• Non ci sono risultati.

Measurement of CP observables in B± → DK± and B± → Dπ± with two- and four-body D decays

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of CP observables in B± → DK± and B± → Dπ± with two- and four-body D decays"

Copied!
15
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

CP observables

in

B

±

D K

±

and

B

±

D

π

±

with two- and

four-body

D decays

.

LHCb

Collaboration

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received6April2016

Receivedinrevisedform8June2016 Accepted9June2016

Availableonline16June2016 Editor:W.-D.Schlatter

Measurements of CP observables in B±→D K± and B±→D

π

± decays are presented where the D mesonisreconstructedinthefinalstatesK±

π

∓,

π

±K∓,K+K−,

π

+

π

−,K±

π

π

+

π

−,

π

±K

π

+

π

−and

π

+

π

π

+

π

−.ThisanalysisusesasampleofchargedB mesonsfrompp collisionscollectedbytheLHCb experimentin2011and2012,correspondingtoanintegratedluminosityof3.0 fb−1.VariousCP-violating effectsarereportedandtogetherthesemeasurementsprovideimportantinputforthedeterminationof theunitaritytriangleangle

γ

.Theanalysisofthefour-pionD decaymodeisthefirstofitskind.

©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Asetofoverconstrainingmeasurementsoftheunitaritytriangle fromtheCKM matrixiscentral to thevalidationofthe Standard Model(SM)descriptionofCP violation[1].Ofthese,theleast-well measuredistheangle

γ

arg

(

VudVub

/

VcdVcb

)

withaprecision, froma combination ofmeasurements, of about 7◦; this may be comparedwiththe 3◦ and

<

1◦ precision on theother angles

α

and

β

[2,3].Amongstthethreeangles,

γ

isuniqueinthatitdoes notdependonacouplingtothetopquarkandthusmaybe stud-iedattreelevel,largely avoidingpossibleinfluence fromnon-SM

CP violation.

Themostpowerfulmethodfordetermining

γ

intree-level de-cays isthrough measurement of relative partialwidths in B

D K− decays, where D represents a D0 or D0 meson.1 The am-plitude for the B

D0Kcontribution is proportional to V

cb

while the amplitude for B

D0K− is proportional to Vub.By

reconstructing hadronic D decays accessible to both D0 and D0

mesons,phaseinformationmaybeextractedfromtheinterference ofthetwoamplitudes.ThesizeoftheresultingdirectCP violation

isgovernedbythemagnitudeoftheratiorB oftheb

u

¯

cs

am-plitudetotheb

cus amplitude.

¯

The relativelylargevalue ofrB

(about0.1)inB

D K−decaysmeansthattherelativephaseof thetwointerferingamplitudescanbeobtained.Thisrelativephase hasaCP-violating(weak)contributionandCP-conserving(strong) contribution

δ

B; a measurement of the total phase for both B+

and B− disentangles

γ

and

δ

B.Similar interferenceeffects occur

1 Theinclusionofcharge-conjugateprocessesisimpliedexceptinanydiscussion ofasymmetry.

inB±

D

π

±decays,albeitwithreducedsensitivitytothephases because,duetoadditionalCabibbosuppressionfactors,theratioof amplitudesisabout20timessmaller.

The study of B

D K− decays formeasurements of

γ

was first suggested for CP eigenstates of the D decay, for example the CP-even D

K+K− and D

π

+

π

− decays, labelled here GLWmodes[4,5].Theargumenthasbeenextendedtosuppressed

D

π

K+decayswheretheinterplaybetweenthefavouredand suppressed decay paths in both the B− and the neutral D

de-cays results in a large charge asymmetry. This is the so-called ADSmode[6],whichintroduces adependencyontheratioofthe suppressed andfavoured D decayamplitudesrD andtheir phase

difference

δ

D.The B

→ [

h+h

]

Dh− ADS/GLW decays

(

h

=

K

,

π

)

havebeenstudiedattheB factories[7,8]andatLHCb[9].This let-tercontainstheupdatedandimprovedresultusingboththe2011 and2012datasamples.The2012databenefitsfromahigher B±

mesonproductioncross-sectionandamoreefficienttrigger,sothis updateisapproximatelyafactorfourincreaseinstatistics.

TheADS/GLWformalismcanbeextendedtofour-particleD

de-cays. However, there are multiple intermediate resonances with differingamplituderatiosandstrongphaseswiththeconsequence that the interference in the B− decay, and hence the sensitivity to

γ

,isdiluted[10].ForD

K

π

+

π

+

π

−andD

π

K+

π

+

π

decays this dilution is parameterised in terms of a coherence factor

κ

K 3π , an effective strong phase difference averaged over

all contributing resonances

δ

K 3D π, and an overall suppressed-to-favoured amplitude ratio rK 3D π. Best sensitivity to

γ

is achieved using independent measurements of the

κ

K 3π and

δ

K 3π

D

param-eters, which have been determined using a sample of quantum-correlated D0D0 pairs [11,12], and by the study of D-mixing in

http://dx.doi.org/10.1016/j.physletb.2016.06.022

0370-2693/©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

thisfinal state [13]. Asimilar dilutionparameter, labelledthe CP

fractionF+4π canbedefinedforD

π

+

π

π

+

π

−decays[14].For thisfinal state itis foundthat F+4π

=

0

.

737

±

0

.

028 [15],so that thedecaybehaveslikeaCP-evenGLWmode,albeitwiththe inter-ferenceeffectsreducedbyafactor

(

2F+4π

1

)

0

.

5.

Thisletterincludesan analysisof B

→ [

h+h

π

+

π

]

Dh

de-cays and supersedes the previous analysis of B

[

π

K+

π

+

π

]

Dh−[16] andcomplementsthestudyoftheB

[

h+h

π

0

]

Dh− modes [17]. The analysis of the four-pion D

de-caymode isthefirstofits kind.In total,21measurementsofCP

observablesare reported.Twooftheseare ratiosof thefavoured

B

D0K−andB

D0

π

−partialwidths,

RKf

=

(

B

→ [

f

]

DK

)

+ (

B+

→ [ ¯

f

]

DK+

)

(

B

→ [

f

]

D

π

)

+ (

B+

→ [ ¯

f

]

D

π

+

)

,

(1)

where f is K

π

+

(

π

π

+

)

and

¯

f is its charge-conjugate state. Three are double ratios that are sensitive to the partial widths of the (quasi-)GLW modes, f

=

π

+

π

(

π

+

π

)

and K+K−, nor-malisedtothoseofthefavouredmodesofthesamemultiplicity,

RK K

=

R K K K/π RKKπ

,

R π π

=

R π π K/π RKKπ

,

R π π π π

=

R π π π π K/π RKKπ π π

.

(2)

Fiveobservablesarechargeasymmetries,

Ahf

=

(

B

→ [

f

]

Dh

)

− (

B+

→ [ ¯

f

]

Dh+

)

(

B

→ [

f

]

Dh

)

+ (

B+

→ [ ¯

f

]

Dh+

)

,

(3)

for h

=

K and f

=

K

π

+

(

π

π

+

),

π

+

π

(

π

+

π

)

and K+K−. There are a further three asymmetries for h

=

π

and f

=

π

+

π

(

π

+

π

)

andK+K−.Fourobservablesarepartialwidthsof thesuppressedADSmodesrelativetotheircorrespondingfavoured decays, RADS¯f (h)

=

(

B

→ [ ¯

f

]

Dh

)

+ (

B+

→ [

f

]

Dh+

)

(

B

→ [

f

]

Dh

)

+ (

B+

→ [ ¯

f

]

Dh+

)

,

(4)

withwhichcomefourADS-modechargeasymmetries,

AADS¯f (h)

=

(

B

→ [ ¯

f

]

Dh

)

− (

B+

→ [

f

]

Dh+

)

(

B

→ [ ¯

f

]

Dh

)

+ (

B+

→ [

f

]

Dh+

)

.

(5)

An alternative formulationof the ADS observables measures the suppressedADSmodesrelativetotheirfavoured counterparts, in-dependentlyfor B+ andB− mesons,

R+(¯f h)

=

(

B +

→ [

f

]

Dh+

)

(

B+

→ [ ¯

f

]

Dh+

)

,

R−(¯f h)

=

(

B

→ [ ¯

f

]

Dh

)

(

B

→ [

f

]

Dh

)

.

(6)

All the charge asymmetry measurements are affected by a pos-sible asymmetry in the B± production cross-section multiplied by any overall asymmetry from the LHCb detector, together de-noted as

σ

. This effective production asymmetry, defined as

AB±

=

σ

(B)σ(B+)

σ(B)+σ(B+),ismeasuredinthisanalysisfromthecharge

asymmetry ofthemostabundant B

→ [

K

π

+

]

D

π

− and B

[

K

π

π

+

π

]

D

π

− modes.Thismeasurementisappliedasa

cor-rection to all other CP asymmetry results. In these modes, the possibleCP asymmetry, asderived fromexisting knowledgeof

γ

andrB inthisdecay[18],issmallerthantheuncertaintyon

exist-ing measurementsof the B± productionasymmetry [19].The CP

asymmetryisthusassumedtobezerowithasmallsystematic un-certainty.Remainingdetection asymmetries,notably between K

andK+,arecorrectedforusingcalibrationsamples.

2. Detector and simulation

The LHCb detector [20] is a single-arm forward spectrometer covering the pseudorapidity range 2

<

η

<

5, designed for the studyofparticles containing b orc quarks.The detectorincludes a high-precision tracking systemconsisting ofa silicon-strip ver-tex detector surrounding the pp interaction region, a large-area silicon-strip detectorlocatedupstream ofadipole magnetwitha bending power ofabout 4 Tm, andthree stations of silicon-strip detectorsandstrawdrifttubesplaceddownstreamofthemagnet. Thetrackingsystemprovidesameasurementofmomentum, p,of chargedparticleswitharelativeuncertaintythatvariesfrom0.5% at low momentum to 1.0% at200 GeV/c. The minimum distance of atrackto aprimary vertex(PV), theimpact parameter (IP),is measured witha resolutionof

(

15

+

29

/

pT

)

μ

m,where pT isthe component ofthe momentum transverse to thebeam, inGeV

/

c. Different types ofcharged hadronsare distinguished using infor-mationfromtworing-imagingCherenkovdetectors.Photons, elec-tronsandhadronsareidentifiedbyacalorimetersystemconsisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadroniccalorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers. The trigger consists of a hardware stage, based on information from the calorimeter and muon systems, followed by asoftware stage,in whichall chargedparticles with

pT

>

500

(

300

)

MeV arereconstructedfor2011 (2012)data. At the hardware trigger stage, events are required to have a muon with high pT or a hadron, photon or electron with high transverse energy in the calorimeters. For hadrons, the trans-verse energy threshold is 3.5 GeV. The software trigger requires a two-,three- orfour-track secondaryvertexwithsignificant dis-placement fromthe primary pp interactionvertices. Atleast one chargedparticlemusthavetransversemomentum pT

>

1

.

7 GeV

/

c andbeinconsistentwithoriginatingfroma PV.Amultivariate al-gorithm [21] is used for the identification of secondary vertices consistentwiththedecayofab hadron.

In the simulation, pp collisions are generated using Pythia8 [22] with a specific LHCb configuration [23]. Decays of hadronic particles aredescribedby EvtGen[24],inwhichfinal-state radia-tionisgeneratedusingPhotos[25].The interactionofthe gener-atedparticleswiththedetector,anditsresponse,areimplemented usingtheGeant4 toolkit[26]asdescribedinRef.[27].

3. Event selection

Afterreconstructionofthe D mesoncandidatefromeithertwo or four charged particles, the same basic event selection is ap-plied toall B

Dh− channelsofinterest.The reconstructed D

meson candidate mass is required to be within

±

25 MeV

/

c2 of its known value [28]. This mass range corresponds to approxi-mately three times the mass resolution of the signal peaks. The kaonorpionoriginatingfromtheB±decay,subsequentlyreferred to as the bachelor particle, is required to have pT in the range 0

.

5–10

.

0 GeV

/

c and p in the range5–100 GeV

/

c. These require-ments ensure that the track iswithin the kinematic coverage of the RICHdetectors, whichare usedto provideparticle identifica-tion(PID)information.DetailsofthePIDcalibrationprocedureare givenin Sect.4. Inaddition,a kinematicfitisperformedtoeach decaychain,withvertexconstraintsappliedtoboththeB±andD

vertices,andthe D candidateconstrainedtoitsknownmass[29]. Events are required to have been triggered by either the decay productsofthesignalcandidateorparticlesproducedelsewherein the pp collision.TheB± mesoncandidateswithaninvariantmass intheinterval5079–5899 MeV

/

c2areretained.EachB±candidate isassociatedtothePVtowhichithasthesmallestIP.

(3)

For both the two- and four-body D-mode selections, a pair of boosted decision tree (BDT) discriminators, implementing the gradient boost algorithm [30], are employed to achieve further background suppression. The BDTs are trained using simulated

B

→ [

K

π

+

(

π

+

π

)

]

DK− decays together with a background

sample of K

π

± combinations with invariant mass in the range 5900–7200 MeV

/

c2.ForthefirstBDT,thosebackgroundswitha D

candidatemassmorethan

±

30 MeV

/

c2 awayfromtheknown D0 massareusedinthetraining.InthesecondBDT,backgroundswith a D candidatemass within

±

25 MeV

/

c2 ofthe known D0 mass areused.Aloosecut ontheclassifierresponseofthefirstBDTis appliedpriortotrainingthesecondone.Thisfocussesthesecond BDTtraining onbackgroundsenriched withfullyreconstructed D

mesons.

TheinputtotheBDTisasetofquantitiesthatcharacterisethe signaldecay.Thesequantitiescan bedivided intotwocategories: (1)propertiesofanyparticleand(2)propertiesofcomposite par-ticlesonly(the D and B±candidates).Specifically:

1. p,pT andthesquareoftheIPsignificance;

2. decaytime,flightdistance,decayvertexquality,radialdistance betweenthedecayvertexandthePV, andtheanglebetween the particle’s momentum vector andthe lineconnecting the productionanddecayvertex.

Signal purity is improved by usinga variable that estimates the imbalanceofpT aroundtheB±candidate,definedas

I pT

=

pT

(

B±

)

pT

pT

(

B±

)

+

pT

,

(7)

where the sum is taken over tracks lying within a cone around the B± candidate, excluding thetracks relatedto the signal. The coneisdefinedby acirclewitharadiusof1.5unitsintheplane ofpseudorapidityandazimuthalangle(expressed inradians).The BDT thus gives preference to B± candidates that are either iso-latedfromtherestoftheevent,orconsistentwitharecoilagainst anotherb hadron.

NoPIDinformationisusedintheBDTtrainingsotheefficiency for B

D K− and B

D

π

− decaysis similar, with insignifi-cantvariationsarisingfromthesmalldifferencesinthekinematics. Thecutson thetwo BDT selectionsare optimisedby minimising theexpecteduncertaintyon AADSπK(π π(K)),asmeasured inthe invari-antmassfitdescribed below. Thepurityofthe sample isfurther improvedwithRICHinformationbyrequiringallkaonsandpions inthe D decaytobecorrectlyidentifiedwithaPIDselectionthat hasanefficiencyofabout85%perparticle.

Peakingbackgroundsfromcharmlessdecaysaresuppressedby requiringthat the flight distance significance ofthe D candidate

fromthe B± decayvertexislarger thantwo standarddeviations. Theresidualcharmlesscontributionisinterpolatedfromfitstothe

B± massspectrum(without thekinematicfitofthedecaychain) in both the lower and upper D-mass sidebands. The charmless yields are determined independently for B+ and B− candidates andare later usedin the massfit asfixed terms,with their un-certainties included in the systematic uncertainties of the final results. The largest residual charmless contributions are in the

B

→ [

π

+

π

(

π

+

π

)

]

DK−modeswhichshowcharge-integrated

yieldsof88

±

11 and115

±

11 forthetwo- andfour-pionmodes. Thisis7%and8%ofthemeasuredsignalyields.

EvenwithPIDrequirements,thesuppressedADSsamples con-tain significantcross-feedfromfavoured signal decays wherethe

K− and a

π

+ from the D decay are misidentified as a

π

and K+. This contamination is reduced by removing any candi-date whose reconstructed D mass, under the exchange of mass

hypotheses between the kaon and an opposite-sign pion, lies within

±

15 MeV

/

c2 of theknown D0 mass.Thisvetoisalso ap-pliedtothefavouredmode,withthesameefficiency.Theresidual cross-feed rates are estimated in data from the favoured sam-ple, assuming the veto and PID efficiencies factorise; they are

(

4

.

3

±

0

.

2

)

×

10−5 for B

→ [

K

π

+

]

Dh− and

(

2

.

7

±

0

.

1

)

×

10−4

forB

→ [

K

π

+

π

+

π

]

Dh−.

Aftertheaboveselections,multiplecandidatesexistin0.1%and 1%ofeventsintheB

→ [

h+h

]

Dh−andB

→ [

h+h

π

+

π

]

Dh

samples,respectively.Onlyonecandidatepereventisretainedfor themain fit.When morethanone candidateis selected,theone withthebestB±vertexqualityisretained.

4. Signal yields and systematic uncertainties

ThevaluesoftheCP observablesare determinedusingbinned maximum-likelihoodfitstotheinvariantmassdistributionsof se-lected B± candidates. Independent fits are used for the B

[

h+h

]

Dh− and B

→ [

h+h

π

+

π

]

Dh− samples. Information

from the RICH detectors is used to separate B

D K

from B

D

π

− decays with a PID requirement on the bach-elor particle. Distinguishing between B+ and B− candidates, bachelor particle hypotheses, and four (three) D daughter final states, yields 16 (12) disjoint samples in the B

→ [

h+h

]

Dh

(B

→ [

h+h

π

+

π

]

Dh−)fit,whicharefittedsimultaneously.The

total probability density function (PDF) is built from two signal PDFs,for B

D K− andB

D

π

− decays,andthreetypesof backgroundPDF.AllPDFsareidenticalforB+andB−decays.

1. B

D

π

IntheD

π

−samplesanasymmetricdouble-Gaussian-like func-tionisusedforthe B±

D

π

±signal,

f

(

m

)

=

fcoreexp



−(

m

μ)

2 2

σ

2 c

+ (

m

μ)

2

α

L,R



+ (

1

fcore

)

exp



−(

m

μ)

2 2

σ

2 w



,

(8)

which has a peak position

μ

and core width

σ

c, where

α

L

(

m

<

μ

)

and

α

R

(

m

>

μ

)

parameterisethe tails.The

μ

and

α

parametersaresharedacrossallsamplesbutthecorewidth parametervariesindependentlyforeach D finalstate, except in the suppressed

π

K

(

π π

)

PDFs which are required to be identical to their favoured K

π

(

π π

)

counterpart. The addi-tional Gaussian function with a small fractional contribution ofabout1%isfoundnecessarytomodelsatisfactorilythetails ofthepeak.

The B

D

π

− decaysmisidentifiedas B

D K− are dis-placedtohighermassintheD K−subsamples.These misiden-tified candidates are modelled by the sum of two Gaussian functions with common mean but modified to include tail componentsasinEq.(8).The mean,widths andonetail pa-rameterarelefttovaryfreely.

2. B

D K

Inthe D K− samples,Eq.(8)isagainusedforthesignalPDF. The peakposition

μ

andthe two tailparameters

α

L and

α

R

are fixed to those ofthe B

D

π

− signal function, asare thewidecomponentparameters fcoreand

σ

w.Thecorewidth

parameter in each D mode is related to the corresponding

B

D

π

− widthby afreelyvarying ratiocommontoall D

finalstates.MisidentifiedB±

D K±candidatesappearinthe

D

π

−subsamplesandaredescribedbyafixedshapeobtained fromsimulation,whichislatervariedtodeterminea system-aticuncertaintyassociatedwiththischoice.

(4)

3. Combinatorial

background

Duetothelowbackgroundlevel,alinearfunctionissufficient todescribetheentireinvariantmassspectrum.Twocommon slopeparametersareused,oneforD

π

−andanotherforD K

subsamplesbutyieldsvaryindependently. 4. Peaking

backgrounds

Charmless B± decayandthefavouredmode cross-feed back-groundsboth peak atthe B± mass andare indistinguishable from the signal. Their residual yields are estimated in data, entering the fit as fixed proportions of the favoured B

D

π

− yield. A Gaussian function is used for the PDF, witha

(

25

±

2

)

MeV

/

c2 widthparameter thatis takenfrom simula-tion;thisisabout50%widerthanthesignalPDF.

5. Partially

reconstructed

b -hadron

decays

Partially reconstructed backgrounds generally have lower in-variantmassthanthesignalpeak.Thedominantcontributions arefrom B

Dh

π

0, B

D∗0

π

and B0

D∗+

π

de-cays where either a photon or a pion is missed in the re-construction.The distributionofeach ofthesesources inthe invariant mass spectrum depends on the spin and mass of the missing particle. If the missing particle has spin-parity 0−

(

1−

)

,thedistributionisparameterised byaparabolawith positive (negative) curvature convolved witha Gaussian res-olutionfunction. The kinematics of the decay that produced themissingparticle definethe endpointsofthe rangeofthe parabola. Decays in which both a particle is missed and a bachelor pion is misidentified as a kaon are parameterised witha semi-empiricalPDF,formed fromthesumofGaussian anderror functions. The parameters of each partially recon-structed PDF are fixed to the values found in fits to simu-lated events, and are varied as a source of systematic un-certainty.The yields ofeach contribution varyindependently in each subsample, where all partially reconstructed decay modesshareacommoneffectivechargeasymmetryacrossall

D modes.Thoughits effectismitigatedby the limitedrange ofthemassfit,largeCP violationinthelow-massbackground ispossibleintheGLWandADSsamples,soasystematic un-certaintyisassigned.

IntheB

→ [

K+K

]

Dh−samples,

Λ

0b

→ [

p+K

π

+

]

Λ+ch de-cays contribute to backgroundwhen the pion is missed and theprotonismisidentifiedasthesecondkaon.ThewidePDF of this componentis fixed from simulation but the yield in the B

→ [

K+K

]

D

π

− subsample varies freely. The

Λ

0b

[

p+K

π

+

]

Λ+cK

yieldisconstrainedusingarecent measure-mentof

B(Λ

b0

→ Λ

+cK

)/B(Λ

0b

→ Λ

+c

π

)

[31].Furthermore,

B0s

D0K

π

+decays,wherethepionismissed,forma back-ground for the suppressed B

D K− modes. The yield of thiscomponentvariesinthe fitbutthe PDFis takenfroma simulationmodelofthethree-body B0

s decay[32],smearedto

matchtheresolutionmeasuredindata.

Inthe D K−subsamples,the B±

D

π

−cross-feedcanbe de-termined by the fit to data. The B

D K− cross-feedinto the

D

π

− subsamples is not well separated frombackground, so the expectedyieldisdeterminedbyaPIDcalibrationprocedureusing approximately 20million D∗+

→ [

K

π

+

]

D

π

+ decays.The clean

reconstruction ofthis charm decayis performedusingkinematic variablesonlyandthus providesahighpuritysample of K∓ and

π

± tracks, unbiased in the PID variables. The PID efficiency de-pends on track momentum and pseudorapidity, as well as the numberoftracks intheevent. The effectivePIDefficiencyofthe signalisdeterminedbyweightingthecalibrationsamplesuchthat the distributions of these variables match those of the selected candidates in the B

D

π

− mass distribution. It is found that

Table 1

Signalyieldsasmeasuredinthe B−→ [h+h−]Dh− and

B−→ [h+hπ+π−]Dh−invariantmassfits,togetherwith theirstatisticaluncertainties.

Decay mode Yield

B±→K±π∓± 378,050±650 B±→K±π∓DK± 29,470±230 B±→K+K−Dπ± 50,140±270 B±→K+K−DK± 3816±92 B±→π+π−Dπ± 14,680±130 B±→π+π−DK± 1162±48 B±→π±K∓± 1360±44 B±→π±K∓DK± 553±34 B±→K±ππ+π−± 142,910±390 B±→K±ππ+π−DK± 11,330±140 B±→π+ππ+π−± 19,360±150 B±→π+ππ+π−DK± 1497±60 B±→π±Kπ+π−± 539±26 B±→π±Kπ+π−DK± 159±17

68.0% (

PID(K)) of B

D K− decays passthe bachelor kaon PID

requirement;theremaining32.0%cross-feedintothe B

D

π

sample.Withthisselection,approximately98%oftheB

D

π

decays are correctlyidentified. Due to the size ofthe calibration sample,thestatisticaluncertaintyisnegligible;thesystematic un-certainty of the method is determined by the size of the signal track samples used, and thus increases for the lower statistics modes. Thesystematicuncertaintyon

PID(K) ranges from0.3%in B

→ [

K

π

+

]

DK−to1.5%in B

→ [

π

+

π

π

+

π

]

DK−.

InordertomeasureCP asymmetries,thedetectionasymmetries for K± and

π

± must be taken into account. A detection asym-metry of

(

0

.

96

±

0

.

10

)

% is assignedfor each kaon in the final state, arising from thefact that the nuclear interaction length of

K− mesonsis shorterthanthat of K+ mesons.Thisiscomputed by comparing the charge asymmetries in D

K+

π

π

− and

D

KS0

π

− calibrationsamplesandweightingtothekinematics

ofthesignalkaons.Theequivalentasymmetryforpionsissmaller

(

0

.

17

±

0

.

10

)

% andistakenfromRef.[33].The CP asymmetries

in the favoured B

→ [

K

π

+

(

π

+

π

)

]

D

π

− decays are fixed to

zero,withasystematicuncertaintyof0.16%calculatedfrom exist-ingknowledgeof

γ

andrB inthisdecay[18],withnoassumption

madeaboutthestrongphase.Thisenablestheeffectiveproduction asymmetry, AB±, to be measured and simultaneously subtracted

from the charge asymmetry measurements in other modes. The signal yield foreachmode isa sumofthenumberofsignal and cross-feedcandidates;theirvaluesaregiveninTable 1.The corre-sponding invariant mass spectra,separatedby charge, are shown inFigs. 1–7.

To obtain the observables RKf/π , the ratio of yields must be corrected by the relative efficiency withwhich B

D K− and

B

D

π

− decaysare reconstructed andselected. From simula-tion, this ratio is found to be 1

.

017

±

0

.

017 and 1

.

018

±

0

.

026 forthe two- and four-body D decayselections. Theuncertainties are calculatedfrom the finite size of the simulatedsamples and accountforimperfectmodellingoftherelativepionandkaon ab-sorptioninthedetectormaterial.

The 21 observables of interest are free parameters of the fit. Thesystematicuncertaintiesassociatedwithfixedexternal param-eters are assessed by repeating the fit many times, varying the value of each external parameter accordingto a Gaussian distri-bution within itsuncertainty. The resultingspread(RMS)ineach observable’s value istaken asthe systematicuncertainty onthat observable dueto the external source. The systematic uncertain-ties, groupedintofourcategories, arelisted inTables 2 and 3for

(5)

Fig. 1. InvariantmassdistributionsofselectedB±→ [K±π∓]Dh± candidates,separatedbycharge,with B(B+)candidatesontheleft(right).Thetopplotscontainthe

B±→D K±candidatesample,asdefinedbyaPIDrequirementonthebachelorparticle.Theremainingcandidatesareplacedinthebottomrow,reconstructedwithapion hypothesisforthebachelor.Thered(thick,open)andgreen(hatched-area)curvesrepresenttheB±→D K±and B±→±signals.Theshadedpartindicatespartially reconstructeddecays,thedottedline,wherevisible,showsthecombinatorialcomponent,andthetotalPDFisdrawnasathinblueline.(Forinterpretationofthereferences tocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig. 2. InvariantmassdistributionsofselectedB±→ [π±K∓]Dh±decays,separatedbycharge.Thedashedpinklineleftofthesignalpeakshowspartiallyreconstructed

B0

s→ [K+π−]DKπ+ decays,wherethebachelorpionismissed.Thefavouredmodecross-feedisalsoincludedinthefit,butistoosmalltobeseen.Seethecaptionof

Fig. 1forotherdefinitions.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Table 2

SystematicuncertaintiesfortheB−→ [h+h−]DhCP observablesquotedasapercentageofthestatisticaluncertaintyontheobservable.PIDreferstothePIDcalibration procedure.Bkgreferstothechoiceofbackgroundshapesandyieldsinthefit.Simreferstotheuseoffinitesamplesofsimulatedeventstodetermineefficiencyratios.Asym referstothefixedpionandkaondetectionasymmetries,andtheassumptionofnoCP violationinB−→D0πdecays.

[%] AKπ K RKKπ/π AK KK AπK K RK K Aπ πK Aπ ππ Rπ π ADSK(π ) ADSK(K) K ADS(π ) ADSK(K) PID 42 95 11 1 38 9 9 39 29 25 15 5 Bkg 65 190 34 3 84 30 28 48 69 74 24 15 Sim 21 250 14 0 24 8 7 13 29 30 8 5 Asym 23 27 11 34 6 7 20 5 12 13 7 8 Total 83 330 40 34 96 33 36 64 81 85 30 19 Table 3

SystematicuncertaintiesfortheB−→ [h+hπ+π−]DhCP observablesquotedasapercentageofthestatisticaluncertaintyontheobservable.SeetheTable 2captionfor definitions.

[%] RKπ π π

K/π Rπ π π π ADSKπ π(K) ADSKπ π(π ) AKKπ π π ADSKπ π(K) AADSπKπ π(π ) Aπ π π πK Aπ π π ππ

PID 37 43 1 2 1 1 0 0 1

Bkg 63 28 40 33 2 36 8 54 21

Sim 160 0 0 0 0 1 0 0 0

Asym 20 5 7 6 16 5 5 8 22

(6)

Fig. 3. InvariantmassdistributionsofselectedB±→ [π+π−]Dh±candidates,separatedbycharge.Thedashedblacklinerepresentstheresidualcontributionfromcharmless decays.ThiscomponentispresentintheD finalstatesconsidered,butismostvisibleinthiscase.SeethecaptionofFig. 1forotherdefinitions.(Forinterpretationofthe coloursinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

Fig. 4. Invariant mass distributions ofselected B±→ [K+K−]Dh± candidates, separated by charge. The dashed cyan line represents partially reconstructed Λ0b→ [p+Kπ+]Λ+ch

decays,wherethepionismissedandthe protonismisidentifiedasakaon.SeethecaptionofFig. 1 forotherdefinitions. (Forinterpretationofthe

referencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

thetwo-bodyandfour-bodyD modefits.Correlationsbetweenthe categoriesarenegligibleandthetotalsystematicuncertaintiesare givenbythesumsinquadrature.

5. Results

The results of the fits to data, withstatistical and systematic uncertainties,are: AKKπ

= −

0

.

0194

±

0

.

0072

±

0

.

0060 RKKπ

=

0

.

0779

±

0

.

0006

±

0

.

0019 AK KK

=

0

.

087

±

0

.

020

±

0

.

008 AπK K

= −

0

.

0145

±

0

.

0050

±

0

.

0017 RK K

=

0

.

968

±

0

.

022

±

0

.

021 Aπ πK

=

0

.

128

±

0

.

037

±

0

.

012 Aπ ππ

=

0

.

0043

±

0

.

0086

±

0

.

0031 Rπ π

=

1

.

002

±

0

.

040

±

0

.

026 ADSK)

=

0

.

00360

±

0

.

00012

±

0

.

00009 ADSK(K)

=

0

.

0188

±

0

.

0011

±

0

.

0010 ADSK)

=

0

.

100

±

0

.

031

±

0

.

009 ADSK(K)

= −

0

.

403

±

0

.

056

±

0

.

011

,

RKKπ π π

=

0

.

0793

±

0

.

0010

±

0

.

0018 Rπ π π π

=

0

.

975

±

0

.

037

±

0

.

019 ADSKπ π(K)

=

0

.

0140

±

0

.

0015

±

0

.

0006

(7)

Fig. 5. InvariantmassdistributionsofselectedB±→ [K±ππ+π−]Dh±candidates,separatedbycharge.SeethecaptionofFig. 1forthedefinitions.(Forinterpretationof thecoloursinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

Fig. 6. Invariantmassdistributionsofselected B±→ [π±Kπ+π−]Dh± candidates, separatedbycharge.Thedashed pinklineleftofthe signalpeakshowspartially reconstructedB0

s→ [K+ππ+π−]DKπ+decays,wherethebachelorpionismissed.SeethecaptionofFig. 1forotherdefinitions.(Forinterpretationofthereferencesto colourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

ADSKπ π(π)

=

0

.

00377

±

0

.

00018

±

0

.

00006 AKKπ π π

=

0

.

000

±

0

.

012

±

0

.

002 ADSKπ π(K)

= −

0

.

313

±

0

.

102

±

0

.

038 ADSKπ π(π)

=

0

.

023

±

0

.

048

±

0

.

005 Aπ π π πK

=

0

.

100

±

0

.

034

±

0

.

018 Aπ π π ππ

= −

0

.

0041

±

0

.

0079

±

0

.

0024

.

These results supersede those in Refs. [9] and [17] except for theresultsrelating tothe four-pion D decay,which arereported forthe first time. The correlation matricesare given in the Ap-pendix. The statistical correlations for the observables RADS and AADS are small. The alternative ADS observables are calculated: +(KK)

= (

2

.

58

±

0

.

23

)

%; Rπ−(KK)

= (

1

.

15

±

0

.

14

)

%; Rπ+(Kπ)

= (

3

.

22

±

0

.

18

)

×

10−3; K

−(π)

= (

3

.

98

±

0

.

19

)

×

10−3; Rπ+(KKπ π)

= (

1

.

82

±

0

.

25

)

%; −(KKπ π)

= (

0

.

98

±

0

.

20

)

%; Rπ+(Kπ)π π

= (

3

.

68

±

0

.

26

)

×

10−3; and −(Kπ)π π

= (

3

.

87

±

0

.

26

)

×

10−3, wherethe quoted uncertain-tiescombinestatisticalandsystematiceffects.

TheasymmetriesinthetwoCP-evenD decays,D

K+K−and

D

π

+

π

−, are averaged by notingthat their systematic uncer-taintiesarenearlyfullycorrelated,

ACP(K)

=

0

.

097

±

0

.

018

±

0

.

009

,

ACP(π)

= −

0

.

0098

±

0

.

0043

±

0

.

0021

.

Similarly the average ratio of partial widths from these D

modesis

R K K,π π

=

0

.

978

±

0

.

019

±

0

.

018

(

±

0

.

010

)

;

inthiscasethesystematicuncertainties,whicharedominatedby differentbackgroundestimations, areonly weaklycorrelated.The third uncertaintyarises only whenthe simplifying assumption is made that rB

=

0 in B

D

π

− decays. In this case, R K K,π π

(8)

Fig. 7. InvariantmassdistributionsofselectedB±→ [π+ππ+π−]Dh±candidates,separatedbycharge.Thedashedblacklinerepresentstheresidualcontributionfrom charmlessdecays.SeethecaptionofFig. 1forotherdefinitions.(Forinterpretationofthecoloursinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

becomes equaltothe classicGLW observable RCP(K) [5].This

ad-ditionaluncertaintyis applicabletothe K K and

π π

modes indi-viduallybutthe equivalent uncertaintyforthefour-pion modeis lower,

±

0

.

005,duetothereducedcoherenceinthat D decay.

The significance of these measurements may be quantified from the likelihood ratio with respect to a CP-symmetric null hypothesis,



2 log

(L

0

/L)

. The significance of CP violation in the ADSmode B

→ [

π

K+

]

DK− is 8

.

0

σ

(standarddeviations)

and represents the first observation of CP violation in a single

B

Dh−decaymode.Thecombinationofthetwo GLWmodes

B

→ [

K+K

]

DK− and B

→ [

π

+

π

]

DK− also demonstrates a

CP-violationeffectwith5

.

0

σ

significance.Takentogether,theADS andGLW modes ofthe B

D

π

− decays show evidence of CP

violation with 3

.

9

σ

significance after accounting for systematic uncertainties. The B

→ [

π

+

π

π

+

π

]

DK− data shows a 2

.

7

σ

CP-violationeffect.

6. Acceptance effects

Thenon-uniformacceptanceacrossthephasespaceofthe four-body modes affects the applicability of the external coherence factor andstrong phase difference measurements [11] in the in-terpretation of these results. With an acceptance model for the four-body D decays from simulation, the effective values of the

D

K+

π

π

+

π

− coherence parameters are calculated using a rangeof plausible amplitude models. The acceptanceis found to be almost uniformand theeffective valuesof the coherence pa-rametersare closetothoseforperfectacceptance.The additional systematicuncertaintieson

κ

K 3π and

δ

K 3π

D ,wheninterpretingthe

four-bodyresultsreportedhere, are

±

0

.

01 and

±

2

.

3◦.Ina simi-larstudy,theadditionalsystematicuncertaintyassociatedwiththe modulationoftheCP fraction F+4π bytheLHCbacceptanceis esti-matedtobe

±

0

.

02.

It has been shown that D-mixing effects must be takeninto account when using these CP observables in the determination of

γ

[34].ThecorrectionismostimportantintheADSobservables ofB

D

π

− decaysandiscorrectedforusingknowledgeofthe decay-timeacceptance.Fromsimulationsamples,adecay-time ac-ceptancefunctionisdefinedforboththetwo-bodyandfour-body

D-modeselections.The D-mixingcoefficient

α

,definedin[34],is found to be

0

.

59 and

0

.

57 for the two- and four-body cases,

with negligible uncertainties compared to those of the x and y D-mixingparameters.

7. Discussion and conclusions

World-bestmeasurementsofCP observablesinB

Dh− de-cays are obtained with the D meson reconstructed in K

π

+,

K+K−,

π

+

π

−,

π

K+, K

π

+

π

+

π

− and

π

K+

π

+

π

− final states;thissupersedesearlierwork[9,16].Measurements exploit-ingthefour-pion D decayarereportedforthefirsttime withthe

B

→ [

π

+

π

π

+

π

]

DK− decayshowingan indication ofCP

vi-olationat the2

.

7

σ

level.The charge asymmetry inthismode is positive,similartotheclassicGLWmodes,B

→ [

K+K

]

DK−and

B

→ [

π

+

π

]

DK−, in linewithexpectation fora multi-body D

modewithaCP fractiongreaterthan0.5[15].

AcomparisonwithSM expectationismadeby calculatingthe

CP observables fromcurrent best-fitvaluesof

γ

= (

73

.

2+6−7..30

)

◦ as well as

δ

B

= (

125

.

4+77..08

)

◦ andrB

= (

9

.

70+00..6263

)

% for B±

D K± decays [2]. For B±

D

π

± decays, where no independent in-formation on rB and

δ

B is available, uniform PDFs are used,

180◦

< δ

B

<

360◦ and 0

.

004

<

rB

<

0

.

008. The D-decay

param-eters are taken from the literature: r2D

= (

0

.

349

±

0

.

004

)

% and

δ

D

= (

191

.

8+149..57

)

◦[35];F 4π +

=

0

.

737

±

0

.

028[15];rK 3D π

= (

5

.

52

±

0

.

007

)

%,

δ

K 3D π

= (

170+3739

)

◦and

κ

K 3π D

=

0

.

32+ 0.12 −0.08 [11].Thecurrent worldaveragesoftheD-mixingparametersarex

= (

0

.

37

±

0

.

16

)

% andy

= (

0

.

66+−00..1007

)

%[35],andthe

α

coefficientsreportedinSec.6 are usedfor thesmall D-mixingcorrection. Fortheseinputs, the central 68% confidence-level expectation interval is displayed in Fig. 8,togetherwiththeresultspresentedherein.Itisseenthatthe

B

D K− measurements are compatible with expectation and that the improvement inthe knowledge ofthe AADS observables isparticularlysignificant.Themeasurementspresentedinthis pa-per improve many of the CP observables used in global fits for the unitaritytriangleangle

γ

aswell asthe hadronicparameters

rB and

δ

B forthesedecays.Animprovementintheglobalbest-fit

precisionon

γ

ofaround15%isanticipatedfromthiswork.

Acknowledgements

We express our gratitude to our colleagues in the CERN ac-celerator departments for the excellent performance of the LHC.

(9)

Fig. 8. ComparisonofselectedresultswithanSMexpectation(shaded)basedonexistingknowledgeoftheunderlyingparametersandD-decaymeasurements,asdescribed inthetext.ThefirstfiverowsshowB−→D K−observables,two-bodyD decayontheleftandfour-bodyontheright.ThelastthreerowsshowB−→−observables. We thank the technical andadministrative staff at the LHCb

in-stitutes. We acknowledge support from CERN and from the na-tional agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN(Italy); FOMandNWO (TheNetherlands);MNiSWandNCN (Poland);MEN/IFA (Romania);MinESandFANO(Russia);MINECO (Spain);SNSFandSER(Switzerland);NASU(Ukraine);STFC(United Kingdom);NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Ger-many), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (UnitedKingdom), RRCKIandYandexLLC(Russia), CSCS (Switzer-land),IFIN-HH(Romania),CBPF(Brazil),PL-GRID(Poland)andOSC (USA). We are indebted to the communities behind the multi-pleopensource softwarepackageson whichwedepend.

Individ-ualgroupsor membershavereceived supportfromAvH Founda-tion(Germany),EPLANET,MarieSkłodowska-CurieActionsandERC (European Union), Conseil Général de Haute-Savoie, Labex ENIG-MASSandOCEVU,RégionAuvergne(France),RFBRandYandexLLC (Russia),GVA,XuntaGalandGENCAT(Spain),HerchelSmithFund, The Royal Society, Royal Commission for the Exhibition of 1851 andtheLeverhulmeTrust(UnitedKingdom).

Appendix A. Correlation matrices

Thestatisticaluncertaintycorrelation matricesaregivenin Ta-ble A.4 and A.5forthe2-bodyand4-bodyfitstodata.The correla-tions betweensystematicuncertainties areprovidedinTables A.6 andA.7.

(10)

Table A.4

Statisticalcorrelationmatrixfromforthe2-bodyfit.

AKKπ R K/π AK KK AK Kπ RK K Aπ πK Aπ ππ Rπ π ADSK(π ) K ADS(K) K ADS(π ) K ADS(K) AKπ K 1 0.00 0.02 0.09 0.00 0.01 0.05 0.00 0.00 0.00 0.01 0.01 RKKπ/π 1 0.00 0.00 −0.32 0.00 0.00 −0.18 0.01 −0.11 0.00 0.00 AK K K 1 −0.01 −0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 AK K π 1 0.00 0.02 0.06 0.00 0.00 0.00 0.02 0.01 RK K 1 0.00 0.00 0.06 −0.01 0.04 0.00 0.00 Aπ πK 1 −0.04 −0.04 0.00 0.00 0.00 0.00 Aπ π π 1 0.00 0.00 0.00 0.01 0.01 Rπ π 1 0.00 0.02 0.00 0.00 ADSK(π ) 1 −0.02 −0.04 0.00 RπK ADS(K) 1 0.02 0.10 AπK ADS(π ) 1 −0.05 AπK ADS(K) 1 Table A.5

Statisticalcorrelationmatrixfromforthe4-bodyfit.

RKKπ π π/π A Kπ π π K Rπ π π πC P Aπ π π ππ Aπ π π πK Kπ π A D S(K) Kπ π A D S(π ) Kπ π A D S(K) Kπ π A D S(π ) RKπ π π K/π 1 0.00 −0.31 0.00 0.00 −0.10 0.01 0.00 0.00 AKKπ π π 1 0.00 0.10 0.02 0.00 0.00 0.01 0.02 Rπ π π π C P 1 −0.00 −0.02 0.04 0.00 0.00 0.00 Aπ π π π π 1 −0.02 0.00 0.00 0.01 0.02 Aπ π π πK 1 0.00 0.00 0.00 0.00 RπA D SKπ π(K) 1 −0.05 0.08 0.01 RπKπ π A D S(π ) 1 0.00 −0.02 AπKπ π A D S(K) 1 −0.06 AπA D SKπ π(π ) 1 Table A.6

Correlationmatrixforthesystematicuncertaintiesinthe2-bodyanalysis.

AKKπ R

K/π AK KK AπK K RK K Aπ πK Aπ ππ Rπ π RADS(π ) RADS(K) AADS(π ) AADS(K)

AKπ K 1 −0.03 0.20 0.21 0.00 0.01 0.36 −0.00 0.07 −0.09 −0.52 0.09 RKπ K/π 1 0.09 −0.10 −0.10 −0.06 −0.03 0.24 −0.01 −0.22 −0.03 −0.13 AK K K 1 −0.46 −0.29 0.03 0.24 0.01 −0.06 −0.10 0.05 −0.04 AK K π 1 0.18 0.32 0.50 −0.11 −0.15 0.31 0.42 0.33 RK K 1 0.12 0.05 0.19 0.12 0.32 0.07 0.23 Aπ πK 1 0.05 −0.30 −0.33 0.39 0.38 0.30 Aπ π π 1 −0.03 0.07 −0.06 0.25 0.11 Rπ π 1 0.18 0.16 0.11 0.06 RADS(π ) 1 −0.57 −0.56 −0.44 RADS(K) 1 0.56 0.76 AADS(π ) 1 0.40 AADS(K) 1 Table A.7

Correlationmatrixforthesystematicuncertaintiesinthe4-bodyanalysis.

RKKπ π π/π Rπ π π πC P Kπ π A D S(K) Kπ π A D S(π ) ABu AKKπ π π Kπ π A D S(K) Kπ π A D S(π ) Aπ π π πD K Aπ π π πDπ RKπ π π K/π 1 0.11 −0.04 0.13 −0.01 0.00 −0.13 0.17 −0.14 0.08 Rπ π π πC P 1 0.04 −0.06 0.01 0.02 −0.04 −0.04 0.07 −0.07 RπKπ π A D S(K) 1 0.14 −0.00 0.02 0.87 0.10 0.03 0.01 RπKπ π A D S(π ) 1 −0.04 −0.02 0.05 0.46 −0.35 0.24 ABu 1 −0.36 −0.05 −0.42 −0.03 −0.64 AKπ π π K 1 0.02 0.05 0.09 0.32 AπKπ π A D S(K) 1 −0.09 −0.04 0.02 AπKπ π A D S(π ) 1 −0.34 0.43 Aπ π π πD K 1 0.31 Aπ π π π 1

(11)

References

[1]N.Cabibbo,Unitarysymmetryandleptonicdecays,Phys.Rev.Lett.10(1963) 531;

M.Kobayashi,T.Maskawa,CPviolationintherenormalizabletheoryofweak interaction,Prog.Theor.Phys.49(1973)652.

[2]CKMfitterGroup,J.Charles,etal.,CPviolationandtheCKMmatrix:assessing theimpactoftheasymmetricBfactories,Eur.Phys.J.C41(2005)1, arXiv:hep-ph/0406184.

[3]UTfitCollaboration,M.Bona,etal.,TheunitaritytrianglefitintheStandard Modeland hadronic parametersfrom lattice QCD,J. HighEnergy Phys. 10 (2006)081,arXiv:hep-ph/0606167.

[4]M.Gronau,D.London,Howtodeterminealltheanglesoftheunitaritytriangle fromB0D K0

SandB0s,Phys.Lett.B253(1991)483.

[5]M.Gronau, D.Wyler, Ondetermining aweakphasefrom chargedBdecay asymmetries,Phys.Lett.B265(1991)172.

[6]D. Atwood, I. Dunietz,A.Soni, Enhanced CP violationwith BK D0

(D0

) modesandextractionofthe CKMangleγ,Phys.Rev.Lett.78(1997)3257, arXiv:hep-ph/9612433.

[7]BaBar Collaboration, J.P. Lees, et al., Observation of direct CP violation in the measurementofthe Cabibbo–Kobayashi–Maskawaangleγ with B±→

D(∗)K(∗)±decays,Phys.Rev.D87(2013)052015,arXiv:1301.1029.

[8]Belle Collaboration, Evidence for the suppressed decay B−→D K−, D

K+π−,Phys.Rev.Lett.106(2011)231803,arXiv:1103.5951.

[9]LHCbCollaboration,R.Aaij,etal.,ObservationofCPviolationinB±→D K±

decays,Phys.Lett.B712(2012)203,Erratum, Phys.Lett.B713(2012)351, arXiv:1203.3662.

[10]D.Atwood,A.Soni,RoleofcharmfactoryinextractingCKMphaseinformation viaBD K ,Phys.Rev.D68(2003)033003,arXiv:hep-ph/0304085. [11]T.Evans,etal.,Improveddeterminationofthe DKπ+π+π−coherence

factor and associated hadronicparametersfrom acombination of e+e−→

ψ(3770)cc and¯ ppcc X data,¯ arXiv:1602.07430.

[12]CLEOCollaboration,N.Lowrey,et al.,Determinationofthe D0Kπ+π0 and D0Kπ+π+πcoherencefactorsandaverage strong-phase

differ-encesusingquantum-correlatedmeasurements,Phys.Rev.D80(2009)031105, arXiv:0903.4853.

[13]LHCbCollaboration,R.Aaij,etal.,FirstobservationofD0− ¯D0oscillationsin

D0K+ππ+πdecaysandmeasurementoftheassociatedcoherence

pa-rameters,arXiv:1602.07224.

[14]M.Nayak,etal.,FirstdeterminationoftheCPcontentofDπ+ππ0and

DK+Kπ0,Phys.Lett.B740(2015)1,arXiv:1410.3964.

[15]S.Malde,et al.,FirstdeterminationoftheCP contentofDπ+ππ+π

andupdated determinationofthe CP contentsof Dπ+ππ0 and D

K+Kπ0,Phys.Lett.B747(2015)9,arXiv:1504.05878.

[16]LHCbCollaboration,R.Aaij,etal.,ObservationofthesuppressedADSmodes

B±→ [π±Kπ+π−]DK± and B±→ [π±Kπ+π−]±,Phys. Lett.B723

(2013)44,arXiv:1303.4646.

[17]LHCbCollaboration,R.Aaij,etal.,AstudyofC P violationinB∓→Dh(h=

K,π)with themodes DKπ±π0, Dπ+ππ0 and DK+Kπ0, Phys.Rev.D91(2015)112014,arXiv:1504.05442.

[18]LHCbCollaboration,R.Aaij,etal.,AmeasurementoftheCKMangleγ from a combinationof B±→Dh± analyses, Phys.Lett.B726(2013)151,arXiv: 1305.2050.

[19]LHCbCollaboration,R.Aaij,etal.,Measurementsofthebranchingfractionsand

CP asymmetriesofB±→J/ψπ±andB±→ ψ(2S)π±decays,Phys.Rev.D85 (2012)091105,arXiv:1203.3592.

[20]LHCbCollaboration,A.A.AlvesJr.,etal.,TheLHCbdetectorattheLHC,J. In-strum.3(2008)S08005;

LHCbCollaboration,R.Aaij,etal.,LHCbdetectorperformance,Int.J.Mod.Phys. A30(2015)1530022,arXiv:1412.6352.

[21]V.V. Gligorov, M. Williams,Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, J. Instrum. 8 (2013) P02013, arXiv: 1210.6861.

[22]T.Sjöstrand,S.Mrenna,P.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys.Commun.178(2008)852,arXiv:0710.3820;

T.Sjöstrand,S.Mrenna,P.Skands,PYTHIA6.4physicsandmanual,J.High En-ergyPhys.05(2006)026,arXiv:hep-ph/0603175.

[23]I.Belyaev,etal.,HandlingofthegenerationofprimaryeventsinGauss,the LHCbsimulationframework,J.Phys.Conf.Ser.331(2011)032047.

[24]D.J.Lange,TheEvtGenparticledecaysimulationpackage,Nucl.Instrum. Meth-odsA462(2001)152.

[25]P.Golonka,Z.Was,PHOTOSMonteCarlo:aprecisiontoolforQEDcorrections inZ andW decays,Eur.Phys.J.C45(2006)97,arXiv:hep-ph/0506026. [26]Geant4Collaboration,J.Allison,etal.,Geant4developmentsandapplications,

IEEETrans.Nucl.Sci.53(2006)270;

Geant4Collaboration,S.Agostinelli,etal.,Geant4:asimulationtoolkit,Nucl. Instrum.MethodsA506(2003)250.

[27]M.Clemencic,etal.,TheLHCbsimulationapplication,Gauss:design,evolution andexperience,J.Phys.Conf.Ser.331(2011)032023.

[28]ParticleDataGroup,K.A.Olive,etal.,Reviewofparticlephysics,Chin.Phys.C 38(2014)090001.

[29]W.D.Hulsbergen,DecaychainfittingwithaKalmanfilter,Nucl.Instrum. Meth-odsA552(2005)566,arXiv:physics/0503191.

[30]B.P.Roe,etal.,Boosteddecisiontreesasanalternativetoartificialneural net-works forparticle identification,Nucl. Instrum.MethodsA 543(2005) 577, arXiv:physics/0408124.

[31]LHCbCollaboration,R.Aaij,etal.,StudyofbeautybaryondecaystoD0phand

+ch−finalstates,Phys.Rev.D89(2014)032001,arXiv:1311.4823.

[32]LHCbCollaboration,R.Aaij,etal.,DalitzplotanalysisofB0

s→ ¯D0Kπ+

de-cays,Phys.Rev.D90(2014)072003,arXiv:1407.7712.

[33]LHCb Collaboration,R.Aaij,et al.,MeasurementofCP asymmetryin D0

KK+ and D0ππ+ decays,J.HighEnergyPhys.07(2014)041,arXiv:

1405.2797.

[34]M.Rama,EffectofD-D mixing¯ intheextractionofγwith B−→D0Kand

B−→D0πdecays,Phys.Rev.D89(2014)014021,arXiv:1307.4384.

[35] HeavyFlavorAveragingGroupHFAG,Y. Amhis,etal.,Averagesofb-hadron, c-hadron, and τ-lepton properties as of summer 2014, arXiv:1412.7515, updated results and plots available at http://www.slac.stanford.edu/xorg/ hfag/.

LHCb Collaboration

R. Aaij

39

,

C. Abellán Beteta

41

,

B. Adeva

38

,

M. Adinolfi

47

,

Z. Ajaltouni

5

,

S. Akar

6

,

J. Albrecht

10

,

F. Alessio

39

,

M. Alexander

52

,

S. Ali

42

,

G. Alkhazov

31

,

P. Alvarez Cartelle

54

,

A.A. Alves Jr

58

,

S. Amato

2

,

S. Amerio

23

,

Y. Amhis

7

,

L. An

3

,

40

,

L. Anderlini

18

,

G. Andreassi

40

,

M. Andreotti

17

,

g

,

J.E. Andrews

59

,

R.B. Appleby

55

,

O. Aquines Gutierrez

11

,

F. Archilli

39

,

P. d’Argent

12

,

A. Artamonov

36

,

M. Artuso

60

,

E. Aslanides

6

,

G. Auriemma

26

,

n

,

M. Baalouch

5

,

S. Bachmann

12

,

J.J. Back

49

,

A. Badalov

37

,

C. Baesso

61

,

S. Baker

54

,

W. Baldini

17

,

R.J. Barlow

55

,

C. Barschel

39

,

S. Barsuk

7

,

W. Barter

39

,

V. Batozskaya

29

,

V. Battista

40

,

A. Bay

40

,

L. Beaucourt

4

,

J. Beddow

52

,

F. Bedeschi

24

,

I. Bediaga

1

,

L.J. Bel

42

,

V. Bellee

40

,

N. Belloli

21

,

k

,

I. Belyaev

32

,

E. Ben-Haim

8

,

G. Bencivenni

19

,

S. Benson

39

,

J. Benton

47

,

A. Berezhnoy

33

,

R. Bernet

41

,

A. Bertolin

23

,

F. Betti

15

,

M.-O. Bettler

39

,

M. van Beuzekom

42

,

S. Bifani

46

,

P. Billoir

8

,

T. Bird

55

,

A. Birnkraut

10

,

A. Bizzeti

18

,

i

,

T. Blake

49

,

F. Blanc

40

,

J. Blouw

11

,

S. Blusk

60

,

V. Bocci

26

,

A. Bondar

35

,

N. Bondar

31

,

39

,

W. Bonivento

16

,

A. Borgheresi

21

,

k

,

S. Borghi

55

,

M. Borisyak

67

,

M. Borsato

38

,

M. Boubdir

9

,

T.J.V. Bowcock

53

,

E. Bowen

41

,

C. Bozzi

17

,

39

,

S. Braun

12

,

M. Britsch

12

,

T. Britton

60

,

J. Brodzicka

55

,

E. Buchanan

47

,

C. Burr

55

,

A. Bursche

2

,

J. Buytaert

39

,

S. Cadeddu

16

,

R. Calabrese

17

,

g

,

M. Calvi

21

,

k

,

M. Calvo Gomez

37

,

p

,

P. Campana

19

,

D. Campora Perez

39

,

L. Capriotti

55

,

A. Carbone

15

,

e

,

G. Carboni

25

,

l

,

R. Cardinale

20

,

j

,

A. Cardini

16

,

P. Carniti

21

,

k

,

L. Carson

51

,

Figura

Fig. 2. Invariant mass distributions of selected B ± → [ π ± K ∓ ] D h ± decays, separated by charge
Fig. 3. Invariant mass distributions of selected B ± → [ π + π − ] D h ± candidates, separated by charge
Fig. 5. Invariant mass distributions of selected B ± → [ K ± π ∓ π + π − ] D h ± candidates, separated by charge
Fig. 7. Invariant mass distributions of selected B ± → [ π + π − π + π − ] D h ± candidates, separated by charge
+2

Riferimenti

Documenti correlati

E d’altra parte, Rosenzweig è uomo d’equilibrio anche dall’altra parte, perché avendo rinunciato alla presunzione della sistematicità del filosofo in virtù

One of the most critical issues in handling digital files for long-term preservation purposes lies in the preservation, at the most detailed level of

The effect on the viscosity of two consistency factors and three different vegetable waxes was also studied and compared to a basic emulsion (E9) not containing any of them

Ma, come sappiamo, anche l’esercizio della forza fisica può avere una funzione simbolica, ad esempio nelle cosiddette azioni dimostrative, che tendono ad offrire solo

composed of a fixed DCT filtering layer and 20 learn- able convolutional layers. To the best of our knowl- edge, it achieves the best performance in detecting JPEG image

Pica Alfieri Division of Plastic and Reconstructive Surgery Department of Medicine, Surgery, and Neuroscience University Hospital “Santa Maria alle Scotte” University of Siena

In untreated patients, the expression of the protein, evaluated by RT-qPCR and immunohistochemistry, was significantly higher in tumor specimens than in non-neoplastic

Coming back home: recolonisation of abandoned dens by crested porcupines Hystrix cristata and European badgers Meles meles after wood-cutting and riparian vegetation mowing