• Non ci sono risultati.

Neural Plasticity after Congenital Brain Lesions

N/A
N/A
Protected

Academic year: 2021

Condividi "Neural Plasticity after Congenital Brain Lesions"

Copied!
3
0
0

Testo completo

(1)

Editorial

Neural Plasticity after Congenital Brain Lesions

Simona Fiori

,

1

Martin Staudt,

2,3

Roslyn N. Boyd,

4

and Andrea Guzzetta

1,5

1Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy

2University Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Germany

3Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Centre for Children and Adolescents,

Schön Klinik Vogtareuth, Germany

4Queensland Cerebral Palsy and Rehabilitation Research Centre, UQ Child Health Research Centre, Faculty of Medicine,

The University of Queensland, South Brisbane, Queensland, Australia

5Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy

Correspondence should be addressed to Simona Fiori; s.fiori@fsm.unipi.it

Received 10 April 2019; Accepted 10 April 2019; Published 2 May 2019

Copyright © 2019 Simona Fiori et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the past decades, interest has grown on the mechanisms of early brain plasticity and their implications for newborns and infants with brain damage. Early brain damage triggers com-plex processes of adaptive neuroplasticity, which involve var-ious functional systems and are highly influenced by the environment. Understanding the complex process of reorga-nization of neural functions through adaptive plasticity is a fast-growingfield of research that has the potential to prompt more targeted and evidence-based interventions to promote neurodevelopment. The objective of this special issue was to collect scientific reports and literature reviews, from both animal models and human studies, contributing to a better understanding of the characteristics of early adaptive neuro-plasticity following early brain damage.

Understanding in vivo mechanisms of damage and plasticity needs animal models. Unilateral brain damage is probably the most studied model for the characterization of brain plasticity. The review by M. Gennaro et al. is aimed at exploring developmental ischemic stroke pathophysiological mechanisms, focusing on key factors contributing to neona-tal brain vulnerability and summarizing current available stroke models in animal labs. These models are highly infor-mative to human studies, as they identify mechanisms of neuroplasticity in controlled experimental conditions often using invasive means of investigation. Fortunately, noninva-sive neuroimaging and electrophysiological techniques are

now widely available and make it possible to describe the specificity of early mechanisms also in humans.

Evidence of early plasticity was found, for example, by C. Simon-Martinez et al. who explored determinants of impaired upper limb sensory and motor functions and corti-cospinal tract wiring by using transcranial magnetic stimula-tion and related this to lesion topography as assessed by a visual semiquantitative scale for brain lesion severity on MRI in CP. In an innovative ultra-high-field MRI technique, S. Fiori et al. explored the plasticity of sensory systems in young adults with congenital brain lesions. Their findings support the crucial role of topography of brain damage and reorganized somatosensory areas in relation to deficits of hand sensory and possibly motor function. In another study, S. S. Geertsen et al. explored the electrophysiological mecha-nisms of coactivation of muscles and high step-to-step vari-ability of gait in adults with early brain lesion and CP, which are the result of a long learning process involving pre-dictive coding of the sensory consequences of movement.

Indeed, different factors interact with brain adaptive plas-ticity potentials, influencing the natural history of cerebral palsy in thefirst years. To understand these mechanisms, K. Klingels et al. collected longitudinal functional data over a 5-year time period in children with unilateral CP. They observed increasing limitations in the passive range of motion and improvement in capacity measures, while the

Hindawi Neural Plasticity

Volume 2019, Article ID 9154282, 2 pages https://doi.org/10.1155/2019/9154282

(2)

spontaneous use of the impaired limb in bimanual tasks became less effective after the age of 9 years.

Evolution of upper limb function in children with unilat-eral CP and the factors that influence these time trends can provide guidance in delineating treatment priorities. The effects of new treatment options have recently been the object of growing interest. For example, E. Inguaggiato et al. found an increase in unilateral hemiparetic hand function (manual dexterity) in children and young adults with unilateral CP, with improvements emerging immediately at the end of transcranial direct current stimulation (tDCS) and persisting for at least 90 minutes. The action observation network (AON) was studied by G. Sgandurra et al. in children with unilateral CP. They demonstrated similarities compared to AON in typically developing children and propose an AON paradigm to explain and predict the efficacy of rehabilitation in unilateral CP children and to investigate the effects of plas-ticity induced by specific rehabilitation programs. They also demonstrated that a more lateralized AON corresponded to a worse impaired hand performance, as an example of mal-adaptive plasticity. In another paper, T. L. Rich et al. applied transcranial direct current stimulation (tDCS) as an opportu-nity to open a window for plasticity in unilateral CP, showing that a single application of anodal tDCS over the affected M1 can improve, in a safe and feasible way, possible but inconsis-tent gains in hand function.

Of course, neural plasticity has not only implications in the organization of motor and somatosensory function. Visual deficits, for example, are increasingly recognized as being part of the clinical picture in most cases. Confirmation comes from the paper of G. Ickx et al. who explored visuo-spatial attention in unilateral CP and demonstrated clinical differences according to the laterality of brain and lesion tim-ing: children with corticosubcortical lesions more frequently presented visuospatial attention deficits than children with periventricular brain lesion, which might be the results of impacted function or plasticity mechanisms.

Conflicts of Interest

The editors declare that they have no conflicts of interest regarding the publication of this special issue.

Acknowledgments

We would like to thank all the authors who contributed to this special issue. This publication would not be possible without the participation of our expert reviewers, who pro-vided vital constructive feedback and criticism throughout the review process.

Simona Fiori Martin Staudt Roslyn N. Boyd Andrea Guzzetta

(3)

Hindawi

www.hindawi.com Volume 2018

Research and Treatment

Autism

Depression Research and Treatment Hindawi www.hindawi.com Volume 2018 Neurology Research International Hindawi www.hindawi.com Volume 2018 Alzheimer’s Disease Hindawi www.hindawi.com Volume 2018 International Journal of Hindawi www.hindawi.com Volume 2018 BioMed Research International Hindawi www.hindawi.com Volume 2018

Research and Treatment

Schizophrenia

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2013

Hindawi www.hindawi.com

The Scientific

World Journal

Volume 2018 Hindawiwww.hindawi.com Volume 2018

Neural Plasticity

Scientifica

Hindawi www.hindawi.com Volume 2018 Hindawi www.hindawi.com Volume 2018

Parkinson’s

Disease

Sleep Disorders

Hindawi

www.hindawi.com Volume 2018 Hindawiwww.hindawi.com Volume 2018

Neuroscience

Journal

Medicine

Advances in Hindawi www.hindawi.com Volume 2018 Hindawi www.hindawi.com Volume 2018

Psychiatry

Journal

Hindawi www.hindawi.com Volume 2018 Computational and Mathematical Methods in Medicine Multiple Sclerosis International Hindawi www.hindawi.com Volume 2018

Stroke

Research and Treatment

Hindawi www.hindawi.com Volume 2018 Hindawi www.hindawi.com Volume 2018

Behavioural

Neurology

Hindawi www.hindawi.com Volume 2018 Case Reports in Neurological Medicine

Submit your manuscripts at

Riferimenti

Documenti correlati

Dalla panoramica che ne emerge, la missione della teoria della letteratura negli ultimi decenni è stata quella di trovare un sottile equilibrio tra la necessità

Gestione dei processi; Misura, analisi e miglioramento. Pertanto, i processi sono ora visti come elementi di un ciclo chiuso; tale propensione risulta essere in linea con le

The impact forecast modelling chain hereinafter proposed to extend the typical flood forecasting chain ( Hally et al., 2015 ) that furnishes results in terms of stream flow, by adding

In conclusione dunque l’intento di questo lavoro è stato quello di esaminare come anche in professioni particolarmente esposte ad un elevato rischio di stress possono

In questo lavoro viene proposto un model- lo energetico basato su reti neurali in grado di prevedere il consumo energetico di veicoli autonomi in funzione della velocit`a

In questo pamphlet appassionato e provocatorio, Willer Bordon risale alle radici dell'attualità e riscopre le argomentazioni che Simone Weil portava nel suo "Manifesto per

This formulation still allows for the proper treatment of the destruction of molecular ions by including charge-transfer to heavy atoms as well as dis- sociative recombination

The enlargement of the scope of Commission 15 was decided in 1973, from the recog- nition that comets, minor planets (asteroids), and meteorites give closely related clues to the