• Non ci sono risultati.

Immunoprecipitation methods to identify S-glutathionylation in target proteins

N/A
N/A
Protected

Academic year: 2021

Condividi "Immunoprecipitation methods to identify S-glutathionylation in target proteins"

Copied!
7
0
0

Testo completo

(1)

Method

Article

Immunoprecipitation

methods

to

identify

S-glutathionylation

in

target

proteins

Elena

Butturini

*

,

Diana

Boriero,

Alessandra

Carcereri

de

Prati,

So

fia

Mariotto

DepartmentofNeuroscience,BiomedicineandMovementSciences,SectionofBiologicalChemistry,University

ofVerona,Verona,Italy

*Correspondingauthor.

E-mailaddress:elena.butturini@univr.it(E.Butturini).

https://doi.org/10.1016/j.mex.2019.09.001

2215-0161/©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

MethodsX6(2019)1992–1998

ContentslistsavailableatScienceDirect

MethodsX

(2)

A B S T R A C T

S-glutathionylationisareversiblepost-translationalmodificationofproteinsthatgenerateamixeddisulfide between glutathione to thiolate anion of cysteine residues in target proteins. In the last ten years, S-glutathionylationhasbeenextensivelystudiedsinceitrepresentsthecellularresponsetooxidativestress,in physiological aswell as pathological conditions. This modification may be a protective mechanism from irreversibleoxidativedamageand,ontheotherhand,maymodulateproteinfoldingandfunction.

DuetotheimportanceofS-glutathionylationincellularredoxsignaling,variousmethodshavebeendeveloped toidentifyS-gluthationylatedproteins.

Herein,wedescribetwoeasymethodstorecognizedS-glutathionylationofatargetproteinafteroxidative stressincellularextractsbasedondifferentimmunoprecipitationprocedures.Theimmunoprecipitationassay allowsthecaptureofoneglutathionylatedproteinusingaspecificantibodythatbindstothetargetprotein.The presenceofS-glutathionylationintheimmunoprecipitatedproteinisidentifiedusinganti-glutathioneantibody. Thesecondtypeofapproachisbasedonthedetectionoftheglutathionylatedproteinwithbiotin/streptavidin technique.Afterdifferentstepsofprotectionofnon-oxidizedthiolicgroupsandreductionofS-glutathionylated groups,thenewly-formedproteinfree-thiolsarelabeledwithbiotin-GSH.Themodifiedproteincanbeisolate withstreptavidin-beadsandrecognizedusinganantibodyagainsttargetprotein.

 S-glutathionylationisareversiblepost-translationalmodificationofproteinsthatrecentlyhasbeenemerged asimportantsignalingintheredoxregulationofproteinfunction.

 Bothmethodstoidentifyglutathionylatedproteinsareeconomic,easyanddonotrequireparticularequipment.

 Thesetupsofbothmethodsguaranteehighreproducibility.

©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

A R T I C L E I N F O

Methodname:ImmunoprecipitationmethodstoidentifyS-glutathionylationintargetproteins

Keywords:Glutathionylation,Method,Immunoprecipitation,Bio-GEE

Articlehistory:Received21May2019;Accepted2September2019;Availableonline10September2019

SpecificationTable

SubjectArea: Biochemistry,GeneticsandMolecularBiology

Morespecificsubjectarea: Biochemistry

Methodname: ImmunoprecipitationmethodstoidentifyS-glutathionylationintargetproteins

Nameandreferenceof

originalmethod:

Jaffrey,S.R.,Snyder,S.H.,2001ThebiotinswitchmethodforthedetectionofS-nitrosylated

proteins.SciSTKE.2001(86):pl1

Resourceavailability: NA

Methoddetails Introduction

Glutathione (GSH) deficiency manifests itself largely through an increased susceptibility to oxidative stress whereas elevated GSH levels observed in many types of cancer cells, generally increase antioxidantcapacity.Oxidative stressmaycausereversible and/orirreversible oxidative modificationsofsensitiveproteinsthatmaymodulatetheiractivityorfunction.Mildoxidativestress inducesreversiblemodificationsthat protectproteinsfromirreversibledamageandmoduletheir function.Conversely,excessiveoxidativestresstriggersirreversiblemodificationsofthiolicgroupsof proteinsgenerallyassociatedwithpermanentlossoffunction,misfoldingandaggregationtendency [1].

Inmammaliancells,asignificantamountofGSHmaybereversiblyboundtoproteins,throughthe formation of mixed disulfides between GSH and protein sulfhydryl groups. The resulted

(3)

post-translationalmodification,knownasS-glutathionylation, notonlystoresGSH, preventingits loss underoxidativeconditions,butalsoprotectssensitiveproteinthiolsfromirreversibleoxidation[2]. It is important to note that protein S-glutathionylation occurs in pathological as well as physiologicalconditions,suggestingthepossibleinvolvementofthispost-translationalmodification incellularsignalingandredoxregulationofproteinfunction[1,2].

ProteinsulfhydrylsexhibitstrikingdifferentialsusceptibilitytoS-glutathionylation.Thus,whilea proteinmaycontainnumerouscysteineresidues,onlyaminorityofthesewillhavethechemical propertiestofunctionaspossibletargetsitesforoxidant.

Thetwomajorfactorsthatdeterminesusceptibilityofcysteinylresiduestoredoxreactionsarethe accessibilityof thethiolwithin thethree-dimensional structure of the proteinand thecysteine reactivity, which is influenced by the neighboring amino acids. Accessibility is defined by the secondaryandtertiarystructureoftheproteinanddependsontherelativeeasinessofthecysteineto beexposedtothesolvent.ThereactivityofSHgroupsismoredifficulttobepredicted.Thecysteine sulfhydrylsofmostcytoplasmicproteins havea pKavalueof8.5and,in thenormallyreducing environmentofthecytoplasmatphysiologicalpH,theseresiduesarealmostcompletelyprotonated. Asresult,theyareunlikelytobeS-glutathionylated.However,redox-sensitiveproteinshavespecific cysteineresidueslocalizedinabasicmicroenvironmentthatshifttheirpKatoalowervalue,nearor below7,atphysiologicalpH.ThispKavaluekeepsthecysteineinthethiolateformandmakesitan ‘activecysteine’,whichhasenhancedreactivityforGSH[3].

Herein,wedescribetwoeasymethodsdevelopedforidentifyingglutathionylatedproteinsthat could be used in parallel in order to exclude false positive results. The first one is the immunoprecipitationof targetproteinfollowedbyelectrophoresisundernon-reducingcondition andwesternblotanalysiswithanti-GSHantibody[4,5].Thismethodremainsthemostusedstrategy fortheidentificationofS-glutathionylatedproteins.Thesecondmethodisamodifiedbiotinswitch assayproposedasdescribedpreviouslybyJaffreyandSnyder[6]withmodifications.Thismethodis basedontheuseofbiotinylatedglutathionethatcanreactwithsensitiveredoxthiolsgroupofcysteine residues.Themodifiedproteincanbeisolatebyaffinitycapturewithstreptavidin-conjugatedmedia andrecognizedbywesternblot[7,8].

Themethodsproposedinthismanuscriptwereusedbythesameauthorsintwopreviouspapersin whichthelevelofS-glutathionylationofSTAT3andSTAT1wereanalysedincellsafteroxidativestress. Toidentifythemodifiedcysteineresidue,oxidizedSTAT1andSTAT3werealsoanalysedbymass spectroscopy.Theobtaineddataconfirmedthereliabilityoftheproposedmethods[7–9].

Materials Buffers

1 RIPAlysisbuffer:50mMTris HClpH7.5,150mM NaCl,1%(v/v) Igepal(CA-630I3021, Sigma-Aldrich), 0.5% (w/v) sodium deoxycholate, 0.1% (w/v) sodium dodecyl sulfate (SDS), 1mM ethylenediaminetetraaceticacid(EDTA),10%(v/v)glycerol,100mMNaF,1mMNa3VO4.

2 Samplebuffer:62.5mMTris HClpH6.8, 10%(v/v)glycerol,5%(w/v)SDS,0.05%(w/v)bromophenol blue,5%(v/v)β mercaptoethanol.

3 Non-reducingSamplebuffer:samplebufferwithoutβ mercaptoethanol. 4 Runningbuffer:25mMTris HClpH8.3,190mMglycine,0.1%(w/v)SDS. 5 Transferbuffer:25mMTris HClpH8.3,192mMglycine,20%(v/v)methanol. 6 TBSbuffer:20mMTris HClpH7.5,150mMNaCl.

7 Washingbuffer:TBSbuffercontaining0.1%(v/v)Tween-20detergent 8 Blocking:washingbuffercontaining3%(w/v)BSA.

9 Strippingbuffer:62.5mMTris HClpH6.7,2%(w/v)SDS,100mMβ mercaptoethanol.

Biotinylatedglutathione(BioGSH)synthesis

Dissolvethewater-solublesulfosuccinimidyl-6-(biotinamido)-hexanoate(sulfo-NHS-biotin)and GSH1:1inwaterandadjustthepHto7.2withNaOH.Incubatethereactionatroomtemperaturefor 1h.Unreactedbiotinreagentisquenchedbytheadditionof1MTris HClpH7.2.

(4)

Reagents

1 N-ethylmaleimide(NEM)(E3876,Sigma-Aldrich):Prepare250mMNEMinwater.Thissolutionis stableforatleast3monthsat 20C.

2 1,4-Dithiothreitol(DTT)(Sigma-Aldrich):freshlyprepare1MDTTinwateranddonotstore. 3 Diamide(D3648,Sigma-Aldrich):prepare100mMdiamideinwater.Thissolutionisstableforat

least3monthsat 20C.

4 ProteinAorproteinGsepharose:preparetheresinfollowingthemanufacturer’sinstructions,mix thoroughlyandequilibratewithRIPAbuffer.Theslurryisnowreadyforuse.Itcanbestoredat4C

forafewdays.IfusingamonoclonalantibodychooseproteinG-coupledsepharosebeads,ifusinga polyclonalantibodyproteinA-coupledsepharosebeadsareusuallysuitable.

5 Streptavidin-agarosebeads (ThermoFisherScientific):prepare the beads followingthe manu-facturer’sinstructions,mixthoroughlyandequilibratewithwashingbuffer.

6 Agarose beads (ThermoFisher Scientific): prepare the beads following the manufacturer’s instructions,mixthoroughlyandequilibratewithwashingbuffer.

7 Chemiluminescencekit(ImmobilonWestern,Millipore).

8 Anti-Glutathionemonoclonalantibody(ViroGen):diluteantibody1:1000 inblockingbuffer. 9 Anti-mouse IgG peroxidase-conjugated antibody (Cell Signaling Technology): dilute antibody

1:2000inblockingbuffer.

10Lowryreagent(Sigma-Aldrich)andBSAstandardcurve.

Immunoprecipitationmethod 1 Seed5105

–1106 cells inculture dish and culturethem until con

fluence.Treat cells with appropriateoxidant.Forexample,1mMdiamidefor30min.Nottreatedcellsareusedascontrol. 2 Placeculturedishesoniceandwashthecellswithice-coldPBS.Addnewice-coldPBSandscrape adherentcellsoffthedishusingacoldplasticcellscraperthengentlytransferthecellsuspension intoapre-cooledmicrocentrifuge.Centrifugesamplesat4Canddiscardthesupernatants. 3 LysecellsinRIPAbuffersupplementedwith50mMNEMandwithproteaseinhibitors(10

m

g/mL

antipain,5

m

g/mLpepstatin,1mMphenylmethylsulfonylfluoride)for30minonice. 4 Centrifugesamplesat14,000gfor30minat4Ctopelletthecelldebris.

5 GentlytransfersupernatantstonewEppendorftubes.

6 QuantifytotalproteinscontentusingLowryreagentandBSAstandardcurve.

7 Clarify1mgofproteinsfromcelllysatesusing40

m

LofslurryofproteinA-orG-sepharosein Eppendorftubes.Incubateat4Cfor1hundergentlerotation.Pre-clearingthelysatecanhelpto reducenon-specificbindingandreducebackground.

8 Centrifugesamplesat1000gat4Cfor1–2min. 9 GentlytransfersupernatantstonewEppendorftubes.

10Incubateequalamountsofproteinsfromtheclarifiedcelllysateswiththeantibodyagainstthetarget proteinat4Cfor12h,preferablyundergentlerotation.Thelengthoftheincubation perioddependson theamount ofproteinandaffinitypropertiesof theantibody. Checkthe antibodydatasheetfor recommendedantibodyconcentration.Asaguidelineuse1

m

gofaffinitypurifiedpolyclonalantibody. 11 Centrifugesamplesat1000gat4Cfor1–2min.

12Add60

m

LofslurryofproteinAorGsepharoseandmixat4Cundergentlerotationfor2h.

13Centrifugesamplesat1000gat4Cfor1–2min.

14Collectthebeadsanddiscardthesupernatants.Add200

m

LofRIPAbuffertothetubewiththe beadsandgentlymix.Repeatthiswashtwice.

15Add30

m

Lof2Xnon-reducingSamplebuffertothecollectedbeadsandheatthesamplesat100C for3min.

16Centrifugesamplesat1000gat4Cfor1–2minandcollectthesupernatantsforwesternblot analysis.

17 SeparateProteinAorGpull-downsamplesona5–10%SDS–polyacrylamidegelinrunningbuffer followingthemanufacturer’sinstructionsoftheelectrophoresisapparatus.

(5)

Transfer proteins to PVDF membrane using transfer buffer following the manufacturer’s instructionsofthetransferapparatus.

19Blocknon-specificbindingonthemembranebyincubationinblockingbufferatroomtemperature for1hundergentleagitation.

20ProbemembranewithmonoclonalantibodyagainstGSHat4Covernightundergentleagitation.

21Washthemembraneinwashingbufferfor5minundergentleagitation.Repeatwashthreetimes. 22Incubateblotswithanti-mouseIgGperoxidase-conjugatedantibodyatroomtemperaturefor1h

undergentleagitation.

23Washthemembraneinwashingbufferfor5minundergentleagitation.Repeatwashthreetimes. 24Detect protein-antibody reactions with chemiluminescent detection reagent following the

manufacturer’sinstructions.Acquireimageswithanautomatedimageacquisitionsystem. Tochecktheimmunoprecipitatedprotein,removeprimaryandsecondaryantibodiesfromthe membraneandre-probeitwiththeprimaryantibodyagainstthetargetedprotein.

25Incubatemembraneinstrippingbufferat50Cfor30minundergentleagitation.

26Checktheefficiencyofstrippingbyincubatingthemembranewithchemiluminescentdetection reagent.

27

Fig.1.Modifiedbiotinswitchassay.

(6)

Ifstrippingisjudgedtobesatisfactory,rinsethemembraneseveraltimeswithwashingbuffer, thenblockwithblockingbuffer,1hundergentleagitation.

28 Probethe membranewith antibodyagainst targetprotein.Check the antibodydatasheet for recommendedantibodyconcentration.

29 Repeatstep19–22forthedetectionoftheprotein.

Modifiedbiotinswitchassaymethod

1 CellsarelysedinRIPAbuffersupplementedwithproteaseinhibitors(10

m

g/mLantipain,5

m

g/mL pepstatin,1mMphenylmethylsulfonylfluoride)onicefor30min.

2 Centrifugesamplesat14,000gat4Cfor30mintopelletthecelldebris. 3 TransfersupernatantstonewEppendorftubes.

4 QuantifytotalproteinscontentusingLowryreagentandBSAstandardcurve.

5 Incubate1mgofproteinsfromcelllysateswith1mMdiamideorotheroxidizingagentonicefor 30min.Forthecontrolsample,incubate1mgofproteinsfromcelllysateswithoutoxidantagents andfollowthesameprocedure.

6 Transfer the samples in Amicon1 Ultra spin desalting column (Millipore) and follow the manufacturer’sinstructionstoremovecellularGSHandtheoxidantsinexcess.

7 TransferthecollecteddesaltedsamplesinnewEppendorftubes.

8 Add50mMNEMandkeeponicefor20mintostablyalkylatethefreethiols.

9 ReducethethiolgroupsthatarenotalkylatedbyNEMwith60mMDTTkeepingthesolutiononice for20min.

10Transferthe samplesin Amicon1 Ultra columnfollowing the manufacturer’s instructions to removefreeNEMandDTT.

11 TransfereachsampleinnewEppendorftube.

12Oxidizeagainthefreethiolgroupswith1mMdiamideorotheroxidizingagentsonicefor30min. 13Incubatethesampleswith1mMBioGSHonicefor30min.Otherwise,thecommerciallyavailable BiotinylatedGlutathioneethyleneester(BioGEE,MolecularProbes,ThermoFisherScientific)can beusedtolabeltheredoxsensitivecysteine.

14TransferthesamplesinAmicon1 Ultracolumnand followthemanufacturer’sinstructions in ordertoremovecellularGSHandtheoxidantsinexcess.

15Replacethebufferwith400

m

LcoldRIPAbuffersupplementedwithproteaseinhibitors(10

m

g/mL antipain,5

m

g/mLpepstatin,1mMphenylmethylsulfonylfluoride)andtransfereachsamplein newEppendorftube.

16QuantifyproteinscontentusingLowryreagentandBSAstandardcurve

17 Incubate1mgofproteinswith100

m

LofslurryagarosebeadsinEppendorftubesat4Cfor1h under gentle rotation. This pre-clearing step can help to reduce non-specific binding and background.

18 Centrifugesamplesat1000gat4Cfor1–2min.

19TransfersupernatantstonewEppendorftubesandadd100

m

Lofstreptavidin-agarosebeads.Mix underrotationat4Cfor2h.

20 Centrifugesamplesat1000gat4Cfor1–2min.

21Collectthebeadsanddiscardthesupernatants.Add200

m

LofRIPAbuffertothetubewiththe beads and gently mix. Centrifuge samples at 1000g at 4C for 1–2minand discardthe supernatants.Repeatthiswashtwice.

22 Add30

m

Lof2XSamplebuffertothecollectedbeadsandheatthesamplesat100Cfor3min.

23 Centrifugesamplesat1000gat4Cfor1–2minandcollectthesupernatantsforSDS-PAGEand WesternBlotanalysis.

24 Separate Streptavidinpull-down samples on a 5–10% SDS–polyacrylamide gel (SDS-PAGE) in runningbufferfollowingthemanufacturer’sinstructionsoftheelectrophoresisapparatus. 25 Transfer proteins to PVDF membrane using transfer buffer following the manufacturer’s

instructionsofthetransferapparatus. 26

(7)

Blocknon-specificbindingonthemembranebyincubationinblockingbufferatroomtemperature for1hundergentleagitation.

27Probethemembranewithprimaryantibodyagainsttargetproteinovernightat4Cundergentle agitationusingtherecommendeddilutioninblockingsolution.Checktheantibodydatasheetfor recommendedantibodydilution.

28Washthemembraneinwashingbufferfor5minundergentleagitation.Repeatwashthreetimes. 29Incubate the membrane with secondary antibody peroxidase-conjugated for 1h at room temperatureundergentleagitationusingtherecommendeddilutioninblockingsolution.Check theantibodydatasheetforrecommendedantibodydilution.

30Washthemembraneinwashingbufferfor5minundergentleagitation.Repeatwashthreetimes. 31Detect protein-antibody reactions with chemiluminescent detection reagent following the

manufacturer’sinstructions.Acquireimageswithanautomatedimageacquisitionsystem. Aworkflowof representationof modifiedbiotin switchprocedure fortheidentificationof S-glutathionylatedproteinisreportedinFig.1.

References

[1]D.Giustarini,R.Rossi,A.Milzani,R.Colombo,I.Dalle-Donne,S-glutathionylation:fromredoxregulationofproteinfunctions tohumandiseases,J.Cell.Mol.Med.8(2)(2004)201–212.

[2]I.Dalle-Donne,R.Rossi,G.Colombo,D.Giustarini,A.Milzani,ProteinS-glutathionylation:aregulatorydevicefrombacteria tohumans,TrendsBiochem.Sci.34(2)(2009)85–96.

[3]S.G.Rhee,Y.S.Bae,S.R.Lee,J.Kwon,Hydrogenperoxide:akeymessengerthatmodulatesproteinphosphorylationthrough cysteineoxidation,Sci.STKE2000(53)(2000)pe1.

[4]E.Butturini,E.Cavalieri,A.C.dePrati,E.Darra,A.Rigo,K.Shoji,N.Murayama,H.Yamazaki,Y.Watanabe,H.Suzuki,S. Mariotto,Twonaturallyoccurringterpenes,dehydrocostuslactoneandcostunolide,decreaseintracellularGSHcontentand inhibitSTAT3activation,PLoSOne6(5)(2011)e20174.

[5]E.Butturini,A.CarcereridePrati,G.Chiavegato,A.Rigo,E.Cavalieri,E.Darra,S.Mariotto,Mildoxidativestressinduces S-glutathionylationofSTAT3 andenhanceschemosensitivityoftumouralcellstochemotherapeuticdrugs,FreeRadic.Biol. Med.65(2013)1322–1330.

[6]S.R.Jaffrey,S.H.Snyder,ThebiotinswitchmethodforthedetectionofS-nitrosylatedproteins,Sci.STKE2001(86)(2001)pl1. [7]E.Butturini,E.Darra,G.Chiavegato,B.Cellini,F.Cozzolino,M.Monti,P.Pucci,D.Dell’Orco,S.Mariotto,S-Glutathionylationat

Cys328andCys542impairsSTAT3phosphorylation,ACSChem.Biol.9(8)(2014)1885–1893.

[8]E.Butturini,F.Cozzolino,D.Boriero,A.CarcereridePrati,M.Monti,M.Rossin,D.Canetti,B.Cellini,P.Pucci,S.Mariotto, S-glutathionylationexertsopposingrolesintheregulationofSTAT1andSTAT3signalinginreactivemicroglia,FreeRadic.Biol. Med.117(2018)191–201.

[9]E.Butturini,D.Boriero,A.CarcereridePrati,S.Mariotto,STAT1drivesM1microgliaactivationandneuroinflammationunder hypoxia,Arch.Biochem.Biophys.669(2019)22–30,doi:http://dx.doi.org/10.1016/j.abb.2019.05.011.

Riferimenti

Documenti correlati

Il Sistema Acquifero della pianura pisana (Sap).... Modalità di alimentazione

Il soldato spartano prefigura così i soldati moderni, nella stessa condizione pur con mezzi differenti, mentre il militare al fronte vive ciò a cui quello di leva

Validation of the CFD results was provided by realizing the same airflow conditions in the DICCA wind tunnel and measuring the air velocity components in different fixed

L’utilizzo di un sistema di tracciabilità per i kit chirurgici all’interno del blocco operatorio, oggetto di questo lavoro di tesi, oltre a determinare la

La Chiesa volterrana durante la parentesi imperiale p.. La vicaria dell’ex eletto Ubertini

In questo quadro la geografia può e deve ricoprire una funzione fondamentale nello studio del territorio, utilizzando i propri affinati strumenti di critica e

For trivalent metal ions, the two mimosine peptides will form 2 : 3 (metal : ligand) complexes of different ternary Scheme 2 Possible types of the self-assembled metal –peptide