• Non ci sono risultati.

Characterization of symmetric send-on-delta PI controllers

N/A
N/A
Protected

Academic year: 2021

Condividi "Characterization of symmetric send-on-delta PI controllers"

Copied!
16
0
0

Testo completo

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Process

Control

jo u r n al h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / j p r o c o n t

Characterization

of

symmetric

send-on-delta

PI

controllers

Manuel

Beschi

a

, Sebastián

Dormido

b

, José

Sanchez

b

, Antonio

Visioli

a,∗ aDipartimentodiIngegneriadell’Informazione,UniversityofBrescia,Italy

bDepartamentodeInformáticayAutomática,UNED,Spain

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received9May2012 Receivedinrevisedform 11September2012 Accepted12September2012 Available online 22 October 2012 Keywords:

Event-basedPIcontrollers Send-on-deltasampling Stability

a

b

s

t

r

a

c

t

Anewevent-basedproportional–integralcontroller,basedonaspecificsend-on-deltasamplingstrategy,

isanalyzedinthispaper.Inparticular,necessaryandsufficientconditionsonthecontrollerparameters

fortheexistenceofequilibriumpointswithoutlimitcyclesaregivenforafirst-order-plus-dead-time

process.Theseconditionscanbeusefullyexploitedforthetuningofthecontroller,thusmakingtheoverall

designeasier.Practicalissuesrelatedtothecontrollerimplementationarealsoaddressed.Simulationand

experimentalresultsareprovidedasillustrativeexamples.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Proportional–integral-derivative(PID)controllersarethemost employed controllersin industry becauseof their capabilityto provideasatisfactoryperformanceformanyprocesseswitha rela-tivelyeasydesign.Theiruseisalsomadeeasierbythepresenceof alargenumberoftuningrulesthatareavailable[1].However,the advancementofthetechnologyinindustrialplantsrequiresnew developmentsinPIDcontrol.Oneofthemostsignificantrecent issues istheintroductionof wireless sensorsandactuators [2], whichposes constraintsonthecommunicationrateinorderto minimizethepowerconsumption(andthereforetoincreasethe batterylife)andtherisk oflostdataand stochastictime delays [3–5].Inthiscontext,twoofthemostconvenientstrategiesthat canbeemployedtoreduce thecommunication loadare event-basedcontrolandself-triggeredcontrol,wherethereductionof communicationscanbeobtainedattheexpenseofasmall steady-stateerror,whichoftenisnotofmainconcerninpracticalcases. Intheformer,thecommunicationisdoneonlywhenalogic condi-tionbecomestrue,whileinthelatterthecontrollerhastopredict thenexttime instantwhen thelogic conditionwillbeverified [6].During thelastyears many researchershaveaddressedthe self-triggeredapproach(see, forexample [7–9])and the event-basedsamplingandcontrolapproach(see,forexample[10–12]),

∗ Correspondingauthor.Tel.:+390303715460;fax:+39030380014. E-mailaddresses:manuel.beschi@ing.unibs.it(M.Beschi),

sdormido@dia.uned.es(S.Dormido),jsanchez@dia.uned.es(J.Sanchez), antonio.visioli@ing.unibs.it(A.Visioli).

inparticularinthecontextofPIDcontrollers(see[13]forthe self-triggeredstrategiesand[14–21]for theevent-basedstrategies). Oneofthemostimportantadvantagesoftheself-triggered strate-giesis thepossibility ofusing themaster-slaveprotocol in the communicationsbetweencontrolagentsandinthesetechniques itis notnecessarytocontinuouslymonitorthesystemoutputs. However,thedisturbancerejectiontaskismorecomplicatedand theperformanceoftheseapproachesdependsonthemodelofthe system.Conversely,inanevent-basedcontrolstrategy,whena con-trolagentdetectsanevent,itsendstherelatedinformation,viathe communicationmedium,toanotheragent.In thisway,the dis-turbancerejectiontaskstartsatthetimeinstancewhenthelogic conditionisverifiedandthetechniquecanbemodel-free.

Inthis context,manylogicalconditionshavebeenproposed. Oneofthemostemployedistheso-calledsend-on-delta(SOD) sampling(alsoknownasdeadbandsampling[22]orlevelcrossing sampling[23])wherethemeasuredvalueoftheprocessvariableis senttothecontrollerwhenthecontrolerror(orsomefunctionof it)crossespredefinedquantizationlevels[24].

However,ithastoberecognizedthatinevent-basedcontrolthe eventsoccurasynchronouslyandthereforethetuningofthePID controllerparametersisingeneralmorechallenging,asthetiming oftheeventsinfluencesthesystemperformanceandlimitcycles mayarise(notethatthepresenceoflimitcyclesisatypicalproblem ingeneralevent-basedcontrolsystems[25]andsee,forexample [26]wheresufficientconditionsonthecontrollerparametersfor theexistenceofequilibriumpointsaregivenforaSOD-PIcontrol system).Further,inadditiontothePIDgains,thereareingeneral otherparameters(thresholdvalues)employedinthecontrol algo-rithmthathavetobetuned,thusmakingtheoverallcontroldesign 0959-1524/$–seefrontmatter © 2012 Elsevier Ltd. All rights reserved.

(2)

morecomplex.Indeed,thetuningofaPIDcontrollerwith dead-bandsamplinghasnotbeenexplicitlyaddressedintheliterature untilnow,atleasttotheauthors’knowledge.

Inthispaperweproposeanevent-basedstrategywhichresults fromamodificationoftheSODtechnique.Inparticular,the sam-pledsignalisquantizedbyaquantitymultipleofsothatthe relationshipbetweentheinputandoutputoftheevent-generator blockissymmetricwithrespecttotheorigin.Thus,wecallthis strategysymmetricsend-on-delta(SSOD)sampling.Inthisway,the valueofthesampledsignalisindependentontheinitialconditions. Wewillexploitthispropertytodeterminenecessaryconditions onsysteminstabilityandnecessaryandsufficientconditionson thecontrollerparametersfortheexistenceofequilibriumpoints withoutlimitcycleswillbegivenforafirst-order-plus-dead-time (FOPDT)process.Althoughthiscanbeconsideredasaspecialcase, itissignificantfromapracticalpointofviewasmanyindustrial processescanbemodeledeffectivelyinthisway.Event-basedP,I, andPIcontrollersareconsidered.

Thecase where theSSOD strategy is applied tothe control variable(thusreducingthenumberoftransmissionsbetweenthe controllerandtheactuator)isalsoaddressed.Bothcases(denoted respectivelyasSSOD-PIandPI-SSOD)aretreatedconvenientlyina unifiedframework.Itisbelievedthattheprovidedstability con-ditionscan be usefully employed for the tuning of the overall controller.Itisalsoshownthatthechoiceoftheparameterdoes notinfluencethestabilityofthesystem(seeSection3.2)and there-forecanbeselectedjustinordertohandlethetrade-offbetween thereductionofthedesirednumberofeventsandthereductionof thesteady-stateerror.Thepaperisorganizedasfollows.InSection 2theevent-basedcontrolstrategiesarepresented.InSection3, thetwostabilityandlimitcyclesproblemsareinvestigated. Neces-saryandsufficientconditionsforthepresenceofequilibriumpoints withouttheoccurrenceoflimitcyclesandnecessaryconditions onthesysteminstability(andthereforesufficientconditionsfor thesystemstability)aregiven.InSection4practicalissuesonthe controllerimplementationarepresented. Simulationresultsare showninSection5whileexperimentalresultsrelatedtoalevel controlproblemarepresentedinSection6.Conclusionsaredrawn inSection7.

2. Controlarchitecture

Inevent-basedcontrolstrategies,thecontrollercanbedivided intofourlogicalblocks:thesensorunit,thecontrolunit,the actu-atorunitandagovernor(forshortSU,CU,AUandG,respectively), asshowninFig.1.Theunitsandtheirtaskscanbedescribedas follows:

• Thesensorunitiscomposedofthesensoranditson-board intel-ligence.Itstaskistomeasuretheprocessoutputandtocalculate theerrorbetweenthemeasuredsignalandaconstantset-point valuereceivedfromthegovernor.

CU

SU AU

G

Plant

Fig.1.Schemeofagenericeventbasedcontrolstrategies.Thedashedarrows indi-catethepossibilityofanevent-triggereddatatransmission.

• Thecontrolunitimplementsthecontrolalgorithm,which deter-minesthecontrolactionbytakingintoaccountthelastreceived samplederrorandsendsittotheAU.

• TheactuatorunitreceivesthecontrolactionsignalfromtheCU andappliesittotheactuator.

• Thegovernor,which,inpractice,canbeimplementedtogether withoneoftheprevioustwoblocks,receivesthedesired set-pointvaluefromauserinterfaceorfromahigherhierarchical controller,andsendsittothesensorunit.

Theseblockscanbeimplementedinauniquemachineorintwo ormorephysicalentities.Inthislastcase,thedatahastobesent fromonetoeachotheronanetwork.Itisclearthatthe commu-nicationbetweentwoentitiesimpliesmoreeffortsthanthedata exchangingintoasinglemachine,especiallywhentheyare battery-powered.Forthisreason,itisrecommendedtouseevent-triggered dataexchangingforallthesignalswhicharesentbetweentwo machinesandnormaltime-drivensamplingforthedatawhichare elaboratedbyanuniquemachine.

Inthispaper,weconsidertwospecialcaseswheretwoofthe threecontrolagents(namely,SU,CUandAU)areplacedina phys-icalentityandtheotheroneislocatedinanothermachine.Wedo notaddressthecasewhereSUandAUareinthesamemachine, becauseinthiscaseitissufficienttoimplementalsotheCUtaskin thismachineinordertoobtainastandardcontroller.Theremaining casesare:SUseparatedfromCUandAU(whichareinthesame machine)and AU separatedfromSU and CU (whichare inthe samemachine).Inbothsituations, onlyanevent-triggereddata exchanginginthecontrolloopisrequired.Thecommunications betweenthegovernorandtheotherunits(consideringonlythe transmissionsconcerningthecontrolaspects)aredoneonlywhen theset-pointsignalchanges.

2.1. Symmetricsend-on-deltatriggering

Inthispaper,theevent-triggereddataexchangingisdoneby applyingaspecialcaseofthesend-on-deltasamplingmethod(see [4,15]),whichcanbeseenalsoasageneralizationofarelaywith hysteresis.

Wecallthistechniquesymmetricsend-on-delta(SSOD) samp-ling.Denoteas

v

(t)theinputsignaltothesamplingblockandas

v

∗(t)thesampledoutputsignal,whichcanassumeonlyvalues mul-tipleofapredefinedthresholdmultipliedbyagainˇ>0,namely

v

∗(t)=jˇwithj∈Z.Thesampledsignalchangesitsvaluetothe upperquantizationlevelwhentheinputsignal

v

(t)increasesmore than,ortothelowerquantizationlevelwhen

v

(t)decreasesmore than.Thisbehaviorcanbemathematicallydescribedas:

v

∗(t)=ssod(

v

(t);,ˇ) =

(i+1)ˇ if

v

(t)≥(i+1)and

v

∗(t−)=iˇ iˇ if

v

(t)∈[(i−1),(i+1)]and

v

∗(t−)=iˇ (i−1)ˇ if

v

(t)≤(i−1)and

v

∗(t−)=iˇ

. (1)

Therelationshipbetween

v

(t)and

v

∗(t)canbeconsideredasa gen-eralizationofarelaywithhysteresis,wherethereareaninfinite number ofthresholds [23],as shown inFig. 2.The mechanism canalsobeanalyzedbymeansofastate-machinerepresentation, wherejisthestatenumber,

v

(t)≥(j+1)istheconditiontojump totheupperstatej+1and

v

(t)≤(j−1)istheconditiontojump tothelowerstatej−1,asshowninFig.3.

TheSSODalgorithm,describedin(1),canberewrittenas:

v

∗(t)=ˇssod



v

(t)

;1,1



(3)

v t

( )

*

v t

( )

Δβ

−2Δ

−Δ

−3Δβ

β

β

2Δβ

−3Δ −2Δ

−Δ

Δ

3Δβ

β

Fig.2. Relationshipbetweenv(t)andv(t).

Thisrepresentationsuggeststhatthestabilitypropertiesofa sys-temwhichcontainsaSSODeventgeneratordonotdependonthe parametersandˇ.Infact,itisalwayspossibletodoavariable changeandtoreducetheSSODblocktoitsnormalizedversion ssod(

v

(t);1,1).

Alsointhestandardsend-on-delta(SOD)technique,itis pos-sibletodefineastatemachinerepresentation,butinthiscasethe valueassumedby

v

∗inthestatejisequalto(j+q)ˇ(see[26]), whereq∈[0,)isanunquantizablequantitywhichdependson theinitialvalueof

v

(t).Thus,withtheSSODtechniquethe sys-temalwayshasastatewith

v

∗=0andthisfacthasanimportant influencetothecontrolledsystembehavior,asshowninSection3.

2.2. Modelingthecommunicationsdelaysandthepacketlosses In the SSOD (or SOD) sampling communication delays and packetlosingeffectscanbemodeledasadisturbanceaddedtothe SSOD(orSOD)output

v

(t),asshowninFig.4.Howthisadditive disturbanceaffectstheperformancedependsonitspositioninthe controlloop.Infact,iftheSSODsamplingisappliedontheerror signal(asinSSOD-PItechnique)itispossibletohaveadeviation betweenthelastreceivedoutputandthetrueSSODoutput.Away toavoidthissituationistoforcethesensortoresendthedatato thecontrollerifastatej /= 0iskeptformorethanamaximumtime intervaltmax.

2.3. PIcontroller

Thecontrollerusedinthisworkisa(discretizedversionof)a continuoustimePIcontroller,namely:

C(s)=Kp+Ki

s (3)

whereKp≥0istheproportionalgainandKi≥0istheintegralgain.

*

v = j−1

( )

Δ

v =j

*

Δ

v = j+1

*

( )

Δ

( )

Δ

Δ

( )

Δ

( )

Δ

Δ

( )

Δ

Δ

( )

( )

Δ

v> j−

1

v> j

v> j+

1

v> j+2

v< j+1

v< j

v< j−1

v< j−2

j

j+1

j−1

Fig.3. Statemachinerepresentationofthesymmetricsend-on-deltasampling tech-nique.

Fig.4.Modelizationofcommunicationdelaysandpacketlossesasadditive disturb-ance,wherev(t)isthesentSSODoutput,v

D(t)isthereceivedsignalandDNETisthe disturbanceduetothecommunicationsdelaysandthepacketlosses.

Remark 1. Because thecontroller is implementedin a single

machine,itispossibletoimplementastandardanti-windup tech-niquewithoutadditionalefforts.

2.4. SSOD-PIcontroller

Asexplainedbefore,weconsidertwodifferentarchitectures, whichpresentascommoncharacteristicthepresenceofonlytwo event-triggereddataexchanging.Thefirstistheset-pointvalue sending,whichisnotacomplextaskfromacontrolpointofview, thesecondisimplementedwiththeSSODtechnique.

Inthefirstarchitecture,showninFig.5,theSUis locatedin amachinewhileCUandAUareplacedinanotherphysicalentity (forexample,thecommunicationbetweenthetwo components couldbewireless).WecallthisarchitectureSSOD-PIcontroller, becausetheSSODblockisplacedbeforethePIcontrollerinthe controlloop.Notethatthecontrollercomputesthecontrolaction ataregularsamplingratebytakingintoaccountthelastreceived samplederror.

Remark2. Thisarchitectureisveryinterestingbecause,ina

net-worked control system,the sensor unit can be poweredusing abattery(thus,areductionofthecommunicationscanincrease thebatterylife).Conversely,theAUnormallyrequiresanexternal powersupply,thereforethepowerconsumptionreductionisnota criticalissueinthiscontrolagent.

Remark 3. In many control strategies thesensor hastosend

theerrorusinganevent-triggeredalgorithm.Thisfactcanbean important constraintwhen theSU cannotreceive theset-point information,whichissenttotheCU.WhentheSSODmethodis used,awaytosolvethisproblemistoapplytheSSODalgorithm totheprocessoutputandtosendit tothecontroller.Withthis data,theCUelaboratestheerrorsignalandroundsittothe near-estmultipleofˇ.Notethat,asmentionedinSection1,asmall steady-stateerrordoesnotconstituteaharddesignconstraintsfor manyindustrialprocesses.

P(s) ZOH e SSOD e * r Governor SU y D u C(s) CU and AU + − + +

Fig.5. ControlschemeoftheSSOD-PIcontrolledsystem.Thedashedarrowsindicate datasendingviathecommunicationmedium.

(4)

ZOH e r C(s) u SSOD u * y P(s) SU and CU AU D Governor + + + −

Fig.6.ControlschemeofthePI-SSODcontrolledsystem.Thedashedarrowsindicate datasendingviacommunicationmedium.

2.5. PI-SSODcontroller

Inthesecondarchitecture,showninFig.6,theSUandtheCU arelocatedinthesamemachine,whiletheAUisplacedinanother entity.ThissolutioniscalledforshortPI-SSODcontrollerbecause thecontrollerisbeforetheSSODblockinthecontrolloop.Notethat theAUholdsthelastreceivedcontrolactionvalueuntilthenext dataexchanging.

Remark4. Thecommunicationdelaysandthepacketlosingeffect

canbemodeledasdisturbances(see Section2.2).Usingthe PI-SSODcontroller,thisdisturbancecanbeseenasapartoftheload disturbance.

3. StabilityandlimitcyclesanalysisforaFOPDTprocess

Inthissection,thestabilitypropertiesofthetwoevent-based controlsystemsarestudied.Inparticular,theconsideredprocess isaFOPDTsystem,describedbythefollowingtransferfunction: P(s)= K

s+1e

−Ls (4)

whereKistheprocessgain(whichisassumedtobepositive with-outlossofgenerality),>0isthetimeconstantandL≥0isthe apparentdeadtime.Then,wecanwrite

Y(s)= K s+1e −Ls



U(s)+D s



(5) whereY(s)istheLaplacetransformoftheprocessoutputy(t),U(s) istheLaplacetransform ofthe controlaction u(t)and Disthe amplitudeofaconstantloaddisturbance.

Itisimportanttonoticethat,becauseofthenonlinearnatureof thecontrollers,thesystemcanreachanequilibriumpoint,orcan presentalimitcyclearoundanequilibriumpointorcanbeunstable. Ingeneral,thebehaviorofeachequilibriumpointcanbedifferent. 3.1. Normalizationofthesystems

Inthissubsection,theSSOD-PIandPI-SSODcontrollersystems aremathematicallydescribed.Then,weintroduceanormalization inorder toshowthat thetwo systemshave thesamestability propertieswhentherearenotexogenoussignals.

TheSSOD-PIcontrolledsystemcanbedescribedinthe state-spaceformas:

˙x1(t)=− 1 x1(t)+ K (x2(t)+Kpe∗(t)+D) ˙x2(t)=Kie∗(t) y(t)=x1(t) e(t)=r−y(t) e∗(t)=ssod(e(t−L);,ˇ) x1(0)=x10=y0 x2(0)=x20=IE0 (6)

whereristheconstantreferencesignal,x1(t)istheprocessstate,

x2(t)istheintegraltermofthePIcontroller,y0istheinitialoutput

value,andIE0istheinitialvalueoftheintegralterm.

Itisimportanttonotethattheconstantloaddisturbancecanbe groupedwithx20withoutlossofgenerality,thereforetheSSOD-PI

controllercanexactlycompensateaconstantloaddisturbance. ThePI-SSODcontrolledsystemcanbedescribedinthe state-spaceformas:

˙x1(t)=− 1 x1(t)+ K (u∗(t)+D) ˙x2(t)= Kp  (x1(t)−K(u∗(t)+D))+Ki(r−x1(t)) y(t)=x1(t) u(t)=x2(t) u∗(t)=ssod(u(t−L);,ˇ) x1(0)=y0 x2(0)=x20=Kp(r−y0)+KiIE0 (7)

whereristheconstantreferencesignal,x1(t)istheprocessstate,

x2(t)isthecontrolaction,y0istheinitialoutputvalueandx20is

theinitialvalueofthePIcontrolaction.

By studying theequilibrium points of (7) and remembering thatu*(t)=jˇ,itistrivialtofindthatanequilibriumexistonly

ifr=K(jˇ+D).Thus,thePI-SSODcontrollercannotexactly com-pensatea genericconstant loaddisturbance. In Section3.3,we presentamethodtocompensatethe“unquantizable”partofthe loaddisturbance,thereforeforthestabilityanalysisweconsider thattheexogenoussignalsareequaltozerointhePI-SSOD con-trolledscheme.

Thesystem(6)canbenormalizedin(8)bychoosing: ˜t =(t/), ˜y(˜t)=((y(t)−r)/),˜

v

∗(˜t)=(e∗(t)/), ˜x1(˜t)=((x1(t)−Kx2(t))/),

˜x2(˜t)=(K(x2(t)/)),K1=KKpˇ,K2=KKiˇ,a=K1−K2, ˜x10=((y0−

r−K(x20+D))/), ˜x20=((K(x20+D))/) and l=(L/) which is

callednormalizeddeadtime.

Also the system (7) can be normalized in (8) by choos-ing: ˜t =(t/), ˜y(˜t)=((y(t)−r)/),

v

˜∗(˜t)=(Ku∗(t)/), K1=KKpˇ,

K2=KKiˇ, a=K1−K2, ˜x1(˜t)=−(ax1(t)/), ˜x2(˜t)=−((ax1(t)+

x2(t))/), ˜x10=−(ay0/), ˜x20=−((ay0+x20)/) and l=(L/).

Thus,forthetwoevent-basedcontroller strategieswehavethe followingnormalizedsystem(seeAppendixA):

˙˜x1(˜t)=−˜x1(˜t)+a˜

v

∗(˜t) ˙˜x2(˜t)=K2˜

v

∗(˜t) ˜

v

(˜t)= ˜x2(˜t)+ ˜x1(˜t) ˜

v

∗(˜t)=ssod(−˜

v

(˜t−l);1,1) ˜x1(0)= ˜x10 ˜x2(0)= ˜x20 (8)

Thenormalizedsystem(8)representsboththetwopresented con-trollers,andthereforetheirstabilitypropertiesarethesame,with theexception of thedisturbanceexact compensation. The nor-malizedsystemschemeisshowninFig.7.TheSSOD-PIandthe PI-SSODcasesandtheirnormalizationformulaearesummarizedin Table1.

3.2. Stabilityanalysisofthenormalizedsystem

Inthissubsection,wedemonstratethatitispossibletofinda regionoftheparameterspaceK1−K2wherethesystemiscertainly

marginallyorasymptoticallystableforalltheequilibriumpoints. Thisregioncanthenbedividedintotworegions:thefirstwherethe

(5)

Fig.7. Schemeofthenormalizedsystem.

systemtrajectorycantendtoalimitcycleandthesecondwhere thesystemsurelydoesnotpresentalimitcycle.

Inparticular,weprovethatifthesystem(8)isunstablethen alsothecorrespondingcontinuoustimePI-controlledsystemwith thesameproportionalandintegralgainsisunstable,thereforethe instabilityregionofSSOD-PIandPI-SSODcontrollersisthesame thatthecontinuous-timePIcontroller.

Toprovethisnecessarycondition,wehavefirsttodemonstrate thatifthesignal

v

˜(˜t)diverges,thenalsoitsderivativedivergesfor allthepositiveproportionalandintegralgains(whicharetheonly oneswithaphysicalmeaning).

Proposition1. Inthesystem(8),forallthepositiveproportional

gains,iftheabsolutevalueof

v

˜(˜t)tendstoinfinitythenalsotheabsolute valueofitsderivativetendstoinfinity.

Proof. Theproofconsistsofdemonstratingthefollowing

impli-cation: lim

˜t→∞|˜

v

(˜t)|=∞⇒˜t→∞lim| ˙˜

v

(˜t)|=∞

Bycontradiction,wesupposethat: lim ˜t→∞|˜

v

(˜t)|=∞ and

v

˙˜(˜t)∈[˛,ˇ], with˛<ˇ, ˛,ˇ∈R, therefore, lim t→∞ ˙˜

v

(˜t) ˜

v

(˜t)=0. (9)

Itisimportanttonotethatifthederivative ˙˜

v

(˜t)islimited,then thedifferencebetween

v

˜∗(˜t)and˜

v

(˜t)isaboundedsignal,called f(˜t).Infact,thedifferencesbetween

v

˜(˜t)and˜

v

(˜t−l)andbetween ˜

v

∗(˜t)and−˜

v

(˜t −l)arebounded.Thus,using(8)and(9)and

v

˜∗(˜t)= −˜

v

(˜t)+f(˜t)=−(˜x2(˜t)+ ˜x1(˜t))+f(˜t),itispossibletowrite: lim ˜t→∞ ˙˜x2(˜t)+ ˙˜x1(˜t) ˜x2(˜t)+ ˜x1(˜t) =0, lim ˜t→∞ (K2+a)(f(˜t)− ˜x2(˜t)− ˜x1(˜t))− ˜x1(˜t) ˜x2(˜t)+ ˜x1(˜t) = 0 Table1

SummaryoftheSSOD-PIandPI-SSODcases.

SSOD-PIcontroller(Fig.5) PI-SSODcontroller(Fig.6)

Systemequations

˙x1(t)=−1 x1(t)+ K (x2(t)+Kpe ∗(t)+D) ˙x2=Kie∗(t) y(t)=x1(t) e(t)=r−y(t) e∗(t)=ssod(e(t−L);,ˇ) x1(0)=y0 x2(0)=x20

˙x1(t)=−1 x1(t)+ K (u ∗(t)+D) ˙x2(t)=Kp (x1(t)−K(u∗(t)+D))+Ki(r−x1(t)) y(t)=x1(t) u(t)=x2(t) u∗(t)=ssod(u(t−L);,ˇ) x1(0)=y0 x2(0)=x20 Normalizedvariables ˜t =t  ˜y(˜t)= y(t)−r  l=L  ˜v(˜t)=e∗(t)  K1=KKpˇ ˜x1(˜t)=x1(t)−Kx2(t)  K2=KKiˇ ˜x2(˜t)=Kx2(t)  a=K1−K2 ˜x10=y0−r−K(x20+D)  ˜x20=K(x20+D)  ˜t= t  ˜y(˜t)= y(t)−r  l=L  v˜ ∗(˜t)=Ku∗(t)  K1=KKpˇ ˜x1(˜t)=−ax1(t)  K2=KKiˇ ˜x2(˜t)=−ax1(t)+x2(t)  a=K1−K2 ˜x10=−ay0  ˜x20=−ay0+x20  Normalized

scheme(Fig.7)

˙˜x1(˜t)=−˜x1(˜t)+a˜v∗(˜t) ˙˜x2(˜t)=K2˜v∗(˜t) ˜ v(˜t)= ˜x2(˜t)+ ˜x1(˜t) ˜ v∗(˜t)=ssod(−˜v(˜t−l);1,1) ˜x1(0)= ˜x10 ˜x2(0)= ˜x20

(6)

andfinally, lim t→∞ ˜x1(˜t) ˜x2(˜t)+ ˜x1(˜t)=−(a+K 2) (10)

wheref(˜t)/(˜x2(˜t)+ ˜x1(˜t))tendstozero.

From Eq. (10) we can state that ˜x1(˜t) and −˜

v

(˜t) diverge in

thesameway.Thus, ˜x2(˜t)=

v

˜(˜t)− ˜x1(˜t)candivergeas2˜

v

(˜t)orbe

bounded,andtherefore: lim

t→∞

˙˜x2(˜t)

˜

v

(˜t) =K2=0

whichisanabsurdifK2 /=0,otherwisewehavethat ˜x2(˜t)is

con-stantandequalto ˜x20,andtherefore(10)becomes:

lim

t→∞

˜x1(˜t)

˜x20+ ˜x1(˜t)

=1=−a

whichisanabsurdbecause,ifK2=0,a=K1≥0.

UsingProposition1itispossibletostatethefollowingnecessary condition.

Proposition2. If theclosed-loopsystem(8)isunstablethenthe

samesystemcontrolledbyacontinuous-timePIcontrollerwiththe samevalueofK1andK2isalsounstable.

Proof. Thetimeinterval˜t betweentwoeventscanbecalculated

astheratiobetween1andthemeanvalueofthederivativeof

v

˜(˜t), called ˙˜

v

,intheinterval,infact:

1=







+t  ˙˜

v

(˜t)d˜t







=| ˙˜

v

|˜t.

FromProposition1weknowthatiftheabsolutevalueoftheoutput tendstoinfinityalsotheabsolutevalueofitsderivativediverges toinfinity.Thus,thetimeinterval ˜tdecreasestozeroand (8) becomesacontinuous-timecontroller,whichprovesthe proposi-tion.

Thefollowingpropositionsdealwiththeparametersregionfor whichtherearenotsurelylimitcyclesandthesystemconvergesto theequilibriumstate.Theideaoftheproofconsistsinfindingthe parametersforwhichifthesystemisinthestatej=jeq±n,where

jeqistheequilibriumstateandn>0,itcannotevolvetothestate

j=jeq∓nandthereforeithastotendtotheequilibriumstate.The

nextpropositionaddressesthecasesofIandPIcontrollers.The goalofthepropositionistofindthevaluesofK1–K2parametersfor

whichtherearenotperiodictrajectorieswhichinvolvemorethan theequilibriumstate.

Proposition3. Inasystemdescribedby(8),withK1≥0andK2>0,

thenlimitcyclescannotoccurifthenormalizedgainsK1andK2are

insidetheregionofthefirstquadrantdelimitedbythefollowing para-metriccurve:

K1(˜t1)=

˜t1−2l+2elel+˜t1(2l− ˜t1+2)+4elsinh(l) 2lel2lel+˜t1+2 ˜t1elsinh(l) ifl≤ ˜t1<2l 2 ˜t1− 2l− ˜t1 ˜t1(el−˜t1−1) if2l≤ ˜t1 ≤t1 K2(˜t1)=

2−2e2l+2el+˜t1−2el ˜t1− ˜t1e2l+2lel+˜t1−2lel ifl≤ ˜t1<2l 2 ˜t1 if2l≤ ˜t1 ≤t1 (11) where ˜t1∈[l,t1]withK1(t1)=0.

Proof. To demonstrate the proposition, we find the locus of

parametersK1−K2whichallowsthesystemtohavethesmallest

limitcyclesthatinvolvethreestates(namelyj={−1,0,1}).Inthis way,allthesetsof{K1,K2}insideofthepartofthefirstquadrant

delimitedbythatlocusdonotallowthesystemtohavealimitcycle.

Athree-levellimitcyclewithaperiod ˜Thastoverifythe follow-ingconditions • ˜

v

(k ˜T −l)=0whichimplies

v

˜∗(k ˜T)=0; • ˜

v

(k ˜T −l+ ˜t1)=1whichimplies˜

v

∗(k ˜T+ ˜t1)=1; • ˜

v

(k ˜T −l+ ˜t1+ ˜t2)=0whichimplies˜

v

∗(k ˜T + ˜t1+ ˜t2)=0; • ˜

v

(k ˜T −l+ ˜t1+ ˜t2+ ˜t3)=−1whichimplies

v

˜∗(k ˜T + ˜t1+ ˜t2+ ˜t3)= 0; • ˜

v

(k ˜T −l+ ˜t1+ ˜t2+ ˜t3+ ˜t4)=−1whichimplies ˜

v

∗(k ˜T + ˜t1+ ˜t2+ ˜t3+ ˜t4)=0;

whereT= ˜t1+ ˜t2+ ˜t3+ ˜t4.Becauseofthesymmetricnatureofthe

SSODtechnique,wecansupposethatthelimitcycleissymmetric. Thus: ˜x(˜t)=−˜x(˜t −T/2), ˜t3= ˜t1and ˜t4= ˜t2.

Duringatimeinterval ˜ti:=[˜ta, ˜tb]betweentwoevents,the

sig-nal

v

˜∗(˜t)isconstant,andthereforeitiseasytofindtheevolutionof thestatevariablesasthesumofthefreeandforcedresponsetoa constantinput: ˜x(˜tb)=R(˜tb− ˜ta)˜x(˜ta)+F(˜tb− ˜ta;K2,a)˜u(˜t) (12) where: R(˜t)=

e−˜t 0 0 1

and F(˜t;K2,a)=

a(1−e−˜t) K2˜t

,

Using(12)itispossibletowritethefollowingequations,which describetheevolutionofthesystemduringatimeperiod:

˜x1= ˜x(k ˜T+ ˜t

1)=R(˜t1)˜x0+F(˜t1;K2,a)

˜x2= ˜x(k ˜T+ ˜t

1+ ˜t2)=R(˜t2)˜x1=−˜x0.

where ˜x0= ˜x(k ˜T).Theseequationscanberewrittenas:

˜x1=(I+R(˜t

2)R(˜t1))−1F(˜t1;K2,a)

˜x0=−(I+R(˜t

2)R(˜t1))−1R(˜t2)F(˜t1;K2,a)

(13)

Itispossibletowritealsothefollowingswitchingconditions: ˜xa= ˜x(k ˜T+ ˜t 1−l) ˜

v

a=˜

v

(k ˜T + ˜t1−l)= ˜x2a+ ˜x1a=0 ˜xb= ˜x(k ˜T + ˜t1+ ˜t2l) ˜

v

b=˜

v

(k ˜T+ ˜t 1+ ˜t2−l)= ˜xb2+ ˜xb1=1 (14)

Conditions(13)and(14)describeallthepossiblethree-levellimit cyclesinaSSOD-PIcontrolledFOPDTprocess.Toprovethe proposi-tionwewanttofindthesmallestlimitcycleandthecorrespondent normalizedgains.Thus,wecanaddthefollowingcondition sup

v

˜(˜t)=sup(˜x2(˜t)+ ˜x1(˜t))=1. (15)

Tofindthesuperiorof˜

v

(˜t)wehavetostudythesignofits deriva-tiveintheintervals[0, ˜t1]and[˜t1, ˜t1+ ˜t2](notethat,becauseof

symmetryitispossibletostudyonlyahalfoftheperiod). Inthefirstinterval,thestateevolutionis

(7)

−2 −1 0 1 2 −2 −1 0 1 2

Fig.8.Exampleoflimitcyclewitha<0wherethearcarrowsrepresentthetime intervals.

where ˜x0canbeeasilyfoundfrom(13).Deriving

v

˜(˜t)withrespect

tothetime,weobtain: ˙

v

(˜t)= K2e˜t(1+e˜t1+˜t2)+ae˜t1(1+e˜t2)

e˜t(e˜t1e˜t2+1) ,

wherethenumeratorispositiveifa>−K2e(˜t−˜t1)(1+e(˜t1+˜t2))/(1+

e(˜t2))andbyrememberingthatK1=K2+a0,itispossibletoobtain that

v

˙(˜t)whichisalwayspositivein ˜t∈[0, ˜t1].

Inthesecondinterval,thestateevolutionis: ˜x(˜t)=R(˜t − ˜t1)˜x1,

therefore˜

v

(˜t)=e−(˜t−˜t1)˜x1

1+ ˜x12anditsderivativeisequalto

v

˙(˜t)=

−e−(˜t−˜t1)˜x1

1.Thevalueof ˜x 1

1canbeeasilyfoundbysolving(13)and

itresults: ˜x11=ae˜t2 e

˜t1−1 e˜t1+˜t2+1,

therefore

v

˙(˜t)in ˜t∈[˜t1, ˜t1+ ˜t2]hasaninversesignwithrespectto

a.

Summarizing,ifa<0(thecorrespondinglimitcycleisshown inFig.8)thenthederivative

v

˙(˜t)ispositivein ˜t∈[0, ˜t1+ ˜t2]and

negativein ˜t ∈[˜t1+ ˜t2, ˜t1+ ˜t2+ ˜t3+ ˜t4] and therefore the

maxi-mumis

v

˜(˜t1+ ˜t2), else ifa>0 (the correspondinglimit cycle is

showninFig.9)thenthederivative

v

˙(˜t) ispositivein ˜t ∈[0, ˜t1]

and ˜t ∈[˜t1+ ˜t2, ˜t1+ ˜t2+ ˜t3],negativein ˜t∈[˜t2, ˜t1+ ˜t2]and ˜t∈[˜t1+

˜t2, ˜t1+ ˜t2+ ˜t3+ ˜t4]andthereforethemaximumis

v

˜(˜t1).

Consideringthecasea<0,thevariable

v

˜(˜t)assumesthevalue 1int= ˜t1+ ˜t2,wherethestatecoincideswiththepoint−˜x0,but

alsointhepoint ˜xb(namely,linstantbefore−˜x0)thesignal

v

˜(˜t)is

equalto1.Thissituationispossibleifandonlyifthetimeinterval ˜t2isinfiniteand−˜x0isastationarypoint(namely,−˜x0=[0,1]T)

orlisamultipleoftheperiod.Consideringthefirstcase(namely, ˜t2→∞),since ˜x02=−1andthesecondvariablechangeslinearly

duringthetimeinterval[0, ˜t1]anditisconstantinthetimeinterval

[˜t1, ˜t1+ ˜t2],wecanwrite: ˜x22=−˜x02= ˜x02+K2˜t1 −2 −1 0 1 2 −2 −1 0 1 2

Fig.9. Exampleoflimitcyclewitha>0wherethearcarrowsrepresentthetime intervals.

andobtain: K2=

2 ˜t1.

Toobtaintheexpressionofa,itisimportanttonotethat ˜t1>l

becausethetrajectoryintersectstheswitchingsurface ˜x2+ ˜x1=1

whenitassumesthevalue ˜xbandlinstantsafterthetrajectorydoes

nothaveyetintersectedtheotherswitchingsurface ˜x2+ ˜x1=0

(becauseitisinastationaryvalue).Thus,theexpressionof ˜xa(see

(13)and(14))becomes: ˜x1= R(l)˜xa+F(l;K2,a) orequally: ˜xa=R(l)−1(˜x1−F(l;K2,a)). Finally, imposing ˜xa

2+ ˜xa1=0 it is easy to find therelationship

betweenaand ˜t1,andtherefore(rememberthatK1=K2+a)the

relationbetweenK1and ˜t1,presentedin(11).

Consideringnowthesecondcase(l=N ˜T=2n(˜t1+ ˜t2))withn∈

N+(thus ˜t1<land ˜t2<l),itispossibletonotethat ˜xa= ˜x(˜t1l)=

˜x1and ˜xb= ˜x(˜t

1+ ˜t2−l)= ˜x2.Rememberingthat˜

v

a=0and˜

v

b=1,

itispossibletofind: K2= 2 ˜t1 1 1−e−˜t1

andthisconditionislessstringentthantheothercase(˜t2→∞),

notingthat ˜t1inthesecondcaseislowerthanlandinthefirstcase

isgreaterthanl.

Consideringthecasea≥0,thevariable

v

˜(˜t)assumesthevalue 1int= ˜t1,wherethestatevectorisequalto ˜x1,andalsointhis

caseitcorrespondstothepoint ˜xb.Inthissituationthedelaylhas

tobeequalto ˜t2+n ˜T (with n∈N+), infact when

v

˜∗(˜t) isequal

to1(namelyintheinterval[0, ˜t1])thesignal

v

˜(˜t)monotonically

increases.Similarlytothecasea<0,itispossibletodemonstrate thatthecasewithn=0isthemoststringentcase.

Thus,inthetimeinstant ˜t1thesystemhastoswitchintothe

(8)

instant ˜t1−lthevariable˜

v

(˜t)hastobeequalto0.Becauseofthese

conditions,wecanwrite: ˜x1=(I+R(l)R(˜t 1))−1F(˜t1;K2,a) ˜x1= ˜xb ˜x1=R(l)˜xa+F(l,K2,a) ˜

v

b 1=1 ˜

v

a1=0.

Solving this system of equations we can find the relationship betweenK2,a(andthereforeK1)and ˜t1shownin(11).

ThecaseofSSOD-PandP-SSODcontrollersisaddressedinthe followingproposition.Alsointhiscasethegoalistofindthevalues ofK1forwhichtherearenotperiodictrajectorieswhichinvolve

morethantheequilibriumstate.

Proposition4. Inasystemdescribedby(8),ifK1<1−e1−lthenlimit cyclescannotoccur.

Proof. Alsointhiscase,theproofofthepropositionmainlyconsist

infindingthevalueofK1(namely,a=K1whenK2=0)whichallows

thesystemtoattainthesmallestlimitcycle(namely,j=− 1,0,1). Becauseofthesymmetryofthemapbetween˜

v

(˜t)and

v

˜∗(˜t),the limitcyclesaresymmetrical,thus ˜

v

(˜t)=−˜

v

(˜t −T/2).Thesignals ˜

v

∗(˜t)and˜

v

(˜t)aredefinedas:

˜

v

∗(˜t)=

1 if ˜t∈[0, ˜t1] 0 if ˜t ∈[˜t1, ˜t1+ ˜t2] −1 if ˜t ∈[˜t1+ ˜t2, ˜t1+ ˜t2+ ˜t3] 0 if ˜t ∈[˜t1+ ˜t2+ ˜t3, ˜t1+ ˜t2+ ˜t3+ ˜t4] (16) ˜ v(˜t)=

˜ v(0)e−t+K1(1e−t) if ˜t[0, ˜t1] ˜ v(˜t1)e−(t−˜t1) if ˜t ∈[˜t1, ˜t1+ ˜t2] −˜v(0)e−t−K1(1−e−(t−˜t1−˜t2)) if ˜t[˜t1+ ˜t2, ˜t1+ ˜t2+ ˜t3] −˜v(˜t1)e−(t−˜t1−˜t2) if ˜t[˜t1+ ˜t2+ ˜t3, ˜t1+ ˜t2+ ˜t3+ ˜t4] (17)

where ˜t1= ˜t3 and ˜t2= ˜t4. Imposing thecondition on

periodic-ityand symmetry

v

(0)=−

v

(˜t1+ ˜t2), it ispossibletofind

v

(0)=

−K1((e−˜t2(1−e−˜t1))(1+e−˜t1−˜t2)).

Inordertofindthesmallestlimitcycle,wehavetoimposethat themaximumof

v

˜(˜t)equalsto1.Themaximumof

v

˜(˜t)isfoundby studyingthesignof ˙˜

v

(˜t),whichis:

˙˜

v

(˜t)=

K1 1+e−˜t2 1+e−˜t1−˜t2e −˜t if ˜t[0, ˜t 1] −K1 1−e−˜t1 1+e−˜t1−˜t2e −(˜t−˜t1) if ˜t[˜t 1, ˜t1+ ˜t2]

Thus,themaximumisin ˜t= ˜t1anditisequaltomax˜

v

(˜t)=K1((1−

e−˜t1)(1+e−˜t1−˜t2)).Themaximumisequalto1onlyif: K1=

1+e−˜t1−˜t2 1−e−˜t1

(18) Thevaluesof ˜t1and ˜t2canbefoundusingthefollowingswitching

conditions: ˜

v

(˜t1−l+nT)=0 (19)

˜

v

(˜t1+ ˜t2−l+nT)=1 (20)

whereT= ˜t1+ ˜t2+ ˜t3+ ˜t4 isthetimeperiod,andn∈Z.Because

max ˜

v

(˜t)=˜

v

(˜t1)=1,thecondition(20)implies˜

v

(˜t1+ ˜t2−l+nT)=

˜

v

(˜t1)orequallyl−nT= ˜t2.

Consideringfirstthecasewithn=0,wecanobtaint2=landthe

condition(19)cannotbeverifiedinthefourthtimeinterval(˜

v

(˜t)is alwayspositive),therefore ˜t1≥ ˜t2anditispossibletoobtainthat

˜t1=log(1+el−e−l)andK1=(1/(1−e−l))whichprovesthe

propo-sition.

Consideringnowthecaseswithn>0,therefore ˜t1<(l/2)and

˜t2<(l/2).Using(18),wecanstate:

1+e−˜t1−˜t2 1−e−˜t1 ≥ 1 1−e−˜t1 ≥ 1 1−e−l.

Thus,limitcycleswithatimeperiodlowerthanlcannotoccurusing K1≤(1/(1−e−l)).

NotealsothatPropositions3and4arenecessaryandsufficient conditionstoavoidthepresenceoflimitcycles.Inotherwords,in theregionoftheplaneK1−K2delimitedbytheseconditionsthere

aresurelynolimitcycles,whereasoutofthisregionthereissurely atleastapossiblelimitcycle.Actually,forsomevaluesofinitial conditions,referencesignalandloaddisturbanceitispossiblethat thesystemstatedoesnotreachthelimitcycletrajectorybuttends totheequilibriumpoint.

Anotherimportantconsiderationisthattheparameterdoes nothaveinfluenceonthestabilityanalysisandthereforeitcanbe chosen,inprinciple,usingonlyconsiderationsaboutthedesired precision,namely,themaximumadmissiblesteady-stateerror.In practicalcases,measurementnoiseshouldbetakenintoaccount. Actually,itisadvisabletoselectavalueofgreaterthanthenoise band,thatisthepeak-to-peakamplitudeofthenoisesignal(see Section5.1).

3.3. Disturbanceestimation

Asalreadymentioned (seeSection3.1),becauseofits quan-tizednature,thePI-SSODcontrolstrategy(7)cannotcompensate theunquantizedpartoftheloaddisturbance,thereforeabimodal limitcyclesurelyarises.ThislimitcyclewithperiodTinvolvestwo consecutivestatesjl+1andjl,wheret*istheintervaltimewhere

j=jl+1.Thus,thecontrolactionassumesonlythevaluesjlˇand

(jl+1)ˇ,asshownin(21). u(t)=

(jl+1)ˇ ift∈[0,t∗] jlˇ ift∈[t∗,T] (21) Byapplyingthedefinitionoflimitcycle,thetrendsoftheprocess andthecontrollerquantitiesduringacycleareperiodic. Consider-ingnowtheintegratederrorIE(t)anditsLaplacetransformIE(s), whichcanbecalculatedas

IE(s)= R(s)

s −

K

s(s+1)(U(s)+d)

whichcorrespondstothefollowingdifferentialequation:  ¨IE(t)+ ˙IE(t)=r(t)−K(u(t)+d+ ˙r(t)).

Byintegratingoveraperiodandrememberingthat,byhypothesis, randdareconstantandIE(t)isperiodic,weobtain:

( ˙IE(T)− ˙IE(0))+(IE(T)−IE(0))=rT−KdT−K

T 0 u(t)dt=0 andfinally: u=jlˇ+ˇt ∗ T = r K−d (22)

whereu isthemeanvalueofu(t)duringaperiodand ˆd:=ˇ(t∗/T) isthe“unquantized”partofthecontrolactionnecessaryto com-pensatetheloaddisturbance.

(9)

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

Fig.10.Planewiththenecessaryconditiononstability(dashedline),andcondition onabsenceoflimitcycles(solidline).Themarker◦denotesthesetofparameters usedtoobtaintheresultsshowninFig.11,themarker∗denotesthesetofparameters usedtoobtaintheresultsshowninFig.12.

In real plants, the trajectory tends to the limit cycles but doesnotreachit.Hence,thehypothesisofperiodicityisonlyan approximation, therefore an exact compensation of the distur-bancesisvirtuallyimpossible.Forthisreason,asmalldeadbandis introduced,thewidthofthisbandisupper-limitedbyanditcan

besetbytakingintoaccountthenumericalerrorsinthecalculus oftandTandthepresenceofnoise.

4. Practicalissues

The SSOD-PI and PI-SSOD control techniques can be easily implementedinverysimple industrialcontrollers,becausethey donotrequirealargecomputationaleffortorcomplexroutines. Thealgorithmsforthesensorandthecontrolunits,canbe out-linedusingthepseudocodesshowninTable2(forsakeofbrevity theinitializationisnotshown),wherehisthecontrolunit samp-ling period (note that the two algorithms do not require any synchronization and theycanhave differentsamplingperiods). Note that the actuator unit task of PI-SSOD controller has to onlykeepthelastreceivedvalueuntilthenextevent.Notealso thatthesteps8–9ofthePI-SSODcontroller’sSensorandControl UnitTaskverifyifabimodalcyclesisoccurred(namely,thelast threestateswerej,j−1andj)andintroducetheloaddisturbance compensation.

5. Simulationresults

Inthissection,simulationresultsaregiven.Inparticular, illus-trativeexamplesonthepresenceoflimitcyclesandtheexogenous signalarepresented,thenthetwoSSODcontrolstrategiesare com-paredwithotherevent-basedsamplingtechniquesandadiscrete time,usingasahigh-orderplusdeadtimesystemapproximated withthehalf-rulemethodandusingtheSIMCtuningrules[27].

0 16 32 48 64 80 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 16 32 48 64 80 −0.5 0 0.5 1 1.5 2 0 16 32 48 64 80 0 16 32 48 64 80

Fig.11.Responsesforprocess(23)usingSSOD-PIandPI-SSODcontrollerswiththefirstsetofparameters.Firstplot(fromthetop):processvariablefortheSSOD-PIcontroller (solidline)andPI-SSODcontroller(dashedline).Secondplot:controlvariablefortheSSOD-PIcontroller(solidline)andPI-SSODcontroller(dashedline).Thirdplot:events oftheSSOD-PIcontrollersystem.Fourthplot:eventsofthePI-SSODcontrollersystem.

(10)

Table2

PseudocodesoftheSSOD-PIandPI-SSODcontrollers.

SSOD-PIcontroller PI-SSODcontroller

Sensorunit 1. calculatee;

2. if|e−e∗|thengoto5; 3. ife>e∗thene= e

 elsee∗= e; 4. sendˇe∗tothecontrolunit;

5. end.

Controlandactuatorunit

1. ifanewˇe∗isreceivedthenupdatethevalueofe; 2. calculateui,k=ui,k−1+Kiˇe∗handuk=ui,k+Kpˇe∗; 3. senduktotheactuator;

4. setui,k−1=ui,k; 5. end.

Sensorandcontrolunittask 1. calculatee;

2. calculateui,k=ui,k−1+Kiehanduk=ui,k+Kpe; 3. setui,k−1=ui,k;

4. if|u−u∗|thengoto11;

5. setu∗,2=u∗,1,t∗,2=t∗,1,u∗,1=u∗andt∗,1=t∗;

6. saveint∗thetimeintervalbetweenthelastandthecurrentevent. 7. ifu>u∗thenu= u

 elseu∗= u; 8. ifu∗,2=uthengoto9elsegoto10; 9. ifu∗>u∗,1then ˆD = t∗

t∗,1+t∗;

10. sendˇu∗+ ˆD totheactuatorunit; 11. end.

5.1. IllustrativeExample1

InthisexamplethefollowingFOPDTsystemiscontrolledbythe

SSOD-PIandPI-SSODcontrollers:

P(s)= 1

s+1e−s (23)

UsingProposition3itispossibletofindtheregionofK1−K2(shown

inFig.10)wherethelimitcyclesareavoided.Inordertoshowthe validityofProposition3,twosetsofparametersarechosen,thefirst (Kp=0.542andKi=0.792)slightlyinsidethenolimitcycleregion

(itisindicatedwithacircleinFig.10)andthesecond(Kp=0.542

andKi=0.840)whichdoesnotbelongtothisregion(itisindicated

witha‘*’inFig.10).Thevaluesofandˇaresetequalto0.1and 1,respectively.

Aunitset-pointstepsignalisappliedtothecontrolsystemat timet=0andaunitloaddisturbancestepisappliedattimet=40. Figs.11and12showthecontrolsystemresponseusingthefirstand thesecondset,respectively.ItispossibletonotethatProposition 3isverified,asthereisnotalimitcycleinFig.11whilethereisin Fig.12.

Anotherimportantresultof Propositions3 and4 isthatthe parameterdoesnotinfluencethestabilityandlimitcycle prop-erties,butonlythesystemprecisionandthenumberofevents.This aspectishighlightedinFig.13,wherethecontrolleristunedwith thesecondsetofparametersandissetequalto0.01.Itispossible tonote(seethezoomsinsidethefigure)thatthesystem trajecto-riestendtolimitcycleswiththesameperiodofFig.12butthe processvariablesareclosertotheset-point.However,thenumber ofeventsincreasessignificantly.

0 16 32 48 64 80 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 16 32 48 64 80 −0.5 0 0.5 1 1.5 2 0 16 32 48 64 80 0 16 32 48 64 80

Fig.12.ResponsesforProcess(23)usingSSOD-PIandPI-SSODcontrollerswiththesecondsetofparameters.Firstplot(fromthetop):processvariablefortheSSOD-PI controller(solidline)andPI-SSODcontroller(dashedline).Secondplot:controlvariablefortheSSOD-PIcontroller(solidline)andPI-SSODcontroller(dashedline).Third plot:eventsoftheSSOD-PIcontrollersystem.Fourthplot:eventsofthePI-SSODcontrollersystem.

(11)

0 16 32 48 64 80 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 16 32 48 64 80 −0.5 0 0.5 1 1.5 2 0 16 32 48 64 80 0 16 32 48 64 80 20 25 30 35 40 0.98 1 1.02 20 25 30 35 40 0.98 1 1.02 60 65 70 75 80 0.98 1 1.02 60 65 70 75 80 −0.02 0 0.02

Fig.13.Responsesforprocess(23)usingSSOD-PIandPI-SSODcontrollerswiththesecondsetofparametersandasmallervalueof.Firstplot(fromthetop):process variablefortheSSOD-PIcontroller(solidline)andPI-SSODcontroller(dashedline).Secondplot:controlvariablefortheSSOD-PIcontroller(solidline)andPI-SSODcontroller (dashedline).Thirdplot:eventsoftheSSOD-PIcontrollersystem.Fourthplot:eventsofthePI-SSODcontrollersystem.

Finally,theissueoftheselectionofinthepresenceof mea-surementnoiseisanalyzedbyconsideringthesamecaseofFig.11 butwitha measurementnoisewitha noisebandequalto0.08. Bychoosing=0.1(thatis,slightlygreaterthanthenoiseband), theresultsshowninFig.14areobtained.Itappearsthatthereis notasignificantperformancedecrementwhilethereisonlyaslight incrementofthenumberofevents.Actually,theSSOD-PIcontroller islesssensitivetothenoisethanthePI-SSODcontrollerbecausethe SSODquantizationreducestheeffectsofthenoiseonthePIcontrol unit.

5.2. IllustrativeExample2

Inthisexampletheexogenoussignalcompensationtaskofthe PI-SSODcontrollerisshown.Theconsideredprocessisthesame oftheExample1(see(23)).Thecontrollerparametersaresetas Kp=0.542,Ki=0.792,=0.1andˇ=1;theset-pointvalueisset

equalto1.05,inthiswaythecompensationisnecessary(namely, r /= jKˇ,

j∈Z).InFig.15,itispossibletonotethatatthetime instantt=23,thecontrolvariableissetequalto1.052using(22). Becausethecompensationis exact, asmall deadband(equalto 0.1K=0.01)isappliedontheerrorsignalcalculus.

5.3. IllustrativeExample3

Inthisexample,thehighordersystem[27]

P(s)= (−0.3s+1)(.08s+1)

(2s+1)(s+1)(0.4s+1)(0.2s+1)(0.05s+1)3 (24) isconsidered.TheprocessisapproximatedasaFOPDTsystemwith K=1,=2.5andL=1.47usingthehalfrule.

ThecontrollergainsaretunedusingtheSIMCrules[27]andthey resultinthefollowingcontrollerparametersKp=0.85andKi=0.34

whichareinthenolimitcyclesregionaccordingtoProposition 3.ThepresentedcontrolstrategiesarecomparedwiththeSOD-PI controllerpresentedin[26],theevent-basedcontroller(denotedas ˚Arzén)presentedin[14],thePIDpluspresentedin[2]andadiscrete time-drivenPIcontroller(denotedasDT-PI)withasampleperiod equalto/5,assuggestedin[2].

Theparametersandˇaresetequalto0.1and1,respectively. Theparametertmax,necessaryin[14,2],issetequalto.TheSOD-PI

parametersaresetasfollows:p=,i=,



=.Thedeadband

presentinthePI-SSODcontrollerissetequalto0.1K.

Fig.16showsthesystemresponseswhentheexogenous sig-nalsareaunitset-pointstep,appliedatthetimeinstantt=0,anda loaddisturbancestep,withamplitudeequalto0.95andappliedat thetimeinstantt=30.Itisimportanttonotethattheperformance ofSSOD-PI,PI-SSODandSOD-PI controllersare thefastest ones butpresentmoreovershootwithrespecttothePIDpluscontroller, whichislessaggressivealsoduringthedisturbancerejectiontask. TheArzénPIcontroller presentsa peakonthecontrolvariable causedbythemethodusedtoelaboratetheintegralaction(which issolvedinthePIDpluscontroller).Theperformanceofthe con-trollers,showninTable3,confirmtheseconsiderations.Another importantconsiderationisthattheSSOD-PIandPI-SSODcontrol strategiespresentthesmallestnumbersofevents,becauseofthe absenceofthetmaxtriggeringcondition.Itispossibletoseethatthe

event-basedcontrolstrategies(withtheexceptionoftheArzénPI controller)havebetterperformancethanadiscretePItechnique witha highsampling period. Note that,reducing the sampling periodofDT-PIcontrollerincreasestheperformancebutalsothe numberoftheevents.

(12)

0 16 32 48 64 80 −0.5 0 0.5 1 1.5 2 0 16 32 48 64 80 −0.5 0 0.5 1 1.5 2 0 16 32 48 64 80 0 16 32 48 64 80

Fig.14.ZoomofFig.13.Firstplot(fromthetop):processvariablefortheSSOD-PIcontroller(solidline)andPI-SSODcontroller(dashedline).Secondplot:controlvariable fortheSSOD-PIcontroller(solidline)andPI-SSODcontroller(dashedline).Thirdplot:eventsoftheSSOD-PIcontrollersystem.Fourthplot:eventsofthePI-SSODcontroller system. 0 5 10 15 20 25 30 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 5 10 15 20 25 30 −0.5 0 0.5 1 1.5 0 5 10 15 20 25 30

Fig.15.Responsetoastepofamplitude1.05forProcess(23)usingPI-SSODcontroller.Firstplot(fromthetop):processvariable.Secondplot:controlvariable.Thirdplot: eventsofthePI-SSODcontrollersystem.

(13)

0 10 20 30 40 50 60 0 0.5 1 1.5 2 0 10 20 30 40 50 60 −0.5 0 0.5 1 1.5 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

Fig.16.ResponsesforProcess(24).Firstplot(fromthetop):processvariablefortheSSOD-PIcontroller(thicksolidline),PI-SSODcontroller(thickdashedline), ˚Arzén controller(thickdot-dashedline),PIDpluscontroller(thickdottedline),SOD-PIcontroller(thindashedline)andDT-PIcontroller(thinsolidline).Secondplot:control variablefortheSSOD-PIcontroller(thicksolidline),PI-SSODcontroller(thickdashedline), ˚Arzéncontroller(thickdot-dashedline),PIDpluscontroller(thickdottedline), SOD-PIcontroller(thindashedline)andDT-PIcontroller(thinsolidline).Fromthirdtoeighthplot:eventsoftheSSOD-PI,PI-SSOD, ˚Arzén,PIDplus,SOD-PIandDT-PIcontroller systems,respectively.

Remark5. ItisimportanttonotethattheEventBased-PI(EB-PI)

strategiesdifferentfromtheSSOD-PIandPI-SSODmethodscanbe alsoappliedwhenthethreecontrolagentsareseparated.

6. Experimentalresults

In order toprove theeffectiveness of thepresented control strategiesinpracticalapplications,alaboratory-scalesetupmade byQuanserhasbeenemployed(seeFig.17).Specifically,the exper-imentalsetupisafourtankssystemwherejustthelowerlefttank hasbeenconsideredforlevelcontrol.

Becausetheapparentdead-timeofthesystemisverysmallwith respecttoitsdominanttimeconstant,andinordertoprovidea significantresult,atimedelayof2shasbeenaddedviasoftwareat theplantoutput.TheFOPDTmodelhasbeenobtainedbyapplying aleast-squaresproceduretotheresponseofaseriesofopen-loop steps,resultingin:

P(s)= 82.1 22.2s+1e

−2s. (25)

Thepercentage oftheoutputvariationthat isexplainedbythe modelisaround90%.

Table3

Performanceofthecontrollers.IAE:integratedabsoluteerror(computedonly whentheerrorsignalisoutoftheband±).OV:overshoot.ne:numberofevents. st:settingtimetoabandof±aroundtheset-point.

IAE OV ne st SSOD-PI 8.510 15.185 32 9.032 PI-SSOD 7.821 13.360 30 9.135 ˚Arzén 10.143 23.465 49 17.730 PIDplus 8.342 8.957 46 5.996 SOD-PID 7.855 12.547 58 9.062 DT-PID 9.341 30.997 120 14.897

Theexperimentconsistsinaset-pointstepchangefrom10cm

to20cm,thenaloaddisturbanceisapplied,usinganadditional

pump.

The PIcontroller are tunedusing the following parameters:

Kp=0.04,Ti=16,whichareinsideofthenolimitcyclezone.The

tmax(whenitisnecessary)issetequalto.Theparameterisset

(14)

0 50 100 150 200 250 300 350 400 450 0 5 10 15 20 25 30 0 50 100 150 200 250 300 350 400 450 0 0.2 0.4 0.6 0.8 1 0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450

Fig.18.ResponsesforprocessshowninFig.17.Firstplot(fromthetop):processvariablefortheSSOD-PIcontroller(thicksolidline),PI-SSODcontroller(thickdashed line), ˚Arzéncontroller(thickdot-dashedline),PIDpluscontroller(thickdottedline),SOD-PIcontroller(thindashedline)andDT-PIcontroller(thinsolidline).Secondplot: controlvariablefortheSSOD-PIcontroller(thicksolidline),PI-SSODcontroller(thickdashedline), ˚Arzéncontroller(thickdot-dashedline),PIDpluscontroller(thickdotted line),SOD-PIcontroller(thindashedline)andDT-PIcontroller(thinsolidline).Fromthirdtoeighthplot:eventsoftheSSOD-PI,PI-SSOD, ˚Arzén,PIDplus,SOD-PIandDT-PI controllersystems,respectively.

equal0.4(biggerthanthenoisebandofthesensor)forallthe con-trollersexceptthePI-SSODstrategy,whereitissetequalto0.02 (choseninordertoobtainthesamenumberofeventsofthe SSOD-PIcontroller).ThedeadbandofthePI-SSODcontrollerissetequal to0.1K=0.16.Theparametersiand



oftheSOD-PIcontroller

aresetequalto0.4and1,respectively.Fig.18andTable4showthe experimentalresultsandtheperformanceindexobtainedusingthe samecontrollersofExample3.

Alsointhiscase, thebestperformanceis achievedusingthe SSOD-PI,thePI-SSOD,theSOD-PIandthePIDpluscontrollers. How-ever,withthetwocontrolstrategiespresentedinthispaperitis possibletoreducethenumberofevents(andthereforethe num-beroftransmissions)withoutasignificantlossofperformancewith respecttotheSOD-PIandthePIDpluscontrollers.

Table4

Performanceofthecontrollers.IAE:integratedabsoluteerror(computedonly whentheerrorsignalisoutoftheband±).OV:overshoot.ne:numberofevents. st:settingtimetoabandof±aroundtheset-pointwhentheset-pointsignalis aunitarystep. IAE OV ne st SSOD-PI 166.826 12.802 30 36.100 PI-SSOD 174.432 10.744 45 35.700 ˚Arzén 222.763 26.515 77 111.600 PIDplus 185.070 13.038 64 45.200 SOD-PID 166.531 9.240 148 72.300 DT-PID 209.121 29.145 107 30.500 7. Conclusions

Inthispaper,wehaveaddressedthestabilityissueandthe

pres-enceoflimitcyclesfortwoevent-basedPIcontrolsystems,based

onthesymmetric-send-on-deltaevent-triggeringmethod.In

par-ticular,themainadvantagesofthiseventdetectionstrategyhave

beenoutlined.Then,stabilityandlimitcyclespropertiesare

inves-tigated.Inparticular,necessaryconditionsonthesysteminstability

havebeendetermined.

Limitcyclesaresurelyavoidedifthecontrollergainisinsidethe

setofcontrollerparametersdescribedusingtwosufficient

condi-tions.Boththestabilityandlimitcyclepropertiesdonotdepend

ontheevent-triggeringmethod,whichcanbetunedinorderto

handlethetrade-offbetweenthenumberofeventsandthesystem

precision.

Simulationandexperimentalresultshaveconfirmedthe

effec-tiveness of the approach which represents a valuable step in

the development of easy-to-use tuning rules for this kind of

controllers.

AppendixA. Normalizationformulae

A.1. SSOD-PIcontroller

TheSSOD-PIcontrolledFOPDTprocessisdescribedbyEq.(6).

(15)

exogenoussignals(namely,r=D=0).Thus,Eq.(6)canberewritten as:

˙x1(t)=− 1 x1(t)+ K (x2(t)+Kpe ∗(t)) ˙x2(t)=Kie∗(t) y(t)=x1(t) e(t)=−y(t) e∗(t)=ssod(e(t−L);,ˇ) Thesignale∗(t)canberewrittenas: e∗(t)=ˇssod



e(tL)

 ;1,1



.

In order to normalize the system, we scale the time variable ˜t=(t/) (thus, l=(L/)). In this way, the derivatives becomes: (dx1/dt)=(dx1/d˜t)(1/) and (dx2/dt)=(dx2/d˜t)(1/). Thus, we

canrewritethesystemequationas:

˙x1(˜t)=−x1(˜t)+K(x2(˜t)+Kpe∗(˜t)) ˙x2(t)=Kie∗(˜t) y(˜t)=x1(˜t)

v

(˜t)=x1(˜t) e∗(˜t)=ˇssod(−

v

(˜t −l)  ;1,1)

where

v

(˜t)=−e(˜t).Wedefine˜

v

∗(˜t)=ssod



v(˜t−l)  ;1,1



,therefore thesystemequationsbecome:

˙x1(˜t)=−x1(˜t)+Kx2(˜t)+KKpˇ

v

∗(˜t) ˙x2(t)=Kiˇ

v

∗(˜t) y(˜t)=x1(˜t)

v

(˜t)=x1(˜t) ˜

v

∗(˜t)=ssod

v

(˜t −l)  ;1,1



Tomakethestabilityanalysiseasierwediagonalizethedynamic equationusingthefollowingtransformationmatrix:

=



1 −K

0 K



Finally, defining ˜x(˜t)=(x(˜t)/), ˜y(˜t)=(y(˜t)/), K1=KKpˇ,

K2=KKiˇanda=K1−K2,thesystemequationsbecome(8).

A.2. PI-SSODcontroller

ThePI-SSODcontrolledFOPDTprocessisdescribedbyEq.(7). Asmentioned, thestabilityanalysisis donewithoutexogenous signals.Thus,Eq.(7)canberewrittenas:

˙x1(t)=− 1 x1(t)+ K u ∗(t) ˙x2(t)= Kp  (x1(t)−Ku∗(t))+Ki(−x1(t)) y(t)=x1(t) u(t)=x2(t) u∗(t)=ssod(u(t−L);,ˇ)

Thesignalu∗(t)canberewrittenas: u∗(t)=ˇssod



u(tL)

 ;1,1



.

In order to normalize the system, we scale the time variable ˜t=(t/) (thus, l=(L/)). In this way, the derivatives becomes: (dx1/dt)=(dx1/d˜t)(1/) and (dx2/dt)=(dx2/d˜t)(1/). Thus, we

canrewritethesystemequationas:

˙x1(˜t)=−x1(˜t)+Ku∗(˜t) ˙x2(˜t)=Kp(x1(˜t)−Ku∗(˜t))−Kix1(˜t) y(˜t)=x1(˜t)

v

(˜t)=x2(˜t) u∗(˜t)=ssod(−

v

(˜t −l);,ˇ)

where

v

(˜t)=−u(˜t)=−x2(˜t).Wedefine˜

v

∗(˜t)=ssod



v(˜t−l)  ;1,1



, thereforethesystemequationsbecome:

˙x1(˜t)=−x1(˜t)+Kˇ˜

v

∗(˜t) ˙x2(˜t)=(Kp−Ki)x1(˜t)−KKpˇ˜

v

∗(˜t) y(˜t)=x1(˜t)

v

(˜t)=−x2(˜t)

v

∗(˜t)=ssod(−

v

(˜t−l)  ;1,1)

Tomakethestabilityanalysiseasierwediagonalizethedynamic equationusingthefollowingtransformationmatrix:

=

Kp−Ki 0

Ki−Kp −1

Finally, defining ˜x(˜t)=(x(˜t)/), ˜y(˜t)=(y(˜t)/), K1=KKpˇ,

K2=KKiˇanda=K1−K2,thesystemequationsbecome(8).

References

[1]A.O’Dwyer,HandbookofPIandPIDTuningRules,ImperialCollegePress, Lon-don,UK,2006.

[2]T.Blevins,PIDadvancesinindustrialcontrol,in:PreprintsIFACConferenceon AdvancesinPIDControl,Brescia,Italy,2012.

[3]P.Otanez,J.Moyne,D.Tilbury,Usingdeadbandstoreducecommunicationin networkedcontrolsystems,in:ProceedingsofAmericanControlConference, Anchorage,USA,2002.

[4]M.Miskowicz,Send-on-delta:anevent-baseddatareportingstrategy,Sensors 6(2006)49–63.

[5]A.Pawlowskyy,J.L.Guzmán,F.Rodríguez,M.Berenguel,J.Sánchez,S.Dormido, Event-basedcontrolandwirelesssensornetworkfor greenhousediurnal temperaturecontrol:asimulatedcasestudy,in:Proceedings13thIEEE Inter-nationalConferenceonEmergingTechnologiesandFactoryAutomation,2008. [6]U.Tiberi,C.F.Lindberg,A.J.Isaksson,Aself-triggerPIcontrollerforprocesses withdeadtime,in:PreprintsoftheIFACConferenceonAdvancesinPIDControl, Brescia,Italy,2012.

[7]X.Wang,M.D.Lemmon,Self-triggeredfeedbackcontrolsystemswith finite-gainL2stability,IEEETransactionsonAutomaticControl54(3)(2009)452–467. [8] M.MazoJr.,A.AntaMartínez,P.Tabuada,AnISSself-triggeredimplementation

oflinearcontrollers,Automatica46(8)(2010)1310–1314.

[9]J.Araujo,A.Anta,M.Mazo,J.Faria,A.Hernández,P.Tabuada,K.H. Johans-son,Self-triggeredcontroloverwirelesssensorandactuatornetworks.,in: ProceedingsIEEEInternationalConferenceonDistributedComputinginSensor Systems,2011June,pp.1–9.

[10]K.J. ˚Aström,Eventbasedcontrol.,in:A.Astolfi,L.Marconi(Eds.),Analysisand DesignofNonlinearControlSystems:InHonorofAlbertoIsidori,2008. [11]V.Vasyutynskyy,K.Kabitzsh,Event-basedcontrolOverviewandgenericmodel,

in:Proceedingsof8thIEEEInternationalWorkshoponFactoryCommunication Systems,2010May.

[12] W.P.M.H.Heemels,J.H.Sandee,P.P.J.VanDenBosch,Analysisofevent-driven controllersforlinearsystems,InternationalJournalofControl81(4)(2008) 571–590.

(16)

[13]D.Lehmann,K.H.Johansson,Event-triggeredPIcontrolsubjecttoactuator sat-uration,in:PreprintsIFACConferenceonAdvancesinPIDControl,Brescia,Italy, 2012.

[14]K.E. ˚Arzén,Asimpleevent-basedPIDcontroller,in:Proceedingsof14thWorld CongressofIFAC,Beijing,China,1999.

[15]V.Vasyutynskyy,K.Kabitzsh,ImplementationofPIDcontrollerwith send-on-deltasampling,in:ProceedingsofInternationalControlConference,2006. [16] M.Rabi,K.H.Johansson,Event-triggeredstrategiesforindustrialcontrolover

wirelessnetworks,in:Proceedingsof4thAnnualInternationalConferenceon WirelessInternet,Maui,HI,USA,2008.

[17]S.Durand,N.Marchand,Furtherresultsonevent-basedPIDcontroller,in: Proceedingsof10thEuropeanControlConference(ECC’09),Budapest,Hungary, 2009.

[18] V.Vasyutynskyy,K.Kabitzsh,Firstorderobserversinevent-basedPID con-trols.,in:ProceedingsofIEEEConferenceonEmergingTechnologies&Factory Automation,2009September.

[19]V.Vasyutynskyy,K.Kabitzsh,AcomparativestudyofPIDcontrolalgorithms adaptedtosend-on-deltasampling,in:ProceedingsofIEEEInternational Sym-posiumonIndustrialElectronics(ISIE),Bari,Italy,2010.

[20] J.Sánchez,A.Visioli,S.Dormido,Atwo-degree-of-freedomPIcontrollerbased onevents,JournalofProcessControl21(2011)639–651.

[21]J.Sánchez,A.Visioli,S.Dormido,Event-basedPIDcontrol,in:R.Vilanova, A. Visioli (Eds.), PID Control in the Third Millennium, Springer, 2012, pp.495–526.

[22]V.Vasyutynskyy,K.Kabitzsh,Towardscomparisonofdeadbandsampling types.,in:InProceedingsofIEEEInternationalSymposiumonIndustrial Elec-tronics,2007June.

[23]E.Kofman,J.Braslavsky,Levelcrossingsamplinginfeedbackstabilizationunder datarateconstraints,in:Proceedingsof45thIEEEInternationalConferenceon DecisionandControl,2006.

[24] J.Sánchez,M.A.Guarnes,S.Dormido,A.Visioli,Comparativestudyof event-basedcontrolstrategies:anexperimentalapproachonasimpletank,in: ProceedingsofEuropeanControlConference,2009.

[25]A.Cervin,K.J. ˚Aström,Onlimitcyclesinevent-basedcontrolsystems,in: Proceedingsof46thIEEEInternationalConferenceonDecisionandControl, NewOrleans,LA,USA,2007,pp.3190–3195.

[26] M.Beschi,A.Visioli,S.Dormido,J.Sánchez,Onthepresenceofequilibrium pointsinPIcontrolsystemswithsend-on-deltasampling,in:Proceedingsof 50thIEEEInternationalConferenceonDecisionandControlandEuropean Con-trolConference,Orlando,USA,2011.

[27] S.Skogestad,ProbablythebestsimplePIDtuningrulesintheworld.InAIChE Annualmeeting,Reno,NV,USA,2001.

Figura

Fig. 1. Scheme of a generic event based control strategies. The dashed arrows indi- indi-cate the possibility of an event-triggered data transmission.
Fig. 4. Modelization of communication delays and packet losses as additive disturb- disturb-ance, where v ∗ (t) is the sent SSOD output, v ∗
Fig. 6. Control scheme of the PI-SSOD controlled system. The dashed arrows indicate data sending via communication medium.
Fig. 7. Scheme of the normalized system.
+7

Riferimenti

Documenti correlati

In this section and based on time domain results, we propose the filter-based controller design procedure that operates in the frequency domain, dependently and independently form

The UPFC controller utilizes a multiple PI controllers and a lead lag compensator in order to control the active power flow controller, regulate the AC bus voltage,

For complex industrial control system, it i s found that the state space approach offers several methods of design, including optimum approaches [5].Of the known

A fully transient analysis of an embedded spherical shell in an elastic medium using exact, 3D elasticity theory for the shell, with all possible sources excitation including

The method used is to evaluate the controllers that are retuned the controller parameters, identify the system using the first-order plus dead time model (FOPDT), tune the

We investigate the constraints that can be placed on the fraction of Compton- thick AGN in the Universe from the modeling of the spectrum of the diffuse X-ray back- ground (XRB) in

We present a new efficient diagnostic method, based on mid-infrared and X-ray data, to select local (z&lt;0.1) Compton–thick (CT) AGN with the aim of estimating their volume

Fraction of BIRGs (thick short dashed line), Sy2s (thick line), Sy1s (thick long dashed line) and their respective control sample galaxies (thin lines) which have their