• Non ci sono risultati.

Search for flavor-changing neutral currents in top-quark decays t →zq in pp collisions at s =8TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for flavor-changing neutral currents in top-quark decays t →zq in pp collisions at s =8TeV"

Copied!
16
0
0

Testo completo

(1)

Search for Flavor-Changing Neutral Currents in Top-Quark Decays t → Zq

in pp Collisions at

p

ffiffi

s

¼ 8 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 15 December 2013; published 2 May 2014)

A search for flavor-changing neutral currents in top-quark decays t → Zq is performed in events produced from the decay chaint¯t → Zq þ Wb, where both vector bosons decay leptonically, producing a final state with three leptons (electrons or muons). A data set collected with the CMS detector at the LHC is used, corresponding to an integrated luminosity of19.7 fb−1of proton-proton collisions at a center-of-mass energy of 8 TeV. No excess is seen in the observed number of events relative to the standard model prediction; thus, no evidence for flavor-changing neutral currents in top-quark decays is found. A combination with a previous search at 7 TeV excludes a t → Zq branching fraction greater than 0.05% at the 95% confidence level.

DOI:10.1103/PhysRevLett.112.171802 PACS numbers: 12.15.Mm, 12.15.Hh, 12.60.−i, 14.65.Ha

The heaviest known elementary particle, the top quark, decays to a bottom quark and aW boson, t → Wb, with a branching fraction of nearly 100%[1]. Within the standard model (SM), the corresponding flavor-changing neutral current (FCNC) decay to a Z boson and a light up-type quark (u or c), t → Zq, is suppressed by the GIM mechanism[2], occurring only at the quantum loop level, with a branching fractionBðt → ZqÞ at Oð10−14Þ[3]. The detection of FCNC t → Zq decays at a higher-than-expected rate would thus be clear evidence for physics beyond the SM.

Some extensions of the SM, such as R-parity-violating supersymmetric models[4], top-color-assisted technicolor models[5], and singlet quark models[6]predict enhance-ments of the FCNC branching fraction that could be as large as Oð10−4Þ. These models, however, need to be updated from their earlier parametrizations using the latest Large Hadron Collider (LHC) results. While this is not easily done in general without a detailed analysis, a recent study [7] places Bðt → ZqÞ at Oð10−5Þ in warped extra dimension models [8,9]. The rate is very sensitive to the Kaluza-Klein gluon scale mKK, as well as right-handed mixing parameters. The mKK scale is probed directly

[10,11] at the LHC, while B physics measurements [12]

do not significantly constrain right-handed couplings. In this Letter we report a search fort → Zq at the LHC, with results that start to complement both the direct search for KK gluons, as well as flavor physics constraints.

The experimental searches on top FCNC have been carried out since LEP and HERA on single top quark

production with best limit Bðt → ZqÞ < 4%[13,14]. The current limit by Tevatron on top FCNC decay is< 3.2%

[15]. In a previous search with the Compact Muon Solenoid (CMS) experiment, we reported results from a search for this decay using5.0 fb−1 of proton-proton collisions at a center-of-mass energy pffiffiffis¼ 7 TeV, resulting in a 95% confidence level (C.L.) upper limit onBðt → ZqÞ of 0.21%

[16]. A limit of 0.73%[17]on the branching fraction has also been reported by the ATLAS experiment from an analysis of2.1 fb−1of 7 TeV data. The analysis described in this Letter uses a data sample corresponding to an integrated luminosity of 19.7 fb−1 of pp collisions atpffiffiffis¼ 8 TeV.

The central feature of the CMS apparatus is a super-conducting solenoid, which provides an axial magnetic field of 3.8 T. Within the field volume there are a silicon pixel and strip tracker, a lead tungstate crystal electromag-netic calorimeter, and a brass or scintillator hadron calo-rimeter. Charged-particle trajectories are measured by the tracker, covering 0 ≤ ϕ ≤ 2π in azimuth and jηj < 2.5 in pseudorapidity, whereη is defined as − ln½tanðθ=2Þ, and θ is the polar angle of the trajectory of the particle with respect to the counterclockwise proton beam direction. Muons are identified and measured in gas-ionization detectors embedded in the steel flux return yoke outside the solenoid. A more detailed description of the CMS detector can be found in Ref.[18].

Monte Carlo (MC) samples of Drell-Yan events, SMt¯t, Zt¯t, Wt¯t, tbZ, and diboson (WW, WZ, and ZZ) events are simulated using MADGRAPH [19], while single-top-quark events are generated using POWHEG [20–22]. The signal sample pp → t¯t → Zq þ Wb → lþl−q þ l0νbðl; l0¼ e; μ; τÞ is generated withMADGRAPH. One of the top quarks of the pair is forced to decay ast → Zq, where q stands for au or c quark with equal probability, while the other decays toWb. The ratio between the dimension-four vector and the * Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

axial-vector couplings of the t → Zq FCNC model is assumed to be SM-like [23]. In all cases, hadronization and showering are simulated withPYTHIA6 [24], whileτ decays are simulated withTAUOLA[25]. The set of parton distribution functions (PDFs) used is CTEQ6L[26]. The CMS detector response for all MC samples is simulated using a GEANT4-based [27] model, and the events are reconstructed and analyzed using the same software used to process collision data. The simulated events are weighted so that the trigger efficiencies, reconstruction efficiencies, and the distribution of reconstructed vertices observed in data are reproduced.

The search is performed by looking for t¯t events where one top quark decays intoZq and the other decays into Wb with both vector bosons decaying leptonically, which provide a very clear signature. The analysis follows closely the search performed at 7 TeV [16]. Several of the event selection requirements have been reoptimized before the complete data set was collected, based on the expected signal and background yields at 8 TeV with Bðt → ZqÞ ¼ 0.1%.

Events are required to pass at least one of theee or μμ high transverse momenta (pT) dilepton triggers. Events with two opposite-sign, same-flavor, isolated leptons (e or μ) having an invariant mass between 78 and 102 GeV, consistent with a Z-boson decay, and one extra charged lepton (e or μ) are selected. When there is more than one lepton pair forming a Z candidate, the pair with invariant mass closest to the nominal value is taken. All three leptons must satisfy the following kinematic requirements: pT> 20 GeV and jηj < 2.5 for electrons and jηj < 2.4 for muons. The lepton selection efficiencies (reconstruction, identification, and isolation) mean values and their depend-ence withpTandjηj are consistent between the data and the simulation[28,29].

Multiple simultaneous interactions per bunch crossing (pileup) were observed in data. Events are required to have at least one good primary vertex candidate[30]. In events with more than one candidate, the vertex with highestΣpT2 of its associated tracks is selected. The leptons and all charged particle tracks that are associated with jets are required to be consistent with originating from the primary vertex.

Since the leptons are expected to originate from the decays ofW and Z bosons, they are required to be isolated as defined in Ref.[31]. Events with a fourth isolated lepton are rejected. Neutrinos from W-boson decays escape detection and produce a significant momentum imbalance in the detector in the plane transverse to the beams. The missing transverse momentum (−Σ~pT) and its magnitude (ET) are reconstructed using the CMS particle-flow technique [32], and we require the ET to be larger than 30 GeV . TheW-boson candidates are constructed from the momentum of the extra lepton and the missing transverse momentum (assumed to originate from an undetected neutrino), by constraining the resulting invariant mass to be equal to theW-boson mass [1].

The requirements described above, namely events with dilepton-triggers, aZ boson candidate, an extra lepton, no fourth lepton, and the requirement ofET, will be referred to as the“basic event selection”. The observed number of events after the basic event selection is 1424, in agree-ment with the MC expectation of 1455  16 events, including 1229  4 events from WZ and 86.3  0.2 events fromZZ production, where the uncertainty quoted is statistical only.

Figure1shows the distributions for data and simulated events of the ET and transverse mass (mT) of the W-boson candidate after the basic event selection. The transverse mass is calculated using the transverse

(GeV) T E 0 50 100 150 200 Events / 10 (GeV) 0 100 200 300 400 500 600 Data Zq (B=0.1%) → t t t Z t W, t t t tbZ -l + l → * γ Z/ WW, WZ, ZZ = 8 TeV s CMS, -1 = 19.7 fb int L ) (GeV) ν (e T m 0 100 200 Events / 20 (GeV) 0 50 100 150 200 250 300 350 Data Zq (B=0.1%) → t t t Z t W, t t t tbZ -l + l → * γ Z/ WW, WZ, ZZ = 8 TeV s CMS, -1 = 19.7 fb int L ) (GeV) ν µ ( T m 0 100 200 Events / 20 (GeV) 0 50 100 150 200 250 300 350 Data Zq (B=0.1%) → t t t Z t W, t t t tbZ -l + l → * γ Z/ WW, WZ, ZZ = 8 TeV s CMS, -1 = 19.7 fb int L

FIG. 1 (color online). Comparison between data and simulated events for an integrated luminosity of19.7 fb−1, after the basic event selection, for theETdistribution (left), the reconstructedeν transverse mass (middle) of the W-boson candidate, and the reconstructed μν

transverse mass (right) of theW-boson candidate. The data are represented by the points with error bars, and the open histogram shows the expected signal assumingBðt → ZqÞ is equal to 0.1%. Stacked solid histograms represent the dominant backgrounds, with statistical uncertainties on these backgrounds at the few percent level (not shown).

(3)

momentum of the extra lepton (pl

T), the ET, and the azimuthal angle difference (Δϕ) between the two, as mT¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2pl TETð1 − cosðΔϕÞÞ p .

To reduce the background from diboson events we require at least two jets, reconstructed also using a particle-flow technique [32], each with pT> 30 GeV and jηj < 2.4. Exactly one of these jets should be identified (tagged) as a b-quark jet. These requirements further reduce the observed event yields from 1424 after the basic event selection to 29. The b-jet identification is performed using the combined secondary vertexb-tagging algorithm described in Ref. [33]. This tagging method has an identification efficiency of 62% for b jets with transverse momentum between 30 and 100 GeV and a misidentification rate of about 18% for c jets and below 1.5% for other jets.

The invariant mass of theW boson and the b-tagged jet, mWb, is required to be within 35 GeVof the top-quark mass, which is set to 172.5 GeV in the simulation. A non-b jet is combined with theZ candidate to form a second top-quark candidate. By examining all possible pairings, the top-quark candidate which has the largest separation in azimu-thal angle to the first top quark is selected, and the reconstructed top-quark mass,mZj, is required to be within 25 GeV of the assumed value of 172.5 GeV . The mass requirements are the same as in the 7 TeV analysis [16]. Figure 2 shows the comparison of the mZj and mWb distributions in data and simulation, while TableI summa-rizes the signal efficiencies determined from simulated events.

According to simulations, the dominant backgrounds arise from diboson andt¯t þ X production. These processes can be categorized into three groups based on the number ofb quarks present: (a) diboson and Drell-Yan events with almost nob quarks, (b) events from top-quark FCNC decay with only oneb quark, (c) t¯t, tbZ, t¯tW, and t¯tZ processes

with at least twob quarks. Events passing the basic event selection, with two jets to be paired withW and Z bosons are divided into three samples: (a) events with nob-tagged jets, (b) events with exactly oneb-tagged jet, and (c) the rest of the events. The numbers of events in those three samples can be related to the yields of the three groups based on theb-tagging efficiencies for b jets, c jets, or other jets, which are measured using data. The numbers of events in the three groups are then turned into an estimate of the corresponding yields via a linear3 × 3 system of equations to be solved before the top-quark mass requirements. The corresponding acceptances of the mass requirements are obtained from MC simulations. The overall contribution fromWZ plus ZZ and Drell-Yan backgrounds is estimated to be1.4  0.1ðstatÞ  0.3ðsystÞ events. The expected yield fromt¯tW, t¯tZ, tbZ, and t¯t backgrounds is 1.7  0.8ðstatÞ  0.4ðsystÞ events. The uncertainty of the b-tagging effi-ciency, measured in control data samples, and the uncer-tainty on the top-quark mass requirement, estimated with MC simulation, contribute to the systematic uncertainty. The estimated background yields are summarized in TableII and show a good agreement with those obtained

(GeV) Zj m 100 200 300 Events / 20 (GeV) 0 2 4 6 8 10 Data Zq (B=0.1%) → t t t Z t W, t t t tbZ WW, WZ, ZZ = 8 TeV s CMS, -1 = 19.7 fb int L (GeV) Wb m 100 200 300 Events / 20 (GeV) 0 2 4 6 8 10 Data Zq (B=0.1%) → t t t Z t W, t t t tbZ WW, WZ, ZZ = 8 TeV s CMS, -1 = 19.7 fb int L (GeV) Zj m 100 150 200 250 300 350 (GeV) Wb m 100 150 200 250 300 350 = 8 TeV s CMS, -1 = 19.7 fb int L

FIG. 2 (color online). Comparison between data and simulated events of themZj(left),mWb (middle), and two-dimensional scatter (right) distributions after the event selection prior to the top-quark mass requirements, which are shown as the dotted vertical lines (left, middle) and box (right). The data, corresponding to an integrated luminosity of19.7 fb−1, are represented by the points with error bars and the open histogram is the expected signal. The stacked solid histograms represent the dominant backgrounds. The statistical uncertainties are not drawn. The last bin in each of the left two plots contains all the overflow events.

TABLE I. Signal selection efficiency, in percent, for each dilepton channels with respect to events from all channels. The efficiency is calculated as the fraction of events with leptonically (e, μ, τ) decaying W and Z bosons passing the selection. Only MC statistical uncertainties are shown.

Channel Efficiencies [%] eee 0.49  0.01 eeμ 0.52  0.01 μμe 0.55  0.01 μμμ 0.55  0.01 All 2.12  0.03

(4)

from MC simulation. The background estimations from data are used for the final results.

To calculate the expected upper limits, the systematic uncertainties from the dilepton trigger efficiency, lepton selection efficiency [28], pileup modeling [34], b-jet tagging efficiency [33], jet energy scale and missing transverse energy resolution [35] are included, with the b-jet tagging efficiency being the dominant one for the background estimation. Additionally, several sources of uncertainties in the signal yield are evaluated: the choice of PDFs, generator parameters, and uncertainty in thet¯t cross section. The major contributions come from the PDFs and the generator parameters of the signal MC simulation. The prescription given in Ref.[36]is used to determine the uncertainty from the CTEQ66 PDF error sets [37]. The uncertainty from the generator parametrization is evaluated using CMS fast simulation[38]samples with different top-quark mass assumptions (2 GeV), different parton-jet matching thresholds (30 GeV and 60 GeV), and different event renormalization and factorization scales (varied between1=4 and 4× from their nominal value). In addition, there is a 2.6% uncertainty on the luminosity measurement

[39]. All these sources, summarized in Table III, are combined in quadrature to give a 20% relative uncertainty in the signal selection acceptance. The systematic uncer-tainties in the background estimation are listed with the total background prediction given in TableII.

After applying all the criteria and adding all four channels, 3.1  1.1 events are expected from SM back-ground processes and 1 event is observed in data. A 95% C.L. upper limit on the branching fraction of the t → Zq decay is determined using the modified frequentist approach (CLs method [40,41]). A summary of the observed and predicted yields and limits is presented in Tables II and IV. The observed and expected 95% C.L.

upper limits on the branching fraction Bðt → ZqÞ are 0.06% and 0.10%, respectively.

These results are combined with the statistically inde-pendent results of our previous search[16]. The systematic uncertainties on the signal efficiency estimation and the luminosity measurements are taken as fully correlated. Since the background estimations are based on independent samples, their systematic uncertainties are treated as uncorrelated, except for the uncertainties on the top mass selection requirement due to the choice of PDF, which are also taken as fully correlated. The combination with the 7 TeVb-tag analysis[16] gives a slightly lower expected limit and hence is chosen as the reference result. The observed upper limit on Bðt → ZqÞ is 0.05%, with a median expectation of 0.09%, and with1σ and 2σ ranges which are 0.06–0.13% and 0.05–0.18%, respectively. The derived limits and their uncertainties are shown in TableIV. In summary, a search for FCNC events in top-quark decays inffiffiffi t¯t events produced in proton-proton collisions at

s p

¼ 8 TeV is presented. A sample of events with three leptons (e or μ) in the final state and compatible with leptonic decays of aZ and Wb boson is selected from data recorded with the CMS detector and corresponding to an integrated luminosity of 19.7 fb−1. No excess of events above the background is observed. Combining this result with a previous search corresponding to an integrated luminosity of5.0fb−1 t pffiffiffis¼ 7 TeV, excludes a t → Zq TABLE II. Expected number of signal t → Zq events,

back-ground composition, and observed events corresponding to an integrated luminosity of 19.7 fb−1 for all dilepton channels; background estimates included. The uncertainties in the background estimation include the statistical and systematic components shown separately, in that order.

Process Estimation from data MC prediction

t → Zq (B ¼ 0.1%) … 6.4  0.1  1.3 WZ 0.9  0.1  0.3 ZZ 1.4  0.1  0.3 < 0.1 Drell–Yan < 0.1 t¯t 0.7þ1.1 −0.4 1.2 t¯tZ 1.1  0.1  0.8 1.7  0.8  0.4 t¯tW 0.1  0.1  0.1 tbZ 0.3  0.1  0.2 Total background 3.1  0.8  0.8 3.2  1.2  1.5 Observed events 1 …

TABLE III. Summary of the systematic uncertainties for the signal selection acceptance.

Source Uncertainty %

Renormalization/factorization scales 12

Parton distribution functions 7

t¯t cross section 7

Parton matching threshold 6

Lepton selection 6

Trigger efficiency 5

b-tagging 5

Top-quark mass 4

Jet energy scale 4

Missing transverse energy resolution 3

Pileup modeling 3

Total 20

TABLE IV. Upper limits at a 95% C.L. for Bðt → ZqÞ, as obtained using the 8 TeV data with an integrated luminosity of 19.7 fb−1, and from the combination with previous CMS 7 TeV

(5.0 fb−1) data.

Bðt → ZqÞ 8 TeV 7 þ 8 TeV

Expected upper limit < 0.10% < 0.09% Observed upper limit < 0.06% < 0.05%

1σ boundary 0.06–0.13% 0.06–0.13%

(5)

branching fraction greater than 0.05% at a confidence level of 95%. This new limit, about four times better than our previous one, has been achieved with a better background estimation, increased cross section at higher energy and increased integrated luminosity. This new result starts to probe the enhanced FCNC branching fraction predicted by certain SM extensions, such as warped extra dimensions. Our limit can be translated into a constraint on the KK gluon to be heavier than 1.1 TeV [9].

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowl-edge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania);

CINVESTAV, CONACYT, SEP, and UASLP-FAI

(Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] J. Beringer et al. (Particle Data Group),Phys. Rev. D 86, 010001 (2012).

[2] S. L. Glashow, J. Iliopoulos, and L. Maiani,Phys. Rev. D 2, 1285 (1970).

[3] E. W. N. Glover et al., Acta Phys. Pol. B 35, 2671 (2004),

http://www.actaphys.uj.edu.pl/_cur/store/vol35/pdf/ v35p2671.pdf.

[4] J. M. Yang, B.-L. Young, and X. Zhang,Phys. Rev. D 58, 055001 (1998).

[5] G. Lu, F. Yin, , and L. Wan,Phys. Rev. D 68, 015002 (2003). [6] J. A. Aguilar-Saavedra,Phys. Rev. D 67, 035003 (2003). [7] K. Agashe et al.,arXiv:1311.2028.

[8] K. Agashe, G. Perez, and A. Soni, Phys. Rev. Lett. 93, 201804 (2004).

[9] K. Agashe, G. Perez, and A. Soni,Phys. Rev. D 75, 015002 (2007).

[10] ATLAS Collaboration,J. High Energy Phys. 09 (2012) 041

[11] CMS Collaboration,Phys. Rev. Lett. 111, 211804 (2013). [12] P. J. Fox, Z. Ligeti, M. Papucci, G. Perez, and M. D.

Schwartz,Phys. Rev. D 78, 054008 (2008).

[13] J. Abdallah et al. (DELPHI),Phys. Lett. B 590, 21 (2004). [14] H. Abramowicz et al. (ZEUS),Phys. Lett. B 708, 27 (2012). [15] V. M. Abazov et al. (D0),Phys. Lett. B 701, 313 (2011). [16] CMS Collaboration,Phys. Lett. B 718, 1252 (2013). [17] ATLAS Collaboration,J. High Energy Phys. 09 (2012) 139.

[18] CMS Collaboration,JINST 3, S08004 (2008).

[19] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer,J. High Energy Phys. 06 (2011) 128.

[20] P. Nason,J. High Energy Phys. 11 (2004) 040.

[21] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[22] S. Alioli, P. Nason, C. Oleari, and E. Re,J. High Energy Phys. 06(2010) 043.

[23] T. Han and JoAnne L. Hewett,Phys. Rev. D 60, 074015 (1999).

[24] T. Sjöstrand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

[25] Z. Wąs,Nucl. Phys. B, Proc. Suppl. 98, 96 (2001). [26] P. M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin,

D. Stump, W.-K. Tung, and C.-P. Yuan,Phys. Rev. D 78, 013004 (2008).

[27] S. Agostinelli et al. (GEANT4 Collaboration),Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[28] CMS Collaboration,J. High Energy Phys. 10 (2011) 007.

[29] CMS Collaboration,J. High Energy Phys. 11 (2012) 067.

[30] CMS Collaboration, CMS Physics Analysis Summary, CMS-PAS-TRK-10-005, 2010, http://cdsweb.cern.ch/ record/1279383.

[31] CMS Collaboration,JINST 7, P10002 (2012).

[32] CMS Collaboration, CMS Physics Analysis Summary, CMS-PAS-PFT-09-001 (2009), http://cdsweb.cern.ch/ record/1194487.

[33] CMS Collaboration,JINST 8, P04013 (2013).

[34] G. Antchev et al., (TOTEM) Europhys. Lett. 96, 21002 (2011).

[35] CMS Collaboration,JINST 6, P11002 (2011).

[36] M. R. Whalley, D. Bourilkov, and R. C. Group, arXiv:hep-ph/0508110.

[37] H.-L. Lai, J. Huston, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, and C.-P. Yuan,Phys. Rev. D 82, 054021 (2010). [38] R. Rahmat, R. Kroeger, and A. Giammanco,J. Phys. Conf.

Ser. 396, 062016 (2012).

[39] CMS Collaboration, CMS Physics Analysis Summary, CMS-PAS-LUM-13-001 (2013), http://cdsweb.cern.ch/ record/1598864.

[40] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).

(6)

S. Chatrchyan,1 V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,2,bM. Friedl,2R. Frühwirth,2,bV. M. Ghete,2C. Hartl,2N. Hörmann,2J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2

V. Knünz,2 M. Krammer,2,bI. Krätschmer,2 D. Liko,2 I. Mikulec,2D. Rabady,2,c B. Rahbaran,2H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2 A. Taurok,2 W. Treberer-Treberspurg,2 W. Waltenberger,2 C.-E. Wulz,2,b V. Mossolov,3 N. Shumeiko,3J. Suarez Gonzalez,3S. Alderweireldt,4M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4 A. Knutsson,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4H. Van Haevermaet,4P. Van Mechelen,4 N. Van Remortel,4 A. Van Spilbeeck,4 F. Blekman,5 S. Blyweert,5 J. D’Hondt,5 N. Heracleous,5 A. Kalogeropoulos,5

J. Keaveney,5 T. J. Kim,5 S. Lowette,5 M. Maes,5 A. Olbrechts,5D. Strom,5 S. Tavernier,5 W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5C. Caillol,6B. Clerbaux,6G. De Lentdecker,6L. Favart,6A. P. R. Gay,6T. Hreus,6 A. Léonard,6P. E. Marage,6A. Mohammadi,6L. Perniè,6 T. Reis,6 T. Seva,6 L. Thomas,6 C. Vander Velde,6P. Vanlaer,6

J. Wang,6 V. Adler,7 K. Beernaert,7 L. Benucci,7 A. Cimmino,7S. Costantini,7S. Dildick,7 G. Garcia,7 B. Klein,7 J. Lellouch,7 J. Mccartin,7A. A. Ocampo Rios,7 D. Ryckbosch,7 M. Sigamani,7 N. Strobbe,7 F. Thyssen,7M. Tytgat,7

S. Walsh,7 E. Yazgan,7N. Zaganidis,7 S. Basegmez,8 C. Beluffi,8,dG. Bruno,8 R. Castello,8 A. Caudron,8 L. Ceard,8 G. G. Da Silveira,8C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,eJ. Hollar,8P. Jez,8M. Komm,8 V. Lemaitre,8 J. Liao,8 O. Militaru,8 C. Nuttens,8 D. Pagano,8 A. Pin,8 K. Piotrzkowski,8A. Popov,8,f L. Quertenmont,8 M. Selvaggi,8M. Vidal Marono,8J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10 M. Correa Martins Junior,10T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Aldá Júnior,11W. Carvalho,11J. Chinellato,11,

g

A. Custódio,11E. M. Da Costa,11D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11 H. Malbouisson,11M. Malek,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11J. Santaolalla,11

A. Santoro,11A. Sznajder,11E. J. Tonelli Manganote,11,g A. Vilela Pereira,11C. A. Bernardes,12b F. A. Dias,12a,h T PerezTomei,12a E. M. Gregores,12bC. Lagana,12a P. G. Mercadante,12b S. F. Novaes,12a S. S. Padula,12a V. Genchev,13,c

P. Iaydjiev,13,c A. Marinov,13S. Piperov,13M. Rodozov,13G. Sultanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14 L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15M. Chen,15R. Du,15C. H. Jiang,15D. Liang,15 S. Liang,15X. Meng,15R. Plestina,15,iJ. Tao,15X. Wang,15Z. Wang,15C. Asawatangtrakuldee,16Y. Ban,16Y. Guo,16Q. Li,16

W. Li,16S. Liu,16Y. Mao,16 S. J. Qian,16 D. Wang,16 L. Zhang,16 W. Zou,16C. Avila,17C. A. Carrillo Montoya,17 L. F. Chaparro Sierra,17C. Florez,17J. P. Gomez,17B. Gomez Moreno,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18 D. Polic,18I. Puljak,18Z. Antunovic,19M. Kovac,19V. Brigljevic,20K. Kadija,20J. Luetic,20D. Mekterovic,20S. Morovic,20 L. Tikvica,20 A. Attikis,21 G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21 P. A. Razis,21M. Finger,22 M. Finger Jr.,22A. A. Abdelalim,23,jY. Assran,23,jS. Elgammal,23,jA. Ellithi Kamel,23,lM. A. Mahmoud,23,mA. Radi,23,n,o M. Kadastik,24M. Müntel,24M. Murumaa,24M. Raidal,24L. Rebane,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25 J. Härkönen,26V. Karimäki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampén,26K. Lassila-Perini,26S. Lehti,26T. Lindén,26 P. Luukka,26T. Mäenpää,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26L. Wendland,26T. Tuuva,27

M. Besancon,28F. Couderc,28M. Dejardin,28 D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28 A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28A. Nayak,28 J. Rander,28 A. Rosowsky,28M. Titov,28S. Baffioni,29F. Beaudette,29P. Busson,29C. Charlot,29N. Daci,29T. Dahms,29M. Dalchenko,29

L. Dobrzynski,29A. Florent,29R. Granier de Cassagnac,29M. Haguenauer,29P. Miné,29C. Mironov,29I. N. Naranjo,29 M. Nguyen,29C. Ochando,29P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Veelken,29Y. Yilmaz,29A. Zabi,29 J.-L. Agram,30,p J. Andrea,30D. Bloch,30J.-M. Brom,30E. C. Chabert,30C. Collard,30E. Conte,30,p F. Drouhin,30,p J.-C. Fontaine,30,pD. Gelé,30 U. Goerlach,30C. Goetzmann,30P. Juillot,30 A.-C. Le Bihan,30P. Van Hove,30S. Gadrat,31 S. Beauceron,32N. Beaupere,32G. Boudoul,32S. Brochet,32J. Chasserat,32R. Chierici,32D. Contardo,32P. Depasse,32H. El

Mamouni,32J. Fan,32J. Fay,32S. Gascon,32 M. Gouzevitch,32 B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32 S. Perries,32J. D. Ruiz Alvarez,32L. Sgandurra,32V. Sordini,32M. Vander Donckt,32P. Verdier,32S. Viret,32H. Xiao,32 Z. Tsamalaidze,33,qC. Autermann,34S. Beranek,34M. Bontenackels,34B. Calpas,34M. Edelhoff,34L. Feld,34O. Hindrichs,34 K. Klein,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34

V. Zhukov,34,f M. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35 M. Erdmann,35R. Fischer,35A. Güth,35 T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35S. Knutzen,35P. Kreuzer,35M. Merschmeyer,35A. Meyer,35 M. Olschewski,35K. Padeken,35P. Papacz,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35D. Teyssier,35S. Thüer,35 M. Weber,35V. Cherepanov,36 Y. Erdogan,36G. Flügge,36H. Geenen,36M. Geisler,36 W. Haj Ahmad,36F. Hoehle,36 B. Kargoll,36T. Kress,36Y. Kuessel,36J. Lingemann,36,cA. Nowack,36I. M. Nugent,36L. Perchalla,36O. Pooth,36A. Stahl,36

(7)

I. Asin,37N. Bartosik,37J. Behr,37W. Behrenhoff,37U. Behrens,37A. J. Bell,37M. Bergholz,37,rA. Bethani,37K. Borras,37 A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37S. Choudhury,37F. Costanza,37C. Diez Pardos,37S. Dooling,37 T. Dorland,37G. Eckerlin,37D. Eckstein,37T. Eichhorn,37G. Flucke,37A. Geiser,37A. Grebenyuk,37P. Gunnellini,37 S. Habib,37J. Hauk,37G. Hellwig,37M. Hempel,37D. Horton,37H. Jung,37M. Kasemann,37P. Katsas,37C. Kleinwort,37 M. Krämer,37D. Krücker,37W. Lange,37J. Leonard,37K. Lipka,37W. Lohmann,37,rB. Lutz,37R. Mankel,37I. Marfin,37 I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37O. Novgorodova,37F. Nowak,37 H. Perrey,37A. Petrukhin,37D. Pitzl,37R. Placakyte,37A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37E. Ron,37 M. O. Sahin,37J. Salfeld-Nebgen,37R. Schmidt,37,rT. Schoerner-Sadenius,37M. Schröder,37M. Stein,37A. D. R. Vargas Trevino,37R. Walsh,37C. Wissing,37M. Aldaya Martin,38V. Blobel,38H. Enderle,38J. Erfle,38E. Garutti,38M. Görner,38

M. Gosselink,38J. Haller,38K. Heine,38R. S. Höing,38H. Kirschenmann,38R. Klanner,38R. Kogler,38J. Lange,38 I. Marchesini,38J. Ott,38T. Peiffer,38N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38 A. Schmidt,38M. Seidel,38J. Sibille,38,sV. Sola,38H. Stadie,38G. Steinbrück,38D. Troendle,38E. Usai,38L. Vanelderen,38 C. Barth,39C. Baus,39J. Berger,39C. Böser,39E. Butz,39T. Chwalek,39 W. De Boer,39A. Descroix,39A. Dierlamm,39 M. Feindt,39M. Guthoff,39,c F. Hartmann,39,c T. Hauth,39,cH. Held,39 K. H. Hoffmann,39U. Husemann,39I. Katkov,39,f

A. Kornmayer,39,c E. Kuznetsova,39P. Lobelle Pardo,39D. Martschei,39M. U. Mozer,39T. Müller,39M. Niegel,39 A. Nürnberg,39O. Oberst,39G. Quast,39K. Rabbertz,39F. Ratnikov,39 S. Röcker,39F.-P. Schilling,39G. Schott,39 H. J. Simonis,39F. M. Stober,39R. Ulrich,39J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39R. Wolf,39M. Zeise,39 G. Anagnostou,40G. Daskalakis,40T. Geralis,40S. Kesisoglou,40A. Kyriakis,40D. Loukas,40A. Markou,40C. Markou,40

E. Ntomari,40 I. Topsis-giotis,40L. Gouskos,41A. Panagiotou,41N. Saoulidou,41E. Stiliaris,41X. Aslanoglou,42 I. Evangelou,42G. Flouris,42 C. Foudas,42 P. Kokkas,42N. Manthos,42I. Papadopoulos,42E. Paradas,42G. Bencze,43 C. Hajdu,43P. Hidas,43 D. Horvath,43,tF. Sikler,43V. Veszpremi,43G. Vesztergombi,43,uA. J. Zsigmond,43N. Beni,44 S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44J. Karancsi,45P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. K. Swain,46,v S. B. Beri,47V. Bhatnagar,47N. Dhingra,47R. Gupta,47M. Kaur,47M. Z. Mehta,47M. Mittal,47N. Nishu,47A. Sharma,47 J. B. Singh,47A. Kumar,48A. Kumar,48S. Ahuja,48A. Bhardwaj,48B. C. Choudhary,48A. Kumar,48S. Malhotra,48 M. Naimuddin,48K. Ranjan,48P. Saxena,48V. Sharma,48R. K. Shivpuri,48S. Banerjee,49S. Bhattacharya,49K. Chatterjee,49 S. Dutta,49B. Gomber,49S. Jain,49S. Jain,49R. Khurana,49A. Modak,49S. Mukherjee,49D. Roy,49S. Sarkar,49M. Sharan,49

A. P. Singh,49A. Abdulsalam,50D. Dutta,50S. Kailas,50 V. Kumar,50A. K. Mohanty,50,cL. M. Pant,50P. Shukla,50 A. Topkar,50T. Aziz,51R. M. Chatterjee,51S. Ganguly,51S. Ghosh,51M. Guchait,51,wA. Gurtu,51,xG. Kole,51S. Kumar,51

M. Maity,51,yG. Majumder,51K. Mazumdar,51G. B. Mohanty,51B. Parida,51K. Sudhakar,51N. Wickramage,51,z S. Banerjee,52S. Dugad,52H. Arfaei,53H. Bakhshiansohi,53H. Behnamian,53S. M. Etesami,53,aaA. Fahim,53,bbA. Jafari,53

M. Khakzad,53M. Mohammadi Najafabadi,53M. Naseri,53S. Paktinat Mehdiabadi,53B. Safarzadeh,53,cc M. Zeinali,53 M. Grunewald,54M. Abbrescia,55a,55bL. Barbone,55a,55b C. Calabria,55a,55bS. S. Chhibra,55a,55bA. Colaleo,55a D. Creanza,55a,55c N. De Filippis,55a,55c M. De Palma,55a,55b L. Fiore,55a G. Iaselli,55a,55c G. Maggi,55a,55c M. Maggi,55a B. Marangelli,55a,55bS. My,55a,55c S. Nuzzo,55a,55bN. Pacifico,55a A. Pompili,55a,55b G. Pugliese,55a,55c R. Radogna,55a,55b

G. Selvaggi,55a,55bL. Silvestris,55a G. Singh,55a,55bR. Venditti,55a,55b P. Verwilligen,55aG. Zito,55a G. Abbiendi,56a A. C. Benvenuti,56a D. Bonacorsi,56a,56bS. Braibant-Giacomelli,56a,56bL. Brigliadori,56a,56b R. Campanini,56a,56b P. Capiluppi,56a,56bA. Castro,56a,56bF. R. Cavallo,56aG. Codispoti,56a,56bM. Cuffiani,56a,56bG. M. Dallavalle,56aF. Fabbri,56a

A. Fanfani,56a,56b D. Fasanella,56a,56bP. Giacomelli,56a C. Grandi,56aL. Guiducci,56a,56b S. Marcellini,56a G. Masetti,56a M. Meneghelli,56a,56bA. Montanari,56aF. L. Navarria,56a,56b F. Odorici,56a A. Perrotta,56a F. Primavera,56a,56b A. M. Rossi,56a,56bT. Rovelli,56a,56bG. P. Siroli,56a,56bN. Tosi,56a,56bR. Travaglini,56a,56bS. Albergo,57a,57bG. Cappello,57a M. Chiorboli,57a,57bS. Costa,57a,57bF. Giordano,57a,57c,c R. Potenza,57a,57bA. Tricomi,57a,57bC. Tuve,57a,57b G. Barbagli,58a

V. Ciulli,58a,58bC. Civinini,58aR. D’Alessandro,58a,58bE. Focardi,58a,58b E. Gallo,58a S. Gonzi,58a,58b V. Gori,58a,58b P. Lenzi,58a,58bM. Meschini,58aS. Paoletti,58a G. Sguazzoni,58a A. Tropiano,58a,58bL. Benussi,59S. Bianco,59F. Fabbri,59 D. Piccolo,59P. Fabbricatore,60aR. Ferretti,60a,60bF. Ferro,60aM. Lo Vetere,60a,60bR. Musenich,60aE. Robutti,60aS. Tosi,60a,60b A. Benaglia,61aM. E. Dinardo,61a,61bS. Fiorendi,61a,61b,cS. Gennai,61aA. Ghezzi,61a,61bP. Govoni,61a,61bM. T. Lucchini,61a,61b,

c

S. Malvezzi,61aR. A. Manzoni,61a,61b,cA. Martelli,61a,61b,cD. Menasce,61aL. Moroni,61aM. Paganoni,61a,61bD. Pedrini,61a S. Ragazzi,61a,61bN. Redaelli,61aT. Tabarelli de Fatis,61a,61bS. Buontempo,62aN. Cavallo,62a,62cF. Fabozzi,62a,62cA. O. M.

Iorio,62a,62b L. Lista,62aS. Meola,62a,62d,c M. Merola,62a P. Paolucci,62a,c P. Azzi,63aN. Bacchetta,63a D. Bisello,63a,63b A. Branca,63a,63bR. Carlin,63a,63bP. Checchia,63a T. Dorigo,63aF. Fanzago,63a M. Galanti,63a,63b,c F. Gasparini,63a,63b

(8)

U. Gasparini,63a,63bP. Giubilato,63a,63b F. Gonella,63a A. Gozzelino,63aK. Kanishchev,63a,63c S. Lacaprara,63a I. Lazzizzera,63a,63c M. Margoni,63a,63bA. T. Meneguzzo,63a,63b F. Montecassiano,63a J. Pazzini,63a,63bN. Pozzobon,63a,63b

P. Ronchese,63a,63bF. Simonetto,63a,63b E. Torassa,63aM. Tosi,63a,63b S. Vanini,63a,63bP. Zotto,63a,63b A. Zucchetta,63a,63b G. Zumerle,63a,63b M. Gabusi,64a,64bS. P. Ratti,64a,64bC. Riccardi,64a,64bP. Vitulo,64a,64bM. Biasini,65a,65b G. M. Bilei,65a

L. Fanò,65a,65b P. Lariccia,65a,65bG. Mantovani,65a,65bM. Menichelli,65a A. Nappi,65a,65b,a F. Romeo,65a,65b A. Saha,65a A. Santocchia,65a,65b A. Spiezia,65a,65bK. Androsov,66a,dd P. Azzurri,66a G. Bagliesi,66a J. Bernardini,66aT. Boccali,66a

G. Broccolo,66a,66c R. Castaldi,66a M. A. Ciocci,66a,ddR. Dell’Orso,66a F. Fiori,66a,66c L. Foà,66a,66c A. Giassi,66a M. T. Grippo,66a,dd A. Kraan,66a F. Ligabue,66a,66c T. Lomtadze,66aL. Martini,66a,66bA. Messineo,66a,66bC. S. Moon,66a,ee

F. Palla,66a A. Rizzi,66a,66bA. Savoy-Navarro,66a,ff A. T. Serban,66a P. Spagnolo,66a P. Squillacioti,66a,dd R. Tenchini,66a G. Tonelli,66a,66bA. Venturi,66a P. G. Verdini,66a C. Vernieri,66a,66c L. Barone,67a,67bF. Cavallari,67a D. Del Re,67a,67b

M. Diemoz,67a M. Grassi,67a,67bC. Jorda,67a E. Longo,67a,67b F. Margaroli,67a,67bP. Meridiani,67aF. Micheli,67a,67b S. Nourbakhsh,67a,67bG. Organtini,67a,67bR. Paramatti,67aS. Rahatlou,67a,67bC. Rovelli,67a L. Soffi,67a,67bP. Traczyk,67a,67b N. Amapane,68a,68b R. Arcidiacono,68a,68c S. Argiro,68a,68bM. Arneodo,68a,68c R. Bellan,68a,68bC. Biino,68a N. Cartiglia,68a

S. Casasso,68a,68bM. Costa,68a,68bA. Degano,68a,68b N. Demaria,68a C. Mariotti,68a S. Maselli,68a E. Migliore,68a,68b V. Monaco,68a,68bM. Musich,68aM. M. Obertino,68a,68cG. Ortona,68a,68bL. Pacher,68a,68bN. Pastrone,68aM. Pelliccioni,68a,c

A. Potenza,68a,68bA. Romero,68a,68b M. Ruspa,68a,68c R. Sacchi,68a,68bA. Solano,68a,68bA. Staiano,68a U. Tamponi,68a S. Belforte,69a V. Candelise,69a,69bM. Casarsa,69a F. Cossutti,69a,c G. Della Ricca,69a,69bB. Gobbo,69a C. La Licata,69a,69b M. Marone,69a,69bD. Montanino,69a,69bA. Penzo,69aA. Schizzi,69a,69bT. Umer,69a,69bA. Zanetti,69aS. Chang,70T. Y. Kim,70 S. K. Nam,70D. H. Kim,71G. N. Kim,71J. E. Kim,71D. J. Kong,71S. Lee,71Y. D. Oh,71H. Park,71D. C. Son,71J. Y. Kim,72 Z. J. Kim,72S. Song,72S. Choi,73D. Gyun,73B. Hong,73M. Jo,73H. Kim,73Y. Kim,73K. S. Lee,73S. K. Park,73Y. Roh,73 M. Choi,74J. H. Kim,74C. Park,74I. C. Park,74S. Park,74G. Ryu,74Y. Choi,75Y. K. Choi,75J. Goh,75M. S. Kim,75 E. Kwon,75B. Lee,75J. Lee,75S. Lee,75H. Seo,75I. Yu,75A. Juodagalvis,76H. Castilla-Valdez,77E. De La Cruz-Burelo,77

I. Heredia-de La Cruz,77,ggR. Lopez-Fernandez,77J. Martínez-Ortega,77A. Sanchez-Hernandez,77L. M. Villasenor-Cendejas,77S. Carrillo Moreno,78 F. Vazquez Valencia,78 H. A. Salazar Ibarguen,79E. Casimiro Linares,80A. Morelos Pineda,80D. Krofcheck,81P. H. Butler,82R. Doesburg,82S. Reucroft,82H. Silverwood,82M. Ahmad,83M. I. Asghar,83 J. Butt,83H. R. Hoorani,83S. Khalid,83W. A. Khan,83T. Khurshid,83S. Qazi,83M. A. Shah,83M. Shoaib,83H. Bialkowska,84 M. Bluj,84,hhB. Boimska,84T. Frueboes,84M. Górski,84M. Kazana,84K. Nawrocki,84K. Romanowska-Rybinska,84 M. Szleper,84G. Wrochna,84P. Zalewski,84G. Brona,85K. Bunkowski,85M. Cwiok,85W. Dominik,85 K. Doroba,85 A. Kalinowski,85M. Konecki,85J. Krolikowski,85 M. Misiura,85W. Wolszczak,85P. Bargassa,86C. Beirão Da Cruz E

Silva,86P. Faccioli,86P. G. Ferreira Parracho,86M. Gallinaro,86F. Nguyen,86J. Rodrigues Antunes,86J. Seixas,86,c J. Varela,86P. Vischia,86S. Afanasiev,87P. Bunin,87I. Golutvin,87I. Gorbunov,87A. Kamenev,87V. Karjavin,87 V. Konoplyanikov,87G. Kozlov,87A. Lanev,87A. Malakhov,87V. Matveev,87P. Moisenz,87V. Palichik,87V. Perelygin,87

S. Shmatov,87N. Skatchkov,87V. Smirnov,87A. Zarubin,87V. Golovtsov,88 Y. Ivanov,88V. Kim,88P. Levchenko,88 V. Murzin,88V. Oreshkin,88I. Smirnov,88V. Sulimov,88L. Uvarov,88S. Vavilov,88A. Vorobyev,88A. Vorobyev,88 Y. Andreev,89A. Dermenev,89S. Gninenko,89N. Golubev,89M. Kirsanov,89N. Krasnikov,89A. Pashenkov,89D. Tlisov,89 A. Toropin,89V. Epshteyn,90V. Gavrilov,90N. Lychkovskaya,90V. Popov,90G. Safronov,90S. Semenov,90A. Spiridonov,90

V. Stolin,90E. Vlasov,90A. Zhokin,90V. Andreev,91M. Azarkin,91I. Dremin,91M. Kirakosyan,91A. Leonidov,91 G. Mesyats,91S. V. Rusakov,91A. Vinogradov,91A. Belyaev,92E. Boos,92V. Bunichev,92M. Dubinin,92,hL. Dudko,92

A. Gribushin,92 V. Klyukhin,92O. Kodolova,92I. Lokhtin,92A. Markina,92S. Obraztsov,92M. Perfilov,92V. Savrin,92 A. Snigirev,92I. Azhgirey,93I. Bayshev,93S. Bitioukov,93V. Kachanov,93A. Kalinin,93D. Konstantinov,93V. Krychkine,93 V. Petrov,93R. Ryutin,93A. Sobol,93L. Tourtchanovitch,93S. Troshin,93N. Tyurin,93A. Uzunian,93A. Volkov,93P. Adzic,94,

iiM. Djordjevic,94M. Ekmedzic,94J. Milosevic,94M. Aguilar-Benitez,95J. Alcaraz Maestre,95C. Battilana,95E. Calvo,95

M. Cerrada,95M. Chamizo Llatas,95,c N. Colino,95B. De La Cruz,95A. Delgado Peris,95D. Domínguez Vázquez,95 C. Fernandez Bedoya,95J. P. Fernández Ramos,95A. Ferrando,95J. Flix,95M. C. Fouz,95P. Garcia-Abia,95O. Gonzalez

Lopez,95S. Goy Lopez,95J. M. Hernandez,95M. I. Josa,95 G. Merino,95E. Navarro De Martino,95J. Puerta Pelayo,95 A. Quintario Olmeda,95I. Redondo,95L. Romero,95M. S. Soares,95C. Willmott,95 C. Albajar,96J. F. de Trocóniz,96

H. Brun,97J. Cuevas,97J. Fernandez Menendez,97 S. Folgueras,97I. Gonzalez Caballero,97L. Lloret Iglesias,97 J. A. Brochero Cifuentes,98I. J. Cabrillo,98A. Calderon,98S. H. Chuang,98J. Duarte Campderros,98M. Fernandez,98 G. Gomez,98J. Gonzalez Sanchez,98A. Graziano,98A. Lopez Virto,98J. Marco,98R. Marco,98C. Martinez Rivero,98

(9)

F. Matorras,98F. J. Munoz Sanchez,98 J. Piedra Gomez,98T. Rodrigo,98 A. Y. Rodríguez-Marrero,98A. Ruiz-Jimeno,98 L. Scodellaro,98I. Vila,98R. Vilar Cortabitarte,98D. Abbaneo,99E. Auffray,99G. Auzinger,99M. Bachtis,99P. Baillon,99 A. H. Ball,99D. Barney,99J. Bendavid,99L. Benhabib,99J. F. Benitez,99C. Bernet,99,iG. Bianchi,99P. Bloch,99A. Bocci,99 A. Bonato,99O. Bondu,99C. Botta,99H. Breuker,99T. Camporesi,99G. Cerminara,99T. Christiansen,99J. A. Coarasa Perez,99 S. Colafranceschi,99,jjM. D’Alfonso,99D. d’Enterria,99A. Dabrowski,99A. David,99F. De Guio,99A. De Roeck,99S. De Visscher,99S. Di Guida,99M. Dobson,99N. Dupont-Sagorin,99A. Elliott-Peisert,99J. Eugster,99G. Franzoni,99W. Funk,99 M. Giffels,99D. Gigi,99K. Gill,99M. Girone,99M. Giunta,99F. Glege,99R. Gomez-Reino Garrido,99S. Gowdy,99R. Guida,99

J. Hammer,99M. Hansen,99P. Harris,99A. Hinzmann,99V. Innocente,99 P. Janot,99E. Karavakis,99 K. Kousouris,99 K. Krajczar,99P. Lecoq,99C. Lourenço,99N. Magini,99L. Malgeri,99M. Mannelli,99L. Masetti,99F. Meijers,99S. Mersi,99

E. Meschi,99F. Moortgat,99M. Mulders,99P. Musella,99L. Orsini,99 E. Palencia Cortezon,99E. Perez,99L. Perrozzi,99 A. Petrilli,99G. Petrucciani,99A. Pfeiffer,99M. Pierini,99M. Pimiä,99D. Piparo,99M. Plagge,99A. Racz,99W. Reece,99

G. Rolandi,99,kk M. Rovere,99H. Sakulin,99F. Santanastasio,99C. Schäfer,99C. Schwick,99 S. Sekmen,99A. Sharma,99 P. Siegrist,99P. Silva,99M. Simon,99P. Sphicas,99,llJ. Steggemann,99B. Stieger,99M. Stoye,99A. Tsirou,99G. I. Veres,99,u

J. R. Vlimant,99H. K. Wöhri,99W. D. Zeuner,99W. Bertl,100K. Deiters,100W. Erdmann,100 K. Gabathuler,100 R. Horisberger,100Q. Ingram,100H. C. Kaestli,100S. König,100D. Kotlinski,100U. Langenegger,100D. Renker,100T. Rohe,100 F. Bachmair,101L. Bäni,101L. Bianchini,101P. Bortignon,101M. A. Buchmann,101B. Casal,101N. Chanon,101A. Deisher,101

G. Dissertori,101 M. Dittmar,101M. Donegà,101M. Dünser,101 P. Eller,101C. Grab,101D. Hits,101W. Lustermann,101 B. Mangano,101A. C. Marini,101P. Martinez Ruiz del Arbol,101 D. Meister,101 N. Mohr,101 C. Nägeli,101,mm P. Nef,101 F. Nessi-Tedaldi,101 F. Pandolfi,101 L. Pape,101F. Pauss,101 M. Peruzzi,101M. Quittnat,101 F. J. Ronga,101 M. Rossini,101

A. Starodumov,101,nn M. Takahashi,101 L. Tauscher,101,a K. Theofilatos,101 D. Treille,101R. Wallny,101H. A. Weber,101 C. Amsler,102,ooV. Chiochia,102A. De Cosa,102C. Favaro,102M. Ivova Rikova,102B. Kilminster,102B. Millan Mejias,102

J. Ngadiuba,102P. Robmann,102H. Snoek,102 S. Taroni,102M. Verzetti,102Y. Yang,102 M. Cardaci,103 K. H. Chen,103 C. Ferro,103C. M. Kuo,103 S. W. Li,103 W. Lin,103 Y. J. Lu,103 R. Volpe,103S. S. Yu,103P. Bartalini,104P. Chang,104 Y. H. Chang,104Y. W. Chang,104Y. Chao,104 K. F. Chen,104 P. H. Chen,104C. Dietz,104U. Grundler,104W.-S. Hou,104 Y. Hsiung,104K. Y. Kao,104Y. J. Lei,104Y. F. Liu,104R.-S. Lu,104D. Majumder,104E. Petrakou,104X. Shi,104J. G. Shiu,104 Y. M. Tzeng,104M. Wang,104R. Wilken,104B. Asavapibhop,105N. Suwonjandee,105A. Adiguzel,106 M. N. Bakirci,106,pp

S. Cerci,106,qq C. Dozen,106I. Dumanoglu,106 E. Eskut,106 S. Girgis,106 G. Gokbulut,106 E. Gurpinar,106 I. Hos,106 E. E. Kangal,106 A. Kayis Topaksu,106G. Onengut,106,rrK. Ozdemir,106 S. Ozturk,106,pp A. Polatoz,106 K. Sogut,106,ss D. Sunar Cerci,106,qqB. Tali,106,qq H. Topakli,106,ppM. Vergili,106I. V. Akin,107T. Aliev,107 B. Bilin,107S. Bilmis,107 M. Deniz,107H. Gamsizkan,107A. M. Guler,107G. Karapinar,107,tt K. Ocalan,107A. Ozpineci,107M. Serin,107R. Sever,107 U. E. Surat,107M. Yalvac,107M. Zeyrek,107E. Gülmez,108B. Isildak,108,uuM. Kaya,108,vvO. Kaya,108,vvS. Ozkorucuklu,108,

ww

N. Sonmez,108,xx H. Bahtiyar,109,yy E. Barlas,109K. Cankocak,109 Y. O. Günaydin,109,zz F. I. Vardarlı,109M. Yücel,109 L. Levchuk,110 P. Sorokin,110 J. J. Brooke,111 E. Clement,111 D. Cussans,111 H. Flacher,111 R. Frazier,111J. Goldstein,111 M. Grimes,111G. P. Heath,111H. F. Heath,111J. Jacob,111L. Kreczko,111C. Lucas,111Z. Meng,111D. M. Newbold,111,aaa S. Paramesvaran,111 A. Poll,111S. Senkin,111V. J. Smith,111T. Williams,111K. W. Bell,112A. Belyaev,112,bbbC. Brew,112 R. M. Brown,112D. J. A. Cockerill,112J. A. Coughlan,112K. Harder,112 S. Harper,112J. Ilic,112E. Olaiya,112D. Petyt,112

C. H. Shepherd-Themistocleous,112A. Thea,112I. R. Tomalin,112 W. J. Womersley,112 S. D. Worm,112 M. Baber,113 R. Bainbridge,113O. Buchmuller,113D. Burton,113D. Colling,113N. Cripps,113M. Cutajar,113P. Dauncey,113G. Davies,113

M. Della Negra,113 W. Ferguson,113 J. Fulcher,113 D. Futyan,113A. Gilbert,113A. Guneratne Bryer,113 G. Hall,113 Z. Hatherell,113J. Hays,113G. Iles,113M. Jarvis,113G. Karapostoli,113M. Kenzie,113R. Lane,113R. Lucas,113,aaaL. Lyons,113 A.-M. Magnan,113J. Marrouche,113 B. Mathias,113R. Nandi,113J. Nash,113 A. Nikitenko,113,nn J. Pela,113M. Pesaresi,113 K. Petridis,113M. Pioppi,113,cccD. M. Raymond,113 S. Rogerson,113 A. Rose,113C. Seez,113 P. Sharp,113,a A. Sparrow,113 A. Tapper,113M. Vazquez Acosta,113T. Virdee,113S. Wakefield,113N. Wardle,113J. E. Cole,114P. R. Hobson,114A. Khan,114 P. Kyberd,114D. Leggat,114D. Leslie,114W. Martin,114 I. D. Reid,114 P. Symonds,114L. Teodorescu,114M. Turner,114

J. Dittmann,115K. Hatakeyama,115 A. Kasmi,115 H. Liu,115T. Scarborough,115O. Charaf,116 S. I. Cooper,116 C. Henderson,116P. Rumerio,116 A. Avetisyan,117 T. Bose,117C. Fantasia,117A. Heister,117 P. Lawson,117 D. Lazic,117 J. Rohlf,117 D. Sperka,117J. St. John,117L. Sulak,117J. Alimena,118S. Bhattacharya,118 G. Christopher,118D. Cutts,118

Z. Demiragli,118A. Ferapontov,118A. Garabedian,118U. Heintz,118 S. Jabeen,118 G. Kukartsev,118E. Laird,118 G. Landsberg,118M. Luk,118M. Narain,118M. Segala,118T. Sinthuprasith,118T. Speer,118 J. Swanson,118 R. Breedon,119

(10)

G. Breto,119M. Calderon De La Barca Sanchez,119S. Chauhan,119M. Chertok,119J. Conway,119R. Conway,119P. T. Cox,119 R. Erbacher,119M. Gardner,119W. Ko,119A. Kopecky,119R. Lander,119T. Miceli,119D. Pellett,119J. Pilot,119F. Ricci-Tam,119 B. Rutherford,119M. Searle,119 S. Shalhout,119 J. Smith,119 M. Squires,119M. Tripathi,119S. Wilbur,119 R. Yohay,119

V. Andreev,120 D. Cline,120R. Cousins,120S. Erhan,120 P. Everaerts,120C. Farrell,120M. Felcini,120J. Hauser,120 M. Ignatenko,120C. Jarvis,120 G. Rakness,120 P. Schlein,120,a E. Takasugi,120 V. Valuev,120M. Weber,120 J. Babb,121 R. Clare,121J. Ellison,121J. W. Gary,121G. Hanson,121J. Heilman,121P. Jandir,121F. Lacroix,121H. Liu,121O. R. Long,121

A. Luthra,121M. Malberti,121H. Nguyen,121A. Shrinivas,121J. Sturdy,121S. Sumowidagdo,121 S. Wimpenny,121 W. Andrews,122J. G. Branson,122G. B. Cerati,122S. Cittolin,122R. T. D’Agnolo,122D. Evans,122A. Holzner,122R. Kelley,122

D. Kovalskyi,122 M. Lebourgeois,122J. Letts,122I. Macneill,122S. Padhi,122C. Palmer,122 M. Pieri,122 M. Sani,122 V. Sharma,122 S. Simon,122E. Sudano,122M. Tadel,122Y. Tu,122A. Vartak,122S. Wasserbaech,122,dddF. Würthwein,122 A. Yagil,122J. Yoo,122D. Barge,123C. Campagnari,123T. Danielson,123K. Flowers,123P. Geffert,123C. George,123F. Golf,123 J. Incandela,123C. Justus,123R. Magaña Villalba,123N. Mccoll,123V. Pavlunin,123J. Richman,123R. Rossin,123D. Stuart,123 W. To,123C. West,123A. Apresyan,124A. Bornheim,124J. Bunn,124Y. Chen,124E. Di Marco,124J. Duarte,124D. Kcira,124

A. Mott,124H. B. Newman,124C. Pena,124 C. Rogan,124M. Spiropulu,124 V. Timciuc,124 R. Wilkinson,124 S. Xie,124 R. Y. Zhu,124 V. Azzolini,125 A. Calamba,125R. Carroll,125T. Ferguson,125Y. Iiyama,125 D. W. Jang,125M. Paulini,125 J. Russ,125H. Vogel,125 I. Vorobiev,125J. P. Cumalat,126 B. R. Drell,126 W. T. Ford,126 A. Gaz,126E. Luiggi Lopez,126 U. Nauenberg,126 J. G. Smith,126 K. Stenson,126K. A. Ulmer,126S. R. Wagner,126J. Alexander,127A. Chatterjee,127 N. Eggert,127L. K. Gibbons,127W. Hopkins,127A. Khukhunaishvili,127B. Kreis,127N. Mirman,127G. Nicolas Kaufman,127 J. R. Patterson,127A. Ryd,127E. Salvati,127W. Sun,127W. D. Teo,127J. Thom,127J. Thompson,127J. Tucker,127Y. Weng,127

L. Winstrom,127P. Wittich,127 D. Winn,128S. Abdullin,129M. Albrow,129J. Anderson,129G. Apollinari,129L. A. T. Bauerdick,129A. Beretvas,129J. Berryhill,129P. C. Bhat,129K. Burkett,129J. N. Butler,129V. Chetluru,129H. W. K. Cheung,129 F. Chlebana,129S. Cihangir,129V. D. Elvira,129I. Fisk,129J. Freeman,129Y. Gao,129E. Gottschalk,129L. Gray,129D. Green,129 O. Gutsche,129D. Hare,129R. M. Harris,129J. Hirschauer,129B. Hooberman,129S. Jindariani,129M. Johnson,129U. Joshi,129

K. Kaadze,129B. Klima,129 S. Kwan,129J. Linacre,129 D. Lincoln,129R. Lipton,129J. Lykken,129K. Maeshima,129 J. M. Marraffino,129V. I. Martinez Outschoorn,129S. Maruyama,129D. Mason,129P. McBride,129K. Mishra,129S. Mrenna,129

Y. Musienko,129,eee S. Nahn,129 C. Newman-Holmes,129 V. O’Dell,129O. Prokofyev,129 N. Ratnikova,129 E. Sexton-Kennedy,129S. Sharma,129W. J. Spalding,129L. Spiegel,129L. Taylor,129S. Tkaczyk,129 N. V. Tran,129L. Uplegger,129

E. W. Vaandering,129 R. Vidal,129 J. Whitmore,129 W. Wu,129F. Yang,129 J. C. Yun,129D. Acosta,130P. Avery,130 D. Bourilkov,130T. Cheng,130S. Das,130M. De Gruttola,130G. P. Di Giovanni,130D. Dobur,130R. D. Field,130M. Fisher,130

Y. Fu,130I. K. Furic,130 J. Hugon,130 B. Kim,130J. Konigsberg,130 A. Korytov,130A. Kropivnitskaya,130T. Kypreos,130 J. F. Low,130 K. Matchev,130P. Milenovic,130,fffG. Mitselmakher,130L. Muniz,130A. Rinkevicius,130 L. Shchutska,130

N. Skhirtladze,130M. Snowball,130J. Yelton,130M. Zakaria,130V. Gaultney,131S. Hewamanage,131S. Linn,131 P. Markowitz,131G. Martinez,131J. L. Rodriguez,131T. Adams,132A. Askew,132J. Bochenek,132J. Chen,132B. Diamond,132

J. Haas,132 S. Hagopian,132V. Hagopian,132K. F. Johnson,132 H. Prosper,132 V. Veeraraghavan,132 M. Weinberg,132 M. M. Baarmand,133B. Dorney,133M. Hohlmann,133H. Kalakhety,133F. Yumiceva,133M. R. Adams,134L. Apanasevich,134

V. E. Bazterra,134R. R. Betts,134I. Bucinskaite,134 R. Cavanaugh,134 O. Evdokimov,134 L. Gauthier,134C. E. Gerber,134 D. J. Hofman,134S. Khalatyan,134P. Kurt,134D. H. Moon,134C. O’Brien,134 C. Silkworth,134 P. Turner,134N. Varelas,134 U. Akgun,135E. A. Albayrak,135,yyB. Bilki,135,gggW. Clarida,135K. Dilsiz,135F. Duru,135J.-P. Merlo,135H. Mermerkaya,135,

hhh

A. Mestvirishvili,135A. Moeller,135J. Nachtman,135H. Ogul,135Y. Onel,135F. Ozok,135,yyS. Sen,135P. Tan,135E. Tiras,135 J. Wetzel,135T. Yetkin,135,iiiK. Yi,135B. A. Barnett,136B. Blumenfeld,136S. Bolognesi,136D. Fehling,136A. V. Gritsan,136 P. Maksimovic,136C. Martin,136M. Swartz,136A. Whitbeck,136P. Baringer,137A. Bean,137G. Benelli,137R. P. Kenny III,137 M. Murray,137D. Noonan,137 S. Sanders,137 J. Sekaric,137R. Stringer,137 Q. Wang,137J. S. Wood,137A. F. Barfuss,138 I. Chakaberia,138A. Ivanov,138S. Khalil,138M. Makouski,138Y. Maravin,138L. K. Saini,138S. Shrestha,138I. Svintradze,138

J. Gronberg,139D. Lange,139F. Rebassoo,139 D. Wright,139 A. Baden,140 B. Calvert,140 S. C. Eno,140J. A. Gomez,140 N. J. Hadley,140R. G. Kellogg,140T. Kolberg,140Y. Lu,140M. Marionneau,140A. C. Mignerey,140K. Pedro,140A. Skuja,140

J. Temple,140 M. B. Tonjes,140S. C. Tonwar,140 A. Apyan,141 R. Barbieri,141 G. Bauer,141 W. Busza,141 I. A. Cali,141 M. Chan,141L. Di Matteo,141V. Dutta,141G. Gomez Ceballos,141M. Goncharov,141D. Gulhan,141M. Klute,141Y. S. Lai,141 Y.-J. Lee,141A. Levin,141P. D. Luckey,141T. Ma,141C. Paus,141D. Ralph,141C. Roland,141G. Roland,141G. S. F. Stephans,141 F. Stöckli,141 K. Sumorok,141D. Velicanu,141 J. Veverka,141B. Wyslouch,141 M. Yang,141A. S. Yoon,141 M. Zanetti,141

(11)

V. Zhukova,141B. Dahmes,142A. De Benedetti,142A. Gude,142 S. C. Kao,142 K. Klapoetke,142Y. Kubota,142J. Mans,142 N. Pastika,142 R. Rusack,142A. Singovsky,142N. Tambe,142J. Turkewitz,142J. G. Acosta,143L. M. Cremaldi,143 R. Kroeger,143S. Oliveros,143L. Perera,143R. Rahmat,143D. A. Sanders,143D. Summers,143E. Avdeeva,144K. Bloom,144

S. Bose,144D. R. Claes,144 A. Dominguez,144 R. Gonzalez Suarez,144 J. Keller,144I. Kravchenko,144J. Lazo-Flores,144 S. Malik,144 F. Meier,144G. R. Snow,144 J. Dolen,145A. Godshalk,145I. Iashvili,145S. Jain,145A. Kharchilava,145 A. Kumar,145S. Rappoccio,145 Z. Wan,145G. Alverson,146 E. Barberis,146 D. Baumgartel,146M. Chasco,146 J. Haley,146

A. Massironi,146 D. Nash,146T. Orimoto,146D. Trocino,146D. Wood,146J. Zhang,146A. Anastassov,147K. A. Hahn,147 A. Kubik,147 L. Lusito,147 N. Mucia,147 N. Odell,147B. Pollack,147A. Pozdnyakov,147 M. Schmitt,147 S. Stoynev,147 K. Sung,147M. Velasco,147S. Won,147D. Berry,148 A. Brinkerhoff,148K. M. Chan,148A. Drozdetskiy,148M. Hildreth,148

C. Jessop,148D. J. Karmgard,148 J. Kolb,148K. Lannon,148W. Luo,148 S. Lynch,148 N. Marinelli,148D. M. Morse,148 T. Pearson,148M. Planer,148R. Ruchti,148J. Slaunwhite,148N. Valls,148M. Wayne,148M. Wolf,148 L. Antonelli,149

B. Bylsma,149L. S. Durkin,149 S. Flowers,149C. Hill,149 R. Hughes,149 K. Kotov,149T. Y. Ling,149 D. Puigh,149 M. Rodenburg,149G. Smith,149 C. Vuosalo,149 B. L. Winer,149H. Wolfe,149 H. W. Wulsin,149E. Berry,150 P. Elmer,150 V. Halyo,150P. Hebda,150J. Hegeman,150A. Hunt,150P. Jindal,150S. A. Koay,150P. Lujan,150D. Marlow,150T. Medvedeva,150 M. Mooney,150J. Olsen,150P. Piroué,150X. Quan,150A. Raval,150H. Saka,150D. Stickland,150C. Tully,150J. S. Werner,150

S. C. Zenz,150 A. Zuranski,150E. Brownson,151A. Lopez,151 H. Mendez,151J. E. Ramirez Vargas,151E. Alagoz,152 D. Benedetti,152G. Bolla,152D. Bortoletto,152M. De Mattia,152A. Everett,152Z. Hu,152M. Jones,152K. Jung,152M. Kress,152

N. Leonardo,152D. Lopes Pegna,152 V. Maroussov,152P. Merkel,152D. H. Miller,152N. Neumeister,152B. C. Radburn-Smith,152I. Shipsey,152D. Silvers,152A. Svyatkovskiy,152F. Wang,152 W. Xie,152L. Xu,152H. D. Yoo,152 J. Zablocki,152

Y. Zheng,152N. Parashar,153A. Adair,154B. Akgun,154K. M. Ecklund,154 F. J. M. Geurts,154 W. Li,154 B. Michlin,154 B. P. Padley,154 R. Redjimi,154J. Roberts,154 J. Zabel,154 B. Betchart,155 A. Bodek,155 R. Covarelli,155P. de Barbaro,155 R. Demina,155Y. Eshaq,155T. Ferbel,155A. Garcia-Bellido,155P. Goldenzweig,155J. Han,155A. Harel,155D. C. Miner,155

G. Petrillo,155D. Vishnevskiy,155M. Zielinski,155A. Bhatti,156 R. Ciesielski,156L. Demortier,156 K. Goulianos,156 G. Lungu,156S. Malik,156C. Mesropian,156S. Arora,157A. Barker,157J. P. Chou,157C. Contreras-Campana,157E.

Contreras-Campana,157 D. Duggan,157D. Ferencek,157 Y. Gershtein,157R. Gray,157 E. Halkiadakis,157D. Hidas,157 A. Lath,157 S. Panwalkar,157M. Park,157R. Patel,157V. Rekovic,157J. Robles,157S. Salur,157S. Schnetzer,157C. Seitz,157S. Somalwar,157

R. Stone,157 S. Thomas,157 P. Thomassen,157 M. Walker,157K. Rose,158 S. Spanier,158Z. C. Yang,158A. York,158 O. Bouhali,159,jjj R. Eusebi,159 W. Flanagan,159J. Gilmore,159 T. Kamon,159,kkkV. Khotilovich,159V. Krutelyov,159 R. Montalvo,159I. Osipenkov,159 Y. Pakhotin,159A. Perloff,159 J. Roe,159 A. Safonov,159 T. Sakuma,159I. Suarez,159

A. Tatarinov,159 D. Toback,159N. Akchurin,160C. Cowden,160 J. Damgov,160C. Dragoiu,160 P. R. Dudero,160 K. Kovitanggoon,160S. Kunori,160S. W. Lee,160 T. Libeiro,160 I. Volobouev,160 E. Appelt,161 A. G. Delannoy,161 S. Greene,161A. Gurrola,161W. Johns,161C. Maguire,161Y. Mao,161A. Melo,161M. Sharma,161P. Sheldon,161B. Snook,161

S. Tuo,161 J. Velkovska,161 M. W. Arenton,162 S. Boutle,162 B. Cox,162B. Francis,162J. Goodell,162R. Hirosky,162 A. Ledovskoy,162C. Lin,162C. Neu,162J. Wood,162S. Gollapinni,163R. Harr,163P. E. Karchin,163C. Kottachchi Kankanamge Don,163P. Lamichhane,163A. Sakharov,163 D. A. Belknap,164L. Borrello,164D. Carlsmith,164 M. Cepeda,164S. Dasu,164

S. Duric,164 E. Friis,164M. Grothe,164R. Hall-Wilton,164M. Herndon,164 A. Hervé,164 P. Klabbers,164 J. Klukas,164 A. Lanaro,164R. Loveless,164A. Mohapatra,164I. Ojalvo,164T. Perry,164 G. A. Pierro,164 G. Polese,164I. Ross,164

T. Sarangi,164A. Savin164 and W. H. Smith164 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2

Institut für Hochenergiephysik der OeAW, Wien, Austria

3National Centre for Particle and High Energy Physics, Minsk, Belarus 4

Universiteit Antwerpen, Antwerpen, Belgium

5Vrije Universiteit Brussel, Brussel, Belgium 6

Université Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium 8

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

9Université de Mons, Mons, Belgium 10

(12)

11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12a

Universidade Estadual Paulista, São Paulo, Brazil

12bUniversidade Federal do ABC, São Paulo, Brazil 13

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15

Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17

Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19

University of Split, Split, Croatia

20Institute Rudjer Boskovic, Zagreb, Croatia 21

University of Cyprus, Nicosia, Cyprus

22Charles University, Prague, Czech Republic 23

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

25Department of Physics, University of Helsinki, Helsinki, Finland 26

Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 30

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

32

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

33

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany 37

Deutsches Elektronen-Synchrotron, Hamburg, Germany

38University of Hamburg, Hamburg, Germany 39

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 41

University of Athens, Athens, Greece

42University of Ioánnina, Ioánnina, Greece 43

Wigner Research Centre for Physics, Budapest, Hungary

44Institute of Nuclear Research ATOMKI, Debrecen, Hungary 45

University of Debrecen, Debrecen, Hungary

46National Institute of Science Education and Research, Bhubaneswar, India 47

Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49

Saha Institute of Nuclear Physics, Kolkata, India

50Bhabha Atomic Research Centre, Mumbai, India 51

Tata Institute of Fundamental Research—EHEP, Mumbai, India

52Tata Institute of Fundamental Research—HECR, Mumbai, India 53

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

54University College Dublin, Dublin, Ireland 55a

INFN Sezione di Bari, Bari, Italy

55bUniversità di Bari, Bari, Italy 55c

Politecnico di Bari, Bari, Italy

56aINFN Sezione di Bologna, Bologna, Italy 56b

Università di Bologna, Bologna, Italy

57aINFN Sezione di Catania, Catania, Italy 57b

Università di Catania, Catania, Italy

57cCSFNSM, Catania, Italy 58a

INFN Sezione di Firenze, Firenze, Italy

58bUniversità di Firenze, Firenze, Italy 59

(13)

60aINFN Sezione di Genova, Genova, Italy 60b

Università di Genova, Genova, Italy

61aINFN Sezione di Milano-Bicocca, Milano, Italy 61b

Università di Milano-Bicocca, Milano, Italy

62aINFN Sezione di Napoli, Napoli, Italy 62b

Università di Napoli’Federico II’, Napoli, Italy

62cUniversità della Basilicata (Potenza), Napoli, Italy 62d

Università G. Marconi (Roma), Napoli, Italy

63aINFN Sezione di Padova, Padova, Italy 63b

Università di Padova, Padova, Italy

63cUniversità di Trento (Trento), Padova, Italy 64a

INFN Sezione di Pavia, Pavia, Italy

64bUniversità di Pavia, Pavia, Italy 65a

INFN Sezione di Perugia, Perugia, Italy

65bUniversità di Perugia, Perugia, Italy 66a

INFN Sezione di Pisa, Pisa, Italy

66bUniversità di Pisa, Pisa, Italy 66c

Scuola Normale Superiore di Pisa, Pisa, Italy

67aINFN Sezione di Roma, Roma, Italy 67b

Università di Roma, Roma, Italy

68aINFN Sezione di Torino, Torino, Italy 68b

Università di Torino, Torino, Italy

68cUniversità del Piemonte Orientale (Novara), Torino, Italy 69a

INFN Sezione di Trieste, Trieste, Italy

69bUniversità di Trieste, Trieste, Italy 70

Kangwon National University, Chunchon, Korea

71Kyungpook National University, Daegu, Korea 72

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

73Korea University, Seoul, Korea 74

University of Seoul, Seoul, Korea

75Sungkyunkwan University, Suwon, Korea 76

Vilnius University, Vilnius, Lithuania

77Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 78

Universidad Iberoamericana, Mexico City, Mexico

79Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 80

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

81University of Auckland, Auckland, New Zealand 82

University of Canterbury, Christchurch, New Zealand

83National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 84

National Centre for Nuclear Research, Swierk, Poland

85Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 86

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

87Joint Institute for Nuclear Research, Dubna, Russia 88

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

89Institute for Nuclear Research, Moscow, Russia 90

Institute for Theoretical and Experimental Physics, Moscow, Russia

91P.N. Lebedev Physical Institute, Moscow, Russia 92

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

93State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 94

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

95Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 96

Universidad Autónoma de Madrid, Madrid, Spain

97Universidad de Oviedo, Oviedo, Spain 98

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

99CERN, European Organization for Nuclear Research, Geneva, Switzerland 100

Paul Scherrer Institut, Villigen, Switzerland

101Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 102

Universität Zürich, Zurich, Switzerland

103National Central University, Chung-Li, Taiwan 104

(14)

105Chulalongkorn University, Bangkok, Thailand 106

Cukurova University, Adana, Turkey

107Middle East Technical University, Physics Department, Ankara, Turkey 108

Bogazici University, Istanbul, Turkey

109Istanbul Technical University, Istanbul, Turkey 110

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

111University of Bristol, Bristol, United Kingdom 112

Rutherford Appleton Laboratory, Didcot, United Kingdom

113Imperial College, London, United Kingdom 114

Brunel University, Uxbridge, United Kingdom

115Baylor University, Waco, Texas 76706, USA 116

The University of Alabama, Tuscaloosa, Alabama 35487, USA

117Boston University, Boston, Massachusetts 02215, USA 118

Brown University, Providence, Rhode Island 02912, USA

119University of California, Davis, Davis, California 95616, USA 120

University of California, Los Angeles, Los Angeles, California 90095, USA

121University of California, Riverside, Riverside, California 92521, USA 122

University of California, San Diego, La Jolla, California 92093, USA

123University of California, Santa Barbara, Santa Barbara, California 93106, USA 124

California Institute of Technology, Pasadena, California 91125, USA

125Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 126

University of Colorado at Boulder, Boulder, Colorado 80309, USA

127Cornell University, Ithaca, New York 14853, USA 128

Fairfield University, Fairfield, Connecticut 06824, USA

129Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA 130

University of Florida, Gainesville, Florida 32611, USA

131Florida International University, Miami, Florida 33199, USA 132

Florida State University, Tallahassee, Florida 32306, USA

133Florida Institute of Technology, Melbourne, Florida 32901, USA 134

University of Illinois at Chicago (UIC), Chicago, Illinois 60607, USA

135The University of Iowa, Iowa City, Iowa 52242, USA 136

Johns Hopkins University, Baltimore, Maryland 21218, USA

137The University of Kansas, Lawrence, Kansas 66045, USA 138

Kansas State University, Manhattan, Kansas 66506, USA

139Lawrence Livermore National Laboratory, Livermore, California 94720, USA 140

University of Maryland, College Park, Maryland 20742, USA

141Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 142

University of Minnesota, Minneapolis, Minnesota 55455, USA

143University of Mississippi, Oxford, Mississippi 38677, USA 144

University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA

145State University of New York at Buffalo, Buffalo, New York 14260, USA 146

Northeastern University, Boston, Massachusetts 02115, USA

147Northwestern University, Evanston, Illinois 60208, USA 148

University of Notre Dame, Notre Dame, Indiana 46556, USA

149The Ohio State University, Columbus, Ohio 43210, USA 150

Princeton University, Princeton, New Jersey 08544, USA

151University of Puerto Rico, Mayaguez, Puerto Rico 00680 152

Purdue University, West Lafayette, Indiana 47907, USA

153Purdue University Calumet, Hammond, Indiana 46323, USA 154

Rice University, Houston, Texas 77251, USA

155University of Rochester, Rochester, New York 14627, USA 156

The Rockefeller University, New York, New York 10021, USA

157Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA 158

University of Tennessee, Knoxville, Tennessee 37996, USA

159Texas A&M University, College Station, Texas 77843, USA 160

Texas Tech University, Lubbock, Texas 79409, USA

161Vanderbilt University, Nashville, Tennessee 37235, USA 162

University of Virginia, Charlottesville, Virginia 22901, USA

163Wayne State University, Detroit, Michigan 48202, USA 164

(15)

aDeceased. b

Also at Vienna University of Technology, Vienna, Austria.

cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. d

Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.

e

Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.

fAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia. g

Also at Universidade Estadual de Campinas, Campinas, Brazil.

hAlso at California Institute of Technology, Pasadena, CA, USA. i

Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.

jAlso at Zewail City of Science and Technology, Zewail, Egypt. k

Also at Suez Canal University, Suez, Egypt.

lAlso at Cairo University, Cairo, Egypt. m

Also at Fayoum University, El-Fayoum, Egypt.

nAlso at British University in Egypt, Cairo, Egypt. o

Present address: Ain Shams University, Cairo, Egypt.

pAlso at Université de Haute Alsace, Mulhouse, France. q

Also at Joint Institute for Nuclear Research, Dubna, Russia.

rAlso at Brandenburg University of Technology, Cottbus, Germany. s

Also at The University of Kansas, Lawrence, KS, USA.

tAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. u

Also at Eötvös Loránd University, Budapest, Hungary.

vAlso at Tata Institute of Fundamental Research - EHEP, Mumbai, India. w

Also at Tata Institute of Fundamental Research - HECR, Mumbai, India.

xPresent address: King Abdulaziz University, Jeddah, Saudi Arabia. y

Also at University of Visva-Bharati, Santiniketan, India.

zAlso at University of Ruhuna, Matara, Sri Lanka. aa

Also at Isfahan University of Technology, Isfahan, Iran.

bbAlso at Sharif University of Technology, Tehran, Iran. cc

Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.

ddAlso at Università degli Studi di Siena, Siena, Italy. ee

Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France.

ffAlso at Purdue University, West Lafayette, IN, USA. gg

Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico.

hhAlso at National Centre for Nuclear Research, Swierk, Poland. ii

Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.

jjAlso at Facoltà Ingegneria, Università di Roma, Roma, Italy. kk

Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.

llAlso at University of Athens, Athens, Greece. mm

Also at Paul Scherrer Institut, Villigen, Switzerland.

nnAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. oo

Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.

ppAlso at Gaziosmanpasa University, Tokat, Turkey. qq

Also at Adiyaman University, Adiyaman, Turkey.

rrAlso at Cag University, Mersin, Turkey. ss

Also at Mersin University, Mersin, Turkey.

ttAlso at Izmir Institute of Technology, Izmir, Turkey. uu

Also at Ozyegin University, Istanbul, Turkey.

vvAlso at Kafkas University, Kars, Turkey. ww

Also at Suleyman Demirel University, Isparta, Turkey.

xxAlso at Ege University, Izmir, Turkey. yy

Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.

zzAlso at Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey. aaa

Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.

bbbAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. ccc

Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.

dddAlso at Utah Valley University, Orem, UT, USA. eee

Also at Institute for Nuclear Research, Moscow, Russia.

(16)

gggAlso at Argonne National Laboratory, Argonne, IL, USA. hhh

Also at Erzincan University, Erzincan, Turkey.

iiiAlso at Yildiz Technical University, Istanbul, Turkey. jjj

Also at Texas A&M University at Qatar, Doha, Qatar.

Figura

Figure 1 shows the distributions for data and simulated events of the E T and transverse mass ( m T ) of the W-boson candidate after the basic event selection
FIG. 2 (color online). Comparison between data and simulated events of the m Zj (left), m Wb (middle), and two-dimensional scatter (right) distributions after the event selection prior to the top-quark mass requirements, which are shown as the dotted verti
TABLE III. Summary of the systematic uncertainties for the signal selection acceptance.

Riferimenti

Documenti correlati

Come già ricordato, a seguito della sentenza della Corte Costituzionale n. 134 del 2006, non è sufficiente che la Conferenza Stato-Regioni, sia “sentita” sullo schema di

In order to provide absolute frequency cali- bration, the CW laser frequency (which determines the microresonator combs offset frequency) is linked to the 10 MHz RF signal of

The linear exchange of energy with the background shear flow (which is the central energy supply for turbulence) involves all of the components of the velocity perturbation through the

The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations,

Esso apre il Titolo V del Testo unico, interamente dedicato ai servizi e agli interventi pubblici locali, e pertanto funge (o, comunque, dovrebbe fungere) da “bussola”

Keywords: quasilinear elliptic equation, weak Cerami–Palais–Smale condition, Ambrosetti– –Rabinowitz condition, break of symmetry, perturbation method, supercritical

The most common forms include chronic migraine (CM) and medication overuse headache (MOH), which are frequently associ- ated, given that the majority of CM sufferers do overuse