• Non ci sono risultati.

A novel resistance mechanism to triclosan that suggests horizontal gene transfer and demonstrates a potential selective pressure for reduced biocide susceptibility in clinical strains of Staphylococcus aureus

N/A
N/A
Protected

Academic year: 2021

Condividi "A novel resistance mechanism to triclosan that suggests horizontal gene transfer and demonstrates a potential selective pressure for reduced biocide susceptibility in clinical strains of Staphylococcus aureus"

Copied!
11
0
0

Testo completo

(1)

InternationalJournalofAntimicrobialAgents40 (2012) 210–220

ContentslistsavailableatSciVerseScienceDirect

International

Journal

of

Antimicrobial

Agents

jo u rn al h om epa g e :h t t p : / / w w w . e l s e v i e r . c o m / l o c a t e / i j a n t i m i c a g

A

novel

resistance

mechanism

to

triclosan

that

suggests

horizontal

gene

transfer

and

demonstrates

a

potential

selective

pressure

for

reduced

biocide

susceptibility

in

clinical

strains

of

Staphylococcus

aureus

Maria

Laura

Ciusa

a,1

,

Leonardo

Furi

a,1

,

Daniel

Knight

b,1

,

Francesca

Decorosi

c

,

Marco

Fondi

d

,

Carla

Raggi

e

,

Joana

Rosado

Coelho

f

,

Luis

Aragones

g

,

Laura

Moce

g

,

Pilar

Visa

g

,

Ana

Teresa

Freitas

f

,

Lucilla

Baldassarri

e

,

Renato

Fani

d

,

Carlo

Viti

c

,

Graziella

Orefici

e

,

Jose

Luis

Martinez

h

,

Ian

Morrissey

b,∗∗

,

Marco

Rinaldo

Oggioni

a,∗

,

the

BIOHYPO

Consortium

aDipartimentodiBiotecnologia,UniversitàdiSiena,Siena,Italy bQuotientBioresearch,Fordham,UK

cDipartimentodiBiotecnologieAgrarie,UniversitàdiFirenze,Firenze,Italy dDipartimentodiBiologiaEvolutiva,UniversitàdiFirenze,Firenze,Italy eIstitutoSuperiorediSanità,Roma,Italy

fEurofinsBiolab,Barcelona,Spain

gINESC-ID/ISTTechnicalUniversityofLisbon,Lisbon,Portugal hCentroNacionaldeBiotecnologia–CSIC,Madrid,Spain

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received27February2012 Accepted24April2012 Keywords: Biocide Resistance Cross-resistance Horizontalgenetransfer FabI

Triclosan

a

b

s

t

r

a

c

t

ThewidelyusedbiocidetriclosanselectivelytargetsFabI,theNADH-dependenttrans-2-enoyl-acylcarrier

proteinreductase,whichisanimportanttargetfornarrow-spectrumantimicrobialdrugdevelopment.

Inrelationtothegrowingconcernaboutbiocideresistance,wecomparedinvitromutantsandclinical

isolatesofStaphylococcusaureuswithreducedtriclosansusceptibility.ClinicalisolatesofS.aureusas

wellaslaboratory-generatedmutantswereassayedforminimuminhibitoryconcentration(MIC)and

minimumbactericidalconcentration(MBC)phenotypesandgenotypesrelatedtoreducedtriclosan

sus-ceptibility.Apotentialepidemiologicalcut-off(ECOFF)MBCof>4mg/Lwasobservedfortriclosanin

clinicalisolatesofS.aureus.TheseshowedsignificantlylowerMICsandhigherMBCsthanlaboratory

mutants.Thesegroupsofstrainsalsohadfewsimilaritiesinthetriclosanresistancemechanism.

Molec-ularanalysisidentifiednovelresistancemechanismslinkedtothepresenceofanadditionalsh-fabIallele

derivedfromStaphylococcushaemolyticus.Thelackofpredictivevalueofin-vitro-selectedmutationsfor

clinicalisolatesindicatesthatlaboratorytestsinthepresentformappeartobeoflimitedvalue.More

importantly,detectionofsh-fabIasanovelresistancemechanismwithhighpotentialforhorizontalgene

transferdemonstratesforthefirsttimethatabiocidecouldexertaselectivepressureabletodrivethe

spreadofaresistancedeterminantinahumanpathogen.

© 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

1. Introduction

Thereis growing concernworldwide regarding thepossible

effect of biocides on antibiotic resistance. The Food and Drug

Administration(FDA)andtheEnvironmental ProtectionAgency

∗ Correspondingauthor.Presentaddress:DipartimentodiBiotecnologia, Policlin-icoLeScotte(lotto5,piano1),UniversitàdiSiena,53100Siena,Italy.

Tel.:+390577233101.

∗∗ Correspondingauthor.Presentaddress:QuotientBioresearch,NewmarketRoad, Fordham,CambsCB75WW,UK.Tel.:+441638722960.

E-mail addresses: i.morrissey@ntlworld.com (I. Morrissey), oggioni@unisi.it

(M.R.Oggioni).

1 Thesethreeauthorscontributedequallytothiswork.

(EPA)intheUSA,thePanelonBiologicalHazardsofthe Norwe-gianScientificCommitteeforFoodSafety,theScientificCommittee

onEmerging and NewlyIdentified Health Risks (SCENIHR) and

theScientificCommitteeonConsumerSafety(SCCS)inthe Euro-peanUnion(EU),andtheAustralianMicrobiologicalSocietyhave, amongstothers,allexpressedconcernandhaveprogrammes run-ning to investigate theimpact of biocide use on antimicrobial resistance [1–5]. Bacterial resistance tobiocides has been well studied in vitro, but concrete evidence of clinicalresistance is lacking[6,7].In viewofthenewlicensing requirements, proto-colsareurgentlyneededtoprovideriskassessmentsontheuse of biocidalproducts, especially asthereis noconsensusonthe methodologiestobeused tostudybacterialresistancetowards biocides.

0924-8579/$–seefrontmatter © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

(2)

M.L.Ciusaetal./InternationalJournalofAntimicrobialAgents40 (2012) 210–220 211

Thebiocidetriclosanhasreceivedmuchattentionbecauseit iswidelyusedandreportsindicatingemergenceoftriclosan resis-tancehavebeenpublished[8–11].Furthermore,incontrasttoother biocides,triclosanatlowconcentrationsactssimilarlyto antibi-oticsona specificcellulartarget,the enoyl-acylcarrierprotein reductase(FabI),anessentialenzymeinbacterialfattyacid syn-thesis.TriclosanexhibitsexcellentactivityagainstStaphylococcus aureusandisusedtocontrolthecarriageofmeticillin-resistant S.aureus(MRSA)inhospitals[shampooorbathadditivewith2% (20g/L)triclosan][12].LaboratorystudieswithEscherichiacoliand S.aureushaveshownthatmutationsinFabIanditsoverexpression decreasebacterialsusceptibilitytotriclosan[9,13,14].The possi-ble selectivepressure exertedbytriclosan raisessomeconcern

asFabIis a promisingtarget for newnarrow-spectrum

antimi-crobialsagainstMycobacteriumtuberculosis,Plasmodiumfalciparum anddrug-resistantS.aureus[15–17].

Theaimofthisstudywastoanalysethemolecularnatureand phenotypesoftriclosanresistanceinS.aureus,withparticularfocus ontherelationshipbetweenin-vitro-selectedmutantsandclinical isolates.

2. Methods

2.1. Clinicalstrains

Acollectionof1388S.aureusstrainscollectedin2002–2003 from different geographical origins, representing hospital and community-acquired infections, werescreened to ascertain tri-closan susceptibility. Staphylococcus haemolyticus strains were fromacollectionofclinicalisolatesinSiena(Italy).

2.2. Bacterialsusceptibilitytesting

Minimuminhibitoryconcentrations(MICs)weredeterminedby brothmicrodilutionaccordingtoClinicalandLaboratoryStandards Institute(CLSI)guidelines,exceptforthewaytriclosanwasadded tothecultures[18].Stocksolutionsoftriclosan(Irgasan;Sigma, Steinheim,Germany)werepreparedat102400mg/Linmethanol. Owingtothehighhydrophobicityoftriclosan,serial16-folddiluted substocksinmethanolwherepreparedfromwhichtoprepare sub-setsofthreedilutionsinthemicrotitreplate.Thisapproachwas takentoavoidserialtwo-folddilutionsinmicroplatesinorderto minimiseabsorptionof triclosantothe plastic and todecrease thechancesof triclosanprecipitating outof solutionwhen

tri-closan inmethanol wasadded towater. Minimum bactericidal

concentrations (MBCs) were determined by subculturing 10␮L

fromeachwellwithoutvisiblebacterialgrowthonMueller–Hinton agarplates(Biotec,Grosseto,Italy).After24hofincubationat37◦C, thedilutionyieldingthreecoloniesorlesswasscoredastheMBC, asdescribedbytheCLSIforstartinginoculaof1×105CFU/mL[19].

Noneutralisationstep wasincludedin theMBCassayasinitial experimentsverifiedthattriclosancarry-overdidnotoccurwhen 10␮Lwasinoculatedontoagar(datanotshown).Thesensitivityto chemicalcompoundswastestedbyphenotypemicroarrayutilising BiologmicrotitreplatesPM11throughPM20asdescribed(Biolog Inc.,Hayward,CA)[20].

2.3. Biocideactivitytesting

Biocideactivitywastestedaccordingtothestandardsdefined bytheEuropeanstandardEN1276[21].Inbrief,1.5–5×108CFU

ofbacteriain1mLweremixedwith1mLofbovineserum albu-min(BSA) (Sigma)at0.03g/L (cleanconditions)asinterference substance.Afterwards,thisbacterialsuspensionwasmixedwith 8mLofatriclosandilutioncontaining1.25timesthedesiredtest concentration.Fortheactivityassay,preparationoftriclosanstock

wasperformedasfollows:300mgoftriclosanwasdilutedin1mL

ofdimethylsulphoxide(DMSO)andthismixturewasdilutedin

200mLofhardwater(compositiondefinedinEN1276)[21]. Sub-sequentdilutionsoftriclosanwereundertakeninhardwater.A solutionofhardwatercontaining0.5%DMSOwastested accord-ingtoEN1276against S.aureustoensurethata solutionwith 0.5%DMSOdoesnothavebactericidalactivity.Theconcentrations oftriclosanutilisedfortheassaywere100,600and 1000mg/L. After5minofcontacttimebetweentriclosan,BSAandbacteriaat 20◦C,1mLofthetestsolutionwasmixedwith8mLofneutraliser (3g/Llecithin,30g/Lpolysorbate80,5g/Lsodiumthiosulfate,1g/L l-histidineand30g/Lsaponin)and1mLofwater.After5minofthe neutralisationstep,1mLoftheneutralisationmixand1mLof ten-folddilutionswereculturedontotrypticsoyagar(TSA)(Liofilchem, RosetodegliAbruzzi,Italy)platesinduplicateandwereincubated at37◦Cfor48h.CFU/mLweredeterminedandlogCFU/mL reduc-tionwascalculatedforeachstrainagainsteachofthethreetriclosan concentrationstested.Theconcentrationof600mg/Lwas deter-minedasthelowestconcentrationtestedthatproduced a5log reductioninCFU/mLwithreferencestrainS.aureusATCC6538. 2.4. Invitroselectionoftriclosan-resistantmutants

Triclosan-resistantmutantswereselectedfromS.aureus refer-encestrains,includingthestandardlaboratorystrainRN4220,the referencestrainforbiocidetestingATCC 6538,and threeMRSA

clinical isolates (MW2, Mu50 and COL) for which the genome

sequenceswereavailable.Single-stepmutantswereselectedby culturingca.1×1011CFUofS.aureuscells,harvestedfrom30mL

of liquid culture, on TSA with 0.5mg/L triclosan (plates con-tained<0.1%methanolfromthebiocidestock).Multistepmutants were selected by serial passageof strains in liquid tryptic soy broth(Liofilchem)containingtwo-foldincreasingconcentrations oftriclosan(0.25mg/Lto4mg/L).Singlecolonieswererandomly selectedfromeachassayandweresubculturedforfurtheranalysis. 2.5. Statisticalcorrelationtest

Threedifferentstatisticaltestswereperformedtoassess poten-tialcorrelations betweenphenotypes and genotypesof clinical isolatesandlaboratorymutants.Fisher’sexacttestwasusedasa statisticaltestappliedtocontingencytablestodeterminewhether therewerenon-randomassociationsbetweentwocategorical vari-ables.Spearman’scorrelationcoefficientwaschosenbecausewe hadunknownsampledistributionsandthetestedvariablesdidnot showalinearrelationship[22].Two-sampleKolmogorov–Smirnov testwasusedtocomparethefoldchangedistributionofthetwo typesofstrains(clinicalisolatesandinvitromutants)[22]. 2.6. Molecularanalysis

The central part of the fabI gene was amplified in isolates

showingreduced susceptibilitytotriclosan.DNA wasamplified

with primers TAGCCGTAAAGAGCTTGAA and

ATATTTTCACCTG-TAACGCCA (Eurofins MWG Operon, Germany), controlled with

Vector NTI- software v.6 (Informax Inc., Bethesda, MD), using

standard PCR conditions and were sequenced by the Sanger

method(BMR Genomics,University of Padova, Italy).For some

selectedstrains,withoutmutationsinthecentralpartofS.aureus

fabI(sa-fabI),primersGATACAGAAAGGACTAAATCAAAand

TTTC-CATCAGTCCGATTATTATA were used to amplify and sequence

the whole gene. A selection of fabI allele sequences has been

depositedinGenBank(accessionnos.JF797286throughJF797303). Whole-genomesequencingoftheS.aureusclinicalisolate QBR-102278-1619wasperformedbytheInstituteofAppliedGenomics (Universityof Udine,Italy) usingan IlluminaGenome Analyzer

(3)

212 M.L.Ciusaetal./InternationalJournalofAntimicrobialAgents40 (2012) 210–220

Fig.1.Minimuminhibitoryconcentration(MIC)andminimumbactericidalconcentration(MBC)distributionandfabIgenotypesofclinicalStaphylococcusaureusisolates. Triclosansusceptibilityof1388clinicalisolatesisreportedaccordingtotheir(A)MICand(B)MBC.Thegenotypeofthoseclinicalisolateswithreducedsusceptibilityto triclosan(highMBC)isshowninpanels(C)and(D)bysortingstrainsaccordingtotheirMICandMBC,respectively.Shadingdifferentiatestriclosan-resistantstrainswitha mutatedsa-fabI(grey),wild-typesa-fabI(openbars)andthoseheterodiploidforthesh-fabIgene(black).

IIplatform(Illumina, SanDiego,CA).Open-readingframe(ORF)

prediction was carried out using Prodigal software (Oak Ridge

NationalLaboratory, Oak Ridge, TN). Detectionof S. haemolyti-cusfabI(sh-fabI)wasperformedbyreal-timePCRusingprimers

TGGCGAAGAAGTAGGCAATATandGCAACAATACTACCACCGTT.The

sh-fabIinsertinQBR-102278-1619wasdepositedinGenBankwith accessionno.JQ712986.

3. Results

Analysisof1388clinicalisolatesofS.aureusrevealeda contin-uousdistributionoftriclosanMICsfrom≤0.015mg/Lto32mg/L, withasinglemodalMICof0.03mg/L(Fig.1A).Incontrast,triclosan MBCspresentedadiscontinuousdistribution(Fig.1B).After per-formingsamplingoftheMBCdatasetinordertobalancethescale ofobservations,wecanfitamixtureofnormaldistributions show-ingthatwehavetwodifferentpopulations,suggestingapotential epidemiologicalcut-off(ECOFF)[23]MBCof≤2mg/Lforthe sus-ceptiblepopulation and >4mg/Lfor ‘resistant’ strains(Fig. 1B). AlthoughstatisticalanalysisshowedthatMICandMBCvaluesof triclosanofclinicalstrainsweremoderatelycorrelated(=0.73; P<0.001),itwouldappearthattheMBCisbetterabletoseparate triclosan-non-susceptiblestrainsthantheMIC.Sixty-eightstrains presentingreducedsusceptibilityforthisbiocide(MBC>4mg/L) werechosenforfurthercharacterisation.Thebiocideactivityassay accordingtoEN1276confirmsadecreasedactivityoftriclosanfor strainswithreducedsusceptibilitytothebiocide(Table1).

Toassessthemolecularbasisofresistancetotriclosan,mutant strainswereselectedinvitrofromfiveS.aureusreferencestrains. Single-stepmutantswereselectedinfourofthemwith frequen-ciesof2.4×10−9 forMW2,3.4×10−10forMu50, 3.4×10−9 for COLand1.4×10−9forATCC6538.FromstrainRN4220,which pre-sentedintermediatesusceptibility(MBC=2mg/L),onlymultistep mutantscouldbeselected.Irrespectiveofthestrainsfromwhich theywereselected,themutantsshowedtriclosanMICsof1–8mg/L (modalMIC=4mg/L)andMBCsof4–32mg/L(modalMBC=8mg/L) (Fig. 2A and B). Unlike theclinical isolates, MICs and MBCs of

triclosan for in vitro mutantspresent a strongstatistically sig-nificantnon-linearcorrelation(=0.90;P<0.001).Thedifference

betweentheMICandMBCoflaboratorymutantswasusuallyof

oneortwodilutions,whilstforclinicalstrainsthesedifferences weregenerallymuchhigher(Fig.2C).Thiswasthecaseevenwhen theinvitromutantsandtheclinicalisolatespresentedthesame sa-fabImutation(Tables 2and3 ).Thiswasfoundtobe

signif-icantly different using a two-sample Kolmogorov–Smirnovtest

(P<0.001).Phenotypemicroarrayforchemicalsensitivitytoover 300compounds[20]confirmedthatthein-vitro-selected triclosan-resistantmutantsdidnotacquireanyfurtherresistancephenotype inadditiontotriclosan(datanotshown).

Toidentifythegenotypesconferringreducedtriclosan suscep-tibility,thefabIgenewassequenced.Amongthe68clinicalisolates withreducedsusceptibilitytotriclosan,30presentedamutation insa-fabI,whilst38strainshadawild-typesa-fabIallele(Table2;

Fig.1CandD).Ofthe30strainswithamutatedsa-fabI,22 car-riedpreviouslydescribedmutations,whilst8strainsshowedfour novelmutations,whichisinaccordancewithotherpublisheddata

[9,10](Table2;Fig.3A).ClusteringwasobservedfortheTTC611TGC mutation,onlyfoundinstrainsfromItaly(4of5)andFrance(2

of7)andthefourGCA593GGA-CTT622TTTdoublemutants,which

wereisolatedatdifferentcitiesintheUSAandCanada.Most in-vitro-selectedmutantshadpreviouslycharacterisedfabImutations

[9–11,17],withtheexceptionofRN4220mutants,whichallshowed

aGAC301TACmutation,andoneATCC6538derivative,whichhad

aTTC611TCCchange(Table3;Fig.3A).Onlytwoofsixmutations

selectedin vitro (GCA593GGA and TTC611TGC)matched

muta-tionsdetectedinclinicalisolates(Fig.3A).Twoclones(MO035and MO079)showednovariationinthesa-fabIgenedespitehighMICs andMBCstotriclosan(Table3).

Toidentifyfurtherthemolecularbasisofreducedtriclosan sus-ceptibilityofclinicalisolateswithawild-typefabIallele,thewhole genomeofonestrainwithatriclosanMICof4mg/LandMBCof

32mg/L(QBR-102278-1619)wassequenced.A3016bp

chromoso-malinsertcarryinganadditionalfabIgene,showing84%nucleotide and91%aminoacididentitytosa-fabI,andaninsertionsequence

(4)

M.L.Ciusaetal./InternationalJournalofAntimicrobialAgents40 (2012) 210–220 213

Table1

TestingoftriclosanactivityonStaphylococcusaureusstrainsfollowingClinicalandLaboratoryStandardInstitute(CLSI)andEuropeanstandardEN1276guidelines.

Strain MIC(mg/L) MBC(mg/L) EN1276(logreductionCFU/mL)a Note

100mg/L 600mg/L 1000mg/L

ATCC6538 0.12 0.25 0.33 5.45 >5.48 Wild-type

QBR-102278-1177 4 32 0.18 4.04 5.48 Mutatedsa-fabI

QBR-102278-1219 4 32 0.27 3.96 4.01 Mutatedsa-fabI

QBR-102278-1619 4 32 0.41 4.67 5.45 sh-fabI

MIC,minimuminhibitoryconcentration;MBC,minimumbactericidalconcentration.

aValuesreportlogarithmicreduction(R)ofbacterialcountswithin5mincontacttimeandsubsequentneutralisation(productisconsideredactiveiflogR>5).

IS1272(Fig.3B)wasfoundinanintergenicregionoftheS.aureus

chromosome(MW2 position 141825)(Fig. 3B). Theintegration

occurredin theloop ofa hairpinwithan18bpinvertedrepeat stem,whichdeterminedaninsertbetweentwoshortdirectrepeats. DatabasesearcheswiththisadditionalfabIgeneshowedits pres-ence,with100%identity, inthechromosomeofS.haemolyticus (Fig.3B),whichdoesnothaveanyfurtherfabIgene.Thisstrongly suggeststhat the sh-fabI allelemost likely belongs to thecore genomeofS.haemolyticus.Supportingthisstatement,PCR anal-ysisdemonstrated thepresence ofsh-fabI in aselection of five S.haemolyticusclinicalstrains,irrespectiveoftheirsusceptibility totriclosan(MBCrange1–32mg/L).Furthersearchesforsh-fabI showedmultiplehitsindifferentstaphylococci,includingS.aureus andStaphylococcusepidermidis,wheresh-fabIwaslocatedon plas-midsthatalsocarrythemultidrugresistance(MDR)effluxpump

forquaternaryammoniumcompoundsQacA(GenBankaccession

nos.FR821778andGQ900465)[24,25].Thefactthattheseplasmids carrythe3016bpinsertborderedbypartsoftheinvertedrepeat oftheS.aureuschromosomeindicatesthedirectionofhorizontal transfer.

PCRassaysofthe68clinicalisolateswithreducedsusceptibility totriclosanidentified sh-fabIin24 ofthe38 strainswith wild-typefabIand in4ofthe30strainswithmutatedfabI(Table2). Distributionofsh-fabIinS.aureusstrainswithreducedtriclosan

susceptibilityshowedgeographicalclustering,withpositivityin 9/10isolatesfromMexico,7/10fromCanada,5/10fromBraziland 4/8fromJapan,withnostrainsfromothercountriesincludingthe USA,Italy,SpainandGermany.Onlyoneofthesh-fabI-positive clin-icalisolateswaspositivefortheMDReffluxdeterminantqacA(data notshown).Clinicalstrainswithdecreasedsusceptibilityto tri-closanhadastrongassociationwiththepresenceofamutatedfabI geneorthealternativesh-fabIgene(Fisher’sexacttest,P<0.001).

4. Discussion

FabIisthetargetofisoniazid,animportantagentforthe treat-mentoftuberculosis,andisoneofthedrugtargetsthathasbeen rediscoveredinrecentyearsforrationalantimicrobialdrug devel-opment[17,26]. Inthis context,careful analysisoftheeffectof triclosan,awidelyutilisedbiocideanddisinfectant,whichalso tar-getsFabI,onthesusceptibilityofstaphylococciisofprimeinterest. ToaddressthemolecularbasisoftriclosanresistanceinS.aureus, 68strainswithreducedsusceptibilitytothebiocideselectedfroma worldwidecollectionofclinicalandcommunity-acquiredS.aureus

were analysed. As FabI is the only known target of triclosan

[9,13,14],attention wasfocused onthe nucleotidesequence of fabI.Surprisingly,onlyapproximatelyone-halfofthestrains show-inghighMBCvaluestotriclosanhaddetectablemutationsinthe

Fig.2.Minimuminhibitoryconcentration(MIC)andminimumbactericidalconcentration(MBC)distributionandfabIgenotypesoflaboratorymutants.Triclosansusceptibility oflaboratorystrains,includingreferencestrainsandmutants,isreportedaccordingtotheir(A)MICand(B)MBC.Genotypicdataareshownbyshadingofthecolumns differentiatingsusceptiblereferencestains(wild-typesa-fabI,openbars)andtriclosan-resistantmutantswithmutatedsa-fabI(black)andwild-typesa-fabI(openbars).(C) DistributionoftheMBC/MICfoldchangeofstrainswithreducedsusceptibilitytotriclosanselectedinvitro(n=28)(openbars)andisolatedfromtheclinicalstraincollections (n=68)(black).

(5)

214 M.L. Ciusa et al. / International Journal of Antimicrobial Agents 40 (2012) 210– 220 Table2

fabIgenesequencesofStaphylococcusaureusclinicalisolatesandreferencestrains.

Isolate

Polymorphic sites in fabI a

sh–fabI sa-fabI MIC (mg/L) MBC (mg/L) Comment b 122222223333333334444455556666677 3801256780133677883567947891126802 3446651241589338149081801330120783

COL CTAGGCTACGCGCTTATGTCCTCAGACTTCTTTT – wt 0.25 1 Reference strain

QBR-102278-1619 ... + wt 4 32 wt allele in 16 sequenced genomes

QBR-102278-2351 ... + wt 8 32 wt allele in 16 sequenced genomes

QBR-102278-1888 ... – wt 0.03 16 wt allele in 16 sequenced genomes

QBR-102278-2376 ... + wt 4 32 wt allele in 16 sequenced genomes

QBR-102278-2175 ... + wt 0.25 16 wt allele in 16 sequenced genomes

QBR-102278-2138 ... + wt 4 32 wt allele in 16 sequenced genomes

QBR-102278-2365 ... + wt 2 32 wt allele in 16 sequenced genomes

QBR-102278-2305 ... – wt 4 64 wt allele in 16 sequenced genomes

QBR-102278-2321 ... – wt 4 32 wt allele in 16 sequenced genomes

QBR-102278-2092 ... + wt 4 32 wt allele in 16 sequenced genomes

QBR-102278-1219 ...G. – Mutated 4 32 TTC611TGC known mutation

QBR-102278-1192 ...G. – Mutated 4 32 TTC611TGC known mutation

QBR-102278-1177 ...G. – Mutated 4 32 TTC611TGCknown mutation

QBR-102278-1522 ...G. – Mutated 4 32 TTC611TGC known mutation

QBR-102278-1503 ...G. – Mutated 4 32 TTC611TGC known mutation

QBR-102278-1505 ...G. – Mutated 2 16 TTC611TGC known mutation

QBR-102278-1508 ...G. – Mutated 2 8 TTC611TGC known mutation

QBR-102278-1865 ...G... – Mutated 0.5 16 GCA593GGA known mutation

QBR-102278-1970 ...G... – Mutated 0.5 32 GCA593GGA known mutation

QBR-102278-1917 ...G..T – Mutated 2 16 GCA593GGA, CTT622TTT known mutations

QBR-102278-1207 ...C..T.T.CTCT...C...T.... – Mutated 0.12 8 ACA583TCA new allele

(6)

M.L. Ciusa et al. / International Journal of Antimicrobial Agents 40 (2012) 210– 220 215 Table2(continued)

QBR-102278-1935 ...C..T.T.CTCT...C...T.... – Mutated 0.25 16 ACA583TCA new allele

QBR-102278-1277 ...C..T.T.CTCT...C...T.... – Mutated 0.25 128 ACA583TCA new allele

QBR-102278-1919 ...C..T.T.CTCT...C...T.... – Mutated 0.12 16 ACA583TCA new allele

QBR-102278-1883 ...C...T.T.CTCT...C....G..T – Mutated 2 8 GCA593GGA CTT622TTT known mutations

QBR-102278-2345 ...C...T.T.CTCT...C... – wt 1 2 wt allele in 4 sequenced genomes

QBR-102278-2363 ...T.CTCT... + wt 16 32 wt allele in 23 sequenced genomes

QBR-102278-1878 ...C..T.T.CTCT...C....G..T – Mutated 2 16 GCA593GGA, CTT622TTT known mutations

QBR-102278-2069 ...C..T.T.CTCT...C....G..T – Mutated 2 32 GCA593GGA,CTT622TTT known mutations

QBR-102278-1894 GT....C..T.T.CTCT...C....G..T – Mutated 2 16 GCA593GGA, CTT622TTT known mutations

QBR-102278-1651 ...C..T.T.CTCT...G... – Mutated 2 32 GCA593GGA known mutation

QBR-102278-1653 ...C..T.T.CTCT...G... – Mutated 2 32 GCA593GGA known mutation

QBR-102278-2019 ...C..T.TCCTCT...G.. – Mutated 0.25 16 TTC610GTC new allele

ATCC25923 ...A...C..T.T.CTCT....T...A.. – wt 0.06 1 Reference strain

QBR-102278-1097 ....TTC...T.CTCT... – Mutated 0.25 32 GGT226TGT,GGC255GGT new allele

QBR-102278-1203 T...T.CTCT... + wt 2 16 wt allele in 4 sequenced genomes

QBR-102278-2105 ...T.CTCT... + wt 2 32 wt allele in 4 sequenced genomes

QBR-102278-1091 ...T.CTCT... + wt 4 32 wt allele in 4 sequenced genomes

QBR-102278-1107 T...T.CTCT... + wt 4 32 wt allele in 4 sequenced genomes

QBR-102278-1052 T...T.CTCT...C... + wt 0.5 64 wt allele in 4 sequenced genomes

QBR-102278-1544 ...T.CTCT...G... – Mutated 2 64 GCA593GGA known mutation

QBR-102278-1144 ...T.CTCT...G. – Mutated 1 32 TTC611TGC known mutation, new allele

MW2 ...T.TTCT... – wt 0.5 1 Reference strain

QBR-102278-2311 ...T.C... – wt 1 64 wt allele in 4 sequenced genomes

QBR-102278-2212 ...T.C... + wt 2 32 wt allele in 4 sequenced genomes

QBR-102278-2221 ...T.C... + wt 0.5 16 wt allele in 4 sequenced genomes

QBR-102278-2605 ...C...T.T.C...C... + wt 32 64 wt allele in 4 sequenced genomes

QBR-102278-2546 ....TC....CT.C... + Mutated 1 64 GGC255GGT, GGC338GCT new allele

QBR-102278-2342 ...T..T..G... + Mutated 2 32 GCA593GGA known mutation

QBR-102278-2348 ...T..T..G... + Mutated 0.5 32 GCA593GGA known mutation

QBR-102278-2254 ...T...G... + Mutated 1 32 GCA593GGA known mutation

(7)

216 M.L. Ciusa et al. / International Journal of Antimicrobial Agents 40 (2012) 210– 220 Table2(continued).

Mu50 ...T..T... – wt 0.25 0·5 Reference strain

QBR-102278-2346 ...T..T... – wt 2 32 wt allele in 23 sequenced genomes

QBR-102278-2222 ...T..T... + wt 1 32 wt allele in 23 sequenced genomes

QBR-102278-2210 ...T..T... + wt 1 32 wt allele in 23 sequenced genomes

QBR-102278-1889 ...T..T... – wt 8 16 wt allele in 23 sequenced genomes

QBR-102278-2269 ...T..T... + wt 1 32 wt allele in 23 sequenced genomes

QBR-102278-2207 ...T..T... + wt 4 32 wt allele in 23 sequenced genomes

QBR-102278-1730 ...T..T... – wt 4 32 wt allele in 23 sequenced genomes

QBR-102278-2205 ...T... + wt 1 16 wt allele in 19 sequenced genomes

QBR-102278-2204 ...T... + wt 1 16 wt allele in 19 sequenced genomes

ATCC6538 ...T..T...CAC. – wt 0.12 0·25 wt new allele

QBR-102278-1236 ...T..T...CAC. – wt 4 16 wt allele in 23 sequenced genomes

QBR-102278-1607 ...T..T...CAC. – wt 0.12 32 wt allele in 23 sequenced genomes

QBR-102278-2072 ...T..T...CAC. + wt 0.25 32 wt allele in 23 sequenced genomes

QBR-102278-1210 ...T..T... – wt 0.25 16 wt allele in 23 sequenced genomes

QBR-102278-2070 ...T..T... – wt 0.12 32 wt allele in 23 sequenced genomes

QBR-102278-1158 G...GT... – wt 2 8 wt new allele

QBR-102278-1969 ...A... – wt 0.25 32 wt new allele

QBR-102278-2018 ...A... + wt 0.5 16 wt new allele

RN4220 ...A... – wt 1 2 Reference strain

MIC,minimuminhibitoryconcentration;MBC,minimumbactericidalconcentration;wt,wild-type. aPolymorphicsitesareindicatedwithrespecttothefabIsequenceofS.aureusCOL.

(8)

M.L. Ciusa et al. / International Journal of Antimicrobial Agents 40 (2012) 210– 220 217 Table3

Genotypeandphenotypeofinvitromultistepandsingle-stepexposuremutants.

ID

Polymorphic sites in fabI a

FabI sa-fabI MIC (mg/L) MBC (mg/L) Comment

122222223333333334444455556666677 3801256780133677883567947891126802

3446651241589338149081801330120783

COL CTAGGCTACGCGCTTATGTCCTCAGACTTCTTTT wt 0.12 1 Reference strain

MO082 ...T... Ala95Val Mutated 8 16 SSM

MO083 ...T... Ala95Val Mutated 4 16 SSM

MO084 ...T... Ala95Val Mutated 4 8 SSM

MW2 ...T...T.TTCT... wt 0.12 0.12 Reference strain

MO075 ...T...T.TTCT... Ala95Val Mutated 4 16 SSM

MO076 ...T...T.TTCT... Ala95Val Mutated 4 8 SSM

MO077 ...T...T.TTCT... Ala95Val Mutated 8 32 SSM

Mu50 ...T..T... wt 0.06 0.12 Reference strain

MO079 ...T..T... wt 4 16 SSM

MO080 ...T...T..T... Ala95Val Mutated 4 4 SSM

ATCC6538 ...T..T...CAC. wt 0.12 0.25 Reference strain

CR001 ...T..T..G...CAC. Ala198Gly Mutated 4 8 SSM

CR002 ...T..T....G.CAC. Phe204Cys Mutated 4 8 SSM

CR003 ...T..T....G.CAC. Phe204Cys Mutated 2 8 SSM

(9)

218 M.L. Ciusa et al. / International Journal of Antimicrobial Agents 40 (2012) 210– 220 Table3(continued).

d2 ...T..T....G.CAC. Phe204Cys Mutated 1 4 MSM

d7 ...C.T..T...CAC. Tyr147His Mutated 2 8 MSM

MO051 ...T...T..T...CAC. Ala95Val Mutated 4 8 MSM

MO052 ...T..T....C.CAC. Phe204Ser Mutated 8 16 MSM

MO053 ...T...T..T...CAC. Ala95Val Mutated 4 8 MSM

MO054 ...T...T..T...CAC. Ala95Val Mutated 4 8 MSM

MO055 ...T...T..T...CAC. Ala95Val Mutated 4 8 MSM

MO056 ...T...T..T...CAC. Ala95Val Mutated 4 8 MSM

MO057 ...T...T..T...CAC. Ala95Val Mutated 4 8 MSM

RN4220 ...A... wt 1 2 Reference strain

MO034 ...T...A... Asp101Tyr Mutated 8 8 MSM

MO035 ...A... wt 8 8 MSM

MO036 ...T...A... Asp101Tyr Mutated 4 8 MSM

MO047 ...T...A... Asp101Tyr Mutated 4 8 MSM

MO048 ...T...A... Asp101Tyr Mutated 4 4 MSM

MO049 ...T...A... Asp101Tyr Mutated 4 8 MSM

MO050 ...T...A... Asp101Tyr Mutated 4 8 MSM

MIC,minimuminhibitoryconcentration;MBC,minimumbactericidalconcentration;SSM,single-stepmutant;MSM,multistepmutant. aPolymorphicsitesareindicatedwithrespecttothefabIsequenceofStaphylococcusaureusCOL.

(10)

M.L.Ciusaetal./InternationalJournalofAntimicrobialAgents40 (2012) 210–220 219

Fig.3.SchematicmapofmutationsintheStaphylococcusaureusfabI(sa-fabI)andofStaphylococcushaemolyticusfabI(sh-fabI)genes.(A)Mutationsinsa-fabIarereportedon aschematicmap.Mutationsdetectedinclinicalisolatesaremappedabovethesequence,whilstmutationsselectedinvitroareshownbelowthesequence.(B)Schematic alignmentofthesh-fabIgeneregionofstrainQBR-102278-1619toS.haemolyticus(NC007168)andS.aureusMW2(NC003923).GenenumberingoftheQBR-102278-1619 open-readingframe(ORF)isasforMW2.ThealignmentshavebeenreproducedfromanalignmentperformedwiththewebversionoftheArtemisComparisonTool(Sanger Centre).Thethinlinerepresentsthe3016bpfragmentinsertedintheS.aureuschromosomeinstrainQBR-102278-1619.Overallnucleotideidentityintheshadedareasis giveninpercent.

codingregionofsa-fabI.Whole-genomesequencingofoneofthese strainsshowedthepresencea3kbgenomicisletcarryingan addi-tionalfabIgeneidenticaltothatbelongingtothecoregenomeof S.haemolyticussh-fabI.Bycloningsa-fabIontoaplasmidvector,it hasbeendemonstratedthattriclosanresistancecanbeachievedby increasingtheamountoftarget[14].Inasimilarway,thepresence ofsh-fabItogetherwithsa-fabIconstitutesacompletelynovel resis-tancemechanism,actingbyincreasingthetargetamountthrough

heterologoustargetduplication.Theonlyknownmechanismsof

triclosanresistanceatthetimeofwritingthisarticleweredueto

chromosomalmutations.Oneofthemostimportantobservations

inthisworkistheidentificationoflikelyhorizontaltransferofthis novelbiocideresistancemechanism.

Detectionoftheinvertedrepeatsequencesgainedbyinsertion intheS.aureusgenomeindicatesthatthedirectionoftransferis fromS.haemolyticustoS.aureusandfromtheS.aureuschromosome toplasmids[24,25].Furtheridentificationofsh-fabIinnumerous staphylococciinmetagenomeandmicrobiomedatabasesindicates thatthegeneisactivelyspreading.

Itisdifficulttounequivocallyestablishtheselectiveforcesthat causeselection ofaspecificmechanismofresistance, especially whendeterminantscanconfersimultaneousresistancetodifferent drugsorwhenseveraldifferentresistanceelementsareassociated inthesamegenetransferelement[27].Forbiocidesthatcan pro-ducecross-resistancetoantibiotics,itisdifficulttoknowwhether

theselectiveagenthasbeenthebiocideortheantibioticitself. InthecaseofFabI,thisenzymeistargetedonlybytriclosaninS. aureus.Identificationofaresistancemechanismtotriclosanacting byheterologoustargetduplicationexcludesotherantimicrobials asbeingselectiveforces.Thisfindingisadirectdemonstrationthat thebiocidetriclosanproducesaselectivepressureonS.aureusand otherstaphylococciandisthefirstclearevidencethatutilisation ofbiocidescandrivedevelopmentofbiocideresistanceinclinical isolates.

AgenciessuchastheFDArequestarisk–benefitassessmentfor humanantibioticsthatincludesevaluatingtherisksofresistance generation.Forantibioticsusedinanimals,theseresistancerisks arean importantsafety issuethat isaddressed inall antibiotic submissions.Recently,theneedforsuchrequirementshasbeen raisedforbiocides.Forinstance,arecentEUproposalfor licens-ingofbiocidesasksthat‘compoundsshouldhavenounacceptable effectsonthetargetorganisms,inparticularunacceptable resis-tanceorcross-resistance’[28].Inviewoftherequirementsposed, thepossibilityofdevising aninvitroassayfor testingbacterial resistancetothebiocidetriclosanwasevaluated.Itisknownthat triclosan-resistantfabImutants canbeselected in vitro [9–11].

Theaimwastoassess whethersuchmutantshave any

predic-tivevalueforresistanceobservedinclinicalisolates[29].Mutants wereselectedbytwodistinctproceduresinfivedifferent refer-encestrains, but a mutation that was alsodetected in clinical

(11)

220 M.L.Ciusaetal./InternationalJournalofAntimicrobialAgents40 (2012) 210–220

isolateswasfoundinonly5of28mutants,albeitthemostprevalent one.Asecondveryimportantaspectisthatallin-vitro-generated mutantstrainsshowsimilarMICandMBCvalues,indicatingthat triclosanremainedbactericidalforthesestrains.Thisisincontrast toclinicalisolateswhereMICsweremuchlowerthanMBCs, indi-catingamorebacteriostaticactionoftriclosanintheseresistant strains.Thisdifferencewasalsoobservedintheinvitromutants andclinicalisolatescarryingthesamemutationandsuggeststhat clinicalisolatesmighthaveaccumulatedcompensatingmutations thatmodifythephenotypeandallowareductionintheprobable fitnesscostgivenbythemutationsgeneratedinvitro[27].Thus, boththephenotypicprofileandthegenotypeofmutationsdiffered invitrofromthosedetectedinclinicalisolates.Withrespecttothe requestbycurrentlegislationtoruninvitrotestsbeforeplacing

anactivecompound onthemarket,wecanconcludethat such

atestisfeasiblefortriclosan,butthatsuchatestdoesnotyield resultsofclinicalrelevanceifperformedaccordingtoastandard experimentalset-up.However,thedatafromthisstudysuggest that anECOFF MBCof >4mg/Lmay bea good indicatorof tri-closan‘resistance’.Weplantoundertakefurtherstudiestoassess this.

Summarising,anovelresistancemechanismwasidentifiedin clinicalisolatesbasedon‘heterodiploidy’duetoanadditionalcopy ofsh-fabIfromS.haemolyticus.Detectionofthesamesh-fabIislet instaphylococcalplasmidsindicatesthatthisnovelresistance ele-ment is being activelytransferred, most likely due to positive selectionbytriclosan.

Acknowledgments

TheauthorsaregratefulforhelpfuldiscussiontoUlkuYetis,

HansJoachimRoedger,TeresaCoque,AyseKalkanci,DiegoMora

and Stephen Leib who participated to the BIOHYPO research

project.

Funding: The workwas supported by EuropeanCommunity

FP7projectKBBE-227258(BIOHYPO),whichisaresearchproject aimedatevaluatingtheimpactofbiocideuseonthegenerationof antibioticresistance.Thefundershadnoroleinstudydesign,data collectionandanalysis,decisiontopublish,orpreparationofthe manuscript.

Competinginterests:MROhasreceivedfundingfromBASFfor

workonbiocides;however,thecompanydidnotinfluencethe

studydesignandtheworkcarriedoutforBASFisnotpartofthis study.Allotherauthorsdeclarenocompetinginterests.

Ethicalapproval:Notrequired.

References

[1]ClaytonEM,ToddM,DowdJB,AielloAE.TheimpactofbisphenolAandtriclosan onimmuneparametersintheU.S.population,NHANES2003–2006.Environ HealthPerspect2011;119:390–6.

[2]Scientific Committee on Consumer Safety (SCCS). Opinion on triclosan. Antimicrobial resistance. Brussels, Belgium: European Union; 2010.

http://ec.europa.eu/health/scientificcommittees/consumersafety/docs/sccs o023.pdf[accessed08.02.12].

[3]Merlino J, Brown M. Biocides in the health industry. Microbiol Aust 2010;31:158.

[4]Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Research strategy to address the knowledge gaps on the antimicrobial resistance effects of biocides. Brussels, Belgium: European Commission; 2010. http://ec.europa.eu/health/scientific committees/emerging/docs/scenihro028.pdf[accessed08.02.12].

[5]Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Assessment of the antibiotic resistance effects of biocides. Brussels, Belgium: European Commission; 2009.

http://ec.europa.eu/health/phrisk/committees/04scenihr/docs/scenihro021 .pdf[accessed08.02.12].

[6]RussellAD.Mechanismsofantimicrobialactionofantisepticsand disinfec-tants:anincreasinglyimportantareaofinvestigation.JAntimicrobChemother 2002;49:597–9.

[7]CooksonB.Clinicalsignificanceofemergenceofbacterialantimicrobial resis-tanceinthehospitalenvironment.JApplMicrobiol2005;99:989–96. [8]SchweizerHP.Triclosan:awidelyusedbiocideanditslinktoantibiotics.FEMS

MicrobiolLett2001;202:1–7.

[9]FanF,YanK,WallisNG,ReedS,MooreTD,RittenhouseSF,etal.Defining andcombatingthemechanismsoftriclosanresistanceinclinicalisolatesof Staphylococcusaureus.AntimicrobAgentsChemother2002;46:3343–7. [10] BrenwaldNP,FraiseAP.Triclosanresistanceinmethicillin-resistant

Staphylo-coccusaureus(MRSA).JHospInfect2003;55:141–4.

[11] XuH,SullivanTJ,SekiguciJ,KirikaeT,OjimaI,StrattonCF,etal.Mechanism andinhibitionofsaFabI,theenoylreductasefromStaphylococcusaureus. Bio-chemistry2008;47:4228–36.

[12] CoiaJE,DuckworthGJ,EdwardsDI,FarringtonM,FryC,HumphreysH,etal. Guidelinesforthecontrolandpreventionofmeticillin-resistantStaphylococcus aureus(MRSA)inhealthcarefacilities.JHospInfect2006;63(Suppl.1):S1–44. [13]HeathRJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO.

Mecha-nismoftriclosaninhibitionofbacterialfatty acidsynthesis.JBiolChem 1999;274:11110–4.

[14]Slater-RadostiC,VanAllerG,GreenwoodR,NocholasR,KellerPM,DewolfJr WE,etal.Biochemicalandgeneticcharacterizationoftheactionoftriclosanon Staphylococcusaureus.JAntimicrobChemother2001;48:1–6.

[15]RawatR,WhittyA,TongeP.Theisoniazid–NADadductisaslow,tight-binding inhibitorofInhA,theMycobacteriumtuberculosisenoylreductase:adduct affin-ityanddrugresistance.ProcNatlAcadSciUSA2003;100:13881–6. [16]GoodmanCD,McFaddenGI.Fattyacidbiosynthesisasadrugtargetin

apicom-plexanparasites.CurrDrugTargets2007;8:15–30.

[17]EscaichS,ProuvensierL,SaccomaniM,DurantL,OxobyM,GeruszV,etal.The MUT056399inhibitorofFabIisanewantistaphylococcalcompound. Antimi-crobAgentsChemother2011;55:4692–7.

[18]ClinicalandLaboratoryStandardsInstitute.Methodsfordilutionantimicrobial susceptibilitytestsforbacteriathatgrowaerobically;approvedstandard.8th ed.DocumentM7-A8.Wayne,PA:CLSI;2009.

[19]NationalCommitteeforClinicalLaboratoryStandards.Methodsfor determin-ingbactericidalactivityofantimicrobialagents;approvedguideline.Document M26-A.Wayne,PA:CLSI;1999.

[20] DecorosiF,SantopoloL,MoraD,VitiC,GiovannettiL.Theimprovementofa phenotypemicroarrayprotocolforthechemicalsensitivityanalysisof Strepto-coccusthermophilus.JMicrobiolMethods2011;86:258–61.

[21]CEN European Committee for Standardisation. EN 1276:2009/AC: 2010. Chemicaldisinfectantsandantiseptics.Quantitativesuspensiontestforthe evaluationofbactericidalactivityofchemicaldisinfectantsandantiseptics usedinfood,industrial,domesticandinstitutionalareas.Testmethodand requirements(phase2,step1).2010.

[22] KvamPH,VidakovicB.Nonparametricstatisticswithapplicationstoscience andengineering(Wileyseriesinprobabilityandstatistics).Hoboken,NJ:John Wiley&SonsInc.;2007.

[23]KahlmeterG,BrownDF,GoldsteinFW,MacGowanAP,MoutonJW,Osterlund A,etal.EuropeanharmonizationofMICbreakpointsforantimicrobial suscep-tibilitytestingofbacteria.JAntimicrobChemother2003;52:145–8. [24]HoltDC,HoldenMT,TongSY,Castillo-RamirezS,ClarkeL,QuailMA,etal.Avery

early-branchingStaphylococcusaureuslineagelackingthecarotenoidpigment staphyloxanthin.GenomeBiolEvol2011;3:881–95.

[25]ShearerJES,WiremanJ,HostetlerJ,ForbergerH,BormanJ,GillJ,etal.Major familiesofmultiresistantplasmidsfromgeographicallyandepidemiologically diversestaphylococci.G3(Bethesda)2011;1:581–91.

[26] LuH,TongePJ.InhibitorsofFabI,anenzymedrugtargetinthebacterialfatty acidbiosynthesispathway.AccChemRes2008;41:11–20.

[27]MartinezJL,FajardoA,GarmendiaL,HernandezA,LinaresJF,Martínez-Solano L,etal.Aglobalviewofantibioticresistance.FEMSMicrobiolRev2009;33: 44–65.

[28]Commission of the European Communities. Proposal for a regu-lation of the European parliament and of the council concerning the placing on the market and use of biocidal products. Brussels, Belgium: Commission of the European Communities; 2009. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=com:2009:0267:fin:en:pdf

[accessed08.02.12].

[29]MaillardJY,DenverSP.Emergingbacterialresistancefollowingbiocide expo-sure:shouldwebeconcerned?ChimOggi2009;27:26–8.

Riferimenti

Documenti correlati

The first lesions developed on leaves 7 days after inoculation, while control plants remained healthy.. The fungus was consistently reisolated from

CONTACT Simonetta Paloscia s.paloscia@ifac.cnr.it National Research Council, Institute of Applied Physics, Florence, Italy EUROPEAN JOURNAL OF REMOTE SENSING.

In human tissues, by means of RNA in situ hybridisation, consistent Human Endogenous Retro-Virus K (HERV-K) expression of gag and env genes was found to be common to all testicular

With respect to other machine learn- ing systems, artificial neural networks have the advantage of having modular structures: with proper design at modelling time, the

Haptic feedback in the da Vinci Research Kit (dVRK): A user study based on grasping, palpation, and incision tasks. Int J Med Robotics Comput

L’adattamento del parametro al caso concreto, la scelta del parametro destinato a prevalere sull’altro –nelle dinamiche culturali della società, in continua evoluzione,

la città come è… suvvia suvvia io vengo a Firenze, sto cercando di capire Firenze ve l’ho detto, spero che ci vediamo ancora anche con qualcuno di voi, io voglio conoscere