• Non ci sono risultati.

Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy"

Copied!
16
0
0

Testo completo

(1)

Search for New Physics with Same-Sign Isolated Dilepton Events

with Jets and Missing Transverse Energy

S. Chatrchyan et al.* (CMS Collaboration)

(Received 30 May 2012; published 16 August 2012)

A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of 4:98 fb1 produced in pp collisions at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.

DOI:10.1103/PhysRevLett.109.071803 PACS numbers: 12.60.Jv, 13.85.Rm, 14.80.Ly

The standard model (SM) is a very successful theory of elementary particles and their interactions. It is generally believed that new physics (NP) could manifest itself at the TeV scale. Supersymmetry (SUSY) is one of these attrac-tive possibilities. It leads to gauge coupling unification at very high energy, provides a mechanism to mitigate large radiative corrections to the Higgs mass and, in its R-parity-conserving [1] realization, can provide a dark matter candidate. A comprehensive program of searches for the production of supersymmetric particles has been underway since 2010 at the Large Hadron Collider (LHC). Since SUSY models vary widely, these searches target a broad range of possible final states, including purely hadronic states [2,3], leptonic states with one lepton [4,5], two leptons of the opposite sign [6,7], two leptons of the same sign [6,8], and three or more leptons [9], as well as photonic final states [10,11].

In this Letter we report on a search for NP based on isolated same-sign (SS) dileptons, missing transverse en-ergy (EmissT ), and hadronic jets. In SUSY SS dileptons can arise, for example, from pair production of colored super-partners (gluinos and/or squarks), with a lepton in the decay chain of each primary SUSY particle [12–14]; more generally, this signature is sensitive to final states with same-signW bosons and/or top quarks [15–20]. The rarity of SS dileptons in the SM makes a NP search in this final state particularly attractive.

All types of charged leptons, e, , and hadronically decayings, are included in our search. These final states

are indicators of the possible presence of SUSY particles as well as other possible NP scenarios. The results are based on a data sample corresponding to4:98  0:11 fb1ofpp collisions at a center-of-mass energy of 7 TeV collected in 2011 by the Compact Muon Solenoid (CMS) [21] experi-ment at the LHC. This study results in a major improve-ment in sensitivity with respect to the search performed with data collected in 2010 [8] because of the 140-fold increase in the integrated luminosity of the data sample. These results are interpreted using the constrained minimal supersymmetric extension of the standard model (CMSSM) [22]. In addition, this analysis provides infor-mation on the event selection and detector response in order to facilitate the application of our results to a broader range of NP scenarios.

A detailed description of the CMS detector is found elsewhere [21]. Its central feature is a superconducting solenoid providing an axial magnetic field of 3.8 T. Muons are measured in gas detectors embedded in the steel return yoke of the magnet, while all other particle detection systems are located inside the bore of the solenoid. Charged particle trajectories are measured by a silicon pixel and strip tracker system, covering jj < 2:5, where the pseudorapidity is defined as ¼  ln½tan=2, and  is the polar angle with respect to the counterclockwise beam direction. A crystal electromagnetic calorimeter (ECAL) and a brass-scintillator hadronic calorimeter surround the tracker volume. In addition, the CMS detector has an extensive forward calorimeter and nearly hermetic 4 coverage. The CMS trigger consists of a two-stage system. The first level of the CMS trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select a subset of the events. The high level trigger processor farm further de-creases the event rate from around 100 kHz to around 300 Hz, before data storage.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of

the Creative Commons Attribution 3.0 License. Further

distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

All lepton candidates are required to have jj < 2:4 and to be consistent with a common interaction vertex. Muon candidates are reconstructed [23] by matching tracks in the silicon detector to signals in the muon system. The recon-struction of muons is refined further by imposing track quality and calorimeter energy deposition requirements. Electron candidates are reconstructed [24] starting from a cluster of energy deposits in the ECAL, which is then matched to signals in the silicon tracker. The energy shower in the ECAL must have a shape consistent with expectations for electron showers and its position is re-quired to be well matched to the extrapolated track. Both electrons and muons are required to be isolated from other activity in the event. This is achieved using a scalar sum of transverse track momenta and transverse calorimeter energy deposits, within R pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðÞ2þ ðÞ2< 0:3 of the candidate’s direction, where is the azimuthal angle. The sum is required to be less than 15% of the candidate’s transverse momentum (pT). Hadronic  candidates are reconstructed using the Hadron plus Strip algorithm [25]. We select isolated hadronic candidates with one or three charged hadrons in a narrow cone around the direction. Jets andEmissT are reconstructed using the particle-flow technique [26,27]. For jet clustering, the anti-kTalgorithm is used with the distance parameter R ¼ 0:5 [28]. We require selected jets to havepT> 40 GeV and jj < 2:5 to be considered for analysis. TheHTis defined to be the scalar sum of the pT of all selected jets whose angular distance to the nearest lepton satisfies R > 0:4. Events are required to have two same-sign leptons and at least two jets. A minimum dilepton invariant mass of 8 GeV is required in order to suppress the low-mass dilepton back-ground. Events having a third lepton are removed if two of the leptons form a Z boson candidate with an invariant mass within 15 GeV of the Z boson mass.

Three selection strategies are followed to maximize the sensitivity to the presence of NP. The first one is to use a fully efficient dilepton andHTbased trigger in theee, , and e channels with pT > 5 GeV and pe

T> 10 GeV, and a

requirement ofHT> 200 GeV applied to the offline recon-structed objects. The second strategy trades an increased leptonpT threshold against a reduced HT threshold. Here both leptons are required to havepT> 10 GeV and at least one to havepT> 20 Gev. Such events are collected with a purely leptonic trigger with no requirement onHT. The third strategy focuses one,  and  final states with pT > 5 GeV, pe

T> 10 GeV, and pT> 15 GeV. Triggers for

had-ronic-leptons typically lead to high rates. For this reason dedicated triggers are used that rely on significantHT and Emiss

T , in addition to the presence of a single lepton or two

hadronic-leptons.

UsingR-parity-conserving SUSY as a guiding example, we note that the simplest incarnation of the topology probed by this analysis involves three distinct mass scales. In this example, these masses would belong to the gluino,

chargino, and lightest SUSY particle (LSP). The mass differences of these particles can strongly influence the kinematics of the final-state objects, hence affecting sev-eral main observables used in this analysis: leptonpT,HT, andEmissT . Therefore, in order to maximize the sensitivity of our analysis to a variety of NP scenarios, we define multiple search regions in the (HT,EmissT ) plane : Region 1

(HT> 80 GeV, EmissT > 120 GeV), Region 2 (HT> 200 GeV, Emiss

T > 120 GeV), Region 3 (HT> 450 GeV,

Emiss

T > 50 GeV), Region 4 (HT> 450 GeV, EmissT >

120 GeV), and Region 5 (HT> 450 GeV, EmissT >0GeV).

The HT requirements of 200 GeV and 450 GeV are also motivated in part by trigger thresholds. A scatter plot of events observed in these search regions is shown in Fig.1.

The background for the same-sign dilepton topology has three components: irreducible background from rare SM processes; leptons resulting from semileptonic decays within a jet, or jets mimicking leptons in events with zero or one genuine isolated lepton; and opposite-sign dilepton events where the charge of one of the two leptons has been mismeasured.

The irreducible backgrounds are dominated by tt þ W=Z, WWqq, and WZ production, combining in

similar parts to about 95% of the total. The remaining contributions originate from processes such as triboson and ZZ production, WZ þ , and double-parton scattering 2  ðq q0! WÞ, in decending order of impor-tance. All irreducible backgrounds are estimated using leading-order Monte Carlo simulation normalized to the next-to-leading-order (NLO) production cross sections. Events are generated with the MADGRAPH[29] event gen-erator and then passed on toPYTHIA[30] for parton shower

(GeV) T H 0 200 400 600 800 1000 1200 1400 (GeV) miss T E 0 50 100 150 200 250 µµ ee µ e τ µ τ e τ τ Region 1 Region 2 Region 4 Region 3 Region 5 CMS -1 = 4.98 fb int. = 7 TeV, L s

FIG. 1 (color online). Selected SS dilepton events in the various search regions displayed in theHT,EmissT plane.

(3)

and hadronization. The generated events are processed by the CMS event simulation and the same chain of recon-struction programs used for collision data. A 50% system-atic uncertainty is assigned to this irreducible background prediction. These processes constitute 35%–75% of the total background, depending on the search region.

The background due to lepton candidates originating from jets, hereafter referred as nonprompt, forms 20%–60% of the total background. Such candidates can be genuine leptons, for example, from heavy-flavor decays, hadrons reconstructed as leptons, or jets fluctuating to give hadronic signatures. We have developed and validated a set of techniques to measure this background from data. In each case, a tag-and-probe method is applied to a control sample rich in two-jet events containing leptons selected with loose requirements to measure the conditional proba-bility that the probe jet yields a candidate passing tight lepton requirements. This probability, measured as a func-tion of jet kinematics and event characteristics, is then applied to signal sidebands to estimate nonprompt lepton backgrounds. This suite of techniques encompasses a range of control samples, jet tags, lepton requirements, and var-iations in the jet kinematics to provide independent and complementary assessments of 50% systematic uncertain-ties. Full details are given in Ref. [8]. At least two tech-niques are used in all non- dilepton modes and they yield consistent results within their respective uncertainties.

We quantify backgrounds from events with lepton charge misreconstruction by analyzing SSee or  events inside the Z mass peak [8]. This background forms less than 5% of the total background across all search regions. The charge misreconstruction probability for muons is of the order of105and can be neglected.

We determine the performance of the background pre-diction methods using the lowHTand lowEmissT region in the data that is expected to be dominated by SM events. We find good agreement between observed yields and the predicted background.

We show the predicted background contributions from each source mentioned above as well as the observed event yields in Fig. 2and summarize them in Table I for each search region. The beam related multiple interactions do not alter these results. There is no evidence of an excess over the expected SM predictions. This measurement is used together with the uncertainty on the signal acceptance to set an upper limit (UL) on the contribution from NP events.

We measure the electron and muon selection efficiencies in data and simulation usingZ events to derive simulation-to-data correction factors. The uncertainty on the combined lepton selection efficiency decreases with leptonpT, from 5% at the lowestpT to 3% above 20 GeV. We assign an additional 5% systematic uncertainty per lepton to cover potential mismodeling of the lepton isolation efficiency due to varying hadronic activity in signal events. We estimate in

a sample ofZ !  events the uncertainty on the  selection and reconstruction efficiency to be 10% [25].

We conservatively choose to attribute a flat uncertainty of 7.5% to the energy measurement of all jets as well as to the hadronic component used for theEmissT observable. The cumulative effect of this uncertainty on the signal accep-tance is intrinsically model dependent. We observe uncer-tainties below 3% for models with characteristically high HT scales, well above the HT requirements. For models

with characteristicHTscales near or below theHT require-ments, uncertainties due to jet energy calibration can be as high as 30%.

The theoretical uncertainties on the signal acceptance due to the modeling of initial- and final-state radiation and knowledge of the parton distribution functions are esti-mated to be 2%. Using the LM6 benchmark model (CMSSM point with m0¼ 85 GeV, m1=2¼ 400 GeV, tan ¼ 10, A0¼ 0, and  > 0) [31] as a signal model,

the total experimental and theoretical uncertainties in the signal yield add up to 14% or 20% depending on the search region. This includes a 2.2% systematic uncertainty in the integrated luminosity [32].

We set a 95% confidence level (CL) upper limits on the number of observed events using the modified frequentist constructionCLsmethod [33–35]. We assume log-normal distributions for the efficiency and background uncertain-ties. As a reference, we provide in TableIthe upper limits based on a 20% signal acceptance uncertainty.

In order to compare our signal sensitivity to that of other searches for SUSY, we interpret the results in the context of the CMSSM model. We compare the observed upper limits on the number of signal events reported in Table Ito the expected number of events in each signal region in the CMSSM model in a plane of (m0, m1=2) for tan ¼ 10,

Events 0 10 20 30 40 50 60 70 CMS -1 = 4.98 fb int =7 TeV L s Data Charge Mis-Id Prompt-Prompt(irreducible) Nonprompt-Nonprompt Prompt-Nonprompt

Region 1: Region 2: Region 3: Region 4: Region 5:

> 80 GeV T

H HT > 200 GeV HT > 450 GeV HT > 450 GeV HT > 450 GeV

> 120 GeV miss T

E EmissT > 120 GeV EmissT > 50 GeV EmissT > 120 GeV EmissT > 0 GeV

T High p )µ /eµ µ (ee/ T Low p )µ /eµ µ (ee/ T High p )µ /eµ µ (ee/ T Low p )µ /eµ µ (ee/ T High p )µ /eµ µ (ee/ T Low p )µ /eµ µ (ee/ T High p )µ /eµ µ

(ee/ Tau channels

)ττ /τ µ/ τ (e T High p )µ /eµ µ (ee/

FIG. 2 (color online). Summary of background predictions and observed yields in the various search regions. Leptons from decays of W, Z, and NP particles are referred to as prompt leptons. The hatched bands represent the total uncertainty on the background predictions.

(4)

A0¼ 0, and  > 0. For each point in the CMSSM, we

choose the signal region providing the best expected upper limit on the cross section to evaluate the observed limit; in all cases the best limit is achieved in Region 4, where high pT leptons, large HT> 450 GeV, and EmissT > 120 GeV

are required. We interpret all points having mean expected values above the corresponding observed upper limit as excluded at the 95% CL. For this exercise the systematic uncertainty on the signal acceptance is re-evaluated for each point in order for the upper limit to reflect the varying influences of the jet energy scale uncertainty. We display the observed exclusion region in Fig.3. Form0> 1:3 TeV, the exclusion curve flattens out at aboutm1=2 290 GeV, which corresponds to a winolike ~ 1 mass of 200 GeV. The new result extends the excluded CMSSM region to gluino masses of 710 GeV. This exclusion includes a 1th reduction to account for theory uncertainty

[36–44] on the cross section; the limit is independent of the squark masses.

One of the challenges of signature-based searches is to convey information in a form that can be used to test a variety of NP models. In Ref. [8], additional information is presented that can be used to confront NP models in an approximate way through generator-level simulation studies. The approximate model of lepton, jet, andEmissT

selection efficiencies in terms of the generator-level quan-tities are shown to be sufficiently accurate to reproduce the constraints on NP models that otherwise would require the full CMS detector simulation. The efficiency dependence can be parameterized as a function of pT (expressed in GeV) as 0:72ferf½ðpT 10Þ=22:5g þ 0:22f1  erf½ðpT 10Þ=22:5g for electrons, 0:79ferf½ðpT 5Þ=19:5g þ

0:41f1  erf½ðpT 5Þ=19:5g for muons, and 0:341 

exp½0:052ðpT 15Þ for taus, where erf is the error

function. We studied the efficiency for an event to pass a given reconstructedEmissT (HT) threshold as a function of the generator-levelEmissT (HT), where in the latter caseEmissT is computed using neutrinos and the LSPs and HT is the scalar sum of the transverse momenta of the partons that satisfy the same jet selection criteria used in this analysis. The dependences are parameterized by 0:5 1ferf½ðx  x1=2Þ= þ 1g, where x corresponds to the

generator-levelEmissT orHT, 1 is the selection efficiency

plateau at high values of x, x1=2 is the value of x corre-sponding to half the plateau efficiency, and determines how fast the efficiency changes withx. For the HT selec-tions of 200 and 450 GeV, the values of ( 1,x1=2,) are

(0.997, 185 GeV, 99 GeV), and (0.992, 441 GeV, 120 GeV), respectively. For the EmissT selections of 50 and 120 GeV, the parameters are (0.999, 43 GeV, 39 GeV), and (0.999,

TABLE I. Observed number of events in data compared to the predicted background yields for the considered search regions. The uncertainties include the statistical and systematic compo-nents added in quadrature with correlations taken into account. The 95% CL upper limit (UL) on the contribution from NP events is also given.

Region Mode orpT threshold Total UL

HighpT:p‘1;‘2T > 20, 10 GeV ee  e 1 6:8  2:7 8:6  3:3 18:7  6:9 34:1  12:2 5 7 12 24 13.7 2 4:3  1:9 6:1  2:4 12:2  4:6 22:6  8:3 4 6 11 21 15.1 3 3:8  1:7 3:1  1:4 6:1  2:4 13:0  4:9 4 2 5 11 9.6 4 1:1  1:1 1:2  1:2 2:6  1:4 4:9  2:6 1 0 3 4 6.2 5 9:1  3:6 4:7  1:9 9:8  3:7 23:6  8:4 7 4 5 16 10.4

LowpT:pe;T > 10, 5 GeV

ee  e 2 4:4  1:8 14:1  6:0 16:5  6:4 35:0  13:4 4 10 14 28 16.9 3 3:4  1:6 6:5  2:8 8:9  3:6 18:8  7:1 4 6 8 18 14.0 4 1:0  0:8 2:4  1:2 3:2  1:5 6:6  2:8 1 2 3 6 7.4

Tau channels:pe;;T > 10, 5, 15 GeV

e  

4 2:6  1:0 4:4  2:2 0:0  0:1 7:1  2:8

(5)

123 GeV, 37 GeV), respectively. We tested the parameter-ized efficiency model in the CMSSM, and the results obtained agree at the 15% level with the full simulation results.

In summary, we conducted a search for physics beyond the standard model based on same-sign dileptons in theee, , e, e, , and  final states, and find no evidence for an excess over the expected standard model back-ground. We set 95% CL upper limits on contributions from new physics processes based on an integrated lumi-nosity of 4:98 fb1 in the range of 6.2 to 16.9 events, depending on the signal search region. These are the most restrictive limits in this particular final state to date. We have also shown the excluded region in the CMSSM parameter space.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administra-tive staff at CERN and other CMS institutes, and acknowl-edge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR

(Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST, MAE and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

[1] P. Fayet and S. Ferrara,Phys. Rep. 32, 249 (1977). [2] G. Aad et al. (ATLAS Collaboration), J. High Energy

Phys. 11 (2011) 099.

[3] S. Chatrchyan et al. (CMS Collaboration),Phys. Rev. Lett.

107, 221804 (2011).

[4] G. Aad et al. (ATLAS Collaboration),Phys. Rev. D 85,

012006 (2012).

[5] S. Chatrchyan et al. (CMS Collaboration),J. High Energy

Phys. 08 (2011) 156.

[6] G. Aad et al. (ATLAS Collaboration),Phys. Lett. B 709,

137 (2012).

[7] S. Chatrchyan et al. (CMS Collaboration),J. High Energy

Phys. 06 (2011) 026.

[8] S. Chatrchyan et al. (CMS Collaboration),J. High Energy

Phys. 06 (2011) 077.

[9] S. Chatrchyan et al. (CMS Collaboration),Phys. Lett. B

704, 411 (2011).

[10] G. Aad et al. (ATLAS Collaboration),Phys. Lett. B 710,

519 (2012).

[11] S. Chatrchyan et al. (CMS Collaboration),Phys. Rev. Lett.

106, 211802 (2011).

[12] R. M. Barnett, J. F. Gunion, and H. E. Haber,Phys. Lett. B

315, 349 (1993).

[13] M. Guchait and D. P. Roy,Phys. Rev. D 52, 133 (1995). [14] H. Baer, C.-h. Chen, F. Paige, and X. Tata,Phys. Rev. D

53, 6241 (1996).

[15] H. C. Cheng, K. T. Matchev, and M. Schmaltz,Phys. Rev.

D 66, 056006 (2002).

[16] S. Jung, H. Murayama, and A. Pierce,Phys. Rev. D 81,

015004 (2010).

[17] E. L. Berger, Q.-H. Cao, C.-R. Chen, S. L. Chong, and H. Zhang,Phys. Rev. Lett. 106, 201801 (2011).

[18] R. Contino and G. Servant, J. High Energy Phys. 06

(2008) 026.

[19] W.-Y. Keung and G. Senjanovic,Phys. Rev. Lett. 50, 1427

(1983).

[20] Y. Bai and Z. Han, J. High Energy Phys. 04 (2009)

056.

[21] S. Chatrchyan et al. (CMS Collaboration), JINST 3,

S08004 (2008).

[22] G. L. Kane, C. F. Kolda, L. Roszkowski, and J. D. Wells,

Phys. Rev. D 49, 6173 (1994).

[23] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-MUO-10-002, 2010.

[24] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-EGM-10-004, 2010.

[25] S. Chatrchyan (CMS),JINST 7, P01001 (2012).

[26] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT- 09-001, 2009.

[27] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-002, 2010.

(GeV) 0 m 500 1000 1500 2000 2500 (GeV) 1/2 m 100 200 300 400 500 600 700 800 900 1000 CMS ,s = 7 TeV -1 = 4.98 fb int. L ± l ~ LEP2 ± 1 χ∼ LEP2 No EW SB = LS P τ∼ Non-Con vergent R GE's ) = 500 g~ m( ) = 1000 g~ m( ) = 1500 g~ m( ) = 2000 g~ m( ) = 1000 q~ m( ) = 1500 q~ m( ) = 2000 q~ m( ) = 2500 q~ m( )=10 β tan( > 0 µ = 173.2 GeV t m

Observed Limit (NLO+NLL with uncertainties) Expected Limit (NLO+NLL)

) -1 = 35 pb int NLO Obs. Limit (L = 0 GeV

0 A

FIG. 3 (color online). Exclusion region, below the red curve, in the CMSSM corresponds to the observed upper limits on the number of events from NP. The central observed curve, which includes experimental uncertainties, is obtained using high pT leptons withHT> 450 GeV and EmissT > 120 GeV. The hatched region corresponds to the theoretical uncertainties on the cross section, whereas the shaded region shows the experimental errors with 1 variation. We also show the result of the previous analysis [8] to illustrate the improvement.

(6)

[28] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy

Phys. 04 2008) 063.

[29] J. Alwall, P. Demin, S. Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D. L. Rainwater, and T. Stelzer,

J. High Energy Phys. 09 (2007) 028.

[30] T. Sjo¨strand, S. Mrenna, and P. Skands, J. High Energy

Phys. 05 (2006) 026.

[31] CMS Collaboration,J. Phys. G 34, 995 (2007).

[32] CMS Collaboration (CMS), CMS Physics Analysis Summary Report No. CMS-PAS-SMP-12-008, 2012. [33] A. L. Read,J. Phys. G 28, 2693 (2002).

[34] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434,

435 (1999).

[35] ATLAS and CMS Collaborations, LHC Higgs Combination Group, Report No. ATL-PHYS-PUB 2011-11, CMS NOTE 2011-005, 2011.

[36] M. Kramer, A. Kulesza, R. van der Leeuw, M. Mangano, and S. Padhi et al.,arXiv:1206.2892.

[37] W. Beenakker, R. Ho¨pker, M. Spira, and P. M. Zerwas,

Nucl. Phys. B492, 51 (1997).

[38] A. Kulesza and L. Motyka,Phys. Rev. Lett. 102, 111802

(2009).

[39] A. Kulesza and L. Motyka, Phys. Rev. D 80, 095004

(2009).

[40] W. Beenakker, S. Brensing, M. Kramer, A. Kulesza, and E. Laenen et al.,J. High Energy Phys. 12 (2009) 041. [41] W. Beenakker, S. Brensing, M. Kramer, A. Kulesza,

and E. Laenen et al., Int. J. Mod. Phys. A 26, 2637

(2011).

[42] W. Beenakker, M. Kramer, T. Plehn, M. Spira, and P. M. Zerwas,Nucl. Phys. B515, 3 (1998).

[43] W. Beenakker, S. Brensing, M. Kramer, A. Kulesza, and E. Laenen et al., J. High Energy Phys. 08

(2010) 098.

[44] W. Beenakker, M. Klasen, M. Kramer, T. Plehn, and M. Spira et al.,Phys. Rev. Lett. 83, 3780 (1999).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2 C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2J. Hammer,2N. Ho¨rmann,2J. Hrubec,2M. Jeitler,2,b W. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bD. Liko,2I. Mikulec,2M. Pernicka,2,aB. Rahbaran,2C. Rohringer,2

H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2P. Wagner,2W. Waltenberger,2G. Walzel,2E. Widl,2 C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Bansal,4T. Cornelis,4E. A. De Wolf,4 X. Janssen,4S. Luyckx,4T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4 Z. Staykova,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5 S. Blyweert,5J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5A. Olbrechts,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5O. Charaf,6B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6 T. Hreus,6A. Le´onard,6P. E. Marage,6T. Reis,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wang,6V. Adler,7

K. Beernaert,7A. Cimmino,7S. Costantini,7G. Garcia,7M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7 J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7N. Strobbe,7F. Thyssen,7M. Tytgat,7L. Vanelderen,7 P. Verwilligen,7S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8G. Bruno,8R. Castello,8A. Caudron,8 L. Ceard,8C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,cJ. Hollar,8V. Lemaitre,8J. Liao,8

O. Militaru,8C. Nuttens,8D. Pagano,8L. Perrini,8A. Pin,8K. Piotrzkowski,8N. Schul,8J. M. Vizan Garcia,8 N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10M. Correa Martins Junior,10 D. De Jesus Damiao,10T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11 A. Custo´dio,11E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11D. Matos Figueiredo,11 L. Mundim,11H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11A. Santoro,11L. Soares Jorge,11A. Sznajder,11 C. A. Bernardes,12,dF. A. Dias,12,eT. R. Fernandez Perez Tomei,12E. M. Gregores,12,dC. Lagana,12F. Marinho,12 P. G. Mercadante,12,dS. F. Novaes,12Sandra S. Padula,12V. Genchev,13,fP. Iaydjiev,13,fS. Piperov,13M. Rodozov,13

S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14 V. Kozhuharov,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15 D. Liang,15S. Liang,15X. Meng,15J. Tao,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15

Z. Zhang,15C. Asawatangtrakuldee,16Y. Ban,16S. Guo,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16 H. Teng,16S. Wang,16B. Zhu,16W. Zou,16C. Avila,17J. P. Gomez,17B. Gomez Moreno,17A. F. Osorio Oliveros,17

J. C. Sanabria,17N. Godinovic,18D. Lelas,18R. Plestina,18,gD. Polic,18I. Puljak,18,fZ. Antunovic,19M. Kovac,19 V. Brigljevic,20S. Duric,20K. Kadija,20J. Luetic,20S. Morovic,20A. Attikis,21M. Galanti,21G. Mavromanolakis,21 J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,hS. Elgammal,23,i A. Ellithi Kamel,23,jS. Khalil,23,iM. A. Mahmoud,23,kA. Radi,23,l,eeeM. Kadastik,24M. Mu¨ntel,24M. Raidal,24

L. Rebane,24A. Tiko,24V. Azzolini,25P. Eerola,25G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26A. Heikkinen,26 V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26

P. Luukka,26T. Ma¨enpa¨a¨,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26 L. Wendland,26K. Banzuzi,27A. Korpela,27T. Tuuva,27M. Besancon,28S. Choudhury,28M. Dejardin,28

(7)

D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28 G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28L. Millischer,28A. Nayak,28J. Rander,28 A. Rosowsky,28I. Shreyber,28M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29M. Bluj,29,m

C. Broutin,29P. Busson,29C. Charlot,29N. Daci,29T. Dahms,29L. Dobrzynski,29R. Granier de Cassagnac,29 M. Haguenauer,29P. Mine´,29C. Mironov,29M. Nguyen,29C. Ochando,29P. Paganini,29D. Sabes,29R. Salerno,29

Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,nJ. Andrea,30D. Bloch,30D. Bodin,30J.-M. Brom,30 M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,nF. Drouhin,30,nC. Ferro,30J.-C. Fontaine,30,nD. Gele´,30 U. Goerlach,30P. Juillot,30M. Karim,30,nA.-C. Le Bihan,30P. Van Hove,30F. Fassi,31D. Mercier,31S. Beauceron,32 N. Beaupere,32O. Bondu,32G. Boudoul,32H. Brun,32J. Chasserat,32R. Chierici,32,fD. Contardo,32P. Depasse,32 H. El Mamouni,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32

S. Perries,32V. Sordini,32S. Tosi,32Y. Tschudi,32P. Verdier,32S. Viret,32Z. Tsamalaidze,33,yG. Anagnostou,34 S. Beranek,34M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34R. Jussen,34K. Klein,34J. Merz,34 A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34 V. Zhukov,34,oM. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Gu¨th,35

T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35P. Kreuzer,35J. Lingemann,35C. Magass,35 M. Merschmeyer,35A. Meyer,35M. Olschewski,35P. Papacz,35H. Pieta,35H. Reithler,35S. A. Schmitz,35 L. Sonnenschein,35J. Steggemann,35D. Teyssier,35M. Weber,35M. Bontenackels,36V. Cherepanov,36M. Davids,36

G. Flu¨gge,36H. Geenen,36M. Geisler,36W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36 A. Linn,36A. Nowack,36L. Perchalla,36O. Pooth,36J. Rennefeld,36P. Sauerland,36A. Stahl,36M. Aldaya Martin,37 J. Behr,37W. Behrenhoff,37U. Behrens,37M. Bergholz,37,pA. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37 L. Calligaris,37A. Campbell,37E. Castro,37F. Costanza,37D. Dammann,37G. Eckerlin,37D. Eckstein,37D. Fischer,37

G. Flucke,37A. Geiser,37I. Glushkov,37P. Gunnellini,37S. Habib,37J. Hauk,37G. Hellwig,37H. Jung,37,f M. Kasemann,37P. Katsas,37C. Kleinwort,37H. Kluge,37A. Knutsson,37M. Kra¨mer,37D. Kru¨cker,37 E. Kuznetsova,37W. Lange,37W. Lohmann,37,pB. Lutz,37R. Mankel,37I. Marfin,37M. Marienfeld,37 I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37J. Olzem,37H. Perrey,37

A. Petrukhin,37D. Pitzl,37A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37M. Rosin,37J. Salfeld-Nebgen,37 R. Schmidt,37,pT. Schoerner-Sadenius,37N. Sen,37A. Spiridonov,37M. Stein,37R. Walsh,37C. Wissing,37 C. Autermann,38V. Blobel,38S. Bobrovskyi,38J. Draeger,38H. Enderle,38J. Erfle,38U. Gebbert,38M. Go¨rner,38

T. Hermanns,38R. S. Ho¨ing,38K. Kaschube,38G. Kaussen,38H. Kirschenmann,38R. Klanner,38J. Lange,38 B. Mura,38F. Nowak,38T. Peiffer,38N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38 E. Schlieckau,38A. Schmidt,38M. Schro¨der,38T. Schum,38M. Seidel,38H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38

C. Barth,39J. Berger,39C. Bo¨ser,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39 M. Guthoff,39,fC. Hackstein,39F. Hartmann,39T. Hauth,39,fM. Heinrich,39H. Held,39K. H. Hoffmann,39S. Honc,39

I. Katkov,39,oJ. R. Komaragiri,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39M. Niegel,39A. Nu¨rnberg,39 O. Oberst,39A. Oehler,39J. Ott,39G. Quast,39K. Rabbertz,39F. Ratnikov,39N. Ratnikova,39S. Ro¨cker,39 A. Scheurer,39F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39D. Troendle,39R. Ulrich,39 J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39M. Zeise,39G. Daskalakis,40T. Geralis,40S. Kesisoglou,40 A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40C. Mavrommatis,40E. Ntomari,40 L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41I. Evangelou,42C. Foudas,42,fP. Kokkas,42 N. Manthos,42I. Papadopoulos,42V. Patras,42G. Bencze,43C. Hajdu,43,fP. Hidas,43D. Horvath,43,qK. Krajczar,43,r

B. Radics,43F. Sikler,43,fV. Veszpremi,43G. Vesztergombi,43,rN. Beni,44S. Czellar,44J. Molnar,44J. Palinkas,44 Z. Szillasi,44J. Karancsi,45P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. B. Beri,46V. Bhatnagar,46N. Dhingra,46 R. Gupta,46M. Jindal,46M. Kaur,46J. M. Kohli,46M. Z. Mehta,46N. Nishu,46L. K. Saini,46A. Sharma,46J. Singh,46

S. Ahuja,47A. Bhardwaj,47B. C. Choudhary,47A. Kumar,47A. Kumar,47S. Malhotra,47M. Naimuddin,47 K. Ranjan,47V. Sharma,47R. K. Shivpuri,47S. Banerjee,48S. Bhattacharya,48S. Dutta,48B. Gomber,48Sa. Jain,48

Sh. Jain,48R. Khurana,48S. Sarkar,48M. Sharan,48A. Abdulsalam,49R. K. Choudhury,49D. Dutta,49S. Kailas,49 V. Kumar,49P. Mehta,49A. K. Mohanty,49,fL. M. Pant,49P. Shukla,49T. Aziz,50S. Ganguly,50M. Guchait,50,s M. Maity,50,tG. Majumder,50K. Mazumdar,50G. B. Mohanty,50B. Parida,50K. Sudhakar,50N. Wickramage,50

S. Banerjee,51S. Dugad,51H. Arfaei,52H. Bakhshiansohi,52,uS. M. Etesami,52,vA. Fahim,52,uM. Hashemi,52 H. Hesari,52A. Jafari,52,uM. Khakzad,52A. Mohammadi,52,wM. Mohammadi Najafabadi,52

(8)

C. Calabria,53a,53b,fS. S. Chhibra,53a,53bA. Colaleo,53aD. Creanza,53a,53cN. De Filippis,53a,53c,fM. De Palma,53a,53b L. Fiore,53aG. Iaselli,53a,53cL. Lusito,53a,53bG. Maggi,53a,53cM. Maggi,53aB. Marangelli,53a,53bS. My,53a,53c

S. Nuzzo,53a,53bN. Pacifico,53a,53bA. Pompili,53a,53bG. Pugliese,53a,53cG. Selvaggi,53a,53bL. Silvestris,53a G. Singh,53a,53bR. Venditti,53aG. Zito,53aG. Abbiendi,54aA. C. Benvenuti,54aD. Bonacorsi,54a,54b S. Braibant-Giacomelli,54a,54bL. Brigliadori,54a,54bP. Capiluppi,54a,54bA. Castro,54a,54bF. R. Cavallo,54a M. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54bD. Fasanella,54a,54b,fP. Giacomelli,54a

C. Grandi,54aL. Guiducci,54aS. Marcellini,54aG. Masetti,54aM. Meneghelli,54a,54b,fA. Montanari,54a F. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54aF. Primavera,54a,54bA. M. Rossi,54a,54bT. Rovelli,54a,54b G. Siroli,54a,54bR. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55bM. Chiorboli,55a,55bS. Costa,55a,55b

R. Potenza,55a,55bA. Tricomi,55a,55bC. Tuve,55a,55bG. Barbagli,56aV. Ciulli,56a,56bC. Civinini,56a

R. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56aS. Gonzi,56a,56bM. Meschini,56aS. Paoletti,56a G. Sguazzoni,56aA. Tropiano,56a,fL. Benussi,57S. Bianco,57S. Colafranceschi,57,yF. Fabbri,57D. Piccolo,57 P. Fabbricatore,58R. Musenich,58A. Benaglia,59a,59b,fF. De Guio,59a,59bL. Di Matteo,59a,59b,fS. Fiorendi,59a,59b

S. Gennai,59a,fA. Ghezzi,59a,59bS. Malvezzi,59aR. A. Manzoni,59a,59bA. Martelli,59a,59bA. Massironi,59a,59b,f D. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59aS. Ragazzi,59a,59bN. Redaelli,59aS. Sala,59a T. Tabarelli de Fatis,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60a,fN. Cavallo,60a,zA. De Cosa,60a,60b,f O. Dogangun,60a,60bF. Fabozzi,60a,zA. O. M. Iorio,60aL. Lista,60aS. Meola,60a,aaM. Merola,60a,60bP. Paolucci,60a,f

P. Azzi,61aN. Bacchetta,61a,fP. Bellan,61a,61bA. Branca,61a,fR. Carlin,61a,61bP. Checchia,61aT. Dorigo,61a U. Dosselli,61aF. Gasparini,61a,61bU. Gasparini,61a,61bA. Gozzelino,61aK. Kanishchev,61a,61cS. Lacaprara,61a I. Lazzizzera,61a,61cM. Margoni,61a,61bA. T. Meneguzzo,61a,61bJ. Pazzini,61aL. Perrozzi,61aN. Pozzobon,61a,61b

P. Ronchese,61a,61bF. Simonetto,61a,61bE. Torassa,61aM. Tosi,61a,61b,fS. Vanini,61a,61bA. Zucchetta,61a G. Zumerle,61a,61bM. Gabusi,62a,62bS. P. Ratti,62a,62bC. Riccardi,62a,62bP. Torre,62a,62bP. Vitulo,62a,62b M. Biasini,63a,63bG. M. Bilei,63aL. Fano`,63a,63bP. Lariccia,63a,63bA. Lucaroni,63a,63b,fG. Mantovani,63a,63b

M. Menichelli,63aA. Nappi,63a,63bF. Romeo,63a,63bA. Saha,63aA. Santocchia,63a,63bS. Taroni,63a,63b,f P. Azzurri,64a,64cG. Bagliesi,64aT. Boccali,64aG. Broccolo,64a,64cR. Castaldi,64aR. T. D’Agnolo,64a,64c R. Dell’Orso,64aF. Fiori,64a,64b,fL. Foa`,64a,64cA. Giassi,64aA. Kraan,64aF. Ligabue,64a,64cT. Lomtadze,64a L. Martini,64a,bbA. Messineo,64a,64bF. Palla,64aA. Rizzi,64a,64bA. T. Serban,64a,ccP. Spagnolo,64aP. Squillacioti,64a,f R. Tenchini,64aG. Tonelli,64a,64b,fA. Venturi,64a,fP. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65aD. Del Re,65a,65b,f

M. Diemoz,65aM. Grassi,65a,65b,fE. Longo,65a,65bP. Meridiani,65a,fF. Micheli,65a,65bS. Nourbakhsh,65a,65b G. Organtini,65a,65bR. Paramatti,65aS. Rahatlou,65a,65bM. Sigamani,65aL. Soffi,65a,65bN. Amapane,66a,66b

R. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66aC. Botta,66a,66bN. Cartiglia,66a M. Costa,66a,66bN. Demaria,66aA. Graziano,66a,66bC. Mariotti,66a,fS. Maselli,66aE. Migliore,66a,66b V. Monaco,66a,66bM. Musich,66a,fM. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66aA. Potenza,66a,66b

A. Romero,66a,66bM. Ruspa,66a,66cR. Sacchi,66a,66bV. Sola,66a,66bA. Solano,66a,66bA. Staiano,66a A. Vilela Pereira,66aS. Belforte,67aF. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67aM. Marone,67a,67b,f D. Montanino,67a,67b,fA. Penzo,67aA. Schizzi,67a,67bS. G. Heo,68T. Y. Kim,68S. K. Nam,68S. Chang,69J. Chung,69

D. H. Kim,69G. N. Kim,69D. J. Kong,69H. Park,69S. R. Ro,69D. C. Son,69T. Son,69J. Y. Kim,70Zero J. Kim,70 S. Song,70H. Y. Jo,71S. Choi,72D. Gyun,72B. Hong,72M. Jo,72H. Kim,72T. J. Kim,72K. S. Lee,72D. H. Moon,72

S. K. Park,72E. Seo,72M. Choi,73S. Kang,73H. Kim,73J. H. Kim,73C. Park,73I. C. Park,73S. Park,73G. Ryu,73 Y. Cho,74Y. Choi,74Y. K. Choi,74J. Goh,74M. S. Kim,74E. Kwon,74B. Lee,74J. Lee,74S. Lee,74H. Seo,74I. Yu,74

M. J. Bilinskas,75I. Grigelionis,75M. Janulis,75A. Juodagalvis,75H. Castilla-Valdez,76E. De La Cruz-Burelo,76 I. Heredia-de La Cruz,76R. Lopez-Fernandez,76R. Magan˜a Villalba,76J. Martı´nez-Ortega,76

A. Sa´nchez-Herna´ndez,76L. M. Villasenor-Cendejas,76S. Carrillo Moreno,77F. Vazquez Valencia,77 H. A. Salazar Ibarguen,78E. Casimiro Linares,79A. Morelos Pineda,79M. A. Reyes-Santos,79D. Krofcheck,80

A. J. Bell,81P. H. Butler,81R. Doesburg,81S. Reucroft,81H. Silverwood,81M. Ahmad,82M. I. Asghar,82 H. R. Hoorani,82S. Khalid,82W. A. Khan,82T. Khurshid,82S. Qazi,82M. A. Shah,82M. Shoaib,82G. Brona,83 K. Bunkowski,83M. Cwiok,83W. Dominik,83K. Doroba,83A. Kalinowski,83M. Konecki,83J. Krolikowski,83

H. Bialkowska,84B. Boimska,84T. Frueboes,84R. Gokieli,84M. Go´rski,84M. Kazana,84K. Nawrocki,84 K. Romanowska-Rybinska,84M. Szleper,84G. Wrochna,84P. Zalewski,84N. Almeida,85P. Bargassa,85A. David,85

P. Faccioli,85M. Fernandes,85P. G. Ferreira Parracho,85M. Gallinaro,85J. Seixas,85J. Varela,85P. Vischia,85 I. Belotelov,86P. Bunin,86M. Gavrilenko,86I. Golutvin,86I. Gorbunov,86A. Kamenev,86V. Karjavin,86G. Kozlov,86

(9)

A. Lanev,86A. Malakhov,86P. Moisenz,86V. Palichik,86V. Perelygin,86S. Shmatov,86V. Smirnov,86A. Volodko,86 A. Zarubin,86S. Evstyukhin,87V. Golovtsov,87Y. Ivanov,87V. Kim,87P. Levchenko,87V. Murzin,87V. Oreshkin,87

I. Smirnov,87V. Sulimov,87L. Uvarov,87S. Vavilov,87A. Vorobyev,87An. Vorobyev,87Yu. Andreev,88 A. Dermenev,88S. Gninenko,88N. Golubev,88M. Kirsanov,88N. Krasnikov,88V. Matveev,88A. Pashenkov,88

D. Tlisov,88A. Toropin,88V. Epshteyn,89M. Erofeeva,89V. Gavrilov,89M. Kossov,89,fN. Lychkovskaya,89 V. Popov,89G. Safronov,89S. Semenov,89V. Stolin,89E. Vlasov,89A. Zhokin,89A. Belyaev,90E. Boos,90 M. Dubinin,90,eL. Dudko,90A. Ershov,90A. Gribushin,90V. Klyukhin,90O. Kodolova,90I. Lokhtin,90A. Markina,90

S. Obraztsov,90M. Perfilov,90S. Petrushanko,90A. Popov,90L. Sarycheva,90,aV. Savrin,90A. Snigirev,90 V. Andreev,91M. Azarkin,91I. Dremin,91M. Kirakosyan,91A. Leonidov,91G. Mesyats,91S. V. Rusakov,91 A. Vinogradov,91I. Azhgirey,92I. Bayshev,92S. Bitioukov,92V. Grishin,92,fV. Kachanov,92D. Konstantinov,92 A. Korablev,92V. Krychkine,92V. Petrov,92R. Ryutin,92A. Sobol,92L. Tourtchanovitch,92S. Troshin,92N. Tyurin,92

A. Uzunian,92A. Volkov,92P. Adzic,93,ddM. Djordjevic,93M. Ekmedzic,93D. Krpic,93,ddJ. Milosevic,93 M. Aguilar-Benitez,94J. Alcaraz Maestre,94P. Arce,94C. Battilana,94E. Calvo,94M. Cerrada,94

M. Chamizo Llatas,94N. Colino,94B. De La Cruz,94A. Delgado Peris,94C. Diez Pardos,94D. Domı´nguez Va´zquez,94 C. Fernandez Bedoya,94J. P. Ferna´ndez Ramos,94A. Ferrando,94J. Flix,94M. C. Fouz,94P. Garcia-Abia,94

O. Gonzalez Lopez,94S. Goy Lopez,94J. M. Hernandez,94M. I. Josa,94G. Merino,94J. Puerta Pelayo,94 A. Quintario Olmeda,94I. Redondo,94L. Romero,94J. Santaolalla,94M. S. Soares,94C. Willmott,94C. Albajar,95 G. Codispoti,95J. F. de Troco´niz,95J. Cuevas,96J. Fernandez Menendez,96S. Folgueras,96I. Gonzalez Caballero,96 L. Lloret Iglesias,96J. Piedra Gomez,96,eeJ. A. Brochero Cifuentes,97I. J. Cabrillo,97A. Calderon,97S. H. Chuang,97

J. Duarte Campderros,97M. Felcini,97,ffM. Fernandez,97G. Gomez,97J. Gonzalez Sanchez,97C. Jorda,97 P. Lobelle Pardo,97A. Lopez Virto,97J. Marco,97R. Marco,97C. Martinez Rivero,97F. Matorras,97 F. J. Munoz Sanchez,97T. Rodrigo,97A. Y. Rodrı´guez-Marrero,97A. Ruiz-Jimeno,97L. Scodellaro,97 M. Sobron Sanudo,97I. Vila,97R. Vilar Cortabitarte,97D. Abbaneo,98E. Auffray,98G. Auzinger,98P. Baillon,98

A. H. Ball,98D. Barney,98C. Bernet,98,gG. Bianchi,98P. Bloch,98A. Bocci,98A. Bonato,98H. Breuker,98 T. Camporesi,98G. Cerminara,98T. Christiansen,98J. A. Coarasa Perez,98D. D’Enterria,98A. Dabrowski,98 A. De Roeck,98S. Di Guida,98M. Dobson,98N. Dupont-Sagorin,98A. Elliott-Peisert,98B. Frisch,98W. Funk,98

G. Georgiou,98M. Giffels,98D. Gigi,98K. Gill,98D. Giordano,98M. Giunta,98F. Glege,98

R. Gomez-Reino Garrido,98P. Govoni,98S. Gowdy,98R. Guida,98M. Hansen,98P. Harris,98C. Hartl,98J. Harvey,98 B. Hegner,98A. Hinzmann,98V. Innocente,98P. Janot,98K. Kaadze,98E. Karavakis,98K. Kousouris,98P. Lecoq,98

Y.-J. Lee,98P. Lenzi,98C. Lourenc¸o,98T. Ma¨ki,98M. Malberti,98L. Malgeri,98M. Mannelli,98L. Masetti,98 F. Meijers,98S. Mersi,98E. Meschi,98R. Moser,98M. U. Mozer,98M. Mulders,98P. Musella,98E. Nesvold,98 T. Orimoto,98L. Orsini,98E. Palencia Cortezon,98E. Perez,98A. Petrilli,98A. Pfeiffer,98M. Pierini,98M. Pimia¨,98

D. Piparo,98G. Polese,98L. Quertenmont,98A. Racz,98W. Reece,98J. Rodrigues Antunes,98G. Rolandi,98,gg T. Rommerskirchen,98C. Rovelli,98,hhM. Rovere,98H. Sakulin,98F. Santanastasio,98C. Scha¨fer,98C. Schwick,98

I. Segoni,98S. Sekmen,98A. Sharma,98P. Siegrist,98P. Silva,98M. Simon,98P. Sphicas,98,iiD. Spiga,98 M. Spiropulu,98,eM. Stoye,98A. Tsirou,98G. I. Veres,98,rJ. R. Vlimant,98H. K. Wo¨hri,98S. D. Worm,98,jj W. D. Zeuner,98W. Bertl,99K. Deiters,99W. Erdmann,99K. Gabathuler,99R. Horisberger,99Q. Ingram,99 H. C. Kaestli,99S. Ko¨nig,99D. Kotlinski,99U. Langenegger,99F. Meier,99D. Renker,99T. Rohe,99J. Sibille,99,kk

L. Ba¨ni,100P. Bortignon,100M. A. Buchmann,100B. Casal,100N. Chanon,100Z. Chen,100A. Deisher,100 G. Dissertori,100M. Dittmar,100M. Du¨nser,100J. Eugster,100K. Freudenreich,100C. Grab,100D. Hits,100 P. Lecomte,100W. Lustermann,100A. C. Marini,100P. Martinez Ruiz del Arbol,100N. Mohr,100F. Moortgat,100 C. Na¨geli,100,llP. Nef,100F. Nessi-Tedaldi,100F. Pandolfi,100L. Pape,100F. Pauss,100M. Peruzzi,100F. J. Ronga,100 M. Rossini,100L. Sala,100A. K. Sanchez,100A. Starodumov,100,mmB. Stieger,100M. Takahashi,100L. Tauscher,100,a

A. Thea,100K. Theofilatos,100D. Treille,100C. Urscheler,100R. Wallny,100H. A. Weber,100L. Wehrli,100 E. Aguilo,101C. Amsler,101V. Chiochia,101S. De Visscher,101C. Favaro,101M. Ivova Rikova,101B. Millan Mejias,101

P. Otiougova,101P. Robmann,101H. Snoek,101S. Tupputi,101M. Verzetti,101Y. H. Chang,102K. H. Chen,102 C. M. Kuo,102S. W. Li,102W. Lin,102Z. K. Liu,102Y. J. Lu,102D. Mekterovic,102A. P. Singh,102R. Volpe,102 S. S. Yu,102P. Bartalini,103P. Chang,103Y. H. Chang,103Y. W. Chang,103Y. Chao,103K. F. Chen,103C. Dietz,103 U. Grundler,103W.-S. Hou,103Y. Hsiung,103K. Y. Kao,103Y. J. Lei,103R.-S. Lu,103D. Majumder,103E. Petrakou,103 X. Shi,103J. G. Shiu,103Y. M. Tzeng,103X. Wan,103M. Wang,103A. Adiguzel,104M. N. Bakirci,104,nnS. Cerci,104,oo C. Dozen,104I. Dumanoglu,104E. Eskut,104S. Girgis,104G. Gokbulut,104E. Gurpinar,104I. Hos,104E. E. Kangal,104

(10)

G. Karapinar,104A. Kayis Topaksu,104G. Onengut,104K. Ozdemir,104S. Ozturk,104,ppA. Polatoz,104K. Sogut,104,qq D. Sunar Cerci,104,ooB. Tali,104,ooH. Topakli,104,nnL. N. Vergili,104M. Vergili,104I. V. Akin,105T. Aliev,105 B. Bilin,105S. Bilmis,105M. Deniz,105H. Gamsizkan,105A. M. Guler,105K. Ocalan,105A. Ozpineci,105M. Serin,105 R. Sever,105U. E. Surat,105M. Yalvac,105E. Yildirim,105M. Zeyrek,105E. Gu¨lmez,106B. Isildak,106,rrM. Kaya,106,ss O. Kaya,106,ssS. Ozkorucuklu,106,ttN. Sonmez,106,uuK. Cankocak,107L. Levchuk,108F. Bostock,109J. J. Brooke,109

E. Clement,109D. Cussans,109H. Flacher,109R. Frazier,109J. Goldstein,109M. Grimes,109G. P. Heath,109 H. F. Heath,109L. Kreczko,109S. Metson,109D. M. Newbold,109,jjK. Nirunpong,109A. Poll,109S. Senkin,109

V. J. Smith,109T. Williams,109L. Basso,110,vvK. W. Bell,110A. Belyaev,110,vvC. Brew,110R. M. Brown,110 D. J. A. Cockerill,110J. A. Coughlan,110K. Harder,110S. Harper,110J. Jackson,110B. W. Kennedy,110E. Olaiya,110

D. Petyt,110B. C. Radburn-Smith,110C. H. Shepherd-Themistocleous,110I. R. Tomalin,110W. J. Womersley,110 R. Bainbridge,111G. Ball,111R. Beuselinck,111O. Buchmuller,111D. Colling,111N. Cripps,111M. Cutajar,111

P. Dauncey,111G. Davies,111M. Della Negra,111W. Ferguson,111J. Fulcher,111D. Futyan,111A. Gilbert,111 A. Guneratne Bryer,111G. Hall,111Z. Hatherell,111J. Hays,111G. Iles,111M. Jarvis,111G. Karapostoli,111 L. Lyons,111A.-M. Magnan,111J. Marrouche,111B. Mathias,111R. Nandi,111J. Nash,111A. Nikitenko,111,mm A. Papageorgiou,111J. Pela,111,fM. Pesaresi,111K. Petridis,111M. Pioppi,111,wwD. M. Raymond,111S. Rogerson,111 A. Rose,111M. J. Ryan,111C. Seez,111P. Sharp,111,aA. Sparrow,111A. Tapper,111M. Vazquez Acosta,111T. Virdee,111

S. Wakefield,111N. Wardle,111T. Whyntie,111M. Chadwick,112J. E. Cole,112P. R. Hobson,112A. Khan,112 P. Kyberd,112D. Leggat,112D. Leslie,112W. Martin,112I. D. Reid,112P. Symonds,112L. Teodorescu,112M. Turner,112

K. Hatakeyama,113H. Liu,113T. Scarborough,113C. Henderson,114P. Rumerio,114A. Avetisyan,115T. Bose,115 C. Fantasia,115A. Heister,115J. St. John,115P. Lawson,115D. Lazic,115J. Rohlf,115D. Sperka,115L. Sulak,115 J. Alimena,116S. Bhattacharya,116D. Cutts,116A. Ferapontov,116U. Heintz,116S. Jabeen,116G. Kukartsev,116 E. Laird,116G. Landsberg,116M. Luk,116M. Narain,116D. Nguyen,116M. Segala,116T. Sinthuprasith,116T. Speer,116

K. V. Tsang,116R. Breedon,117G. Breto,117M. Calderon De La Barca Sanchez,117S. Chauhan,117M. Chertok,117 J. Conway,117R. Conway,117P. T. Cox,117J. Dolen,117R. Erbacher,117M. Gardner,117R. Houtz,117W. Ko,117 A. Kopecky,117R. Lander,117O. Mall,117T. Miceli,117R. Nelson,117D. Pellett,117B. Rutherford,117M. Searle,117

J. Smith,117M. Squires,117M. Tripathi,117R. Vasquez Sierra,117V. Andreev,118D. Cline,118R. Cousins,118 J. Duris,118S. Erhan,118P. Everaerts,118C. Farrell,118J. Hauser,118M. Ignatenko,118C. Jarvis,118C. Plager,118 G. Rakness,118P. Schlein,118,aJ. Tucker,118V. Valuev,118M. Weber,118J. Babb,119R. Clare,119M. E. Dinardo,119 J. Ellison,119J. W. Gary,119F. Giordano,119G. Hanson,119G. Y. Jeng,119,xxH. Liu,119O. R. Long,119A. Luthra,119 H. Nguyen,119S. Paramesvaran,119J. Sturdy,119S. Sumowidagdo,119R. Wilken,119S. Wimpenny,119W. Andrews,120

J. G. Branson,120G. B. Cerati,120S. Cittolin,120D. Evans,120F. Golf,120A. Holzner,120R. Kelley,120 M. Lebourgeois,120J. Letts,120I. Macneill,120B. Mangano,120S. Padhi,120C. Palmer,120G. Petrucciani,120

M. Pieri,120M. Sani,120V. Sharma,120S. Simon,120E. Sudano,120M. Tadel,120Y. Tu,120A. Vartak,120 S. Wasserbaech,120,yyF. Wu¨rthwein,120A. Yagil,120J. Yoo,120D. Barge,121R. Bellan,121C. Campagnari,121 M. D’Alfonso,121T. Danielson,121K. Flowers,121P. Geffert,121J. Incandela,121C. Justus,121P. Kalavase,121 S. A. Koay,121D. Kovalskyi,121V. Krutelyov,121S. Lowette,121N. Mccoll,121V. Pavlunin,121F. Rebassoo,121 J. Ribnik,121J. Richman,121R. Rossin,121D. Stuart,121W. To,121C. West,121A. Apresyan,122A. Bornheim,122 Y. Chen,122E. Di Marco,122J. Duarte,122M. Gataullin,122Y. Ma,122A. Mott,122H. B. Newman,122C. Rogan,122 V. Timciuc,122P. Traczyk,122J. Veverka,122R. Wilkinson,122Y. Yang,122R. Y. Zhu,122B. Akgun,123R. Carroll,123 T. Ferguson,123Y. Iiyama,123D. W. Jang,123Y. F. Liu,123M. Paulini,123H. Vogel,123I. Vorobiev,123J. P. Cumalat,124 B. R. Drell,124C. J. Edelmaier,124W. T. Ford,124A. Gaz,124B. Heyburn,124E. Luiggi Lopez,124J. G. Smith,124 K. Stenson,124K. A. Ulmer,124S. R. Wagner,124J. Alexander,125A. Chatterjee,125N. Eggert,125L. K. Gibbons,125

B. Heltsley,125A. Khukhunaishvili,125B. Kreis,125N. Mirman,125G. Nicolas Kaufman,125J. R. Patterson,125 A. Ryd,125E. Salvati,125W. Sun,125W. D. Teo,125J. Thom,125J. Thompson,125J. Vaughan,125Y. Weng,125 L. Winstrom,125P. Wittich,125D. Winn,126S. Abdullin,127M. Albrow,127J. Anderson,127L. A. T. Bauerdick,127

A. Beretvas,127J. Berryhill,127P. C. Bhat,127I. Bloch,127K. Burkett,127J. N. Butler,127V. Chetluru,127 H. W. K. Cheung,127F. Chlebana,127V. D. Elvira,127I. Fisk,127J. Freeman,127Y. Gao,127D. Green,127O. Gutsche,127

A. Hahn,127J. Hanlon,127R. M. Harris,127J. Hirschauer,127B. Hooberman,127S. Jindariani,127M. Johnson,127 U. Joshi,127B. Kilminster,127B. Klima,127S. Kunori,127S. Kwan,127C. Leonidopoulos,127D. Lincoln,127 R. Lipton,127L. Lueking,127J. Lykken,127K. Maeshima,127J. M. Marraffino,127S. Maruyama,127D. Mason,127

(11)

O. Prokofyev,127E. Sexton-Kennedy,127S. Sharma,127W. J. Spalding,127L. Spiegel,127P. Tan,127L. Taylor,127 S. Tkaczyk,127N. V. Tran,127L. Uplegger,127E. W. Vaandering,127R. Vidal,127J. Whitmore,127W. Wu,127 F. Yang,127F. Yumiceva,127J. C. Yun,127D. Acosta,128P. Avery,128D. Bourilkov,128M. Chen,128S. Das,128 M. De Gruttola,128G. P. Di Giovanni,128D. Dobur,128A. Drozdetskiy,128R. D. Field,128M. Fisher,128Y. Fu,128

I. K. Furic,128J. Gartner,128J. Hugon,128B. Kim,128J. Konigsberg,128A. Korytov,128A. Kropivnitskaya,128 T. Kypreos,128J. F. Low,128K. Matchev,128P. Milenovic,128,aaaG. Mitselmakher,128L. Muniz,128R. Remington,128

A. Rinkevicius,128P. Sellers,128N. Skhirtladze,128M. Snowball,128J. Yelton,128M. Zakaria,128V. Gaultney,129 L. M. Lebolo,129S. Linn,129P. Markowitz,129G. Martinez,129J. L. Rodriguez,129J. R. Adams,130T. Adams,130

A. Askew,130J. Bochenek,130J. Chen,130B. Diamond,130S. V. Gleyzer,130J. Haas,130S. Hagopian,130 V. Hagopian,130M. Jenkins,130K. F. Johnson,130H. Prosper,130V. Veeraraghavan,130M. Weinberg,130 M. M. Baarmand,131B. Dorney,131M. Hohlmann,131H. Kalakhety,131I. Vodopiyanov,131M. R. Adams,132 I. M. Anghel,132L. Apanasevich,132Y. Bai,132V. E. Bazterra,132R. R. Betts,132I. Bucinskaite,132J. Callner,132 R. Cavanaugh,132C. Dragoiu,132O. Evdokimov,132L. Gauthier,132C. E. Gerber,132S. Hamdan,132D. J. Hofman,132

S. Khalatyan,132F. Lacroix,132M. Malek,132C. O’Brien,132C. Silkworth,132D. Strom,132N. Varelas,132 U. Akgun,133E. A. Albayrak,133B. Bilki,133,bbbW. Clarida,133F. Duru,133S. Griffiths,133J.-P. Merlo,133 H. Mermerkaya,133,cccA. Mestvirishvili,133A. Moeller,133J. Nachtman,133C. R. Newsom,133E. Norbeck,133 Y. Onel,133F. Ozok,133S. Sen,133E. Tiras,133J. Wetzel,133T. Yetkin,133K. Yi,133B. A. Barnett,134B. Blumenfeld,134

S. Bolognesi,134D. Fehling,134G. Giurgiu,134A. V. Gritsan,134Z. J. Guo,134G. Hu,134P. Maksimovic,134 S. Rappoccio,134M. Swartz,134A. Whitbeck,134P. Baringer,135A. Bean,135G. Benelli,135O. Grachov,135 R. P. Kenny Iii,135M. Murray,135D. Noonan,135S. Sanders,135R. Stringer,135G. Tinti,135J. S. Wood,135 V. Zhukova,135A. F. Barfuss,136T. Bolton,136I. Chakaberia,136A. Ivanov,136S. Khalil,136M. Makouski,136

Y. Maravin,136S. Shrestha,136I. Svintradze,136J. Gronberg,137D. Lange,137D. Wright,137A. Baden,138 M. Boutemeur,138B. Calvert,138S. C. Eno,138J. A. Gomez,138N. J. Hadley,138R. G. Kellogg,138M. Kirn,138

T. Kolberg,138Y. Lu,138M. Marionneau,138A. C. Mignerey,138K. Pedro,138A. Peterman,138A. Skuja,138 J. Temple,138M. B. Tonjes,138S. C. Tonwar,138E. Twedt,138G. Bauer,139J. Bendavid,139W. Busza,139E. Butz,139

I. A. Cali,139M. Chan,139V. Dutta,139G. Gomez Ceballos,139M. Goncharov,139K. A. Hahn,139Y. Kim,139 M. Klute,139W. Li,139P. D. Luckey,139T. Ma,139S. Nahn,139C. Paus,139D. Ralph,139C. Roland,139G. Roland,139

M. Rudolph,139G. S. F. Stephans,139F. Sto¨ckli,139K. Sumorok,139K. Sung,139D. Velicanu,139E. A. Wenger,139 R. Wolf,139B. Wyslouch,139S. Xie,139M. Yang,139Y. Yilmaz,139A. S. Yoon,139M. Zanetti,139S. I. Cooper,140

P. Cushman,140B. Dahmes,140A. De Benedetti,140G. Franzoni,140A. Gude,140J. Haupt,140S. C. Kao,140 K. Klapoetke,140Y. Kubota,140J. Mans,140N. Pastika,140R. Rusack,140M. Sasseville,140A. Singovsky,140 N. Tambe,140J. Turkewitz,140L. M. Cremaldi,141R. Kroeger,141L. Perera,141R. Rahmat,141D. A. Sanders,141 E. Avdeeva,142K. Bloom,142S. Bose,142J. Butt,142D. R. Claes,142A. Dominguez,142M. Eads,142P. Jindal,142 J. Keller,142I. Kravchenko,142J. Lazo-Flores,142H. Malbouisson,142S. Malik,142G. R. Snow,142U. Baur,143

A. Godshalk,143I. Iashvili,143S. Jain,143A. Kharchilava,143A. Kumar,143S. P. Shipkowski,143K. Smith,143 G. Alverson,144E. Barberis,144D. Baumgartel,144M. Chasco,144J. Haley,144D. Nash,144D. Trocino,144D. Wood,144

J. Zhang,144A. Anastassov,145A. Kubik,145N. Mucia,145N. Odell,145R. A. Ofierzynski,145B. Pollack,145 A. Pozdnyakov,145M. Schmitt,145S. Stoynev,145M. Velasco,145S. Won,145L. Antonelli,146D. Berry,146 A. Brinkerhoff,146M. Hildreth,146C. Jessop,146D. J. Karmgard,146J. Kolb,146K. Lannon,146W. Luo,146S. Lynch,146 N. Marinelli,146D. M. Morse,146T. Pearson,146R. Ruchti,146J. Slaunwhite,146N. Valls,146M. Wayne,146M. Wolf,146

B. Bylsma,147L. S. Durkin,147A. Hart,147C. Hill,147R. Hughes,147K. Kotov,147T. Y. Ling,147D. Puigh,147 M. Rodenburg,147C. Vuosalo,147G. Williams,147B. L. Winer,147N. Adam,148E. Berry,148P. Elmer,148 D. Gerbaudo,148V. Halyo,148P. Hebda,148J. Hegeman,148A. Hunt,148D. Lopes Pegna,148P. Lujan,148D. Marlow,148

T. Medvedeva,148M. Mooney,148J. Olsen,148P. Piroue´,148X. Quan,148A. Raval,148H. Saka,148D. Stickland,148 C. Tully,148J. S. Werner,148A. Zuranski,148J. G. Acosta,149E. Brownson,149X. T. Huang,149A. Lopez,149

H. Mendez,149S. Oliveros,149J. E. Ramirez Vargas,149A. Zatserklyaniy,149E. Alagoz,150V. E. Barnes,150 D. Benedetti,150G. Bolla,150D. Bortoletto,150M. De Mattia,150A. Everett,150Z. Hu,150M. Jones,150O. Koybasi,150 M. Kress,150A. T. Laasanen,150N. Leonardo,150V. Maroussov,150P. Merkel,150D. H. Miller,150N. Neumeister,150 I. Shipsey,150D. Silvers,150A. Svyatkovskiy,150M. Vidal Marono,150H. D. Yoo,150J. Zablocki,150Y. Zheng,150 S. Guragain,151N. Parashar,151A. Adair,152C. Boulahouache,152V. Cuplov,152K. M. Ecklund,152F. J. M. Geurts,152 B. P. Padley,152R. Redjimi,152J. Roberts,152J. Zabel,152B. Betchart,153A. Bodek,153Y. S. Chung,153R. Covarelli,153

(12)

P. de Barbaro,153R. Demina,153Y. Eshaq,153A. Garcia-Bellido,153P. Goldenzweig,153Y. Gotra,153J. Han,153 A. Harel,153S. Korjenevski,153D. C. Miner,153D. Vishnevskiy,153M. Zielinski,153A. Bhatti,154R. Ciesielski,154

L. Demortier,154K. Goulianos,154G. Lungu,154S. Malik,154C. Mesropian,154S. Arora,155A. Barker,155 J. P. Chou,155C. Contreras-Campana,155E. Contreras-Campana,155D. Duggan,155D. Ferencek,155Y. Gershtein,155

R. Gray,155E. Halkiadakis,155D. Hidas,155A. Lath,155S. Panwalkar,155M. Park,155R. Patel,155V. Rekovic,155 A. Richards,155J. Robles,155K. Rose,155S. Salur,155S. Schnetzer,155C. Seitz,155S. Somalwar,155R. Stone,155

S. Thomas,155G. Cerizza,156M. Hollingsworth,156S. Spanier,156Z. C. Yang,156A. York,156R. Eusebi,157 W. Flanagan,157J. Gilmore,157T. Kamon,157,dddV. Khotilovich,157R. Montalvo,157I. Osipenkov,157Y. Pakhotin,157

A. Perloff,157J. Roe,157A. Safonov,157T. Sakuma,157S. Sengupta,157I. Suarez,157A. Tatarinov,157D. Toback,157 N. Akchurin,158J. Damgov,158P. R. Dudero,158C. Jeong,158K. Kovitanggoon,158S. W. Lee,158T. Libeiro,158 Y. Roh,158I. Volobouev,158E. Appelt,159D. Engh,159C. Florez,159S. Greene,159A. Gurrola,159W. Johns,159 C. Johnston,159P. Kurt,159C. Maguire,159A. Melo,159P. Sheldon,159B. Snook,159S. Tuo,159J. Velkovska,159

M. W. Arenton,160M. Balazs,160S. Boutle,160B. Cox,160B. Francis,160J. Goodell,160R. Hirosky,160 A. Ledovskoy,160C. Lin,160C. Neu,160J. Wood,160R. Yohay,160S. Gollapinni,161R. Harr,161P. E. Karchin,161

C. Kottachchi Kankanamge Don,161P. Lamichhane,161A. Sakharov,161M. Anderson,162M. Bachtis,162 D. Belknap,162L. Borrello,162D. Carlsmith,162M. Cepeda,162S. Dasu,162L. Gray,162K. S. Grogg,162M. Grothe,162

R. Hall-Wilton,162M. Herndon,162A. Herve´,162P. Klabbers,162J. Klukas,162A. Lanaro,162C. Lazaridis,162 J. Leonard,162R. Loveless,162A. Mohapatra,162I. Ojalvo,162F. Palmonari,162G. A. Pierro,162I. Ross,162A. Savin,162

W. H. Smith,162and J. Swanson162

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5

Vrije Universiteit Brussel, Brussel, Belgium

6Universite´ Libre de Bruxelles, Bruxelles, Belgium 7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14

University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France 29

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

(13)

34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 40Institute of Nuclear Physics ‘‘Demokritos’’, Aghia Paraskevi, Greece

41University of Athens, Athens, Greece 42

University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46Panjab University, Chandigarh, India

47University of Delhi, Delhi, India 48Saha Institute of Nuclear Physics, Kolkata, India

49Bhabha Atomic Research Centre, Mumbai, India 50Tata Institute of Fundamental Research—EHEP, Mumbai, India 51Tata Institute of Fundamental Research—HECR, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53aINFN Sezione di Bari, Italy 53bUniversita` di Bari, Italy 53cPolitecnico di Bari, Italy 54aINFN Sezione di Bologna, Bologna, Italy

54bUniversita` di Bologna, Bologna, Italy 55a

INFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

56bUniversita` di Firenze, Firenze, Italy

57INFN Laboratori Nazionali di Frascati, Frascati, Italy 58INFN Sezione di Genova, Genova, Italy 59aINFN Sezione di Milano-Bicocca, Milano, Italy

59bUniversita` di Milano-Bicocca, Milano, Italy 60aINFN Sezione di Napoli, Napoli, Italy 60bUniversita` di Napoli ‘‘Federico II’’, Napoli, Italy

61aINFN Sezione di Padova, Padova, Italy 61bUniversita` di Padova, Padova, Italy 61cUniversita` di Trento (Trento), Padova, Italy

62aINFN Sezione di Pavia, Pavia, Italy 62bUniversita` di Pavia, Pavia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy 64aINFN Sezione di Pisa, Pisa, Italy

64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65aINFN Sezione di Roma, Roma, Italy 65bUniversita` di Roma ‘‘La Sapienza’’, Roma, Italy

66aINFN Sezione di Torino, Torino, Italy 66b

Universita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67bUniversita` di Trieste, Trieste, Italy 68Kangwon National University, Chunchon, Korea

69Kyungpook National University, Daegu, Korea

70Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71Konkuk University, Seoul, Korea

72Korea University, Seoul, Korea 73

University of Seoul, Seoul, Korea

74Sungkyunkwan University, Suwon, Korea 75Vilnius University, Vilnius, Lithuania

76Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 77Universidad Iberoamericana, Mexico City, Mexico

(14)

78Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 79Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

80University of Auckland, Auckland, New Zealand 81University of Canterbury, Christchurch, New Zealand

82National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 83Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

84Soltan Institute for Nuclear Studies, Warsaw, Poland

85Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 86

Joint Institute for Nuclear Research, Dubna, Russia

87Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia 88Institute for Nuclear Research, Moscow, Russia

89Institute for Theoretical and Experimental Physics, Moscow, Russia 90Moscow State University, Moscow, Russia

91P. N. Lebedev Physical Institute, Moscow, Russia

92State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 93University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

94Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 95Universidad Auto´noma de Madrid, Madrid, Spain

96Universidad de Oviedo, Oviedo, Spain

97Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 98CERN, European Organization for Nuclear Research, Geneva, Switzerland

99Paul Scherrer Institut, Villigen, Switzerland

100Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 101Universita¨t Zu¨rich, Zurich, Switzerland

102

National Central University, Chung-Li, Taiwan

103National Taiwan University (NTU), Taipei, Taiwan 104Cukurova University, Adana, Turkey

105Middle East Technical University, Physics Department, Ankara, Turkey 106Bogazici University, Istanbul, Turkey

107Istanbul Technical University, Istanbul, Turkey

108National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 109University of Bristol, Bristol, United Kingdom

110Rutherford Appleton Laboratory, Didcot, United Kingdom 111Imperial College, London, United Kingdom 112Brunel University, Uxbridge, United Kingdom

113Baylor University, Waco, Texas, USA

114The University of Alabama, Tuscaloosa, Alabama, USA 115Boston University, Boston, Massachusetts, USA 116Brown University, Providence, Rhode Island, USA 117University of California, Davis, Davis, California, USA 118University of California, Los Angeles, Los Angeles, California, USA

119University of California, Riverside, Riverside, California, USA 120University of California, San Diego, La Jolla, California, USA 121University of California, Santa Barbara, Santa Barbara, California, USA

122California Institute of Technology, Pasadena, California, USA 123Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 124University of Colorado at Boulder, Boulder, Colorado, USA

125

Cornell University, Ithaca, New York USA

126Fairfield University, Fairfield, Connecticut, USA 127Fermi National Accelerator Laboratory, Batavia, Illinois, USA

128University of Florida, Gainesville, Florida, USA 129Florida International University, Miami, Florida, USA

130Florida State University, Tallahassee, Florida, USA 131Florida Institute of Technology, Melbourne, Florida, USA 132University of Illinois at Chicago (UIC), Chicago, Illinois, USA

133The University of Iowa, Iowa City, Iowa, USA 134

Johns Hopkins University, Baltimore, Maryland, USA

135The University of Kansas, Lawrence, Kansas, USA 136Kansas State University, Manhattan, Kansas, USA

137Lawrence Livermore National Laboratory, Livermore, California, USA 138University of Maryland, College Park, Maryland, USA

(15)

139Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 140University of Minnesota, Minneapolis, Minnesota, USA

141University of Mississippi, University, Mississippi, USA 142University of Nebraska-Lincoln, Lincoln, Nebraska, USA 143State University of New York at Buffalo, Buffalo, New York, USA

144Northeastern University, Boston, Massachusetts, USA 145Northwestern University, Evanston, Illinois, USA 146University of Notre Dame, Notre Dame, Indiana, USA

147

The Ohio State University, Columbus, Ohio, USA

148Princeton University, Princeton, New Jersey, USA 149University of Puerto Rico, Mayaguez, USA 150Purdue University, West Lafayette, Indiana, USA 151Purdue University Calumet, Hammond, Indiana, USA

152Rice University, Houston, Texas, USA 153University of Rochester, Rochester, New York, USA 154The Rockefeller University, New York, New York, USA

155Rutgers, The State University of New Jersey, Piscataway, New York, USA 156University of Tennessee, Knoxville, Tennessee, USA

157Texas A&M University, College Station, Texas, USA 158Texas Tech University, Lubbock, Texas, USA 159Vanderbilt University, Nashville, Tennessee, USA 160University of Virginia, Charlottesville, Virginia, USA

161Wayne State University, Detroit, Michigan, USA 162University of Wisconsin, Madison, Wisconsin, USA

aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. dAlso at Universidade Federal do ABC, Snto Ndre, Brazil.

eAlso at California Institute of Technology, Pasadena, USA.

fAlso at CERN, Europen Orgnization for Nuclear Research, Geneva, Switzerland. g

Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.

hAlso at Suez Canal University, Suez, Egypt.

iAlso at Zewail City of Science nd Technology, Zewail, Egypt. jAlso at Cairo University, Cairo, Egypt.

kAlso at Fayoum University, El-Fayoum, Egypt. lAlso at Ain Shams University, Cairo, Egypt.

mAlso at Soltn Institute for Nuclear Studies, Warsaw, Poland. nAlso at Universite´ de Haute-Alsace, Mulhouse, France. oAlso at Moscow State University, Moscow, Russia.

pAlso at Brandenburg University of Technology, Cottbus, Germany. qAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. rAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

sAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India. tAlso at University of Visva-Bharati, Santiniketan, India.

u

Also at Sharif University of Technology, Tehran, Iran.

vAlso at Isfahan University of Technology, Isfahan, Iran. wAlso at Shiraz University, Shiraz, Iran.

xAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran. yAlso at Facolta` Ingegneria Universita` di Roma, Roma, Italy.

zAlso at Universita` della Basilicata, Potenza, Italy.

aaAlso at Universita` degli Studi Guglielmo Marconi, Roma, Italy. bbAlso at Universita` degli studi di Siena, Siena, Italy.

ccAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania. ddAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia.

eeAlso at University of Florida, Gainesville, USA.

(16)

ggAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

hhAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza’’, Roma, Italy. iiAlso at University of Athens, Athens, Greece.

jjAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. kkAlso at The University of Kansas, Lawrence, USA.

llAlso at Paul Scherrer Institut, Villigen, Switzerland.

mmAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. nnAlso at Gaziosmanpasa University, Tokat, Turkey.

ooAlso at Adiyaman University, Adiyaman, Turkey. ppAlso at The University of Iowa, Iowa City, USA. qqAlso at Mersin University, Mersin, Turkey.

rrAlso at Ozyegin University, Istanbul, Turkey. ssAlso at Kafkas University, Kars, Turkey.

ttAlso at Suleyman Demirel University, Isparta, Turkey. uu

Also at Ege University, Izmir, Turkey.

vvAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. wwAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

xxAlso at University of Sydney, Sydney, Australia. yyAlso at Utah Valley University, Orem, USA.

zzAlso at Institute for Nuclear Research, Moscow, Russia.

aaaAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. bbbAlso at Argonne National Laboratory, Argonne, USA.

cccAlso at Erzincan University, Erzincan, Turkey.

dddAlso at Kyungpook National University, Daegu, Korea. eeeNow at British University, Cairo, Egypt.

Figura

FIG. 1 (color online). Selected SS dilepton events in the various search regions displayed in the H T , E miss T plane.
FIG. 2 (color online). Summary of background predictions and observed yields in the various search regions
TABLE I. Observed number of events in data compared to the predicted background yields for the considered search regions
FIG. 3 (color online). Exclusion region, below the red curve, in the CMSSM corresponds to the observed upper limits on the number of events from NP

Riferimenti

Documenti correlati

Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design.. A review of computational optimisation methods applied

Forse serve immaginare un futuro dell’insegnamento che sia mi- sto, o per meglio dire blended, sviluppando un modello di scuola ed università nel quale si mantenga la possibilità

Nella ricerca etnografica sono state coinvolte alcune delle ospiti e beneficiarie 29 che hanno deciso di partecipare alla ricerca, le volon- tarie 30 e gli operatori, pur prendendo

Onchocerca lupi paramyosin (Ol-para, 2,643 bp cDNA) was herein isolated and characterised in adults, both males and females, and microfilariae.. The predicted Ol- PARA protein (i.e.

Nicola Barbuti, ha curato sia la progettazione e realizzazione del tracciato in open data utilizzato per indicizzare e pubblicare on line una selezione di volumi a stampa

La prima si lega all’analisi dei bisogni formativi degli insegnanti della rete scolastica partecipante (bisogni espressi e manifestati sia in fase di primo con- tatto con

Significant results are reported also with respect to the perceived maternal care received by subjects during infancy and reported through self-report questionnaires

Keywords: Endocrine disruptor, humic substances, natural organic matter, organic contaminant, phytoremediation,