttothemotiondirection)ofthe

contactellipsehasbeendividedinny−1equalpartsofmagnitude

y=2b/(ny−1)bymeansofnyequidistantnodes.Thenthe

longitu-dinalsectionsofthepatch(long2a(y)= 2a



1−y/b2)havebeen

dividedinnx−1equalpartsofmagnitude x(y)=2a(y)/(nx−1)by

meansofnxequidistantnodes(seeFig.11).Duetothisstrategythe

longitudinalgridresolutionisnotconstantbutincreasesnearthe

lateraledgesoftheellipse,wherethelengthsa(y)aresmaller.This

procedureprovidesmoreaccurateresultsrightnexttotheedgesof

theellipse,whereaconstantresolutiongridwouldgenerate

exces-sivenumericalnoise.Thevaluesofthenxandnyparametershave

toassuretherightbalancebetweenprecisionandcomputational

load;goodvaluesofcompromiseareintherange[2550].

Oncethecontactpatchisdiscretized,theFASTSIMalgorithm

allowstheiterativeevaluationofboththecontactpressuresvalue

pn,ptandthelocalcreepagesinordertodividethecontactpatch

inadhesionandslipzone.Indicatingthegenericpointofthegrid

with(xi,yj),1≤i≤nx1≤j≤ny,thenormalcontactpressurecanbe

expressedas: pn(xi,yj)= 3 2 Nr ab



1−x 2 i a2− y2 j b2 (26)

whereNristhenormalcontactforce,whilethelimitadhesion

pres-surepAis: pA(xi,yj)=pt(xi−1,yj)−



εx εy



x(yj) L ; (27)

thus,knowingthevariablevaluesinthepoint(xi−1,yj),itispossible

topasstothepoint(xi,yj)asfollows:

if



pA(xi,yj)



≤pn(xi,yj) arrow



pt(xi,yj)=pA(xi,yj) s(xi,yj)=0 (28a) if



pA(xi,yj)



>pn(xi,yj) arrow



pt(xi,yj)=pn(xi,yj)pA(xi,yj)/pA(xi,yj) s(xi,yj)= LV x(yj) (pt(xi,yj)−pA(xi,yj)) (28b)

whereisthestaticfrictioncoefficient;Eqs.(28a)and(28b)hold

respectivelyintheadhesionandslipzone.Iteratingtheprocedure

for2≤i≤nxandsuccessivelyfor1≤j≤nyandassumingas

bound-aryconditionspt(x1,yj)=0,s(x1,yj)=0for1≤j≤ny(i.e.stressesand

creepageszerooutofthecontactpatch),thedesireddistributionof

pn(xi,yj),pt(xi,yj)ands(xi,yj)canbedetermined.

4.2. Thewearevaluation

Toevaluatethedistributionofremovedmaterialonwheeland

railduetowear(assumingdrycontactconditions)an

experimen-talrelationshipbetweenthevolumeofremovedmaterialandthe

frictionalwork[6,7]hasbeenused.Particularlytherelationshipis

abletodirectlyevaluatethespecificvolumeofremovedmaterial

ı

Pwijk(t)(x,y)andıPrijk(t)(x,y)relatedtotheithcontactpointsP

jk wi(t)

andPrijk(t)onthejthwheelandrailpairduringthekthoftheNc

dynamicsimulations.

Thecalculationofı

Pjki(t)(x,y)requiresfirstofalltheevaluation

ofthefrictionpowerdevelopedbythetangentialcontactstresses;

tothispurposethewearindexIW(expressedinN/mm2)isdefined

asfollows:

IW=

pt·s

V . (29)

Thisindex, bymeansof appropriateexperimentaltests, canbe

correlated with the wear rate KW (expressed in ␮g/(mmm2))

which representsthemassof removedmaterialforunit of

dis-tance traveled by the vehicle (expressed in m) and for unit

of surface (expressed in mm2). Wear tests carried out in the

caseofmetal–metalcontactwithdrysurfacesusingatwindisc

(10)

Fig.12.TrendofthewearrateKW.

relationship between KW and IW adopted for the wear model

describedinthisworkisthefollowing(seeFig.12):

KW(IW)=



5.3∗IW IW<10.4 55.0 10.4≤IW≤77.2 61.9∗IW IW>77.2. (30)

OncethewearrateKW(IW)isknown(the samebothfor the

wheelandfortherail),thespecificvolumeofremovedmaterialon

thewheelandontherail(forunitofdistancetraveledbythe

vehi-cleandforunitofsurface)canbecalculatedasfollows(expressed

inmm3/(mmm2)): ı Pwijk(t)(x,y)=KW(IW) 1 (31) ı Prijk(t)(x,y)=KW(IW) 1 (32)

whereisthematerialdensity(expressedinkg/m3).

4.3. Profileupdate

Theprofileupdatestrategyisthesetofnumericalprocedures

thatallowsthecalculationofthenewprofiles ofwheelwn(yw)

andrailrn(yr)(theprofilesatthenextstep),startingfromtheold

profilesofwheelwo(yw)andrailro(yr)(i.e.theprofilesatthe

cur-rentstep)andallthedistributionsofremovedmaterialı

Pwijk(t)(x,y)

andı

Prijk(t)(x,y).Theupdatestrategy,besidesevaluatingthenew

profiles,isnecessaryfortwoadditionalreasons:

1.thenecessitytoremovethenumericalnoisethatcharacterizes

thedistributionsı

Pjki(t)(x,y)andthat,duetononphysical

alter-ationsof thenew profiles,can causeproblems totheglobal

contactmodel;

2.theneed to mediatethe distributions ı

Pijk(t)(x,y) in order to

obtainasingleprofilebothforthewheelandtherailasoutput

ofthewearmodel(asrequiredbythespecificationsofTrenitalia

andRFI).

Thefollowingmainstepscanbedistinguished:

• Longitudinalintegration: 1 2w(yjkwi)



+a(y) −a(y) ıPjk wi(t) (x,y)dx=ıtot Pjkwi(t)(y) (33) 1 ltrack



+a(y) −a(y) ı Prijk(t)(x,y)dx=ı tot Prijk(t)(y) (34)

wherew(ywijk)isthewheelradiusevaluatedinyjkwiandltrackisthe

lengthofthesimulatedtrack.Thisfirstintegrationsums,inthe

longitudinaldirection,allthewearcontributesinsidethe

con-tactpathandaveragesthisquantityoverthewholelongitudinal

Fig.13. Normalabscissaforthewheelandrailprofile.

developmentofthewheelandoftherail(bymeansofthe

fac-tors1/2w(yjkwi)and1/ltrack);inotherwordsitprovidesthemean

value ofremoved material(expressed inmm3/(mmm2)). The

differencebetweentheterms1/ltrackand1/2w(yjkwi)(thetrack

lengthismuchgreaterthanthewheelcircumferencelength)is

themaincausethatleadsthewheeltowearmuchfasterthanthe

railandconsequentlytoadifferentscaleofmagnitudeofthetwo

investigatedphenomena.Thisreflectsthephysicalphenomena

thatthelifeoftherailismuchgreaterthanthatofthewheel.

Forthisreason,aswillbebetterexplainedinthefollowing,it

isnecessarytodevelopadifferentstrategyfortheupdateofthe

wheelandrailprofilerespectively.Inthisresearchthefollowing

strategieshavebeenadopted:

1.forthewheelupdatethemileagetraveledbyvehicleis

consid-ered.Thetotalmileagekmtot(derivedfromtheexperimental

dataprovidedbyTrenitaliaandRFI)issubdividedintoconstant

stepsoflengthequaltokmstep;

2.fortherailupdate,thetotaltonnageburdenonthetrack[18]is

considered.ThevehiclenumberNtotcorrespondingtothetotal

consideredtonnageissubdividedintoconstantstepsequalto

Nstep. • Trackintegration:



Tend Tin ıtot Pwijk(t)(y)V (t)dt≈



Tend Tin ıtot Pwijk(t)(sw−s cjk wi(t))V (t)dt= Pwijk(sw) (35)



Tend Tin ıtot Pjk ri(t) (y)V (t)dt≈



Tend Tin ıtot Pjk ri(t) (sr−scjkri (t))V (t)dt= Pjk ri (sr); (36)

thetrackintegrationsumsallthewearcontributescomingfrom

thedynamicsimulationtoobtainthedepthofremovedmaterial

forwheel

Pwijk(sw)andrail Prijk(sr)expressedinmm=mm

3/mm2.

Inordertohaveabetteraccuracyinthecalculationoftheworn

profiles,thenaturalabscissasswandsrofthecurvesw(yw)and

r(yr)havebeenintroduced.Inparticularthefollowingrelations

locallyhold(seeFig.13):

y≈sw−scjkwi(t) y≈sr−scjkri (t) (37)

w(yw)=w(yw(sw))= ˜w(sw) r(yr)=r(yr(sr))= ˜r(sr) (38)

wherethenaturalabscissasofthecontactpointsscjkwi andscjkwi can

beevaluatedfromtheirpositionsPwijkandPrijk.

• Sumonthecontactpoints:

NPDC



i=1 Pjkwi(sw)= w jk(sw) (39) NPDC



i=1 Pjk ri (sr)= rjk(sr) (40)

(11)

Fig.14.Discretizationofthetotalmileage.

whereNPDCisthemaximumnumberofcontactpointsofeach

singlewheel(andrespectivelyofeachsinglerail);sincethe

num-berofcontactpointsonthewheel–railpairisusuallylessthan

NPDCandchangesinthetimeduringthedynamicsimulation,it

hasbeenassumedthatthewearcontributionassociatedtothe

fictitiouspointsiszero.

• Averageonthevehiclewheelsandonthedynamicsimulations:

Nc



k=1 pk 1 Nw Nw



j=1 w jk(sw)= w (sw) (41) Nc



k=1 pk 1 Nw Nw



j=1 r jk(sr)= r (sr) (42)

whereNwisthenumberofvehiclewheelswhilethepk,1≤k≤Nc,



NC

k=1pk=1arethestatisticalweightsassociatedtothevarious

dynamic simulationsderived fromthestatisticalanalysis.The

averageonthenumberofwheel–railpairshastobeevaluated

inordertoobtainasoutputofthewearmodelasingleaverage

profilebothforthewheelandfortherail(asrequiredbyTrenitalia

andRFI).

• Scaling:

theaimofthescalingprocedureistoamplifythesmallquantity

ofmaterialremovedduringtheNcdynamicsimulationsand,at

thesametime,tolimitthecomputationalload;usingthealmost

linearityofthewearmodelwiththetraveleddistance,itis

possi-bletoamplifytheremovedmaterialbymeansofascalingfactor

whichincreasesthedistancetraveledbythevehicle.

Thealmostlinearityofthewearmodelinsidethediscretesteps

kmstepin whichthetotalmileage traveledkmtot issubdivided

isaworkinghypothesiscomingfromthediscreteapproachof

themodel.Itisbasedontheideathatthewearrateinsidethe

simulateddistance(kmprove)remainsthesamealsoinsidethe

dis-cretestepkmstep,sincetheconsideredvehiclealwayscoversthe

sametracksofthestatisticalanalysisbothduringthesimulated

distance(kmprove)andduringthediscretestep(kmstep).

Inthisworkaconstantdiscretestephasbeenchosentoupdate

thewheelandrailprofiles(seeFig.14):infactthismethodwell

adaptstothealmostlinearcharacteristicofthewearevolution.

Furthermoreitrequireslimitedcomputationalloadwithout

los-ingaccuracyifcomparedwithdifferentsuitablestrategiesasthe

adaptivestep[7].

Theevaluationofthediscretestep,withtheconsequentscaling

of w(sw)and

r

(sr),representsthemajordifferencebetween

wheelupdateandrailupdate:

1. theremovedmaterialonthewheelduetowearisproportional

tothedistancetraveledbythevehicle;infactapointofthe

wheelisfrequentlyincontactwiththerailinanumberoftimes

proportionaltothedistance.Thefollowingnomenclaturecan

beenintroduced(seeFig.14):

–kmtotisthetotalmileagetraveledbytheconsidered

vehi-cle(kmtotcanbechosendependingonthepurposeofthe

simulations,forexampleequaltothere-profilingintervals);

– kmstepisthelengthofthediscretestepinwhichthetotal

mileagekmtotissubdivided;

–kmprove=ltrackistheoverallmileagetraveledbythevehicle

duringtheNcdynamicsimulations;thenecessityof

accept-ablecomputationaltimeforthemultibodysimulationsleads

toadoptsmallvalueofthekmprovelengthandforthis

rea-sontherelativeremovedmaterialhastobescaledwitha

multiplicativefactor.

Finallythematerialremovedonthewheelhastobescaled

accordingtothefollowinglaw:

w(sw)

kmstep

kmprove = w sc

(sw). (43)

Thechoiceofthespatialstepmustbeagoodcompromise

betweennumericalefficiencyandtheaccuracyrequired by

thewearmodel.Akmsteptoosmallcomparedtokmtotwould

provideaccurateresultsbutexcessivecalculationtimes;the

contraryhappenswithkmsteptoobigcomparedtokmtot.

2.thedepthofrailwearisnotproportionaltothedistance

trav-eledbythevehicle;infacttherailtendstowearoutonlyin

thezonewhereitiscrossedbythevehicleand,increasingthe

traveleddistance,thedepthofremovedmaterialremainsthe

same.Ontheotherhandtherailwearisproportionaltothe

totaltonnageMtotburdenontherailandthustothetotal

vehi-clenumberNtotmovingonthetrack.Therefore,ifNstepisthe

vehiclenumbermovinginadiscretestep,thequantityofrail

removedmaterialateachstepwillbe:

r(sr)∗Nstep=

r sc

(sr) (44)

whereNstepiscalculatedsubdividinginconstantstepthe

vehi-clenumberNtotcorrespondingtothetotaltonnagethathasto

besimulated;Ntotcanbeobtainedstartingfromthevehicle

massMv:

Ntot=Mtot

Mv . (45)

• Smoothingoftheremovedmaterial:

I



w sc(sw)



= w scsm(sw) (46) I



r sc(sr)



= r scsm(sr); (47)

thesmoothingoftheremovedmaterialfunctionisnecessaryto

removethenumericalnoisethataffectsthisquantityandthat

wouldbepassedtothenewprofiles ˜wn(sw)and ˜rn(sr)ofwheel

andrailcausingproblemstotheglobalcontactmodel.Tothis

end,adiscretefilter(i.e.amovingaveragefilterwithwindow

sizeequalto1%÷5%ofthetotalnumberofpointsinwhichthe

profilesarediscretized) hasbeenused;obviously thediscrete

filterhastoconservethemass.

• Profileupdate:



yw(sw) ˜ wo(sw)



− w scsm(sw)nrw re−parameterization −→



yw(sw) ˜ wn(sw)





yr(sr) ˜ro(sr)



− r scsm(sr)nrr re−parameterization −→



yr(sr) ˜rn(sr)



; (48)

thelaststepconsistsin theupdateoftheoldprofiles ˜wo(s)=

wo(y)and ˜ro(sr)=ro(yr)toobtainthenewprofiles ˜wn(s)=wn(y)

and ˜rn(sr)=rn(yr);sincetheremovalofmaterialoccursinthe

normaldirectiontotheprofiles(nr

wandnrraretheoutgoingunit

vectorforthewheelandrailprofilerespectively),onceremoved

thequantities w scsm(sw)and

r sc

sm(sr),are-parameterizationof

theprofilesisneededinordertoobtainagaincurves

(12)

5. Wearmodelvalidation

Inthis sectionthewearmodelvalidation phasewillbe

pre-sented. Initially, the set of Nc curvilinear tracks,on which the

dynamicsimulationsof theDMU Aln501Minuettovehiclehave

beenperformed,willbeintroduced(tracksextractedstartingfrom

thestatisticalanalysisoftheAosta-PreSaintDidiertrack,thedata

of which has been provided by RFI); moreover the wear

con-trolparametersforthewheelandrailwillbedefined(theflange

heightFH,theflangethicknessFT,theflangesteepnessQRand

thequotaQMfortherail).Thentheexperimentaldata(provided

byTrenitalia)measuredontheAosta-PreSaintDidiertrackand

theirprocessingwillbeintroduced.Finally,thesimulation

strat-egyusedtoanalyzethewearbothonthewheelandontherailwill

bedescribedandtheresultsobtainedwiththewearmodelwillbe

analyzedandcomparedwiththeexperimentaldata.

5.1. StatisticalanalysisoftheAosta-PreSaintDidiertrack

StartingfromthedataofthewholeAosta-PreSaintDidiertrack

(providedbyRFI),thestatisticalanalysishasbeenperformedby

dividingthelinebothinradiusclasses(determinedbyRmin and

Rmax)andinsuperelevationclasses(determinedbyhminandhmax)

[11].Moreparticularlyfivesuperelevationsubclassesaredefined

foreachradiusclass.Thesubclassesthatdonotincludecurvehave

notbeentakenintoaccountinthedefinitionofthesetofNctracks.

AlltheNccurvedtracksareshowninTable3.

ThesetconsistsinNc=18distinctelements(17realcurvesand

thestraightline)characterizedbytheradiusvalueRc,the

superel-evationvalueH,thetravelingspeedVandthestatisticalweightpk

(with1≤k≤Nc)thatrepresentsthefrequency withwhich each

curveappearsonthe consideredrailwaytrack (Aosta-PreSaint

Didierline).TheradiiRcarecalculatedbymeansoftheweighted

meanonallthecurveradiiincludedinthecorresponding

superel-evationsubclass(theweightedfactoristhelengthofthecurvesin

therealtrack).Foreachsubclass,thevalueHisthemostfrequent

superelevationvalueamongthestandardvaluesthatcharacterize

thecurvesoftheconsideredsuperelevationsubclass.Thetraveling

speedsVarecalculatedimposingathresholdvalueonthe

uncom-pensatedaccelerationalim

nc=0.6m/s2: ˜ V2 Rc − H sg=a lim nc (49)

wheresistherailwaygaugeandgisthegravityacceleration.The

estimatedspeed ˜Vhasbeenthencomparedwiththemaximum

velocityVmaxonthelinetogetthedesiredtravelingspeed V=

min( ˜V ,Vmax).

5.2. Wearcontrolparameters

ThereferencequotasFH,FTandQRareintroducedinorderto

estimatethewheelprofileevolutionduetothewearwithout

nec-essarilyknowingthewholeprofileshape(seeFig.15).According

tothesequotastheuserwillbeablebothtoestablishedwhenthe

wornwheelprofilewillhavetobere-profiledandtodetectifthe

wearcompromisesthedynamicalstabilityofthevehicle[19].

Theproceduretodefinethereferencequotasisthefollowing:

1.firstofallthepointP0isdefinedontheprofile,at70mmfrom

theinternalverticalfaceofthewheel;

2.thenthepointP1isintroducedontheprofile,2mmunderthe

flangevertex;

3.finallythepointP2isdeterminedontheprofile,10mmunder

thepointP0;

4. thewear control parameters are then calculated as follows:

theflangethicknessFTisthehorizontaldistancebetweenthe

Fig.15.Definitionofthewheelwearcontrolparameters.

internalverticalfaceandthepointP2;theflangesteepnessQR

isthehorizontaldistancebetweenthepointsP1andP2,while

theflangeheightFHistheverticaldistancebetweenP0andthe

flangevertex(allthedistancesareconsideredpositive).

Anadditionalcontrolparameteristhenintroducedtoevaluate

theevolutionofrailwear.ParticularlytheQMquotaisdefinedas

therailheadheightinthepointyr=760mmwithrespecttothe

centerlineofthetrack:thisyrvaluedependsontherailwaygauge

(equalto1435mmintheAosta-PreSaintDidierline)andonthe

layingangle˛pofthetrack(equalto1/20rad).PhysicallytheQM

quotagivesinformationontherailheadwear(seeFig.16).

5.3. Experimentaldataandtheirprocessing

TheexperimentaldataprovidedbyTrenitaliaandRFIarerelated

onlytothewheelwearandconsistsinthewearcontrolparameters

measuredasafunctionofthetotaldistancetraveledbythe

con-sideredvehicleDMUAln501Minuetto;particularly,thedatahave

beenmeasuredonthreedifferentvehiclesoperatingonthesame

trackthatareconventionallycalledDM061,DM068,DM082.

AscanbeseenbyexampleinTable4forthevehicleMD061,

thereferencequotavalueshavebeenmeasuredforallthevehicle

wheels(eachvehiclehaseightwheelsetsasspecifiedinSection3.1).

Howeverthefollowingdataprocessinghasbeennecessaryinorder

toobtainasinglewheelprofilethatcouldbeeffectivelycompared

withtheprofileextractedfromthenumericalsimulationandto

reducethemeasurementerrors:

1.initiallythearithmeticmeanonallthesixteenvehiclewheelshas

beenevaluated;themeanisnecessarytoobtainasinglewheel

profileand,atthesametime,toreducethemeasurementerrors

affectingtheexperimentaldata;

2.thenascalingofthequotavalueshasbeencarriedoutinorder

todeletetheoffsetontheinitialvalueoftheconsidered

quanti-ties:thisprocedureimposesthatallthewearcontrolparameters

startfromtheirnominalvalues(thestandardvaluesfortheORE

S1002profilehavebeenused)inordertoremovetheinitial

differencesamongthevehiclesduetomeasurementerrors;

(13)

Table3

Dataofthecurvilineartracksofthestatisticalanalysis.

Rmin(m) Rmax(m) Superelevationhmin−hmax(mm) Rc(m) H(mm) V(km/h) pk(%)

147.1 156.3 0 – 10–40 – 60–80 – 90–120 150 120 55 0.77 130–160 – 156.3 166.7 0 – 10–40 – 60–80 – 90–120 160 110 55 0.48 130–160 165 140 55 0.56 166.7 178.6 0 – 10–40 – 60–80 – 90–120 170 110 55 0.82 130–160 175 130 55 1.55 178.6 192.3 0 – 10–40 – 60–80 – 90–120 190 100 55 8.37 130–160 180 130 55 0.45 192.3 208.3 0 – 10–40 – 60–80 – 90–120 200 90 55 20.64 130–160 200 130 60 4.00 208.3 227.3 0 – 10–40 – 60–80 220 80 55 0.70 90–120 220 100 55 3.76 130–160 – 227.3 250.0 0 – 10–40 – 60–80 240 80 55 7.26 90–120 240 110 60 5.28 130–160 – 250.0 312.5 0 – 10–40 – 60–80 270 70 55 3.91 90–120 270 90 60 5.29 130–160 – 312.5 416.7 0 – 10–40 – 60–80 370 60 55 2.26 90–120 345 100 70 1.63 130–160 – 416.7 ∞ 0 ∞ 0 70 32.27

3.the arithmetic mean on the three vehicle MD061, MD068, MD082hasnotbeencarriedout,inordertomaintaina disper-sionrangefortheexperimentaldata.

Theexperimentaldata,properlyprocessed,aresummarizedin Table5.Ascanbeseen,theflangeheightFHremainsapproximately

constantbecauseofthelowmileagetraveledbythevehicles,while

theflangethicknessFTandtheflangesteepnessQRdecreasealmost

linearlyandhighlight,accordingtothecharacteristicsofthetrack,

thewearconcentrationinthewheelflange.

5.4. Simulationstrategy

Inthissectionthesimulationcampaignperformedtostudythe

wearonwheelandrailisdescribed.AsexplainedinSection4.3,

thetwophenomenaevolveaccordingtodifferenttimescales

(sev-eralordersof magnitude)and afullysimulation ofsuchevents

wouldrequirea tooheavycomputationaleffort.For thisreason

thefollowingspecificalgorithmhasbeenadoptedforupdatingthe

profiles:

1.both for the wheel and for the rail five discrete stepshave

beenchosen,nsw=5andnsr=5,sotohaveagoodcompromise

betweencalculationtimesandresultaccuracy:

(a)thechoiceof thewheelkmstep (seeSection4.3)hasbeen

made considering the whole distance traveled equal to

kmtot≈3500km(gotfromexperimentaldata);thusthe

sin-glesteplengthwillbe:

kmstep=

kmtot

nsw ≈

700(km). (50)

(b) toestimatethevehiclenumberNtot(seeSection4.3)a

crite-rionpresentinliterature(basedonthetotaltonnageburden

onthetrack)hasbeenused[18].Particularlythereisa

pro-portionalityrelationshipbetweentonnageandwear:arail

wearof 1mmontherailheadheightevery100Mt

(14)

Table 4 Experimental data of the DMU Aln 501 Minuetto DM061. km quotas 1r 1l 2r 2l 3r 3l 4r 4l 5r 5l 6r 6l 7r 7l 8r 8l Wheel diameter Wheel diameter Wheel diameter Wheel diameter Wheel diameter Wheel diameter Wheel diameter Wheel diameter 816 mm 815 mm 824 mm 823 mm 823 mm 823 mm 819 mm 820 mm 0 F T 30.953 30.944 30.983 30.784 31.099 30.957 30.938 31.076 30.401 30.367 30.830 30.987 30.437 30.717 30.852 30.933 FH 27.970 27.894 28.141 28.043 27.969 28.187 28.030 28.271 28.245 27.918 28.141 27.982 28.013 27.937 28.333 27.883 QR 10.208 10.140 10.424 10.457 10.220 10.306 10.279 10.833 10.332 10.445 10.364 10.219 10.421 10.500 10.338 10.396 1426 FT 29.855 28.977 30.283 29.317 30.118 29.383 30.152 29.450 29.796 29.799 30.288 29.483 29.802 29.085 30.267 29.316 FH 28.010 27.923 28.104 28.108 28.000 28.249 28.095 28.278 28.248 28.284 28.247 28.030 28.997 28.003 30.383 27.919 QR 9.297 8.226 9.822 8.956 9.344 8.749 9.551 9.072 9.635 9.767 9.773 8.763 9.593 8.883 9.675 8.762 2001 FT 29.056 28.498 29.722 28.878 29.441 28.667 29.629 28.717 29.153 28.101 29.739 28.841 29.066 28.447 29.625 28.777 FH 27.990 27.880 28.161 28.080 29.998 28.248 28.128 28.283 28.290 27.994 28.273 28.022 28.027 28.014 28.362 27.957 QR 8.404 7.558 9.233 8.637 8.702 7.950 8.873 8.436 9.144 8.141 9.235 8.086 9.038 8.152 9.248 8.373 2575 FT 28.259 27.096 29.333 28.045 28.972 28.385 29.029 28.124 29.053 27.600 29.095 28.505 28.553 27.866 29.205 28.473 FH 28.009 27.089 28.173 28.020 28.063 28.243 28.090 28.241 28.285 27.963 28.244 28.085 28.030 28.018 28.352 27.968 QR 7.198 7.024 8.853 8.163 8.123 7.598 8.438 7.791 8.868 7.395 8.559 7.840 8.372 7.340 8.777 7.900

appreciablerailwear,amaximumvalueofremovedmaterial

depthof2mmontherailheadheighthasbeenhypothesized

(naturallythisvaluecanbechangedaccordingtothe

require-mentsofthesimulation).Thenumberofvehicles,ofknown

massMv(seeTable1),whichshouldevolveonthetrackto

reachthe200Mt,hasbeenthereforecalculated:

Ntot= Mtot Mv ≈ 2,000,000 (51) andthen: Nstep= Ntot nsr ≈ 400,000. (52)

2.the wear evolution on wheel and rail has been decoupled

becauseofthedifferentscalesofmagnitude:

(a)whilethewheel wearevolves,therail issupposed tobe

constant:infact,inthetimescaleconsidered,therailwear

variationisnegligible.

(b) becauseofthetimescalecharacteristicoftherailwear,each

discrete railprofilecomes incontact, withthesame

fre-quency,witheachpossiblewheelprofile.Forthisreason,for

eachrailprofile,thewholewheelwearevolution(fromthe

originalprofiletothefinalprofile)hasbeensimulated.

Basedonthetwoprevioushypotheses,thesimulationshave

beencarriedoutaccordingtothefollowingstrategy:

Wheelprofileevolutionatfirstrailstep:w0

i p1,1



w0 0 r0





w0 1 r0



→···→



w0 4 r0



→w0 5

Averageontherailsr(i1+1)forthecalculationofthesecondrail

step:r1 p1,2

w0 0 r0 w0 1 r0 . . . ... w0 4 r0

r1(1) r1(2) . . . r1(5)

→r1 . . .

Wheelprofileevolutionatfourthrailstep:w4

i p5,1



w4 0 r4





w4 1 r4



→···→



w4 4 r4



→w4 5

Averageontherailsr(i5+1)forthecalculationofthefifthrail

step:r5 p5,2

w4 0 r4 w4 1 r4 . . . ... w4 4 r4

r5(1) r5(2) . . . r5(5)

→r5 (53)

wherewjiindicatestheithstepofthewheelprofilethatevolves

(15)

Table5

Experimentaldataprocessed.

Vehicle Distancetraveled(km) FH(mm) FT(mm) QR(mm)

DM061 0 28.0 32.5 10.8 1426 28.2 31.5 9.8 2001 28.1 30.8 9.1 2575 28.0 30.2 8.6 DM068 0 28.0 32.5 10.8 1050 28.0 31.8 10.0 2253 28.0 30.2 8.5 2576 28.0 30.0 8.4 DM082 0 28.0 32.5 10.8 852 28.0 32.3 10.6 1800 28.0 31.3 9.6 2802 28.0 30.3 8.7 3537 27.6 30.0 8.3

thesameforeachjandcorrespondtotheunwornwheelprofile (ORES1002).

Initially the wheel (starting from the unworn profile w0 0)

evolvesontheunwornrailprofiler0inordertoproducethe

dis-cretewheelprofilesw0

0,w01,...,w50(stepp1,1).Thenthevirtual

railprofilesr(i+1)1 ,obtainedbymeansofthesimulations(w0 i,r0)

with0≤i≤4,arearithmeticallyaveragedsoastogettheupdate railprofiler1(stepp1,2).Thisprocedurecanberepeatednsrtimes

inordertoperformalltheraildiscretesteps(uptothestepp5,2).

Thecomputationaleffortrequiredbythesimulationstrategy isthefollowing:

(a)inthewheelwearstudy,foreachupdateoftherailprofile rj,thewholewheelwearloopwijwith0≤i≤4(nswstepsof

simulation)issimulated.Thecomputationaleffortresultsof nsw×nsr=25stepsbothforthedynamicanalysis(in

Sim-packRail) andfor thewearmodel necessarytocalculate theremovedmaterialonthewheel(inMatlab).Sothetotal numberofsimulationstepsare2(nsw×nsr)=50.

(b)intherailwearstudythedynamicanalysesarethesame asthepreviouscasebecauseforeach railstepthewheel profileswij(0≤i≤4)aresimulatedonrjinordertoobtain

rj(i+1)andthustheupdatedrailprofilerj+1bymeansofan

arithmeticmean.Therefore,noadditionaldynamical anal-yses are needed. In this caseonly the wearmodel steps mustbesimulatedsoastogettheremovedmaterialonthe rail.Consequentlythetotalnumberofsimulationstepsis nsw×nsr=25.

Thecharacteristicsoftheprocessorusedinthesimulationsand themeancomputationaltimesrelativetoeachdiscretestepofthe wholemodelloop(dynamicalsimulationandwearsimulation)are brieflysummarizedinTable6.

5.5. Evolutionofwearcontrolparameters

In this section the evolutionof thewheel reference quotas

numericallyevaluatedbymeansofthewearmodel(flange

thick-nessFT,flangeheightFHandflangesteepnessQR)willbecompared

withtheexperimentaldataconcerningthethree DMUsAln 501

Table6

Computationaltime.

Processor Computationaltime

Dynamicsimulation

(SimpackRail)

Wearsimulation

(Matlab)

INTELXeonCPUE5430

2.66GHz8GBRAM

2h2s 31s

Fig.17.FTdimensionprogress.

Fig.18.FHdimensionprogress.

Minuettovehicles.FurthermoretherailreferencequotaQM evo-lutionwillbeshownandcomparedwiththecriterionpresentin literaturebasedonthetotaltonnageburdenonthetrack[18].

TheprogressofFTdimension,forthensrdiscretestepoftherail,

isshowninFig.17asafunctionofthemileage;asitcanbeseen,

thedecreaseofthedimensionisalmostlinearwiththetraveled

distanceexceptinthefirstphases,wheretheprofilesarestillnot

conformalenough.TheFHquotaprogressisrepresentedinFig.18

andshowsthat,duetothepresenceofmanysharpcurvesinthe

statisticalanalysisofthetrackandtothefewkilometerstraveled,

thewheelwearismainlylocalizedontheflangeratherthanonthe

treadandtheflangeheightremainsnearconstantinagreement

withexperimentaldata.TheQRtrendisshowninFig.19:alsothe

flangesteepnessdecreasesalmostlinearly,leadingtoanincreaseof

(16)

Fig.20.QMdimensionprogress.

theconicityoftheflange.Finally,theevolutionofthewheelcontrol

parametersremainsquantitativelyandqualitativelysimilarasthe

railwearraises.

Althoughthesimulatedmileageisquiteshortconsideringthe

meantraveleddistancebetweentwoturningsofthewheelsina

standardscenery(infacttheFHquotaremainsalmostconstant),

thevariationsoftheFTandQRdimensionsareremarkableandit

highlightsthewearproblemsaffectingthevehicleDMUAln501

Minuettorunningalongtherailwaylinetakenintoaccount.

Inconclusion,thecomparisonsshowthattheoutputsof the

wearmodelareconsistentwiththeexperimentaldata,bothfor

theflangedimension(FH,FT)andfortheconicity(QR);theslightly

steeperdevelopmentoftheexperimentaldatathanthesimulation

canbeexplainedwiththedispersionoftheexperimentaldataand

withwearmechanisms,likeplasticandpittingwear,not

consid-eredinthedevelopedwearmodel.

Finally,theQMevolutionfortheanalysisoftherailwearis

pre-sentedinFig.20andshowsthealmostlineardependencebetween

therailwearandthetotaltonnageburdenonthetrack:theamount

ofremovedmaterialontherailprofileisinagreementwiththe

cri-terionpresentin literature(1mmontherailheadheightevery

100Mtofaccumulatedtonnage).

5.6. Evolutionofthewheelandrailprofiles

Thewearevolutiononthewheelprofilesevolvingoneachrail

rj(with 0≤j≤nsrand nsr=5)is presentedin thefollowing(see

Figs.21and23–27).Asstatedpreviously,thewheelprofile

evolu-tionisdescribedbymeansofnsw=5stepsandthespatialstepkmstep

hasbeenchosenequalto700km,sincethetotalmileagekmtotis

3500km.Fig.22showsthecumulativedistributionsofremoved

materialinverticaldirectionzwonthewheelprofileatfirstrailstep

wKw(yw)=



Kw

i=1 iw(yw)asafunctionofyw(1≤Kw≤nsw),where

w

i (yw)istheremovedmaterialbetweentwosubsequentdiscrete

stepsofthewheelprofileevolution.

Thequitelimiteddistancetraveledbythevehiclejustifiesthe

lowwearonthewheeltreadandentailsasmallreductionofthe

rollingradius.Howeverthehightortuosityoftheconsideredtrack

leadstoappreciablewearonthewheelflange.InFigs.21and23–27,

focusingontheflangezone,thehigherwearrateduringthefirst

Fig.21.Evolutionofthewheelprofileonther0rail.

Fig.22. Cumulativedistributionsoftheremovedwheelmaterial.

Fig.23.Evolutionofthewheelprofileonther0railintheflangezone.

Fig.24.Evolutionofthewheelprofileonther1rail.

stepscanbeobservedbecauseoftheinitialnon-conformalcontact

thatcharacterizesthecouplingbetweentheORES1002wheel

pro-fileandtheUIC60railprofilewithaninclinationof˛p=1/20rad;

thentheratedecreasesbecomingmoreregularandconstantinthe

laststeps,whenthecontactismoreandmoreconformal.

Alsoasregardsthewheelprofileevolution(asforthereference

quotas)thetrendremainsquantitativelyandqualitativelythesame

astherailwearraises(seeFigs.24–27).

In Figs.28 and 30theevolutionoftherailprofileis shown,

described bymeansofnsr=5discrete stepand withNstepequal

to400,000(the vehiclenumber Ntot,correspondingtothetotal

studied tonnage Mtot, is 2,000,000). In Fig. 29 the cumulative

distribution of the removed material on the rail proflie in zr

(17)

Fig.26.Evolutionofthewheelprofileonther3rail.

Fig.27.Evolutionofthewheelprofileonther4rail.

Fig.28.Evolutionoftherailprofile.

Fig.29.Cumulativedistributionsoftheremovedrailmaterial.

direction rKr(yr)=



Kr

i=1 ri(yr)expressedasafunctionofyr(with

1≤Kr≤nsr) is shown, where ir(yr) is the removed material

betweentwosubsequentdiscretestepsoftherailprofile

evolu-tion.Thevalueoftotaltonnagetakenintoaccount(Mtot=200Mt)

causesanappreciablewearontherailhead,whileitisnotsufficient

toproduceanhighwearalsoontherailshouder(Fig.30).

Fig.30. Evolutionoftherailprofileinheadzone.

6. Conclusions

InthisworktheAuthorspresentedacompletemodelforthe

wheelandrailwearpredictioninrailwayapplication,developed

thanks tothe collaboration withTrenitalia S.p.A and Rete

Fer-roviariaItaliana(RFI),whichprovidedthenecessarytechnicaland

experimentaldataforthemodelvalidation. Thewholemodelis

madeupoftwomutuallyinteractiveparts.Thefirstoneevaluates

thevehicledynamicsandcomprisesboththemultibodymodelof

thevehicleimplementedinSimpackRailandaglobalwheel–rail

contactmodel(developedbytheAuthorsinpreviousworks)for

thecalculationofthecontactpointsandofthecontactforces.The

secondoneisthewearmodelwhich,startingfromtheoutputsof

themultibodysimulations,evaluatestheamountofmaterialtobe

removedduetowear.Theinteractionbetweenthetwopartsisnota

continuoustimeprocessbutoccursatdiscretesteps;consequently

theevolutionofthewheelandrailgeometryisdescribedthrough

severalintermediateprofiles.

Inparticularasuitableupdatealgorithmhasbeendevelopedin

ordertoconsiderthedifferenttimescalecharacterizingthewheel

andrailwearevolution:thewheelwearhasbeenstudiedbasing

onthedistancetraveledbyvehicle,whiletherailwearhasbeen

evaluatedbasingonthetotaltonnageburdenontherailwaytrack.

The whole model has been validated on a critical scenario

in termsof wearinItalian railways:theALSTOM DMU Aln501

MinuettocirculatingontheAosta-PreSaintDidierrailwayline.A

statisticalapproachtodescribethetrackhasbeenusedtoreduce

thetotalcomputationaleffort.

As regards the wheel wear, the results obtained from the

dynamic simulationshavebeencompared withthe

experimen-taldataprovidedbyTrenitaliawhile,concerningtherailwear,the

comparisonwithexperimentalcriteriabasedonthetotaltonnage

burdenontherailwaytrackhavebeenconsidered.Thedeveloped

modelreproducesquitegoodtheevolutionofalltheprofile

charac-teristicdimensionsdescribinginsatisfyingwaythewearprogress

bothonthewheelandontherail.

Theresultsobtainedforthewheelprofileevolutionhighlights

how,intheparticularoperatingconditionsofthestudiedrailway

line,thewearisquitesevereandstronglylocalizedonthewheel

flange,leadingtofrequentmaintenanceinterventions.Asregards

therailprofileevolution,thewearismainlyfocusedontherail

headduetotheinitiallowconformityofthecouplingORES

1002-UIC60with˛p=1/20radwhilethetotaltonnageconsideredisnot

sufficienttoproduceanhighwearalsoontheshouderoftherail.

Futuredevelopmentswillbebasedonfurtherexperimentaldata

(relative tootherrailway trackwitha higher mileagethan the

Aosta-PreSaintDidierline)alwaysprovidedbyTrenitaliaandRFI

and referredtoadvancedwearonthewheel(especiallyonthe

wheeltread)and ontherail. Inthis wayotheranalysiswillbe

carriedoutinordertofurthervalidatethewholemodel.

Moreoverotherwearmechanismsinadditiontoabrasivewear

(plasticwear,pitting wearetc.),thatmaybecomequite

impor-tantespeciallyinconditionsofadvancedwear(inparticularonthe

wheelflange),willbeconsideredwithinthewearmodel.Finally,

acodeoptimization,concerningthevehiclemodel(inparticular

theglobalcontactmodel),thewearmodelandthewholeloop,is

scheduledforthefutureinordertoreducethesimulationtimes.

Acknowledgements

AuthorswouldliketothankEngg.R.CheliandG.Grandeof

Tren-italiaS.p.A.forprovidingandgivingthepermissiontoeditthedata

relativebothtothevehicleDMUAln501Minuettoandtothewheel

Riferimenti

Documenti correlati

Cosmological bounds and signatures Bounds on quasistable relics depend on their lifetime τg˜ ; on their mass M g˜ ; on their relic abundance, which for gluinos we computed in terms

Meta-modeling principles are concretely exploited in the implementation of an adaptable patient-centric Electronic Health Record EHR system to face a number of challenging

Il modello cellulare di senescenza di preadipociti e adipociti maturi è stato confermato in entrambi i casi dall’aumentato numero di cellule ß-galattosidasi positive e

TIM-1 is also expressed on activated B cells (Rennert, Immunol Lett 2011), which have a low capacity to roll on endothelial selectins (data not shown), suggesting a selective role

elsewhere, uses first qualitative serological rapid tests, and then RT-PCR tests in case of positive immune response. The strategy is going to be applied to a large portion of

Il ninfeo di Egeria sulla via Appia e la grotta degli Animali di Castello: mito e architettura tra Roma e Firenze.. Emanuela Ferretti, Salvatore

Two vertical movements interrupted by a short horizontal movement were added together; however, if the horizontal interruption was wider than 10 cm a new “0” point was set, and

Extracts pomegranate peel Polyphenol extracts: Pomegranate peel, which is a by-product of pomegranate juice processing, is a rich source of antioxidants compared to edible arils and