• Non ci sono risultati.

Search for monotop signatures in proton-proton collisions at s =8TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for monotop signatures in proton-proton collisions at s =8TeV"

Copied!
16
0
0

Testo completo

(1)

Search for Monotop Signatures in Proton-Proton Collisions at

p

ffiffis

¼ 8 TeV

V. Khachatryan et al.*

(CMS Collaboration)

(Received 5 October 2014; revised manuscript received 18 December 2014; published 10 March 2015) Results are presented from a search for new decaying massive particles whose presence is inferred from an imbalance in transverse momentum and which are produced in association with a single top quark that decays into a bottom quark and two light quarks. The measurement is performed using 19.7 fb−1of data

from proton-proton collisions at a center-of-mass energy of 8 TeV, collected with the CMS detector at the CERN LHC. No deviations from the standard model predictions are observed and lower limits are set on the masses of new invisible bosons. In particular, scalar and vector particles, with masses below 330 and 650 GeV, respectively, are excluded at 95% confidence level, thereby substantially extending a previous limit published by the CDF Collaboration.

DOI:10.1103/PhysRevLett.114.101801 PACS numbers: 13.85.Rm, 13.85.Qk, 14.65.Ha

Extensions of theories beyond the standard model (BSM), such as those with universal extra dimensions

[1]or supersymmetry[2,3], predict the existence of neutral massive particles that are “invisible,” that is, they interact only weakly with matter. Such particles can be produced in collider experiments, but escape detection so that their existence can only be inferred by the presence of a large imbalance in transverse momentum (Emiss

T ). Both the ATLAS [4] and CMS [5] collaborations have performed searches for the invisible BSM particles in monojet [6,7]

and monophoton[8,9]signatures that manifest themselves through the presence of a single jet or photon associated with large Emiss

T . These searches have not revealed any evidence for BSM monojet or monophoton final states, but this nonobservation can be accommodated in a theory where the new particles change the quark flavor and convert a light quark to a top quark. In this case, the BSM event signature would not correspond to monojet or monophoton final states, but to events containing single top quarks and large Emiss

T , referred to as “monotop” candidates. In this Letter, we present a search for such events in which an invisible BSM particle is produced in association with a top quark[10–20].

Depending on the spin statistics of the invisible particle, at tree level a monotop system can be produced through two main mechanisms: it can originate either (i) from the decay of a heavy bosonic resonance, with Emiss

T arising from an invisible baryon-number violating fermionic state (for instance, ¯d ¯s → ~ui→ t~χ01, where ¯d and ¯s denote anti-d and anti-s quarks, ~uiare any of the up-type squarks of R-parity violating supersymmetry [21], and t and ~χ0

1 are the top

quark and neutralino), or (ii) through flavor-changing (FC) interactions mediated by an invisible bosonic state (for instance, ug → u → tυ, where u, g, t, and υ are an up quark, gluon, top quark, and invisible BSM particle, respectively)

[10]. In both cases, the new invisible particles are assumed to have a branching fraction close to unity for decay to hidden sector particles. While this requires some degree of tuning, such scenarios are well motivated as discussed in Ref. [22]. Consequently, even in the presence of non-vanishing couplings to SM particles, which is necessary for the production of such invisible particles in collider experi-ments, an Emiss

T signature is expected. The present study focuses on the second class of the above-mentioned processes where a bosonic invisible state is produced that yields a large Emiss

T in association with a single top quark that decays to a bottom quark and a W boson, with the latter decaying into a pair of quarks.

The search is performed on data from proton-proton collisions recorded at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb−1, and recorded with the CMS detector[5]at the CERN LHC. The most important backgrounds for the event signature with three jets and large Emiss

T are Zþjets, W þjets, and t¯t processes. The Z þ jets and W þ jets backgrounds are estimated from data, and the signal yield is determined simultaneously with multijet background, using a likelihood approach based on the observed multiplicity of b-tagged jets. We interpret the results within a simplified field theory

[10,11]where the invisible particle can be either a scalar

(ϕ) or a vector (v) boson, with its Lagrangian given by L ¼ LSMþ Lkinþ a0FCϕ¯uu þ a1FCvμuγ¯ μu þ H:c:; ð1Þ where LSMdenotes the SM Lagrangian, Lkinkinetic terms for the ϕ and v fields, and the remaining terms model the interactions of the invisible states with up-type quarks. The coupling strengths are embedded in two 3 × 3 matrices in * Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

flavor space (a0;1

FC), where only the elements connecting the first and third generations are nonvanishing and set to 0.1, as done in Ref.[10]. The Feynman diagrams for tree-level production are shown in Fig.1.

Events are recorded using a trigger requiring Emiss T > 150 GeV. For the background estimation we use an independent control sample of events with an isolated single-muon trigger with a transverse momentum threshold of pT> 24 GeV.

The monotop model is implemented within the FEYNRULES package [23,24] and is interfaced [25,26]to the MADGRAPH 5 event generator [27]. Simulated events are produced for masses of invisible particles from 0 to 0.2 TeV in steps of 0.05 TeV, and from 0.2 to 1 TeV in steps of 0.1 TeV. The production cross sections are calculated at leading order (LO) with MADGRAPHusing CTEQ6.1L[28] parton distribution functions (PDF). This PDF set is also used for simulating the SM background processes.

The main backgrounds are generated using MADGRAPH. For W þ jets and Z þ jets processes, events are generated including up to four additional partons. For Zð→ ee; μμ; ττÞ þ jets (with mass mll> 50 GeV) and Wð→ eν; μν; τνÞ þ jets processes we use the next-to-next-to-leading order (NNLO) cross sections of 3.50 nb and 37.5 nb, respectively, as calculated using the FEWZ 3.1 program

[29]. For the Zð→ ννÞ þ jets process we use events

gen-erated in four bins of HT, the scalar sum of pTof all of the generated partons in the process: 50 < HT< 100 GeV, 100 < HT< 200 GeV, 200 < HT< 400 GeV, and HT> 400 GeV, with respective LO cross sections of 381, 160, 41.5, and 5.27 pb. The t¯t sample includes up to three additional partons at the matrix element level, and is rescaled to an inclusive NNLO cross section of 246 pb[30].

Other SM backgrounds arise from single top quark and diboson (WW, WZ, and ZZ) production. Single top quark production is modeled with POWHEG 1.0 [31–34], and diboson production is modeled with PYTHIA 6.4.22 [35]. All Monte Carlo (MC) generated events are evolved using PYTHIA 6.4.22 with Z2* tune [36] and processed with a full simulation of the CMS detector implemented in the GEANT4 package[37].

We require at least one reconstructed primary vertex and reject events with evidence of significant beam halo or events with a large amount of detector noise[38].

The CMS particle-flow (PF) algorithm[39–41]is used to reconstruct and identify each particle with an optimized combination of information from all the CMS subdetectors. The only charged PF particles considered in reconstructing an event are those associated with the main primary vertex, which is defined as the primary vertex with the largest sum of p2

T of all the associated tracks. Particles identified as originating from other collisions in the beam crossing (pileup) are removed from consideration.

The three jets from t → bW → bq¯q0 decay are recon-structed using the anti-kTclustering algorithm[42]with a distance parameter of 0.5. During jet reconstruction, the charged particles arising from pileup interactions are excluded, while the neutral pileup component is accounted for using the area-based energy subtraction procedure described in Refs.[43,44]. Jet energy corrections used in this measurement rely on simulation and on studies performed in data[45]. Only jets with pT≥ 35 GeV and jηj < 2.4 are considered, where η is the pseudorapidity. The two highest-pT (leading) jets must have a pT> 60 GeV, while the pTof the jet with third highest pThas to be above 40 GeV. The invariant mass of the three jets has to be less than 250 GeV. Events containing additional jets with a pT above 35 GeV are rejected. We require one of the three jets to be identified as a candidate jet from a b quark. The identification algorithm is based on the reconstruction of a displaced secondary vertex [46]. A jet from a b quark is tagged with≈70% efficiency. The probability to tag a light jet from u, d, or s quarks, or a gluon jet is 1%–4% depending on the jet pT. We also use events without b-tagged jets in order to define a background-enriched sample to extract the normalization for multijet background. Signal-candidate events containing isolated muons or electrons are rejected. Muons are reconstructed by match-ing tracks from the outer muon detector to tracks recon-structed by the inner tracker [47]. Muons are required to have pT> 10 GeV and jηj < 2.4. Electrons are recon-structed by associating tracks from the inner tracker to clustered energy depositions in the electromagnetic calo-rimeter[48]. Electrons are required to have pT> 20 GeV and be within jηj < 2.5, excluding the transition region between barrel and endcap defined by 1.44 < jηj < 1.57. Standard CMS muon and electron identification criteria

[47,48]are applied. The muon (electron) relative isolation

variable Irel is computed by first summing the transverse momenta of the reconstructed particles in a cone ofΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðΔηÞ2

þ ðΔϕÞ2 p

< 0.4ð0.3Þ around the muon (electron) direction, excluding the contribution of the lepton, and then dividing this sum by the transverse momentum of the lepton. The lepton candidates are rejected if they sat-isfy Irel< 0.2.

The Emiss

T vector is defined by the negative vector sum of the transverse momenta of all the reconstructed particles in the event. The Emiss

T threshold of 350 GeV used in the analysis is optimized to give the most sensitive exclusion FIG. 1. Feynman diagrams for s-channel (left) and t-channel

(3)

limit on the production cross section. This threshold is also nearly optimal for attaining best significance in the signal. The dominant backgrounds after implementing the selection criteria are t¯t and V þ jets events, with V being either a Z or a W boson. For electroweak vector boson production up to three additional jets are considered, leading to a large systematic uncertainty in the predicted production rate. For this reason, we estimate the V þ jets background using data.

The control region for W þ jets and Z þ jets back-grounds is defined with an alternative selection, requiring one or two isolated muons in addition to the three jets. A tighter selection is applied for muons, requiring them to satisfy pT≥ 40 GeV and jηj < 2.1. In this case, the relative combined isolation variable in a cone ofΔR < 0.4 must be below 0.12. As in the signal selection, the three jets are required to have pT> 60, 60, 40 GeV respectively, and the invariant mass of the three jets has to be less than 250 GeV. Events with any additional jets with a pTabove 35 GeV, as well as events with additional isolated electrons or muons are rejected.

The Zð→ ννÞ þ jets background is estimated from events with two muons and three jets. In such events, we replace the requirement for Emiss

T > 350 GeV with the requirement for the vector sum of the pTof the two muons and of EmissT to be greater than 350 GeV. We also suppress the non-Z back-grounds by selecting events with μþμinvariant mass between 60 and 120 GeV. The residual non-Z backgrounds are reduce to 1.5%; thus they make a negligible contribution to the overall uncertainty. The Zð→ ννÞ þ jets background is calculated using the following equation:

NðZ → ννÞ ¼A × ϵðμμÞNobsðμμÞ BðZ → μμÞBðZ → ννÞ ð2Þ where Nobs

ðμμÞ is the number of observed events with two muons, A × ϵðμμÞ is the product of acceptance and effi-ciency to identify and select the two muons, as measured in simulation, and BðZ → ννÞ=BðZ → μμÞ ¼ 5.94[49]is the ratio of branching fractions for Z decays into two neutrinos and two muons. The accuracy of the background estimate is limited by the number of selected events with two muons. The estimated Zð→ ννÞ þ jets background is presented in TableI.

The Wð→ lνÞ þ jets background is calculated from events with a single muon and three jets. Just as in the selected signal events, Emiss

T has to be greater than 350 GeV. The transverse mass constructed with the muon-pT and Emiss

T vectors has to be less than 180 GeV. From simulation we estimate the single-muon background that does not arise from W boson production (roughly a third of events), and subtract it from the observed number of events. The resulting number is divided by the acceptance and effi-ciency of the single-muon selection, providing thereby the number of Wð→ μνÞ þ jets events. Assuming lepton

universality, we use the same estimate for events with other lepton flavors. In the simulation, we calculate the proba-bility that the Wð→ lνÞ þ jets event can be present after applying the lepton veto that is used to select signal events. The resulting estimate of the Wð→ lνÞ þ jets background is calculated as follows:

NðW → ν; lostlÞ ¼NobsðμÞ − NA × ϵðμÞMCnon-W X l¼e;μ;τ

PðlostlÞ ð3Þ where NobsðμÞ is the observed number of single muon events, NMC

non-Wis the background that does not arise from W bosons, and is estimated through simulation, A × ϵðμÞ is the product of acceptance and efficiency to identify and select the muon, as measured in simulation, and PðlostlÞ are the probabilities that a W þ jets event with an electron, a muon, or a tau lepton is not rejected by the signal selection, as defined through simulation. The background contributions from other kinematic regions [e.g., Wð→ eνÞ and Wð→ τνÞ with two jets] were found to be negligible. The accuracy of the Wð→ lνÞ þ jets background estimate is limited by the number of selected muon events and by the uncertainty in the simulation of background from other than W boson sources. The rate of W þ jets events with one b-tagged jet is estimated by scaling the rate without b-tagged jets by the probability to have a b-tagged jet in simulated W þ jets events. The estimated background from W þ jets is given in TableI.

The most important background after V+jets processes is from t¯t production, followed by single top quark and diboson production. These backgrounds are estimated through simulation. The leading systematic uncertainties arise in the simulated t¯t sample. They are related to the choice of the renormalization and factorization scales and the scale that determines the transition between modeling TABLE I. Total number of selected events in data compared to the background prediction. The background yields are given with statistical (first) and systematic (second) uncertainties. The multijet background is calculated using all the other backgrounds and therefore its uncertainty is not included in the quadratic sum of background uncertainties.

No b tag One b tag

t¯t 6% 0 % 5 12% 0 % 12 W þ jets 18% 9 % 7 3% 1 % 2 Z þ jets 103% 33 % 9 11% 10 % 1 Single top 2% 1 % 1 1% 1 % 1 VV0 5% 0 % 0 0% 0 % 0 Multijet 6ð%39Þ 1ð%9Þ Total background 140% 36 28% 16 Signal 2% 6 3% 11 Data 143 30

(4)

additional partons at matrix element level and at the level of parton showers. Other systematic uncertainties originate from jet energy scale and resolution, b-tagging efficiency and mistagging rate, choice of PDF, and accuracy of the luminosity measurement. The yields from background t¯t, single top quark, and diboson sources, together with the systematic uncertainties, are given in Table I.

Figure2shows the distribution of the invariant mass of the three jets before requiring their invariant mass to be less than 250 GeV, in events with one b-tagged jet. We do not present a simulation of the multijet background; thus, for the comparison between data and simulated backgrounds we suppress the potential contribution from this source with an additional cut on the opening azimuthal angle between the two leading jets: jϕjet1− ϕjet2

j < 2.8. The shaded areas represent the sum of the systematic uncertainties related to the renormalization and factorization scales for the t¯t and V þ jets backgrounds, smoothed in a second-order poly-nomial fit, and taken in quadrature. Agreement is observed between data and background predictions. The dashed line in Fig.2indicates the prediction from a model based on a 700 GeV invisible vector boson.

The signal cross section, as well as the number of multijet background events, are measured in data using a likelihood approach, where each systematic source is treated as a nuisance parameter. The method is based on the observed number of events without and with just a single b-tagged jet accepted in selecting the signal. These two event categories contain untagged and tagged signal

and background events as shown in the following system of equations:

N0b ¼ P0b

sigNsigþ P0bMJNMJþ N0bother; N1b

¼ P1b

sigNsigþ P1bMJNMJþ N1bother;

ð4Þ

where P0b

sigand P1bsigare the probabilities to tag 0 or 1 jet as a b jet in the selected signal events, P0b

MJ and P1bMJ are the corresponding probabilities for the selected multijet events in data, and N0b

otherand N1botherare the known contributions to 0 and 1 b-tagged event categories from other backgrounds. The P0b;1b

sig;MJ probabilities are estimated using simulation. The uncertainty in the P0b;1b

MJ probabilities is taken as the difference between the estimate obtained from simulation and that obtained from data using a control region defined by relaxing the Emiss

T requirement. The system above is solved to estimate the number of multijet (NMJ) and signal (Nsig) events, by using a numerical minimization of the following likelihood:

Lðσsig;νÞ ¼ PoissonðN0bobsjN0bÞ × PoissonðN1bobsjN1bÞ; ð5Þ where σsigis the signal cross section,ν is the vector of the nuisance parameters describing uncertainties in the expected number of events from the Eq. (4), and N0b

obs and N1b

obs are, respectively, the total number of observed events in event categories without and with one b tag.

The number of expected SM background events is compared to the data after applying the final selections, and is presented in TableI. Systematic uncertainties in the simulated backgrounds (t¯t, single top, and VV0) are presented as sums of the uncertainties from all of the respective sources, taken in quadrature. The multijet back-ground is calculated using all the other backback-grounds and data in Eq.(5). The uncertainty in the multijet background is determined by the uncertainties in the other backgrounds, and is therefore not included in the quadratic sum of background uncertainties.

No excess is observed above the background expect-ation, and limits are set at 95% confidence level (C.L.). The limits are calculated using the CLs technique, which is based on statistical inference method jointly adopted by the ATLAS and CMS collaborations for the Higgs boson searches [50]. The resulting limits are calculated using the expected signal and background predictions along with their uncertainties, and the likelihood given in Eq. (5). Statistical uncertainties, arising from number of observed events with one or two muons in the control regions, are modeled with Poisson probabilities while all other uncer-tainties are modeled as log-normal distributions.

Figure 3 shows the 95% C.L. expected and observed limits on the product of the production cross section of the

events/50 GeV 0 10 20 30 40 50 60 data W+jets Z+jets tt VV' single t vector signal, (700 GeV) (8 TeV) -1 19.7 fb CMS m(3 jets) (GeV) 0 200 400 600 800 1000 data/MC 0.5 1 1.5

FIG. 2 (color online). The invariant mass of the three jets prior to the selection on their mass to be less than 250 GeV, for events with one b-tagged jet. Data are compared to the simulated backgrounds. The expectation from a model for an invisible vector particle with a mass of 700 GeV is represented by the dashed line.

(5)

monotop and the branching ratio of the W decay to q¯q0, as a function of mass of the invisible bosonic state, for scalar and vector fields.

In summary, a search has been performed by the CMS Collaboration for invisible particles produced in association with a single top quark that decays into three jets, one of which is b-tagged. The results are interpreted using a monotop model that predicts the existence of invisible scalar or vector particles. The signal and the backgrounds are extracted using a likelihood-based method. No excess of data over the standard model prediction is found and exclusion limits are set at 95% confidence level. The observed lower limits on mass for invisible scalar and vector particles are set at 330 and 650 GeV, respectively. For a coupling constant aFC ¼ 0.2 these limits increase to 530 and 930 GeV, respectively. These results substantially extend a previous limit on monotop production of an

invisible vector particle published by the CDF Collaboration[51] and complement the 8 TeV results of the ATLAS Collaboration[52]obtained with the leptonic top quark decay channel.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/ IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] T. Appelquist, H.-C. Cheng, and B. A. Dobrescu,Phys. Rev. D 64, 035002 (2001).

[2] H. P. Nilles,Phys. Rep. 110, 1 (1984).

[3] H. E. Haber and G. L. Kane,Phys. Rep. 117, 75 (1985). [4] ATLAS Collaboration,JINST 3, S08003 (2008). [5] CMS Collaboration,JINST 3, S08004 (2008).

[6] ATLAS Collaboration,J. High Energy Phys. 04 (2013) 075. [7] CMS Collaboration, Search for dark matter, extra dimen-sions, and unparticles in monojet events in proton-proton collisions atpffiffiffis¼ 8 TeV,arXiv:1408.3583.

[8] ATLAS Collaboration,Phys. Rev. Lett. 110, 011802 (2013). [9] CMS Collaboration,Phys. Rev. Lett. 108, 261803 (2012). [10] J. Andrea, B. Fuks, and F. Maltoni,Phys. Rev. D 84, 074025

(2011).

[11] J.-L. Agram, J. Andrea, M. Buttignol, E. Conte, and B. Fuks,Phys. Rev. D 89, 014028 (2014).

[12] F. del Aguila, J. A. Aguilar-Saavedra, and L. Ametller, Phys. Lett. B 462, 310 (1999). m (GeV) 0 100 200 300 400 500 600 95% C.L. limit on σ× (pb) -1 10 1 10 scalar signal observed limit expected limit 68% coverage 95% coverage (8 TeV) -1 19.7 fb CMS m (GeV) 0 200 400 600 800 1000 95% C.L. limit on σ× (pb) -1 10 1 10 vector signal observed limit expected limit 68% coverage 95% coverage (8 TeV) -1 19.7 fb CMS

FIG. 3 (color online). The 95% C.L. expected and observed CLs limits as functions of the mass of a scalar (top) and vector

(bottom) invisible particle. The expected magnitude of a signal as a function of mass, calculated at leading order, is shown by the dashed curve. The confidence intervals for the expected limit are given at 68% and 95% coverage probability.

(6)

[13] D. E. Morrissey, T. M. P. Tait, and C. E. M. Wagner, Phys. Rev. D 72, 095003 (2005).

[14] N. Desai and B. Mukhopadhyaya,J. High Energy Phys. 10 (2010) 060.

[15] Z. Dong, G. Durieux, J.-M. Gerard, T. Han, and F. Maltoni, Phys. Rev. D 85, 016006 (2012);85, 039907(E) (2012). [16] H. Davoudiasl, D. E. Morrissey, K. Sigurdson, and S. Tulin,

Phys. Rev. D 84, 096008 (2011).

[17] J. Wang, C. S. Li, D. Y. Shao, and H. Zhang,Phys. Rev. D 86, 034008 (2012).

[18] J. F. Kamenik and J. Zupan, Phys. Rev. D 84, 111502 (2011).

[19] E. Alvarez, E. Coluccio Leskow, J. Drobnak, and J. F. Kamenik,Phys. Rev. D 89, 014016 (2014).

[20] A. Kumar, J. N. Ng, A. Spray, and P. T. Winslow,Phys. Rev. D 88, 075012 (2013).

[21] R. Barbier, C. Bérat, M. Besançon, M. Chemtob, A. Deandrea, E. Dudas, P. Fayet, S. Lavignac, G. Moreau, E. Perez, and Y. Sirois,Phys. Rep. 420, 1 (2005). [22] I. Boucheneb, G. Cacciapaglia, A. Deandrea, and B. Fuks,

Revisiting monotop production at the LHC,J. High Energy Phys. 01 (2015) 017.

[23] N. D. Christensen and C. Duhr, Comput. Phys. Commun. 180, 1614 (2009).

[24] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks,Comput. Phys. Commun. 185, 2250 (2014). [25] N. D. Christensen, P. de Aquino, C. Degrande, C. Duhr,

B. Fuks, M. Herquet, F. Maltoni, and S. Schumann, Eur. Phys. J. C 71, 1541 (2011).

[26] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, and T. Reiter, Comput. Phys. Commun. 183, 1201 (2012).

[27] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torielli, and M. Zaro,J. High Energy Phys. 07 (2014) 079.

[28] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and W.-K. Tung,J. High Energy Phys. 07 (2002) 012. [29] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush,Comput.

Phys. Commun. 182, 2388 (2011).

[30] M. Czakon, P. Fiedler, and A. Mitov,Phys. Rev. Lett. 110, 252004 (2013).

[31] P. Nason,J. High Energy Phys. 11 (2004) 040.

[32] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[33] S. Alioli, P. Nason, C. Oleari, and E. Re,J. High Energy Phys. 09 (2009) 111.

[34] S. Alioli, P. Nason, C. Oleari, and E. Re,J. High Energy Phys. 06 (2010) 043.

[35] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.

[36] R. Field,Acta Phys. Pol. B 42, 2631 (2011).

[37] S. Agostinelli (GEANT4),Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[38] CMS Collaboration,JINST 5, T03014 (2010).

[39] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-09-001, 2009, http://cdsweb .cern.ch/record/1194487.

[40] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-001, 2010, http://cds.cern .ch/record/1247373.

[41] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-002, 2010, https://cds.cern .ch/record/1279341.

[42] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.

[43] M. Cacciari, G. P. Salam, and G. Soyez,Eur. Phys. J. C 72, 1896 (2012).

[44] M. Cacciari and G. P. Salam, Phys. Lett. B 641, 57 (2006).

[45] CMS Collaboration,JINST 6, P11002 (2011). [46] CMS Collaboration,JINST 8, P04013 (2013). [47] CMS Collaboration,JINST 8, P11002 (2013).

[48] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-EGM-10-004, 2010, http://cds.cern .ch/record/1299116.

[49] J. Beringer et al. (Particle Data Group),Phys. Rev. D 86, 010001 (2012).

[50] ATLAS and CMS Collaborations, Tech. Rep. Nos. ATL-PHYS-PUB-2011-011, ATL-COM-PHYS-2011-818, CMS-NOTE-2011-005, 2011, http://cds.cern.ch/record/ 1379837.

[51] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 108, 201802 (2012).

[52] ATLAS Collaboration, Search for invisible particles pro-duced in association with single-top-quarks in proton-proton collisions at ffiffiffisp ¼ 8 TeV with the ATLAS detector, arXiv:1410.5404.

V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,2,b M. Friedl,2R. Frühwirth,2,bV. M. Ghete,2C. Hartl,2N. Hörmann,2J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2V. Knünz,2

M. Krammer,2,bI. Krätschmer,2D. Liko,2I. Mikulec,2 D. Rabady,2,c B. Rahbaran,2 H. Rohringer,2 R. Schöfbeck,2

J. Strauss,2 A. Taurok,2 W. Treberer-Treberspurg,2 W. Waltenberger,2 C.-E. Wulz,2,bV. Mossolov,3 N. Shumeiko,3 J. Suarez Gonzalez,3S. Alderweireldt,4M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4A. Knutsson,4 S. Luyckx,4S. Ochesanu,4R. Rougny,4M. Van De Klundert,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4

A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5J. D’Hondt,5N. Daci,5N. Heracleous,5J. Keaveney,5S. Lowette,5M. Maes,5 A. Olbrechts,5Q. Python,5 D. Strom,5S. Tavernier,5 W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5

C. Caillol,6 B. Clerbaux,6 G. De Lentdecker,6 D. Dobur,6L. Favart,6 A. P. R. Gay,6 A. Grebenyuk,6 A. Léonard,6

(7)

K. Beernaert,7 L. Benucci,7 A. Cimmino,7 S. Costantini,7 S. Crucy,7 S. Dildick,7A. Fagot,7G. Garcia,7 J. Mccartin,7

A. A. Ocampo Rios,7D. Ryckbosch,7S. Salva Diblen,7M. Sigamani,7N. Strobbe,7F. Thyssen,7M. Tytgat,7E. Yazgan,7 N. Zaganidis,7S. Basegmez,8C. Beluffi,8,dG. Bruno,8R. Castello,8A. Caudron,8L. Ceard,8G. G. Da Silveira,8C. Delaere,8

T. du Pree,8D. Favart,8 L. Forthomme,8 A. Giammanco,8,e J. Hollar,8A. Jafari,8 P. Jez,8 M. Komm,8 V. Lemaitre,8 C. Nuttens,8 D. Pagano,8 L. Perrini,8 A. Pin,8 K. Piotrzkowski,8A. Popov,8,f L. Quertenmont,8 M. Selvaggi,8 M. Vidal Marono,8 J. M. Vizan Garcia,8 N. Beliy,9 T. Caebergs,9 E. Daubie,9 G. H. Hammad,9 W. L. Aldá Júnior,10 G. A. Alves,10L. Brito,10M. Correa Martins Junior,10T. Dos Reis Martins,10C. Mora Herrera,10M. E. Pol,10W. Carvalho,11 J. Chinellato,11,gA. Custódio,11E. M. Da Costa,11D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11

H. Malbouisson,11 D. Matos Figueiredo,11L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11J. Santaolalla,11 A. Santoro,11 A. Sznajder,11E. J. Tonelli Manganote,11,g A. Vilela Pereira,11C. A. Bernardes,12bS. Dogra,12a T. R. Fernandez Perez Tomei,12a E. M. Gregores,12bP. G. Mercadante,12b S. F. Novaes,12aSandra S. Padula,12a A. Aleksandrov,13V. Genchev,13,c P. Iaydjiev,13A. Marinov,13S. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13

V. Tcholakov,13M. Vutova,13A. Dimitrov,14I. Glushkov,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14 P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15M. Chen,15R. Du,15C. H. Jiang,15R. Plestina,15,hJ. Tao,15Z. Wang,15

C. Asawatangtrakuldee,16Y. Ban,16Q. Li,16S. Liu,16Y. Mao,16S. J. Qian,16D. Wang,16L. Zhang,16C. Avila,17 L. F. Chaparro Sierra,17C. Florez,17J. P. Gomez,17B. Gomez Moreno,17 J. C. Sanabria,17N. Godinovic,18D. Lelas,18

D. Polic,18I. Puljak,18Z. Antunovic,19M. Kovac,19V. Brigljevic,20K. Kadija,20J. Luetic,20D. Mekterovic,20L. Sudic,20 A. Attikis,21 G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21 P. A. Razis,21M. Bodlak,22 M. Finger,22

M. Finger Jr.,22,iY. Assran,23,jA. Ellithi Kamel,23,k M. A. Mahmoud,23,lA. Radi,23,m,nM. Kadastik,24M. Murumaa,24 M. Raidal,24 A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25J. Härkönen,26V. Karimäki,26R. Kinnunen,26

M. J. Kortelainen,26T. Lampén,26K. Lassila-Perini,26S. Lehti,26T. Lindén,26P. Luukka,26T. Mäenpää,26T. Peltola,26 E. Tuominen,26 J. Tuominiemi,26E. Tuovinen,26L. Wendland,26J. Talvitie,27T. Tuuva,27 M. Besancon,28F. Couderc,28

M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28C. Favaro,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28 G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28J. Rander,28A. Rosowsky,28 M. Titov,28S. Baffioni,29

F. Beaudette,29P. Busson,29C. Charlot,29T. Dahms,29M. Dalchenko,29 L. Dobrzynski,29N. Filipovic,29A. Florent,29 R. Granier de Cassagnac,29 L. Mastrolorenzo,29P. Miné,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29 P. Paganini,29S. Regnard,29R. Salerno,29J. B. Sauvan,29Y. Sirois,29C. Veelken,29Y. Yilmaz,29A. Zabi,29J.-L. Agram,30,o J. Andrea,30A. Aubin,30D. Bloch,30J.-M. Brom,30E. C. Chabert,30C. Collard,30E. Conte,30,oJ.-C. Fontaine,30,oB. Fuks,30 D. Gelé,30U. Goerlach,30C. Goetzmann,30A.-C. Le Bihan,30P. Van Hove,30S. Gadrat,31S. Beauceron,32N. Beaupere,32

G. Boudoul,32,cE. Bouvier,32S. Brochet,32C. A. Carrillo Montoya,32J. Chasserat,32R. Chierici,32D. Contardo,32,c P. Depasse,32H. El Mamouni,32J. Fan,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32 L. Mirabito,32S. Perries,32J. D. Ruiz Alvarez,32D. Sabes,32L. Sgandurra,32V. Sordini,32M. Vander Donckt,32P. Verdier,32

S. Viret,32H. Xiao,32L. Rurua,33C. Autermann,34S. Beranek,34M. Bontenackels,34M. Edelhoff,34L. Feld,34 O. Hindrichs,34 K. Klein,34A. Ostapchuk,34 A. Perieanu,34F. Raupach,34 J. Sammet,34S. Schael,34 H. Weber,34 B. Wittmer,34V. Zhukov,34,fM. Ata,35M. Brodski,35E. Dietz-Laursonn,35D. Duchardt,35 M. Erdmann,35R. Fischer,35 A. Güth,35T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35S. Knutzen,35P. Kreuzer,35M. Merschmeyer,35 A. Meyer,35P. Millet,35M. Olschewski,35K. Padeken,35P. Papacz,35H. Reithler,35 S. A. Schmitz,35L. Sonnenschein,35

D. Teyssier,35S. Thüer,35M. Weber,35V. Cherepanov,36Y. Erdogan,36G. Flügge,36H. Geenen,36M. Geisler,36 W. Haj Ahmad,36A. Heister,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36A. Künsken,36J. Lingemann,36,c A. Nowack,36I. M. Nugent,36L. Perchalla,36O. Pooth,36A. Stahl,36I. Asin,37N. Bartosik,37J. Behr,37W. Behrenhoff,37

U. Behrens,37 A. J. Bell,37M. Bergholz,37,p A. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37

A. Campbell,37S. Choudhury,37F. Costanza,37C. Diez Pardos,37S. Dooling,37T. Dorland,37G. Eckerlin,37D. Eckstein,37 T. Eichhorn,37G. Flucke,37J. Garay Garcia,37A. Geiser,37P. Gunnellini,37J. Hauk,37M. Hempel,37,pD. Horton,37H. Jung,37

A. Kalogeropoulos,37M. Kasemann,37P. Katsas,37J. Kieseler,37C. Kleinwort,37D. Krücker,37W. Lange,37J. Leonard,37 K. Lipka,37A. Lobanov,37W. Lohmann,37,pB. Lutz,37R. Mankel,37I. Marfin,37,pI.-A. Melzer-Pellmann,37A. B. Meyer,37

G. Mittag,37J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37A. Nayak,37O. Novgorodova,37E. Ntomari,37H. Perrey,37 D. Pitzl,37R. Placakyte,37A. Raspereza,37P. M. Ribeiro Cipriano,37B. Roland,37E. Ron,37M. Ö. Sahin,37 J. Salfeld-Nebgen,37P. Saxena,37R. Schmidt,37,pT. Schoerner-Sadenius,37M. Schröder,37 C. Seitz,37 S. Spannagel,37 A. D. R. Vargas Trevino,37R. Walsh,37C. Wissing,37M. Aldaya Martin,38V. Blobel,38M. Centis Vignali,38A. R. Draeger,38

(8)

J. Erfle,38E. Garutti,38K. Goebel,38M. Görner,38J. Haller,38M. Hoffmann,38R. S. Höing,38H. Kirschenmann,38

R. Klanner,38R. Kogler,38J. Lange,38T. Lapsien,38T. Lenz,38I. Marchesini,38J. Ott,38T. Peiffer,38N. Pietsch,38 J. Poehlsen,38T. Poehlsen,38D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38

M. Seidel,38V. Sola,38H. Stadie,38G. Steinbrück,38D. Troendle,38E. Usai,38L. Vanelderen,38A. Vanhoefer,38C. Barth,39 C. Baus,39J. Berger,39C. Böser,39E. Butz,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39 F. Frensch,39M. Giffels,39F. Hartmann,39,cT. Hauth,39,cU. Husemann,39I. Katkov,39,fA. Kornmayer,39,cE. Kuznetsova,39 P. Lobelle Pardo,39M. U. Mozer,39Th. Müller,39A. Nürnberg,39G. Quast,39K. Rabbertz,39F. Ratnikov,39S. Röcker,39 H. J. Simonis,39F. M. Stober,39R. Ulrich,39J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39R. Wolf,39G. Anagnostou,40

G. Daskalakis,40T. Geralis,40V. A. Giakoumopoulou,40A. Kyriakis,40D. Loukas,40 A. Markou,40C. Markou,40 A. Psallidas,40I. Topsis-Giotis,40A. Agapitos,41S. Kesisoglou,41A. Panagiotou,41N. Saoulidou,41 E. Stiliaris,41 X. Aslanoglou,42I. Evangelou,42G. Flouris,42C. Foudas,42P. Kokkas,42N. Manthos,42I. Papadopoulos,42E. Paradas,42 G. Bencze,43C. Hajdu,43P. Hidas,43D. Horvath,43,q F. Sikler,43V. Veszpremi,43G. Vesztergombi,43,r A. J. Zsigmond,43 N. Beni,44S. Czellar,44J. Karancsi,44,sJ. Molnar,44J. Palinkas,44Z. Szillasi,44P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45

S. K. Swain,46S. B. Beri,47 V. Bhatnagar,47R. Gupta,47U. Bhawandeep,47A. K. Kalsi,47M. Kaur,47R. Kumar,47 M. Mittal,47N. Nishu,47J. B. Singh,47Ashok Kumar,48Arun Kumar,48S. Ahuja,48A. Bhardwaj,48B. C. Choudhary,48 A. Kumar,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48V. Sharma,48S. Banerjee,49S. Bhattacharya,49K. Chatterjee,49

S. Dutta,49B. Gomber,49 Sa. Jain,49 Sh. Jain,49R. Khurana,49A. Modak,49 S. Mukherjee,49D. Roy,49S. Sarkar,49 M. Sharan,49A. Abdulsalam,50D. Dutta,50 S. Kailas,50V. Kumar,50A. K. Mohanty,50,c L. M. Pant,50P. Shukla,50

A. Topkar,50T. Aziz,51S. Banerjee,51S. Bhowmik,51,tR. M. Chatterjee,51R. K. Dewanjee,51S. Dugad,51 S. Ganguly,51 S. Ghosh,51M. Guchait,51A. Gurtu,51,u G. Kole,51S. Kumar,51M. Maity,51,tG. Majumder,51K. Mazumdar,51

G. B. Mohanty,51B. Parida,51K. Sudhakar,51N. Wickramage,51,vH. Bakhshiansohi,52H. Behnamian,52S. M. Etesami,52,w A. Fahim,52,xR. Goldouzian,52M. Khakzad,52M. Mohammadi Najafabadi,52M. Naseri,52S. Paktinat Mehdiabadi,52

F. Rezaei Hosseinabadi,52B. Safarzadeh,52,y M. Zeinali,52M. Felcini,53 M. Grunewald,53M. Abbrescia,54a,54b L. Barbone,54a,54bC. Calabria,54a,54bS. S. Chhibra,54a,54b A. Colaleo,54a D. Creanza,54a,54c N. De Filippis,54a,54c

M. De Palma,54a,54bL. Fiore,54aG. Iaselli,54a,54cG. Maggi,54a,54cM. Maggi,54aS. My,54a,54cS. Nuzzo,54a,54bA. Pompili,54a,54b G. Pugliese,54a,54c R. Radogna,54a,54b,cG. Selvaggi,54a,54b L. Silvestris,54a,c G. Singh,54a,54b R. Venditti,54a,54bG. Zito,54a

G. Abbiendi,55a A. C. Benvenuti,55a D. Bonacorsi,55a,55b S. Braibant-Giacomelli,55a,55b L. Brigliadori,55a,55b R. Campanini,55a,55b P. Capiluppi,55a,55bA. Castro,55a,55b F. R. Cavallo,55a G. Codispoti,55a,55b M. Cuffiani,55a,55b G. M. Dallavalle,55a F. Fabbri,55a A. Fanfani,55a,55bD. Fasanella,55a,55bP. Giacomelli,55a C. Grandi,55a L. Guiducci,55a,55b S. Marcellini,55aG. Masetti,55aA. Montanari,55aF. L. Navarria,55a,55bA. Perrotta,55aF. Primavera,55a,55bA. M. Rossi,55a,55b T. Rovelli,55a,55bG. P. Siroli,55a,55bN. Tosi,55a,55bR. Travaglini,55a,55bS. Albergo,56a,56bG. Cappello,56aM. Chiorboli,56a,56b

S. Costa,56a,56b F. Giordano,56a,c R. Potenza,56a,56bA. Tricomi,56a,56b C. Tuve,56a,56bG. Barbagli,57aV. Ciulli,57a,57b C. Civinini,57aR. D’Alessandro,57a,57bE. Focardi,57a,57b E. Gallo,57a S. Gonzi,57a,57b V. Gori,57a,57b,cP. Lenzi,57a,57b M. Meschini,57a S. Paoletti,57a G. Sguazzoni,57a A. Tropiano,57a,57b L. Benussi,58S. Bianco,58F. Fabbri,58D. Piccolo,58

R. Ferretti,59a,59b F. Ferro,59a M. Lo Vetere,59a,59bE. Robutti,59a S. Tosi,59a,59b M. E. Dinardo,60a,60bS. Fiorendi,60a,60b,c S. Gennai,60a,c R. Gerosa,60a,60b,c A. Ghezzi,60a,60b P. Govoni,60a,60bM. T. Lucchini,60a,60b,c S. Malvezzi,60a R. A. Manzoni,60a,60bA. Martelli,60a,60bB. Marzocchi,60a,60bD. Menasce,60aL. Moroni,60aM. Paganoni,60a,60bD. Pedrini,60a

S. Ragazzi,60a,60b N. Redaelli,60a T. Tabarelli de Fatis,60a,60bS. Buontempo,61a N. Cavallo,61a,61c S. Di Guida,61a,61d,c F. Fabozzi,61a,61cA. O. M. Iorio,61a,61bL. Lista,61aS. Meola,61a,61d,cM. Merola,61aP. Paolucci,61a,cP. Azzi,62aN. Bacchetta,62a

D. Bisello,62a,62b A. Branca,62a,62b R. Carlin,62a,62bP. Checchia,62a M. Dall’Osso,62a,62b T. Dorigo,62a U. Dosselli,62a M. Galanti,62a,62bF. Gasparini,62a,62bU. Gasparini,62a,62b P. Giubilato,62a,62bA. Gozzelino,62a K. Kanishchev,62a,62c

S. Lacaprara,62a M. Margoni,62a,62b A. T. Meneguzzo,62a,62bJ. Pazzini,62a,62bN. Pozzobon,62a,62bP. Ronchese,62a,62b F. Simonetto,62a,62b E. Torassa,62a M. Tosi,62a,62b P. Zotto,62a,62bA. Zucchetta,62a,62b G. Zumerle,62a,62bM. Gabusi,63a,63b

S. P. Ratti,63a,63bC. Riccardi,63a,63b P. Salvini,63a P. Vitulo,63a,63b M. Biasini,64a,64b G. M. Bilei,64a D. Ciangottini,64a,64b L. Fanò,64a,64bP. Lariccia,64a,64b G. Mantovani,64a,64b M. Menichelli,64a F. Romeo,64a,64b A. Saha,64aA. Santocchia,64a,64b

A. Spiezia,64a,64b,c K. Androsov,65a,z P. Azzurri,65aG. Bagliesi,65a J. Bernardini,65a T. Boccali,65a G. Broccolo,65a,65c R. Castaldi,65aM. A. Ciocci,65a,zR. Dell’Orso,65aS. Donato,65a,65cF. Fiori,65a,65cL. Foà,65a,65cA. Giassi,65aM. T. Grippo,65a,z

F. Ligabue,65a,65c T. Lomtadze,65a L. Martini,65a,65b A. Messineo,65a,65b C. S. Moon,65a,aaF. Palla,65a,c A. Rizzi,65a,65b A. Savoy-Navarro,65a,bbA. T. Serban,65aP. Spagnolo,65aP. Squillacioti,65a,z R. Tenchini,65aG. Tonelli,65a,65bA. Venturi,65a

(9)

P. G. Verdini,65a C. Vernieri,65a,65c,c L. Barone,66a,66bF. Cavallari,66aG. D’imperio,66a,66bD. Del Re,66a,66bM. Diemoz,66a

M. Grassi,66a,66bC. Jorda,66a E. Longo,66a,66b F. Margaroli,66a,66b P. Meridiani,66a F. Micheli,66a,66b,c S. Nourbakhsh,66a,66b G. Organtini,66a,66bR. Paramatti,66aS. Rahatlou,66a,66bC. Rovelli,66aF. Santanastasio,66a,66bL. Soffi,66a,66b,cP. Traczyk,66a,66b

N. Amapane,67a,67bR. Arcidiacono,67a,67c S. Argiro,67a,67b,cM. Arneodo,67a,67cR. Bellan,67a,67bC. Biino,67aN. Cartiglia,67a S. Casasso,67a,67b,c M. Costa,67a,67bA. Degano,67a,67bN. Demaria,67a L. Finco,67a,67b C. Mariotti,67a S. Maselli,67a E. Migliore,67a,67bV. Monaco,67a,67bM. Musich,67aM. M. Obertino,67a,67c,cG. Ortona,67a,67bL. Pacher,67a,67bN. Pastrone,67a

M. Pelliccioni,67a G. L. Pinna Angioni,67a,67b A. Potenza,67a,67bA. Romero,67a,67bM. Ruspa,67a,67c R. Sacchi,67a,67b A. Solano,67a,67bA. Staiano,67a U. Tamponi,67a S. Belforte,68aV. Candelise,68a,68b M. Casarsa,68a F. Cossutti,68a G. Della Ricca,68a,68bB. Gobbo,68aC. La Licata,68a,68bM. Marone,68a,68bD. Montanino,68a,68bA. Schizzi,68a,68b,c T. Umer,68a,68b A. Zanetti,68a S. Chang,69A. Kropivnitskaya,69S. K. Nam,69 D. H. Kim,70G. N. Kim,70M. S. Kim,70 D. J. Kong,70S. Lee,70Y. D. Oh,70H. Park,70A. Sakharov,70D. C. Son,70T. J. Kim,71J. Y. Kim,72S. Song,72S. Choi,73 D. Gyun,73B. Hong,73M. Jo,73H. Kim,73Y. Kim,73B. Lee,73K. S. Lee,73S. K. Park,73Y. Roh,73M. Choi,74J. H. Kim,74 I. C. Park,74G. Ryu,74M. S. Ryu,74Y. Choi,75Y. K. Choi,75J. Goh,75D. Kim,75E. Kwon,75J. Lee,75H. Seo,75I. Yu,75

A. Juodagalvis,76J. R. Komaragiri,77M. A. B. Md Ali,77H. Castilla-Valdez,78E. De La Cruz-Burelo,78

I. Heredia-de La Cruz,78,ccA. Hernandez-Almada,78R. Lopez-Fernandez,78A. Sanchez-Hernandez,78S. Carrillo Moreno,79 F. Vazquez Valencia,79I. Pedraza,80H. A. Salazar Ibarguen,80E. Casimiro Linares,81A. Morelos Pineda,81D. Krofcheck,82

P. H. Butler,83S. Reucroft,83A. Ahmad,84M. Ahmad,84Q. Hassan,84H. R. Hoorani,84 S. Khalid,84W. A. Khan,84 T. Khurshid,84M. A. Shah,84 M. Shoaib,84H. Bialkowska,85 M. Bluj,85B. Boimska,85T. Frueboes,85M. Górski,85

M. Kazana,85K. Nawrocki,85K. Romanowska-Rybinska,85M. Szleper,85P. Zalewski,85G. Brona,86K. Bunkowski,86 M. Cwiok,86W. Dominik,86K. Doroba,86A. Kalinowski,86M. Konecki,86J. Krolikowski,86M. Misiura,86M. Olszewski,86

W. Wolszczak,86P. Bargassa,87C. Beirão Da Cruz E Silva,87P. Faccioli,87P. G. Ferreira Parracho,87M. Gallinaro,87 L. Lloret Iglesias,87F. Nguyen,87J. Rodrigues Antunes,87J. Seixas,87J. Varela,87P. Vischia,87P. Bunin,88I. Golutvin,88

A. Kamenev,88V. Karjavin,88V. Konoplyanikov,88G. Kozlov,88A. Lanev,88A. Malakhov,88V. Matveev,88,ddP. Moisenz,88 V. Palichik,88V. Perelygin,88M. Savina,88S. Shmatov,88 S. Shulha,88N. Skatchkov,88V. Smirnov,88A. Zarubin,88

V. Golovtsov,89Y. Ivanov,89V. Kim,89,ee P. Levchenko,89V. Murzin,89V. Oreshkin,89I. Smirnov,89V. Sulimov,89 L. Uvarov,89S. Vavilov,89A. Vorobyev,89An. Vorobyev,89Yu. Andreev,90A. Dermenev,90S. Gninenko,90N. Golubev,90 M. Kirsanov,90N. Krasnikov,90A. Pashenkov,90D. Tlisov,90A. Toropin,90V. Epshteyn,91V. Gavrilov,91N. Lychkovskaya,91

V. Popov,91G. Safronov,91S. Semenov,91 A. Spiridonov,91 V. Stolin,91 E. Vlasov,91A. Zhokin,91V. Andreev,92 M. Azarkin,92I. Dremin,92M. Kirakosyan,92A. Leonidov,92G. Mesyats,92S. V. Rusakov,92A. Vinogradov,92A. Belyaev,93

E. Boos,93 V. Bunichev,93M. Dubinin,93,ff L. Dudko,93A. Gribushin,93V. Klyukhin,93O. Kodolova,93I. Lokhtin,93 S. Obraztsov,93M. Perfilov,93V. Savrin,93A. Snigirev,93 I. Azhgirey,94I. Bayshev,94S. Bitioukov,94V. Kachanov,94 A. Kalinin,94D. Konstantinov,94V. Krychkine,94V. Petrov,94R. Ryutin,94A. Sobol,94L. Tourtchanovitch,94S. Troshin,94 N. Tyurin,94A. Uzunian,94A. Volkov,94P. Adzic,95,ggM. Ekmedzic,95J. Milosevic,95V. Rekovic,95J. Alcaraz Maestre,96

C. Battilana,96E. Calvo,96M. Cerrada,96M. Chamizo Llatas,96N. Colino,96B. De La Cruz,96A. Delgado Peris,96 D. Domínguez Vázquez,96A. Escalante Del Valle,96C. Fernandez Bedoya,96 J. P. Fernández Ramos,96J. Flix,96

M. C. Fouz,96P. Garcia-Abia,96O. Gonzalez Lopez,96S. Goy Lopez,96J. M. Hernandez,96M. I. Josa,96 E. Navarro De Martino,96A. Pérez-Calero Yzquierdo,96J. Puerta Pelayo,96A. Quintario Olmeda,96I. Redondo,96

L. Romero,96M. S. Soares,96C. Albajar,97J. F. de Trocóniz,97M. Missiroli,97D. Moran,97H. Brun,98J. Cuevas,98 J. Fernandez Menendez,98S. Folgueras,98 I. Gonzalez Caballero,98J. A. Brochero Cifuentes,99I. J. Cabrillo,99

A. Calderon,99J. Duarte Campderros,99M. Fernandez,99G. Gomez,99A. Graziano,99A. Lopez Virto,99J. Marco,99 R. Marco,99 C. Martinez Rivero,99F. Matorras,99F. J. Munoz Sanchez,99J. Piedra Gomez,99 T. Rodrigo,99

A. Y. Rodríguez-Marrero,99A. Ruiz-Jimeno,99L. Scodellaro,99I. Vila,99R. Vilar Cortabitarte,99D. Abbaneo,100 E. Auffray,100G. Auzinger,100 M. Bachtis,100P. Baillon,100A. H. Ball,100D. Barney,100A. Benaglia,100 J. Bendavid,100

L. Benhabib,100J. F. Benitez,100C. Bernet,100,h G. Bianchi,100P. Bloch,100 A. Bocci,100A. Bonato,100 O. Bondu,100 C. Botta,100 H. Breuker,100 T. Camporesi,100G. Cerminara,100S. Colafranceschi,100,hhM. D’Alfonso,100D. d’Enterria,100

A. Dabrowski,100A. David,100 F. De Guio,100 A. De Roeck,100 S. De Visscher,100 E. Di Marco,100 M. Dobson,100 M. Dordevic,100N. Dupont-Sagorin,100A. Elliott-Peisert,100J. Eugster,100G. Franzoni,100W. Funk,100D. Gigi,100K. Gill,100

D. Giordano,100M. Girone,100F. Glege,100 R. Guida,100S. Gundacker,100M. Guthoff,100J. Hammer,100 M. Hansen,100 P. Harris,100J. Hegeman,100 V. Innocente,100P. Janot,100K. Kousouris,100K. Krajczar,100 P. Lecoq,100 C. Lourenço,100

(10)

N. Magini,100L. Malgeri,100 M. Mannelli,100 J. Marrouche,100 L. Masetti,100 F. Meijers,100S. Mersi,100E. Meschi,100

F. Moortgat,100S. Morovic,100M. Mulders,100 P. Musella,100 L. Orsini,100 L. Pape,100E. Perez,100L. Perrozzi,100 A. Petrilli,100 G. Petrucciani,100 A. Pfeiffer,100 M. Pierini,100 M. Pimiä,100 D. Piparo,100 M. Plagge,100 A. Racz,100

G. Rolandi,100,ii M. Rovere,100H. Sakulin,100 C. Schäfer,100 C. Schwick,100 A. Sharma,100 P. Siegrist,100 P. Silva,100 M. Simon,100P. Sphicas,100,jj D. Spiga,100 J. Steggemann,100B. Stieger,100 M. Stoye,100Y. Takahashi,100D. Treille,100 A. Tsirou,100G. I. Veres,100,rJ. R. Vlimant,100N. Wardle,100H. K. Wöhri,100H. Wollny,100 W. D. Zeuner,100 W. Bertl,101

K. Deiters,101 W. Erdmann,101R. Horisberger,101 Q. Ingram,101 H. C. Kaestli,101D. Kotlinski,101U. Langenegger,101 D. Renker,101 T. Rohe,101 F. Bachmair,102L. Bäni,102L. Bianchini,102 M. A. Buchmann,102 B. Casal,102 N. Chanon,102 A. Deisher,102G. Dissertori,102M. Dittmar,102M. Donegà,102M. Dünser,102P. Eller,102C. Grab,102D. Hits,102J. Hoss,102 W. Lustermann,102 B. Mangano,102A. C. Marini,102 P. Martinez Ruiz del Arbol,102 M. Masciovecchio,102 D. Meister,102 N. Mohr,102C. Nägeli,102,kkF. Nessi-Tedaldi,102 F. Pandolfi,102 F. Pauss,102M. Peruzzi,102 M. Quittnat,102L. Rebane,102 M. Rossini,102A. Starodumov,102,ll M. Takahashi,102 K. Theofilatos,102R. Wallny,102H. A. Weber,102C. Amsler,103,mm

M. F. Canelli,103 V. Chiochia,103A. De Cosa,103A. Hinzmann,103T. Hreus,103 B. Kilminster,103 C. Lange,103 B. Millan Mejias,103J. Ngadiuba,103P. Robmann,103F. J. Ronga,103S. Taroni,103M. Verzetti,103Y. Yang,103M. Cardaci,104

K. H. Chen,104C. Ferro,104 C. M. Kuo,104W. Lin,104 Y. J. Lu,104 R. Volpe,104S. S. Yu,104 P. Chang,105 Y. H. Chang,105 Y. W. Chang,105Y. Chao,105 K. F. Chen,105P. H. Chen,105 C. Dietz,105 U. Grundler,105W.-S. Hou,105K. Y. Kao,105

Y. J. Lei,105 Y. F. Liu,105R.-S. Lu,105D. Majumder,105E. Petrakou,105 Y. M. Tzeng,105R. Wilken,105B. Asavapibhop,106 N. Srimanobhas,106N. Suwonjandee,106A. Adiguzel,107M. N. Bakirci,107,nnS. Cerci,107,ooC. Dozen,107I. Dumanoglu,107

E. Eskut,107S. Girgis,107G. Gokbulut,107E. Gurpinar,107I. Hos,107E. E. Kangal,107A. Kayis Topaksu,107G. Onengut,107,pp K. Ozdemir,107S. Ozturk,107,nnA. Polatoz,107D. Sunar Cerci,107,ooB. Tali,107,ooH. Topakli,107,nnM. Vergili,107I. V. Akin,108

B. Bilin,108S. Bilmis,108H. Gamsizkan,108G. Karapinar,108,qqK. Ocalan,108,rrS. Sekmen,108U. E. Surat,108M. Yalvac,108 M. Zeyrek,108E. Gülmez,109B. Isildak,109,ssM. Kaya,109,ttO. Kaya,109,uuK. Cankocak,110F. I. Vardarlı,110L. Levchuk,111

P. Sorokin,111J. J. Brooke,112 E. Clement,112D. Cussans,112H. Flacher,112 R. Frazier,112J. Goldstein,112 M. Grimes,112 G. P. Heath,112H. F. Heath,112J. Jacob,112L. Kreczko,112C. Lucas,112Z. Meng,112D. M. Newbold,112,vvS. Paramesvaran,112

A. Poll,112 S. Senkin,112 V. J. Smith,112T. Williams,112 K. W. Bell,113A. Belyaev,113,ww C. Brew,113 R. M. Brown,113 D. J. A. Cockerill,113J. A. Coughlan,113K. Harder,113 S. Harper,113E. Olaiya,113 D. Petyt,113

C. H. Shepherd-Themistocleous,113A. Thea,113 I. R. Tomalin,113 W. J. Womersley,113S. D. Worm,113M. Baber,114 R. Bainbridge,114O. Buchmuller,114D. Burton,114D. Colling,114N. Cripps,114M. Cutajar,114P. Dauncey,114G. Davies,114 M. Della Negra,114P. Dunne,114W. Ferguson,114J. Fulcher,114D. Futyan,114A. Gilbert,114G. Hall,114G. Iles,114M. Jarvis,114 G. Karapostoli,114M. Kenzie,114 R. Lane,114R. Lucas,114,vv L. Lyons,114 A.-M. Magnan,114 S. Malik,114 B. Mathias,114 J. Nash,114A. Nikitenko,114,ll J. Pela,114 M. Pesaresi,114K. Petridis,114 D. M. Raymond,114 S. Rogerson,114A. Rose,114 C. Seez,114P. Sharp,114,aA. Tapper,114M. Vazquez Acosta,114T. Virdee,114S. C. Zenz,114J. E. Cole,115 P. R. Hobson,115

A. Khan,115 P. Kyberd,115D. Leggat,115D. Leslie,115W. Martin,115 I. D. Reid,115 P. Symonds,115 L. Teodorescu,115 M. Turner,115J. Dittmann,116K. Hatakeyama,116A. Kasmi,116H. Liu,116T. Scarborough,116O. Charaf,117S. I. Cooper,117 C. Henderson,117P. Rumerio,117A. Avetisyan,118T. Bose,118C. Fantasia,118P. Lawson,118C. Richardson,118J. Rohlf,118 J. St. John,118L. Sulak,118J. Alimena,119E. Berry,119S. Bhattacharya,119G. Christopher,119D. Cutts,119Z. Demiragli,119 N. Dhingra,119A. Ferapontov,119A. Garabedian,119U. Heintz,119G. Kukartsev,119E. Laird,119G. Landsberg,119M. Luk,119

M. Narain,119M. Segala,119T. Sinthuprasith,119T. Speer,119J. Swanson,119 R. Breedon,120 G. Breto,120 M. Calderon De La Barca Sanchez,120 S. Chauhan,120M. Chertok,120J. Conway,120R. Conway,120 P. T. Cox,120

R. Erbacher,120M. Gardner,120 W. Ko,120R. Lander,120T. Miceli,120 M. Mulhearn,120D. Pellett,120 J. Pilot,120 F. Ricci-Tam,120 M. Searle,120S. Shalhout,120J. Smith,120M. Squires,120 D. Stolp,120 M. Tripathi,120 S. Wilbur,120

R. Yohay,120 R. Cousins,121 P. Everaerts,121 C. Farrell,121J. Hauser,121 M. Ignatenko,121 G. Rakness,121 E. Takasugi,121 V. Valuev,121 M. Weber,121K. Burt,122R. Clare,122J. Ellison,122J. W. Gary,122 G. Hanson,122J. Heilman,122

M. Ivova Rikova,122P. Jandir,122E. Kennedy,122F. Lacroix,122O. R. Long,122A. Luthra,122M. Malberti,122H. Nguyen,122 M. Olmedo Negrete,122A. Shrinivas,122S. Sumowidagdo,122S. Wimpenny,122W. Andrews,123 J. G. Branson,123

G. B. Cerati,123S. Cittolin,123R. T. D’Agnolo,123D. Evans,123A. Holzner,123R. Kelley,123D. Klein,123M. Lebourgeois,123 J. Letts,123I. Macneill,123D. Olivito,123S. Padhi,123C. Palmer,123 M. Pieri,123 M. Sani,123V. Sharma,123 S. Simon,123

E. Sudano,123M. Tadel,123Y. Tu,123A. Vartak,123C. Welke,123 F. Würthwein,123A. Yagil,123D. Barge,124 J. Bradmiller-Feld,124C. Campagnari,124T. Danielson,124A. Dishaw,124K. Flowers,124M. Franco Sevilla,124P. Geffert,124

(11)

C. George,124F. Golf,124L. Gouskos,124J. Incandela,124C. Justus,124N. Mccoll,124J. Richman,124D. Stuart,124W. To,124

C. West,124J. Yoo,124A. Apresyan,125A. Bornheim,125J. Bunn,125Y. Chen,125J. Duarte,125A. Mott,125H. B. Newman,125 C. Pena,125C. Rogan,125 M. Spiropulu,125 V. Timciuc,125R. Wilkinson,125S. Xie,125R. Y. Zhu,125V. Azzolini,126

A. Calamba,126 B. Carlson,126T. Ferguson,126Y. Iiyama,126 M. Paulini,126J. Russ,126 H. Vogel,126I. Vorobiev,126 J. P. Cumalat,127W. T. Ford,127A. Gaz,127E. Luiggi Lopez,127 U. Nauenberg,127J. G. Smith,127 K. Stenson,127 K. A. Ulmer,127S. R. Wagner,127 J. Alexander,128 A. Chatterjee,128J. Chu,128S. Dittmer,128N. Eggert,128N. Mirman,128 G. Nicolas Kaufman,128 J. R. Patterson,128A. Ryd,128E. Salvati,128L. Skinnari,128 W. Sun,128W. D. Teo,128J. Thom,128

J. Thompson,128J. Tucker,128Y. Weng,128 L. Winstrom,128 P. Wittich,128 D. Winn,129 S. Abdullin,130 M. Albrow,130 J. Anderson,130 G. Apollinari,130 L. A. T. Bauerdick,130 A. Beretvas,130 J. Berryhill,130 P. C. Bhat,130 G. Bolla,130 K. Burkett,130J. N. Butler,130H. W. K. Cheung,130F. Chlebana,130S. Cihangir,130V. D. Elvira,130I. Fisk,130J. Freeman,130

Y. Gao,130 E. Gottschalk,130 L. Gray,130D. Green,130S. Grünendahl,130O. Gutsche,130 J. Hanlon,130 D. Hare,130 R. M. Harris,130J. Hirschauer,130B. Hooberman,130S. Jindariani,130M. Johnson,130U. Joshi,130K. Kaadze,130B. Klima,130

B. Kreis,130S. Kwan,130J. Linacre,130D. Lincoln,130 R. Lipton,130 T. Liu,130J. Lykken,130K. Maeshima,130 J. M. Marraffino,130V. I. Martinez Outschoorn,130S. Maruyama,130D. Mason,130P. McBride,130P. Merkel,130K. Mishra,130 S. Mrenna,130Y. Musienko,130,ddS. Nahn,130C. Newman-Holmes,130V. O’Dell,130O. Prokofyev,130E. Sexton-Kennedy,130 S. Sharma,130 A. Soha,130W. J. Spalding,130 L. Spiegel,130 L. Taylor,130 S. Tkaczyk,130N. V. Tran,130L. Uplegger,130

E. W. Vaandering,130R. Vidal,130A. Whitbeck,130J. Whitmore,130F. Yang,130D. Acosta,131P. Avery,131P. Bortignon,131 D. Bourilkov,131M. Carver,131T. Cheng,131D. Curry,131S. Das,131M. De Gruttola,131G. P. Di Giovanni,131R. D. Field,131

M. Fisher,131I. K. Furic,131J. Hugon,131 J. Konigsberg,131A. Korytov,131 T. Kypreos,131J. F. Low,131K. Matchev,131 P. Milenovic,131,xx G. Mitselmakher,131 L. Muniz,131A. Rinkevicius,131L. Shchutska,131 M. Snowball,131D. Sperka,131

J. Yelton,131M. Zakaria,131S. Hewamanage,132S. Linn,132P. Markowitz,132G. Martinez,132J. L. Rodriguez,132T. Adams,133 A. Askew,133J. Bochenek,133B. Diamond,133J. Haas,133S. Hagopian,133V. Hagopian,133K. F. Johnson,133H. Prosper,133

V. Veeraraghavan,133 M. Weinberg,133M. M. Baarmand,134M. Hohlmann,134 H. Kalakhety,134F. Yumiceva,134 M. R. Adams,135L. Apanasevich,135 V. E. Bazterra,135 D. Berry,135R. R. Betts,135I. Bucinskaite,135 R. Cavanaugh,135

O. Evdokimov,135 L. Gauthier,135 C. E. Gerber,135D. J. Hofman,135S. Khalatyan,135P. Kurt,135D. H. Moon,135 C. O’Brien,135C. Silkworth,135P. Turner,135N. Varelas,135E. A. Albayrak,136,yyB. Bilki,136,zzW. Clarida,136K. Dilsiz,136 F. Duru,136M. Haytmyradov,136J.-P. Merlo,136H. Mermerkaya,136,aaaA. Mestvirishvili,136A. Moeller,136J. Nachtman,136

H. Ogul,136 Y. Onel,136F. Ozok,136,yy A. Penzo,136R. Rahmat,136S. Sen,136 P. Tan,136 E. Tiras,136J. Wetzel,136 T. Yetkin,136,bbbK. Yi,136B. A. Barnett,137B. Blumenfeld,137S. Bolognesi,137D. Fehling,137 A. V. Gritsan,137 P. Maksimovic,137C. Martin,137M. Swartz,137P. Baringer,138A. Bean,138G. Benelli,138 C. Bruner,138R. P. Kenny III,138

M. Malek,138M. Murray,138 D. Noonan,138 S. Sanders,138J. Sekaric,138 R. Stringer,138 Q. Wang,138 J. S. Wood,138 A. F. Barfuss,139I. Chakaberia,139A. Ivanov,139S. Khalil,139M. Makouski,139Y. Maravin,139L. K. Saini,139S. Shrestha,139 N. Skhirtladze,139I. Svintradze,139J. Gronberg,140D. Lange,140F. Rebassoo,140D. Wright,140A. Baden,141A. Belloni,141 B. Calvert,141S. C. Eno,141J. A. Gomez,141N. J. Hadley,141R. G. Kellogg,141T. Kolberg,141Y. Lu,141M. Marionneau,141 A. C. Mignerey,141K. Pedro,141A. Skuja,141 M. B. Tonjes,141 S. C. Tonwar,141A. Apyan,142R. Barbieri,142G. Bauer,142 W. Busza,142I. A. Cali,142M. Chan,142L. Di Matteo,142V. Dutta,142G. Gomez Ceballos,142M. Goncharov,142D. Gulhan,142 M. Klute,142 Y. S. Lai,142Y.-J. Lee,142 A. Levin,142 P. D. Luckey,142 T. Ma,142 C. Paus,142D. Ralph,142 C. Roland,142

G. Roland,142G. S. F. Stephans,142F. Stöckli,142K. Sumorok,142D. Velicanu,142J. Veverka,142B. Wyslouch,142M. Yang,142 M. Zanetti,142 V. Zhukova,142B. Dahmes,143 A. Gude,143 S. C. Kao,143 K. Klapoetke,143 Y. Kubota,143 J. Mans,143

N. Pastika,143R. Rusack,143A. Singovsky,143N. Tambe,143J. Turkewitz,143J. G. Acosta,144S. Oliveros,144E. Avdeeva,145 K. Bloom,145 S. Bose,145D. R. Claes,145 A. Dominguez,145 R. Gonzalez Suarez,145 J. Keller,145D. Knowlton,145

I. Kravchenko,145 J. Lazo-Flores,145 S. Malik,145F. Meier,145G. R. Snow,145M. Zvada,145 J. Dolen,146 A. Godshalk,146 I. Iashvili,146A. Kharchilava,146 A. Kumar,146 S. Rappoccio,146G. Alverson,147E. Barberis,147 D. Baumgartel,147

M. Chasco,147J. Haley,147A. Massironi,147 D. M. Morse,147D. Nash,147 T. Orimoto,147 D. Trocino,147R.-J. Wang,147 D. Wood,147 J. Zhang,147 K. A. Hahn,148A. Kubik,148N. Mucia,148N. Odell,148 B. Pollack,148 A. Pozdnyakov,148

M. Schmitt,148S. Stoynev,148K. Sung,148M. Velasco,148S. Won,148A. Brinkerhoff,149K. M. Chan,149A. Drozdetskiy,149 M. Hildreth,149C. Jessop,149D. J. Karmgard,149 N. Kellams,149K. Lannon,149W. Luo,149S. Lynch,149N. Marinelli,149

T. Pearson,149M. Planer,149R. Ruchti,149N. Valls,149M. Wayne,149M. Wolf,149 A. Woodard,149 L. Antonelli,150 J. Brinson,150B. Bylsma,150L. S. Durkin,150S. Flowers,150C. Hill,150R. Hughes,150K. Kotov,150T. Y. Ling,150D. Puigh,150

(12)

M. Rodenburg,150G. Smith,150 B. L. Winer,150H. Wolfe,150H. W. Wulsin,150O. Driga,151 P. Elmer,151 P. Hebda,151

A. Hunt,151S. A. Koay,151P. Lujan,151D. Marlow,151T. Medvedeva,151M. Mooney,151J. Olsen,151P. Piroué,151X. Quan,151 H. Saka,151D. Stickland,151,c C. Tully,151 J. S. Werner,151A. Zuranski,151 E. Brownson,152H. Mendez,152 J. E. Ramirez Vargas,152V. E. Barnes,153D. Benedetti,153D. Bortoletto,153M. De Mattia,153L. Gutay,153 Z. Hu,153

M. K. Jha,153M. Jones,153K. Jung,153M. Kress,153N. Leonardo,153D. Lopes Pegna,153V. Maroussov,153D. H. Miller,153 N. Neumeister,153B. C. Radburn-Smith,153X. Shi,153I. Shipsey,153D. Silvers,153A. Svyatkovskiy,153F. Wang,153W. Xie,153 L. Xu,153H. D. Yoo,153J. Zablocki,153Y. Zheng,153N. Parashar,154J. Stupak,154A. Adair,155B. Akgun,155K. M. Ecklund,155

F. J. M. Geurts,155 W. Li,155 B. Michlin,155B. P. Padley,155 R. Redjimi,155J. Roberts,155 J. Zabel,155 B. Betchart,156 A. Bodek,156 R. Covarelli,156 P. de Barbaro,156 R. Demina,156Y. Eshaq,156 T. Ferbel,156A. Garcia-Bellido,156

P. Goldenzweig,156J. Han,156A. Harel,156 A. Khukhunaishvili,156G. Petrillo,156 D. Vishnevskiy,156 R. Ciesielski,157 L. Demortier,157 K. Goulianos,157 G. Lungu,157C. Mesropian,157 S. Arora,158 A. Barker,158J. P. Chou,158 C. Contreras-Campana,158 E. Contreras-Campana,158 D. Duggan,158D. Ferencek,158Y. Gershtein,158R. Gray,158

E. Halkiadakis,158D. Hidas,158S. Kaplan,158A. Lath,158S. Panwalkar,158M. Park,158R. Patel,158S. Salur,158S. Schnetzer,158 S. Somalwar,158R. Stone,158S. Thomas,158P. Thomassen,158 M. Walker,158 K. Rose,159S. Spanier,159 A. York,159

O. Bouhali,160,ccc A. Castaneda Hernandez,160 R. Eusebi,160W. Flanagan,160 J. Gilmore,160T. Kamon,160,ddd V. Khotilovich,160V. Krutelyov,160R. Montalvo,160I. Osipenkov,160Y. Pakhotin,160 A. Perloff,160J. Roe,160A. Rose,160 A. Safonov,160 T. Sakuma,160I. Suarez,160A. Tatarinov,160N. Akchurin,161C. Cowden,161J. Damgov,161C. Dragoiu,161

P. R. Dudero,161J. Faulkner,161K. Kovitanggoon,161S. Kunori,161S. W. Lee,161T. Libeiro,161I. Volobouev,161E. Appelt,162 A. G. Delannoy,162S. Greene,162 A. Gurrola,162W. Johns,162C. Maguire,162Y. Mao,162A. Melo,162M. Sharma,162

P. Sheldon,162 B. Snook,162S. Tuo,162J. Velkovska,162M. W. Arenton,163S. Boutle,163B. Cox,163B. Francis,163

J. Goodell,163 R. Hirosky,163A. Ledovskoy,163 H. Li,163 C. Lin,163 C. Neu,163J. Wood,163C. Clarke,164 R. Harr,164 P. E. Karchin,164C. Kottachchi Kankanamge Don,164 P. Lamichhane,164J. Sturdy,164D. A. Belknap,165 D. Carlsmith,165 M. Cepeda,165S. Dasu,165L. Dodd,165S. Duric,165E. Friis,165R. Hall-Wilton,165M. Herndon,165A. Hervé,165P. Klabbers,165 A. Lanaro,165 C. Lazaridis,165 A. Levine,165 R. Loveless,165A. Mohapatra,165 I. Ojalvo,165 T. Perry,165 G. A. Pierro,165

G. Polese,165 I. Ross,165T. Sarangi,165 A. Savin,165W. H. Smith,165D. Taylor,165P. Verwilligen,165 C. Vuosalo,165and N. Woods165

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut für Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Université Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Université Catholique de Louvain, Louvain-la-Neuve, Belgium 9Université de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

12aUniversidade Estadual Paulista, São Paulo, Brazil 12bUniversidade Federal do ABC, São Paulo, Brazil 13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia 19University of Split, Faculty of Science, Split, Croatia

20Institute Rudjer Boskovic, Zagreb, Croatia 21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics,

(13)

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3,

Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France 32Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

33E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut für Experimentelle Kernphysik, Karlsruhe, Germany

40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 41University of Athens, Athens, Greece

42University of Ioánnina, Ioánnina, Greece 43Wigner Research Centre for Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary

46National Institute of Science Education and Research, Bhubaneswar, India 47Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49Saha Institute of Nuclear Physics, Kolkata, India 50Bhabha Atomic Research Centre, Mumbai, India 51Tata Institute of Fundamental Research, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53University College Dublin, Dublin, Ireland 54aINFN Sezione di Bari, Bari, Italy

54bUniversità di Bari, Bari, Italy 54cPolitecnico di Bari, Bari, Italy 55aINFN Sezione di Bologna, Bologna, Italy

55bUniversità di Bologna, Bologna, Italy 56aINFN Sezione di Catania, Catania, Italy

56bUniversità di Catania, Catania, Italy 56cCSFNSM, Catania, Italy 57aINFN Sezione di Firenze, Firenze, Italy

57bUniversità di Firenze, Firenze, Italy

58INFN Laboratori Nazionali di Frascati, Frascati, Italy 59aINFN Sezione di Genova, Genova, Italy

59bUniversità di Genova, Genova, Italy 60aINFN Sezione di Milano-Bicocca, Milano, Italy

60bUniversità di Milano-Bicocca, Milano, Italy 61aINFN Sezione di Napoli, Napoli, Italy 61bUniversità di Napoli ’Federico II’, Napoli, Italy 61cUniversità della Basilicata (Potenza), Napoli, Italy

61dUniversità G. Marconi (Roma), Napoli, Italy 62aINFN Sezione di Padova, Padova, Italy

62bUniversità di Padova, Padova, Italy 62cUniversità di Trento (Trento), Padova, Italy

63aINFN Sezione di Pavia, Pavia, Italy 63bUniversità di Pavia, Pavia, Italy 64aINFN Sezione di Perugia, Perugia, Italy

64bUniversità di Perugia, Perugia, Italy 65aINFN Sezione di Pisa, Pisa, Italy

65bUniversità di Pisa, Pisa, Italy 65cScuola Normale Superiore di Pisa, Pisa, Italy

(14)

66aINFN Sezione di Roma, Roma, Italy 66bUniversità di Roma, Roma, Italy 67aINFN Sezione di Torino, Torino, Italy

67bUniversità di Torino, Torino, Italy

67cUniversità del Piemonte Orientale (Novara), Torino, Italy 68aINFN Sezione di Trieste, Trieste, Italy

68bUniversità di Trieste, Trieste, Italy 69Kangwon National University, Chunchon, Korea

70Kyungpook National University, Daegu, Korea 71Chonbuk National University, Jeonju, Korea

72Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 73Korea University, Seoul, Korea

74University of Seoul, Seoul, Korea 75Sungkyunkwan University, Suwon, Korea

76Vilnius University, Vilnius, Lithuania

77National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia 78Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

79Universidad Iberoamericana, Mexico City, Mexico 80Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 81Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

82University of Auckland, Auckland, New Zealand 83University of Canterbury, Christchurch, New Zealand

84National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 85National Centre for Nuclear Research, Swierk, Poland

86Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 87Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

88Joint Institute for Nuclear Research, Dubna, Russia

89Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 90Institute for Nuclear Research, Moscow, Russia

91Institute for Theoretical and Experimental Physics, Moscow, Russia 92P.N. Lebedev Physical Institute, Moscow, Russia

93Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 94State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 95University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

96Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 97Universidad Autónoma de Madrid, Madrid, Spain

98Universidad de Oviedo, Oviedo, Spain

99Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 100CERN, European Organization for Nuclear Research, Geneva, Switzerland

101Paul Scherrer Institut, Villigen, Switzerland

102Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 103Universität Zürich, Zurich, Switzerland

104National Central University, Chung-Li, Taiwan 105National Taiwan University (NTU), Taipei, Taiwan

106Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand 107Cukurova University, Adana, Turkey

108Middle East Technical University, Physics Department, Ankara, Turkey 109Bogazici University, Istanbul, Turkey

110Istanbul Technical University, Istanbul, Turkey

111National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 112University of Bristol, Bristol, United Kingdom

113Rutherford Appleton Laboratory, Didcot, United Kingdom 114Imperial College, London, United Kingdom 115Brunel University, Uxbridge, United Kingdom

116Baylor University, Waco, USA 117The University of Alabama, Tuscaloosa, USA

118Boston University, Boston, USA 119Brown University, Providence, USA 120University of California, Davis, Davis, USA

Figura

Figure 2 shows the distribution of the invariant mass of the three jets before requiring their invariant mass to be less than 250 GeV, in events with one b-tagged jet
FIG. 3 (color online). The 95% C.L. expected and observed CL s limits as functions of the mass of a scalar (top) and vector

Riferimenti

Documenti correlati

Nella ricerca etnografica sono state coinvolte alcune delle ospiti e beneficiarie 29 che hanno deciso di partecipare alla ricerca, le volon- tarie 30 e gli operatori, pur prendendo

Benché non direttamente allievo, tutta- via legato a Rogers anche tramite «Casa- bella» che più volte lo pubblica, Polesello riconosce quanto il suo pensiero debba al Maestro

Modalità e strumenti per l’inizio del progetto Anastasia Kozlova?. How design can contribute to children’s

Il mio incontro con Crimp, il cui esito propongo in forma di intervista, ha se- gnato la mia ricerca di ricostruzione del dibattito critico avvenuto sulle pagine della

While acknowledging that some exceptions in the convergence process emerged in terms of the mean values of the parameters, the authors emphasized the strong link between

La prima si lega all’analisi dei bisogni formativi degli insegnanti della rete scolastica partecipante (bisogni espressi e manifestati sia in fase di primo con- tatto con

Significant results are reported also with respect to the perceived maternal care received by subjects during infancy and reported through self-report questionnaires

Anche altrove la memoria del Pluto è, per lo più, limitata alla ripresa di singole espressioni: è il caso della già citata epistola 104 al fratello, dove, a proposito di un