• Non ci sono risultati.

Search for contact interactions in μ+μ- events in pp collisions at √s=7 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for contact interactions in μ+μ- events in pp collisions at √s=7 TeV"

Copied!
19
0
0

Testo completo

(1)

Search for contact interactions in



þ





events in

pp collisions at

p

ffiffiffi

s

¼ 7 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 18 December 2012; published 1 February 2013)

Results are reported from a search for the effects of contact interactions using events with a high-mass, oppositely charged muon pair. The events are collected in proton-proton collisions atpffiffiffis¼ 7 TeV using the Compact Muon Solenoid detector at the Large Hadron Collider. The data sample corresponds to an integrated luminosity of5:3 fb1. The observed dimuon mass spectrum is consistent with that expected from the standard model. The data are interpreted in the context of a quark- and muon-compositeness model with a left-handed isoscalar current and an energy scale parameter. The 95% confidence level lower limit on is 9.5 TeV under the assumption of destructive interference between the standard model and contact-interaction amplitudes. For constructive interference, the limit is 13.1 TeV. These limits are comparable to the most stringent ones reported to date.

DOI:10.1103/PhysRevD.87.032001 PACS numbers: 12.60.Rc, 13.85.Qk

I. INTRODUCTION

The existence of three families of quarks and leptons might be explained if these particles are composed of more fundamental constituents. In order to confine the constitu-ents (often referred to as ‘‘preons’’ [1,2]) and to account for the properties of quarks and leptons, a new strong gauge interaction, metacolor, is introduced. Below a given inter-action energy scale, the effect of the metacolor interac-tion is to bind the preons into metacolor-singlet states. For parton-parton center-of-mass energy less than, the meta-color force will manifest itself in the form of a flavor-diagonal contact interaction (CI) [3,4]. In the case where both quarks and leptons share common constituents, the Lagrangian density for a CI leading to dimuon final states can be written as Lql¼ ðg2 0=2ÞfLLðqLqLÞð LLÞ þ LRðqLqLÞð RRÞ þ RLðuRuRÞð LLÞ þ RLð dRdRÞð LLÞ þ RRðuRuRÞð RRÞ þ RRð dRdRÞð R RÞg; (1)

where qL¼ ðu; dÞLis a left-handed quark doublet, uRand dRare right-handed quark singlets, and Land Rare left-and right-hleft-anded muons. By convention, g20=4 ¼ 1. The parameter characterizes the compositeness energy scale. The parameters ijallow for differences in magnitude and phase among the individual terms. Lower limits on are

set separately for each term with ijtaken, by convention, to have a magnitude of 1.

The dimuons from the subprocesses for standard model (SM) Drell-Yan (DY) [5] production and from CI produc-tion can have the same helicity state. In this case, the scattering amplitudes are summed, resulting in an interfer-ence term in the cross section for pp ! X þ þ, as illustrated schematically in Fig. 1.

The differential cross section corresponding to the com-bination of a single term in Eq. (1) with DY production can be written as dCI=DY dM ¼ dDY dM  ij I 2þ 2ij C 4; (2)

where M is the invariant dimuon mass, I is due to interference, andC is purely due to the CI. Note that ij¼ þ1 corresponds to destructive interference and ij ¼ 1 to constructive interference. The processes contributing to the cross section in Eq. (2) are denoted collectively by ‘‘CI/DY.’’ The difference dCI=DY=dM dDY=dM is the signal we are searching for in this paper.

The contact-interaction model used for this analysis is the left-left isoscalar model (LLIM) [4], which corresponds to a left-handed current interaction described by the first

FIG. 1. Schematic representation of the addition of DY (left diagram) and CI (right diagram) amplitudes, for common helicity states, contributing to the total cross section for pp ! X þ þ.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

term of Lql in Eq. (1). The LLIM is the conventional benchmark for CI in the dilepton channel. For this analysis, all initial-state quarks are assumed to be composite.

Previous searches for CI in the dijet and dilepton chan-nels have all resulted in limits on the compositeness scale . Searches have been reported from experiments at LEP [6–10], HERA [11,12], the Tevatron [13–18], and recently from the ATLAS [19–22] and CMS [23–25] experiments at the LHC. The best limits in the LLIM dimuon channel are  > 9:6 TeV for destructive interference and  > 12:9 TeV for constructive interference, at the 95% confi-dence level (CL) [22].

In this paper, we report a search for CI in the dilepton channel produced in pp collisions at pffiffiffis¼ 7 TeV using the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC). The data sample corresponds to an integrated luminosity of5:3 fb1.

II. PREDICTIONS OF THE LEFT-LEFT ISOSCALAR MODEL

The basic features of the LLIM dimuon mass spectra are demonstrated with a generator-level simulation using PYTHIA [26], with appropriate kinematic selection criteria that approximate the acceptance of the detector. Figures2(a)and2(b)show the LLIM dimuon mass spectra for different values of for destructive and constructive interference, respectively. The curves illustrate that with increasing mass the CI leads to a less steeply falling yield relative to DY production, with the effect steadily increas-ing with decreasincreas-ing. For a given value of , the event yield is seen to be larger for constructive interference compared to the destructive case, with the relative differ-ence increasing with.

For the results presented in this paper, the analysis is limited to a dimuon mass range from 200 to2000 GeV=c2. The lower mass is sufficiently above the Z peak so that a deviation from DY production would be observable. The highest dimuon mass observed is between 1300 and 1400 GeV=c2 and, for the values of  where the limits are set, less than one event is expected for dimuon masses above 2000 GeV=c2. In order to limit the mass range in which the detector acceptance has to be evaluated, we therefore choose an upper mass cutoff of 2000 GeV=c2. To optimize the limit on, a minimum mass Mminis varied between the lower and upper mass values, as described in Sec.VI.

III. CMS DETECTOR

The central feature of the CMS apparatus is a super-conducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass-scintillator had-ron calorimeter. Muons are measured in gas-ionization

detectors embedded in the steel flux-return yoke. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. A detailed description of the CMS detector can be found in Ref. [27]. The tracker and muon detector are important subsystems for this measurement. The tracker measures charged par-ticle trajectories within the range jj <2:5, where pseu-dorapidity  ¼ ln½tanð=2Þ, and polar angle  is measured from the beam axis. The tracker provides a transverse momentum (pT) resolution of about 1% at a few tens ofGeV=c to 10% at several hundred GeV=c [28], where pT is the component of momentum in the plane

) 2 (GeV/c µ µ M 500 1000 1500 2000 2500 3000 ) 2 Events/(30 GeV/c 1 10 2 10 3 10 4 10 5 10 = 3 TeV Λ = 5 TeV Λ = 7 TeV Λ = 9 TeV Λ = 13 TeV Λ DY destructive interference left-left isoscalar model

PYTHIA simulation (a) ) 2 (GeV/c µ µ M 500 1000 1500 2000 2500 3000 ) 2 Events/(30 GeV/c 1 10 2 10 3 10 4 10 5 10 Λ= 3 TeV = 5 TeV Λ = 7 TeV Λ = 9 TeV Λ = 13 TeV Λ DY constructive interference

left-left isoscalar model PYTHIA simulation

(b)

FIG. 2 (color online). Simulated dimuon mass spectra using the left-left isoscalar model for different values of  for (a) destructive interference and (b) constructive interference. The events are generated using thePYTHIAMonte Carlo program with kinematic selection requirements that approximate the acceptance of the detector. As  increases, the effects of the CI are reduced, and the event yield approaches that for DY production. The model predictions are shown over the full mass range, although the model is not valid as Mc2approaches.

The integrated luminosity corresponds to63 fb1.

(3)

perpendicular to the beam axis. Tracker elements include about 1400 silicon pixel modules, located close to the beamline, and about 15 000 silicon microstrip modules, which surround the pixel system. Tracker detectors are arranged in both barrel and endcap geometries. The muon detector comprises a combination of drift tubes and resistive plate chambers in the barrel region and a combination of cathode strip chambers and resistive plate chambers in the endcap regions. Muons can be recon-structed in the range jj <2:4.

For the trigger path used in this analysis, the first level (L1) selects events with a muon candidate based on a subset of information from the muon detector. The trigger muon is required to have jj <2:1 and pTabove a thresh-old that was raised to40 GeV=c by the end of the data-taking period. This cut has little effect on the acceptance for muon pairs with masses above200 GeV=c2. The small effect is included in the simulation. The high level trigger (HLT) refines the L1 selection using the full information from both the tracker and muon systems.

IV. EVENT SELECTION CRITERIA

This analysis uses the same event selection as the search for new heavy resonances in the dimuon channel, discussed in Ref. [29]. Each muon track is required to have a signal (‘‘hit’’) in at least one pixel layer, hits in at least nine strip layers, and hits in at least two muon detector stations. Both muons are required to have pT>45 GeV=c. To reduce the cosmic ray background, the transverse impact parameter of the muon with respect to the beamspot is required to be less than 0.2 cm. In order to suppress muons coming from hadronic decays, a tracker-based isolation requirement is imposed such that the sum of pT of all tracks, excluding the muon and within a cone surrounding the muon, is less than 10% of the pTof the muon. The cone is defined by the conditionR ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðÞ2þ ðÞ2 ¼ 0:3, where  is the azimuthal angle of a track, and the differ-ences  and  are determined with respect to the muon’s direction.

The two muons are required to have opposite charge and to be consistent with originating from a common vertex. To suppress cosmic ray muons that are in time with the collision event, the angle between the two muons must be smaller than  0:02 radians. At least one of the reconstructed muons must be matched (within R < 0:2 andpT=pT<1) to the HLT muon candidate.

If an event has more than two muons passing the above requirements, then the two highest-pTmuons are selected, and the event is retained only if these muons are oppositely charged. Only three such events are observed with selected dimuon mass above200 GeV=c2, and in all three cases, the dimuon mass is less than300 GeV=c2. Thus, events with multiple dimuon candidates play essentially no role in the analysis.

V. SIMULATION OF SM AND CI DIMUON PRODUCTION

This section describes the method used to simulate the mass distribution from the CI/DY process of Eq. (2), including the leading-order (LO) contributions from DY and CI amplitudes, their interference, the effects of next-to-leading-order (NLO) QCD and QED corrections, and the response of the detector. The predicted number of CI/DY events is the product of the generated number of CI/DY events, a QCD K-factor, a QED K-factor, and a factor denoted as ‘‘acceptance times migration’’ (A  M). The factor A  M is determined from the detector simulation of DY events, as explained below in Sec.V B. The simulation of background due to non-DY SM processes is also described.

A. Event samples with detector simulation A summary of the event samples used for simulation of the detector response to various physics processes is pre-sented in Table I. The event generators used are PYTHIA, with the CTEQ6.6M implementation [30] of parton distri-bution functions (PDF),POWHEG[31–33], andMADGRAPH5 [34]. The detector simulation is based onGEANT4[35].

B. Detector acceptance times mass migration To simplify the analysis, we use the detector simulation for DY events to determine the detector response for CI/DY events, which have a behavior similar to that for DY events for the large values of  of interest in this analysis. For a given value of Mmin, the product of acceptance times migration (A  M) is given by the ratio of the number of DY events reconstructed with mass above Mmin to the number of DY events generated with mass above Mmin. Some of the reconstructed events have been generated with mass below Mminbecause of the smearing due to the mass reconstruction, which has a resolution of 6.5% at masses around1000 GeV=c2, rising to 12% at2000 GeV=c2. The dependence of A  M on Mmin is plotted in Fig. 3 and values are given in Table II. The increase of A  M at lower mass is due to the increase in acceptance, while at higher mass, it is dominated by the growth in mass reso-lution. Since the cross section falls steeply with mass, events tend to migrate from lower to higher mass over a range determined by the mass resolution.

To validate that the A  M factor based on DY produc-tion is applicable to CI/DY producproduc-tion, we compare event yields predicted using the A  M factor with those pre-dicted using a simulation of CI/DY production. The study is performed for the cases of constructive interference with  ¼ 5 and 10 TeV, which represent a wide range of possible CI/DY cross sections. The results differ by at most 3%, consistent with the statistical precision of the study. The systematic uncertainty in A  M is conserva-tively assigned this value.

(4)

1. Event pileup

During the course of the 2011 data-taking period, the luminosity increased with time, resulting in an increasing ‘‘event pileup,’’ the occurrence of multiple pp interactions recorded by the detector as a single event. The dependence of reconstruction efficiency on event pileup is studied by weighting simulated events so that the distribution of the number of reconstructed primary vertices per event matches that in data. The reconstruction efficiency is found to be insensitive to the variations in event pileup encoun-tered during the data-taking period.

C. Higher-order strong and electromagnetic corrections

Since we use the leading-order generator PYTHIA to simulate the CI/DY production, we must determine a QCD K-factor which takes into account higher-order initial-state diagrams. Under the assumption that the QCD K-factor is the same for DY and CI/DY events, we determine the QCD K-factor as the ratio of DY events generated using the next-to-leading-order generator MC@NLO [36] to those generated using PYTHIA. The MC@NLO generator is used with the same PDF set as used withPYTHIA. The resulting QCD K-factor as a func-tion of Mmin is given in Table II. The large sizes of the simulated event samples result in statistical uncertainties of less than 0.5%. The systematic uncertainty is assigned the value 3%, the size of the correction [37] between next-to-next-to-leading-order (NNLO) and NLO DY cross sec-tions. For SM processes other than DY production, the QCD K-factor is found, independent of dimuon mass, from the ratio of the cross section determined using MC@NLOto the cross section determined fromPYTHIA.

The effect of higher-order electromagnetic processes on CI/DY production is quantified by a mass-dependent QED K-factor determined using the HORACE generator [38]. The values of the QED K-factor, as a function of Mmin, are given in TableII. The systematic uncertainty is assigned as the size of the correction, jðQED K-factorÞ  1j, since the effect of higher-order QED corrections on the new physics of CI is unknown.

D. Non-DY SM backgrounds

Using the samples of simulated events listed in TableI, event yields are predicted for various non-DY SM back-ground processes, as shown in Table III. The yields are given as a function of Mmin, and they are scaled to the integrated luminosity of the data, 5:28  0:12 fb1 [39].

TABLE I. Description of event samples with detector simulation. The cross section  and integrated luminosity L are given for each sample generated.

Process Generator Number of events ðpbÞ Lðpb1Þ Order

Z=! , M 120 GeV=c2 PYTHIA 5:45  104 7:90  100 6:91  103 LO Z=! , M 200 GeV=c2 PYTHIA 5:50  104 9:70  101 5:67  104 LO Z=! , M 500 GeV=c2 PYTHIA 5:50  104 2:70  102 2:04  106 LO Z=! , M 800 GeV=c2 PYTHIA 5:50  104 3:10  103 1:77  107 LO Z=! , M 1000 GeV=c2 PYTHIA 5:50  104 9:70  104 5:67  107 LO Z=!  PYTHIA 2:03  106 1:30  103 1:56  103 LO tt MADGRAPH 2:40  106 1:57  102 1:54  105 NLO tW POWHEG 7:95  105 7:90  100 1:01  105 NLO tW POWHEG 8:02  105 7:90  100 1:02  105 NLO WW PYTHIA 4:23  106 4:30  101 9:83  104 LO WZ PYTHIA 4:27  106 1:80  101 2:37  105 LO ZZ PYTHIA 4:19  106 5:90  100 7:10  105 LO

W þ jets MADGRAPH 2:43  107 3:10  104 7:82  102 NLO

multijet,  (pT>15 GeV=c) PYTHIA 1:08  106 8:47  104 1:28  102 LO

) 2 (GeV/c min µ µ M 200 400 600 800 1000 1200 1400 1600 Acceptance x Migration 0.8 0.85 0.9 0.95 CMS simulation

FIG. 3 (color online). Acceptance times migration, A  M, versus Mmin. Corresponding values and uncertainties are given

in TableII. The error bars indicate statistical uncertainties based on simulation of the DY process. The systematic uncertainty is 3%, as explained in the text. The increase of A  M at lower mass is due to the increase in acceptance, while at higher mass, it is dominated by the growth in mass resolution. Since the cross section falls steeply with mass, events tend to migrate from lower to higher mass over a range determined by the mass resolution.

(5)

For comparison, the expected yields are also shown for DY events. The relevant backgrounds, in decreasing order of importance, are tt, diboson ðWW=WZ=ZZÞ, W (including W þ jets and tW), and Z !  production. The back-ground from multijet events is studied using both the simulation sample listed in Table I and control samples from data, as reported in Ref. [29]. The results of either method indicate that no multijet background events are expected for Mmin>200 GeV=c2. For Mmin> 1000 GeV=c2 the fractional statistical uncertainty in the non-DY background is large, but the absolute yield is much smaller than that for DY background.

E. Predicted event yields

Using the methods described above, the sum of the event yields for the CI/DY process and the non-DY SM back-grounds, for the integrated luminosity of the data sample, are predicted as a function of Mmin and. The predicted event yields for destructive and constructive interference are given in TablesIVandV.

For destructive interference, there is a region of the Mmin  parameter space where the predicted number of events is less than for SM production. This ‘‘reduced-yield’’ region is indicated in Table IV. The region of parameter space, Mmin>600 GeV=c2 and  12 TeV, where our expected limit is most stringent [see Fig.5(a)], lies outside the reduced-yield region. For constructive interference, the predicted number of events is always larger than for SM production.

VI. EXPECTED AND OBSERVED

LOWER LIMITS ON

A. Dimuon mass distribution from data

The observed numbers of events versus Mmin are given in TableIV. The observed distribution of Mis plotted in Fig.4along with the expected distributions from the SM and for CI/DY plus non-DY SM processes, for three illus-trative values of . The data are consistent with the pre-dictions from the SM, dominated by DY production.

B. Limit-setting procedure

Since the data are consistent with the SM, we set lower limits on in the context of the LLIM. The expected and observed 95% CL lower limits on are determined using the CLS modified-frequentist procedure described in [40,41], taking the profile likelihood ratio as a test statistic [42]. The expected mean number of events for a signal

TABLE II. Multiplicative factors used in the prediction of the expected number of events from the CI/DY process. The un-certainties shown are statistical. The systematic uncertainty is 3% for A  M and 3% for the QCD K-factor, as explained in the text. The uncertainty in the QED K-factor is dominated by the systematic uncertainty that is assigned as the size of the correc-tion, jðQED K  factorÞ  1j, to allow for systematic uncertainty in the generator.

Mmin(GeV=c2) A  M QCD K-factor QED K-factor

200 0:80  0:01 1:303  0:005 1.01 300 0:82  0:01 1:308  0:005 0.99 400 0:83  0:01 1:299  0:005 0.97 500 0:86  0:02 1:305  0:005 0.95 600 0:86  0:01 1:299  0:005 0.94 700 0:87  0:01 1:298  0:005 0.92 800 0:88  0:01 1:288  0:005 0.91 900 0:89  0:01 1:280  0:004 0.90 1000 0:89  0:01 1:278  0:004 0.89 1100 0:89  0:01 1:275  0:004 0.88 1200 0:91  0:01 1:268  0:004 0.88 1300 0:92  0:01 1:262  0:004 0.87 1400 0:94  0:01 1:260  0:004 0.87 1500 0:97  0:01 1:261  0:004 0.86

TABLE III. Expected event yields for DY and non-DY SM backgrounds. The uncertainties shown are statistical. A systematic uncertainty of 2.2% arises from the determination of integrated luminosity [39].

Mmin(GeV=c2) DY tt Diboson W þ Jets & tW Z !  Sum non-DY

200 3630  18 454  3 123:0  2 47:90  1:35 6:96  4:14 632:3  5:9 300 870:6  8:8 104  2 38:6  1:2 12:82  0:70 0 155:9  2:1 400 301:6  5:1 26:0  0:8 12:7  0:7 3:32  0:35 0 42:0  1:1 500 123:8  3:3 8:19  0:46 5:07  0:41 1:02  0:20 0 14:3  0:6 600 55:31  0:19 2:92  0:27 2:42  0:28 0:29  0:11 0 5:63  0:41 700 27:35  0:13 1:12  0:17 0:86  0:16 0:07  0:05 0 2:06  0:24 800 14:23  0:10 0:34  0:09 0:51  0:12 0:07  0:05 0 0:92  0:16 900 7:72  0:07 0:05  0:03 0:25  0:08 0:07  0:05 0 0:36  0:10 1000 4:32  0:05 0:05  0:03 0:10  0:05 0:07  0:05 0 0:21  0:08 1100 2:46  0:04 0:05  0:03 0:09  0:05 0:07  0:05 0 0:20  0:08 1200 1:48  0:03 0 0:01  0:01 0:07  0:05 0 0:08  0:05 1300 0:91  0:02 0 0:01  0:01 0:07  0:05 0 0:08  0:05 1400 0:56  0:02 0 0:01  0:01 0:07  0:05 0 0:08  0:05 1500 0:33  0:02 0 0 0:07  0:05 0 0:07  0:05 . . .

(6)

TABLE V. Observed and expected number of events as in TableIV. Here CI/DY predictions are for constructive interference. Shown with bold-italic font is the expected event yield corresponding to the value of closest to the observed 95% CL lower limit on  of 13.1 TeV (12.9 TeV expected) for Mmin selected to be800 GeV=c2.

Mmin(GeV=c2) 400 500 600 700 800 900 1000 1100 1200 1300 1400

Source Number of events

Data 338 141 57 28 14 13 8 3 2 1 0 SM MC (TeV) MC 343.6 138.1 60.9 29.4 15.2 8.1 4.5 2.7 1.6 1.0 0.6 18 359.2 147.7 67.8 34.1 18.7 10.6 6.4 4.0 2.5 1.6 1.1 17 358.9 149.3 69.1 35.1 19.3 11.1 6.7 4.3 2.7 1.8 1.2 16 365.2 153.7 70.3 36.1 20.2 11.7 7.2 4.6 3.0 2.0 1.3 15 365.6 156.3 71.9 37.2 20.9 12.3 7.6 4.9 3.1 2.1 1.4 14 368.5 154.9 74.6 39.1 22.4 13.3 8.4 5.5 3.6 2.4 1.7 13 377.8 164.4 77.9 41.7 24.2 14.7 9.4 6.3 4.2 2.9 2.0 12 379.2 170.5 82.5 45.2 26.9 16.7 11.0 7.4 5.0 3.5 2.4 11 388.9 174.6 88.6 49.9 30.4 19.3 12.9 8.8 6.1 4.2 3.0 10 406.0 184.5 97.9 57.1 36.0 23.7 16.2 11.3 7.9 5.6 4.0 9 440.3 214.8 113.2 68.8 44.8 30.3 21.2 15.0 10.7 7.7 5.5 8 470.0 237.1 138.2 87.7 59.6 41.6 29.9 21.8 15.7 11.4 8.1 7 563.9 307.3 181.0 120.4 86.7 62.1 44.8 31.5 23.3 16.9 12.3 6 696.8 415.0 269.2 187.3 136.9 101.7 75.3 57.4 41.8 30.7 23.2 5 1007 675.0 467.8 345.8 268.0 202.3 153.3 116.9 87.3 64.6 47.0 4 1839 1346 997.4 765.1 586.6 451.1 349.6 266.8 200.3 147.8 109.5 3 4800 3762 2861 2251 1754 1358 1041 791.0 597.1 453.6 338.5

TABLE IV. Observed and expected number of events for illustrative values of Mmin. The expected yields are shown for SM

production and for the sum of CI/DY production (for destructive interference and for a given) and non-DY SM backgrounds. For each column of Mmin, the expected yield forCI=DY þ non-DY SM production that is just above that expected for SM production is in

bold font. Entries above the bold ones correspond to values of for which the expected yield is less than that for SM production, because of the destructive interference term in the cross section. As discussed in Sec.VI C, the best expected limit is obtained for Mmin¼ 1100 GeV=c2. For this choice, the expected event yield, in bold-italic font, corresponds to the value of  closest to the

observed 95% CL lower limit on of 9.5 TeV (9.7 TeV expected).

Mmin(GeV=c2) 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Source Number of events

Data 141 57 28 14 13 8 3 2 1 0 0 SM MC (TeV) MC 138.1 60.9 29.4 15.2 8.1 4.5 2.7 1.6 1.0 0.6 0.4 18 134.2 58.0 27.9 14.3 7.7 4.3 2.6 1.5 1.0 0.6 0.4 17 134.5 57.9 27.7 14.4 7.8 4.4 2.6 1.6 1.0 0.6 0.4 16 134.9 58.0 27.8 14.5 7.8 4.5 2.7 1.6 1.0 0.7 0.5 15 135.6 58.3 28.1 14.7 8.0 4.7 2.9 1.7 1.1 0.8 0.5 14 133.7 58.3 28.3 15.0 8.4 5.0 3.1 1.9 1.3 0.9 0.6 13 134.1 59.3 29.1 15.7 8.9 5.4 3.5 2.2 1.5 1.0 0.7 12 138.6 60.1 30.2 16.7 9.8 6.1 4.1 2.7 1.9 1.3 0.9 11 135.7 62.5 32.1 18.4 11.2 7.3 5.0 3.5 2.4 1.7 1.2 10 141.1 66.7 35.7 21.2 13.6 9.2 6.6 4.6 3.3 2.4 1.7 9 148.5 73.8 42.4 27.1 18.3 13.1 9.5 6.9 5.0 3.7 2.6 8 164.7 88.1 54.4 36.8 26.2 19.3 14.3 10.6 7.8 5.8 4.1 7 198.1 117.5 79.4 57.6 43.3 31.6 24.0 17.5 13.1 9.0 6.2 6 278.1 182.3 131.7 100.1 76.7 57.9 45.1 33.0 22.6 16.9 11.3 5 469.2 338.7 261.7 204.4 158.6 123.2 96.7 74.6 56.8 41.5 29.2 4 1025 784.1 620.1 494.2 384.3 302.6 232.8 174.6 127.2 94.5 68.5 3 3199 2517 2012 1599 1242 975.7 744.7 575.4 437.7 320.1 231.4

(7)

from CI is the difference of the number of CI/DY events expected for a given, and the number of DY events. The expected mean number of background events is the sum of events from the DY process and the non-DY SM back-grounds. The observed and expected numbers of events are given in TablesIVandV.

Systematic uncertainties in the predicted signal and background event yields are estimated from a variety of sources and included as nuisance parameters in the limit-setting procedure. Significant sources of systematic uncertainty are given in Table VI. The uncertainty in the integrated luminosity is described in Ref. [39]. The uncer-tainty in the CI/DY acceptance is explained in Sec.V B. The uncertainties in the prediction of backgrounds depend on the value of Mmin. These uncertainties are given in Table VI for the values of Mmin chosen for limits on  with destructive and constructive interference. The PDF uncertainty in the expected yield of DY events is evaluated using the PDF4LHC procedure [43]. The uncertainties in the QED and QCD K-factors are explained in Sec. V C. The uncertainty from non-DY backgrounds is due to the statistical uncertainty associated with the simulated event samples. The systematic uncertainties which decrease the limit on by the largest amounts are the uncertainties on the PDF and QED K-factor. When both these uncertainties are set to zero, the limit for destructive interference is increased by 0.4% and the limit for constructive interfer-ence is increased by 3.0%. Thus, the systematic uncertain-ties degrade the limits by only small amounts.

We considered possible systematic uncertainties in mod-eling the detector response by comparing kinematic dis-tributions between data and simulation of DY and non-DY SM processes. There are no differences in these distribu-tions that could lead to significant systematic uncertainties through their effect on selection efficiency and mass resolution.

C. Results for limits on

The observed and expected lower limits on at 95% CL as a function of Mmin for destructive and constructive interference are shown in Figs. 5(a) and5(b). The value of Mmin, chosen to maximize the expected sensitivity, is 1100 GeV=c2 for destructive interference, and 800 GeV=c2 for constructive interference. The observed (expected) limit is 9.5 TeV (9.7 TeV) for destructive ) 2 (GeV/c µ µ M 200 400 600 800 1000 1200 1400 1600 1800 2000 ) 2 Events/(20 GeV/c -4 10 -3 10 -2 10 -1 10 1 10 2 10 3 10 4 10 -1 = 7 TeV, 5.3 fb s CMS, data = 8 TeV (const.) Λ = 8 TeV (destr.) Λ = 10 TeV (const.) Λ = 10 TeV (destr.) Λ = 12 TeV (const.) Λ = 12 TeV (destr.) Λ DY t t tW diboson τ τ → Z W+Jets

FIG. 4 (color online). Observed spectrum of Mand

predic-tions for SM and CI/DY plus non-DY SM production. Predictions are shown for three illustrative values of , for constructive and destructive interference. The error bars for data are 68% Poisson confidence intervals.

) 2 (GeV/c min µ µ M 500 1000 1500 500 1000 1500 (T e V ) Λ 95 % C L 3 4 5 6 7 8 9 10 11 12 expected limit σ 1 ± expected limit σ 2 ± expected limit observed limit best expected limit

-1 = 7 TeV, 5.3 fb s CMS, destructive interference (a) ) 2 (GeV/c min µ µ M (T e V ) Λ 95 % C L 4 6 8 10 12 14 16 18 expected limit σ 1 ± expected limit σ 2 ± expected limit observed limit best expected limit

-1 = 7 TeV, 5.3 fb s CMS, constructive interference (b)

FIG. 5 (color online). Observed and expected limits as a function of Mmin for (a) destructive interference and

(b) constructive interference. The value of Mmin, chosen to

maximize the expected sensitivity, is1100 GeV=c2for destruc-tive interference and800 GeV=c2for constructive interference. The observed (expected) limit is 9.5 TeV (9.7 TeV) for destruc-tive interference and 13.1 TeV (12.9 TeV) for construcdestruc-tive interference. The observed limit at the value chosen for Mmin

is indicated with a red plus sign. The variations in the observed limits lie almost entirely within the1- bands, consistent with statistical fluctuations.

(8)

interference and 13.1 TeV (12.9 TeV) for constructive interference. The variations in the observed limits lie almost entirely within the1- (standard deviation) uncer-tainty bands in the expected limits, consistent with statis-tical fluctuations. The number of expected events corresponding to the observed limits on  are shown in TablesIVandV.

VI. SUMMARY

The CMS detector is used to measure the invariant mass distribution of þpairs produced in pp collisions at a center-of-mass energy of 7 TeV, based on an integrated luminosity of5:3 fb1. The invariant mass distribution in the range 200 to2000 GeV=c2 is found to be consistent with standard model sources of dimuons, which are domi-nated by Drell-Yan production. The data are interpreted in the context of a quark- and muon-compositeness model with a left-handed isoscalar current and an energy scale parameter. The 95% confidence level lower limit on  is 9.5 TeV under the assumption of destructive interference between the standard model and contact-interaction ampli-tudes. For constructive interference, the limit is 13.1 TeV. These limits are comparable to the most stringent ones reported to date.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and

thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the suc-cess of the CMS effort. In addition, we gratefully acknowl-edge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effec-tively the computing infrastructure essential to our analy-ses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA

and CNRS/IN2P3 (France); BMBF, DFG, and

HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a` la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced by European Union, Regional Development Fund.

[1] J. C. Pati, A. Salam, and J. Strathdee,Phys. Lett. 59B, 265 (1975).

[2] J. C. Pati, A. Salam, and J. Strathdee, Report No. IC/75/ 139, addendum (Int. Centre Theor. Phys., 1975). [3] E. Eichten, K. Lane, and M. Peskin, Phys. Rev. Lett. 50,

811 (1983).

[4] E. Eichten, I. Hinchlie, K. Lane, and C. Quigg,Rev. Mod. Phys. 56, 579 (1984).

[5] S. D. Drell and T. M. Yan, Phys. Rev. Lett. 25, 316 (1970).

[6] S. Schael et al. (ALEPH Collaboration),Eur. Phys. J. C 49, 411 (2007).

TABLE VI. Systematic uncertainties affecting the limit on, evaluated for the values of Mmin that provide the best expected

limits for constructive and destructive interference. Uncertainty (%)

Source Constructive Destructive

Integrated luminosity 2.2 2.2

Acceptance times migration (A  M) 3.0 3.0

PDF 13.0 16.0

QED K-factor 9.0 11.8

QCD K-factor 3.0 3.0

DY MC statistics 1.2 1.6

Non-DY backgrounds 1.1 2.9

(9)

[7] J. Abdallah et al. (DELPHI Collaboration),Eur. Phys. J. C 45, 589 (2006).

[8] M. Acciarri et al. (L3 Collaboration),Phys. Lett. B 489, 81 (2000).

[9] K. Ackerstaff et al. (OPAL Collaboration), Phys. Lett. B 391, 221 (1997).

[10] G. Abbiendi et al. (OPAL Collaboration),Eur. Phys. J. C 33, 173 (2004).

[11] F. D. Aaron et al. (H1 Collaboration),Phys. Lett. B 705, 52 (2011).

[12] S. Chekanov et al. (ZEUS Collaboration),Phys. Lett. B 591, 23 (2004).

[13] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 68, 1463 (1992).

[14] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 79, 2198 (1997).

[15] T. Affolder et al. (CDF Collaboration),Phys. Rev. Lett. 87, 231803 (2001).

[16] A. Abulencia et al. (CDF Collaboration),Phys. Rev. Lett. 96, 211801 (2006).

[17] B. Abbott et al. (D0 Collaboration),Phys. Rev. Lett. 82, 4769 (1999).

[18] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 103, 191803 (2009).

[19] ATLAS Collaboration,Phys. Lett. B 694, 327 (2011). [20] ATLAS Collaboration,Phys. Rev. D 84, 011101 (2011). [21] ATLAS Collaboration,Phys. Lett. B 712, 40 (2012). [22] ATLAS Collaboration,arXiv:1211.1150v1.

[23] CMS Collaboration,Phys. Rev. Lett. 105, 262001 (2010). [24] CMS Collaboration,J. High Energy Phys. 05 (2012) 055. [25] CMS Collaboration,arXiv:1210.0867[Phys. Lett. B (to be

published)].

[26] T. Sjo¨strand, S. Mrenna, and P. Z. Skand,J. High Energy Phys. 05 (2006) 026.

[27] CMS Collaboration,JINST 3, S08004 (2008). [28] CMS Collaboration,JINST, 7, P10002 (2012). [29] CMS Collaboration,Phys. Lett. B 714, 158 (2012). [30] P. M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J.

Pumplin, D. Stump, W.-K. Tung, and C.-P. Yuan, Phys. Rev. D 78, 013004 (2008).

[31] P. Nason,J. High Energy Phys. 11 (2004) 040.

[32] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[33] S. Alioli, P. Nason, C. Oleari, and E. Re,J. High Energy Phys. 07 (2008) 060.

[34] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer,J. High Energy Phys. 06 (2011) 128.

[35] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). [36] S. Frixione and B. R. Webber,J. High Energy Phys. 06

(2002) 029.

[37] G. Balossini, G. Montagna, C. M. Carloni Calame, M. Moretti, M. Treccani, O. Nicrosini, F. Piccinini, and A. Vicini, Acta Phys. Pol. B 39, 1675 (2008).

[38] C. M. Carloni Calame, G. Montagna, O. Nicrosini, and A. Vicini,J. High Energy Phys. 10 (2007) 109.

[39] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-SMP-12-008 (2012).

[40] A. L. Read,J. Phys. G 28, 2693 (2002).

[41] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).

[42] T. Junk, CDF Report No. CDF/DOC/STATISTICS/ PUBLIC/8128 (2007).

[43] M. Botje et al.,arXiv:1101.0538.

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2E. Aguilo,2T. Bergauer,2 M. Dragicevic,2J. Ero¨,2C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2J. Hammer,2N. Ho¨rmann,2 J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bI. Kra¨tschmer,2D. Liko,2I. Mikulec,2

M. Pernicka,2,aB. Rahbaran,2C. Rohringer,2H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2 W. Waltenberger,2G. Walzel,2E. Widl,2C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3 M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4 B. Roland,4R. Rougny,4M. Selvaggi,4Z. Staykova,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4 A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5 A. Olbrechts,5W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6

V. Dero,6A. P. R. Gay,6T. Hreus,6A. Le´onard,6P. E. Marage,6A. Mohammadi,6T. Reis,6L. Thomas,6 G. Vander Marcken,6C. Vander Velde,6P. Vanlaer,6J. Wang,6V. Adler,7K. Beernaert,7A. Cimmino,7S. Costantini,7 G. Garcia,7M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7

N. Strobbe,7F. Thyssen,7M. Tytgat,7P. Verwilligen,7S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8 G. Bruno,8R. Castello,8L. Ceard,8C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,cJ. Hollar,8

V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8 J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10M. Correa Martins Junior,10

D. De Jesus Damiao,10T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11 A. Custo´dio,11E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11D. Matos Figueiredo,11 L. Mundim,11H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11A. Santoro,11L. Soares Jorge,11A. Sznajder,11 T. S. Anjos,12bC. A. Bernardes,12bF. A. Dias,12a,dT. R. Fernandez Perez Tomei,12aE. M. Gregores,12bC. Lagana,12a F. Marinho,12aP. G. Mercadante,12bS. F. Novaes,12aSandra S. Padula,12aV. Genchev,13,eP. Iaydjiev,13,eS. Piperov,13

M. Rodozov,13S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14

(10)

R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15 C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15

J. Zang,15Z. Zhang,15C. Asawatangtrakuldee,16Y. Ban,16S. Guo,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16 S. J. Qian,16H. Teng,16D. Wang,16L. Zhang,16B. Zhu,16W. Zou,16C. Avila,17J. P. Gomez,17B. Gomez Moreno,17

A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18R. Plestina,18,fD. Polic,18I. Puljak,18,e Z. Antunovic,19M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20J. Luetic,20S. Morovic,20A. Attikis,21 M. Galanti,21G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22

M. Finger, Jr.,22Y. Assran,23,gS. Elgammal,23,hA. Ellithi Kamel,23,iM. A. Mahmoud,23,jA. Radi,23,k,l M. Kadastik,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25 J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26

S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26 D. Ungaro,26L. Wendland,26K. Banzuzi,27A. Karjalainen,27A. Korpela,27T. Tuuva,27M. Besancon,28 S. Choudhury,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28 P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28L. Millischer,28A. Nayak,28J. Rander,28 A. Rosowsky,28I. Shreyber,28M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29M. Bluj,29,m

C. Broutin,29P. Busson,29C. Charlot,29N. Daci,29T. Dahms,29L. Dobrzynski,29R. Granier de Cassagnac,29 M. Haguenauer,29P. Mine´,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29P. Paganini,29D. Sabes,29

R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,nJ. Andrea,30D. Bloch,30D. Bodin,30 J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,nF. Drouhin,30,nC. Ferro,30J.-C. Fontaine,30,n

D. Gele´,30U. Goerlach,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30F. Fassi,31D. Mercier,31S. Beauceron,32 N. Beaupere,32O. Bondu,32G. Boudoul,32J. Chasserat,32R. Chierici,32,eD. Contardo,32P. Depasse,32 H. El Mamouni,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32 S. Perries,32V. Sordini,32Y. Tschudi,32P. Verdier,32S. Viret,32Z. Tsamalaidze,33,oG. Anagnostou,34S. Beranek,34

M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34R. Jussen,34K. Klein,34J. Merz,34A. Ostapchuk,34 A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34V. Zhukov,34,p M. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Gu¨th,35T. Hebbeker,35

C. Heidemann,35K. Hoepfner,35D. Klingebiel,35P. Kreuzer,35C. Magass,35M. Merschmeyer,35A. Meyer,35 M. Olschewski,35P. Papacz,35H. Pieta,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35 D. Teyssier,35M. Weber,35M. Bontenackels,36V. Cherepanov,36Y. Erdogan,36G. Flu¨gge,36H. Geenen,36 M. Geisler,36W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36A. Nowack,36L. Perchalla,36

O. Pooth,36P. Sauerland,36A. Stahl,36M. Aldaya Martin,37J. Behr,37W. Behrenhoff,37U. Behrens,37 M. Bergholz,37,qA. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37E. Castro,37

F. Costanza,37D. Dammann,37C. Diez Pardos,37G. Eckerlin,37D. Eckstein,37G. Flucke,37A. Geiser,37 I. Glushkov,37P. Gunnellini,37S. Habib,37J. Hauk,37G. Hellwig,37H. Jung,37M. Kasemann,37P. Katsas,37

C. Kleinwort,37H. Kluge,37A. Knutsson,37M. Kra¨mer,37D. Kru¨cker,37E. Kuznetsova,37W. Lange,37 W. Lohmann,37,qB. Lutz,37R. Mankel,37I. Marfin,37M. Marienfeld,37I.-A. Melzer-Pellmann,37A. B. Meyer,37

J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37J. Olzem,37H. Perrey,37A. Petrukhin,37D. Pitzl,37 A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37E. Ron,37M. Rosin,37J. Salfeld-Nebgen,37R. Schmidt,37,q

T. Schoerner-Sadenius,37N. Sen,37A. Spiridonov,37M. Stein,37R. Walsh,37C. Wissing,37C. Autermann,38 V. Blobel,38J. Draeger,38H. Enderle,38J. Erfle,38U. Gebbert,38M. Go¨rner,38T. Hermanns,38R. S. Ho¨ing,38 K. Kaschube,38G. Kaussen,38H. Kirschenmann,38R. Klanner,38J. Lange,38B. Mura,38F. Nowak,38T. Peiffer,38 N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Schro¨der,38

T. Schum,38M. Seidel,38V. Sola,38H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38L. Vanelderen,38C. Barth,39 J. Berger,39C. Bo¨ser,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39M. Guthoff,39,e C. Hackstein,39F. Hartmann,39T. Hauth,39,eM. Heinrich,39H. Held,39K. H. Hoffmann,39S. Honc,39I. Katkov,39,p

J. R. Komaragiri,39P. Lobelle Pardo,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39M. Niegel,39A. Nu¨rnberg,39 O. Oberst,39A. Oehler,39J. Ott,39G. Quast,39K. Rabbertz,39F. Ratnikov,39N. Ratnikova,39S. Ro¨cker,39

A. Scheurer,39F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39D. Troendle,39R. Ulrich,39 J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39M. Zeise,39G. Daskalakis,40T. Geralis,40S. Kesisoglou,40 A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40C. Mavrommatis,40E. Ntomari,40 L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41I. Evangelou,42C. Foudas,42P. Kokkas,42

(11)

N. Manthos,42I. Papadopoulos,42V. Patras,42G. Bencze,43C. Hajdu,43P. Hidas,43D. Horvath,43,rF. Sikler,43 V. Veszpremi,43G. Vesztergombi,43,sN. Beni,44S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44J. Karancsi,45

P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. B. Beri,46V. Bhatnagar,46N. Dhingra,46R. Gupta,46M. Kaur,46 M. Z. Mehta,46N. Nishu,46L. K. Saini,46A. Sharma,46J. B. Singh,46Ashok Kumar,47Arun Kumar,47S. Ahuja,47

A. Bhardwaj,47B. C. Choudhary,47S. Malhotra,47M. Naimuddin,47K. Ranjan,47V. Sharma,47R. K. Shivpuri,47 S. Banerjee,48S. Bhattacharya,48S. Dutta,48B. Gomber,48Sa. Jain,48Sh. Jain,48R. Khurana,48S. Sarkar,48

M. Sharan,48A. Abdulsalam,49R. K. Choudhury,49D. Dutta,49S. Kailas,49V. Kumar,49P. Mehta,49 A. K. Mohanty,49,eL. M. Pant,49P. Shukla,49T. Aziz,50S. Ganguly,50M. Guchait,50,tM. Maity,50,uG. Majumder,50

K. Mazumdar,50G. B. Mohanty,50B. Parida,50K. Sudhakar,50N. Wickramage,50S. Banerjee,51S. Dugad,51 H. Arfaei,52H. Bakhshiansohi,52,vS. M. Etesami,52,wA. Fahim,52,vM. Hashemi,52H. Hesari,52A. Jafari,52,v M. Khakzad,52M. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52B. Safarzadeh,52,xM. Zeinali,52,w M. Abbrescia,53a,53bL. Barbone,53a,53bC. Calabria,53a,53b,eS. S. Chhibra,53a,53bA. Colaleo,53aD. Creanza,53a,53c

N. De Filippis,53a,53c,eM. De Palma,53a,53bL. Fiore,53aG. Iaselli,53a,53cL. Lusito,53a,53bG. Maggi,53a,53c M. Maggi,53aB. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53bN. Pacifico,53a,53bA. Pompili,53a,53b G. Pugliese,53a,53cG. Selvaggi,53a,53bL. Silvestris,53aG. Singh,53a,53bR. Venditti,53aG. Zito,53aG. Abbiendi,54a

A. C. Benvenuti,54aD. Bonacorsi,54a,54bS. Braibant-Giacomelli,54a,54bL. Brigliadori,54a,54bP. Capiluppi,54a,54b A. Castro,54a,54bF. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54b

D. Fasanella,54a,54b,eP. Giacomelli,54aC. Grandi,54aL. Guiducci,54a,54bS. Marcellini,54aG. Masetti,54a M. Meneghelli,54a,54b,eA. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54aF. Primavera,54a,54b A. M. Rossi,54a,54bT. Rovelli,54a,54bG. P. Siroli,54a,54bR. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55b

M. Chiorboli,55a,55bS. Costa,55a,55bR. Potenza,55a,55bA. Tricomi,55a,55bC. Tuve,55a,55bG. Barbagli,56a V. Ciulli,56a,56bC. Civinini,56aR. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56aS. Gonzi,56a,56b

M. Meschini,56aS. Paoletti,56aG. Sguazzoni,56aA. Tropiano,56aL. Benussi,57S. Bianco,57S. Colafranceschi,57,y F. Fabbri,57D. Piccolo,57P. Fabbricatore,58aR. Musenich,58aS. Tosi,58a,58bA. Benaglia,59a,59b,eF. De Guio,59a,59b

L. Di Matteo,59a,59b,eS. Fiorendi,59a,59bS. Gennai,59a,eA. Ghezzi,59a,59bS. Malvezzi,59aR. A. Manzoni,59a,59b A. Martelli,59a,59bA. Massironi,59a,59b,eD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59a S. Ragazzi,59a,59bN. Redaelli,59aS. Sala,59aT. Tabarelli de Fatis,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60a

N. Cavallo,60a,60cA. De Cosa,60a,60b,eO. Dogangun,60a,60bF. Fabozzi,60a,60cA. O. M. Iorio,60a,60bL. Lista,60a S. Meola,60a,60d,zM. Merola,60aP. Paolucci,60a,eP. Azzi,61aN. Bacchetta,61a,eD. Bisello,61a,61bA. Branca,61a,61b,e

R. Carlin,61a,61bP. Checchia,61aF. Gasparini,61a,61bU. Gasparini,61a,61bA. Gozzelino,61aK. Kanishchev,61a,61c S. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61bA. T. Meneguzzo,61a,61bJ. Pazzini,61aN. Pozzobon,61a,61b P. Ronchese,61a,61bF. Simonetto,61a,61bE. Torassa,61aM. Tosi,61a,61b,eA. Triossi,61aS. Vanini,61a,61bS. Ventura,61a P. Zotto,61a,61bM. Gabusi,62a,62bS. P. Ratti,62a,62bC. Riccardi,62a,62bP. Torre,62a,62bP. Vitulo,62a,62bM. Biasini,63a,63b

G. M. Bilei,63aL. Fano`,63a,63bP. Lariccia,63a,63bA. Lucaroni,63a,63b,eG. Mantovani,63a,63bM. Menichelli,63a A. Nappi,63a,63b,aF. Romeo,63a,63bA. Saha,63aA. Santocchia,63a,63bA. Spiezia,63a,63bS. Taroni,63a,63b

P. Azzurri,64a,64cG. Bagliesi,64aJ. Bernardini,64aT. Boccali,64aG. Broccolo,64a,64cR. Castaldi,64a R. T. D’Agnolo,64a,64cR. Dell’Orso,64aF. Fiori,64a,64b,eL. Foa`,64a,64cA. Giassi,64aA. Kraan,64aF. Ligabue,64a,64c T. Lomtadze,64aL. Martini,64a,aaA. Messineo,64a,64bF. Palla,64aA. Rizzi,64a,64bA. T. Serban,64a,bbP. Spagnolo,64a P. Squillacioti,64a,eR. Tenchini,64aG. Tonelli,64a,64b,eA. Venturi,64aP. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65a

D. Del Re,65a,65bM. Diemoz,65aC. Fanelli,65a,65bM. Grassi,65a,65b,eE. Longo,65a,65bP. Meridiani,65a,e F. Micheli,65a,65bS. Nourbakhsh,65a,65bG. Organtini,65a,65bR. Paramatti,65aS. Rahatlou,65a,65bM. Sigamani,65a

L. Soffi,65a,65bN. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66a N. Cartiglia,66aM. Costa,66a,66bN. Demaria,66aC. Mariotti,66a,eS. Maselli,66aE. Migliore,66a,66bV. Monaco,66a,66b

M. Musich,66a,eM. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66aA. Potenza,66a,66bA. Romero,66a,66b M. Ruspa,66a,66cR. Sacchi,66a,66bA. Solano,66a,66bA. Staiano,66aA. Vilela Pereira,66aS. Belforte,67a V. Candelise,67a,67bF. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67aM. Marone,67a,67b,eD. Montanino,67a,67b,e

A. Penzo,67aA. Schizzi,67a,67bS. G. Heo,68T. Y. Kim,68S. K. Nam,68S. Chang,69D. H. Kim,69G. N. Kim,69 D. J. Kong,69H. Park,69S. R. Ro,69D. C. Son,69T. Son,69J. Y. Kim,70Zero J. Kim,70S. Song,70S. Choi,71D. Gyun,71 B. Hong,71M. Jo,71H. Kim,71T. J. Kim,71K. S. Lee,71D. H. Moon,71S. K. Park,71M. Choi,72J. H. Kim,72C. Park,72 I. C. Park,72S. Park,72G. Ryu,72Y. Cho,73Y. Choi,73Y. K. Choi,73J. Goh,73M. S. Kim,73E. Kwon,73B. Lee,73

J. Lee,73S. Lee,73H. Seo,73I. Yu,73M. J. Bilinskas,74I. Grigelionis,74M. Janulis,74A. Juodagalvis,74

(12)

H. Castilla-Valdez,75E. De La Cruz-Burelo,75I. Heredia-de La Cruz,75R. Lopez-Fernandez,75R. Magan˜a Villalba,75 J. Martı´nez-Ortega,75A. Sanchez-Hernandez,75L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76 F. Vazquez Valencia,76H. A. Salazar Ibarguen,77E. Casimiro Linares,78A. Morelos Pineda,78M. A. Reyes-Santos,78

D. Krofcheck,79A. J. Bell,80P. H. Butler,80R. Doesburg,80S. Reucroft,80H. Silverwood,80M. Ahmad,81 M. H. Ansari,81M. I. Asghar,81H. R. Hoorani,81S. Khalid,81W. A. Khan,81T. Khurshid,81S. Qazi,81M. A. Shah,81 M. Shoaib,81H. Bialkowska,82B. Boimska,82T. Frueboes,82R. Gokieli,82M. Go´rski,82M. Kazana,82K. Nawrocki,82 K. Romanowska-Rybinska,82M. Szleper,82G. Wrochna,82P. Zalewski,82G. Brona,83K. Bunkowski,83M. Cwiok,83

W. Dominik,83K. Doroba,83A. Kalinowski,83M. Konecki,83J. Krolikowski,83N. Almeida,84P. Bargassa,84 A. David,84P. Faccioli,84P. G. Ferreira Parracho,84M. Gallinaro,84J. Seixas,84J. Varela,84P. Vischia,84 I. Belotelov,85P. Bunin,85I. Golutvin,85I. Gorbunov,85A. Kamenev,85V. Karjavin,85G. Kozlov,85A. Lanev,85 A. Malakhov,85P. Moisenz,85V. Palichik,85V. Perelygin,85M. Savina,85S. Shmatov,85V. Smirnov,85A. Volodko,85 A. Zarubin,85S. Evstyukhin,86V. Golovtsov,86Y. Ivanov,86V. Kim,86P. Levchenko,86V. Murzin,86V. Oreshkin,86

I. Smirnov,86V. Sulimov,86L. Uvarov,86S. Vavilov,86A. Vorobyev,86An. Vorobyev,86Yu. Andreev,87 A. Dermenev,87S. Gninenko,87N. Golubev,87M. Kirsanov,87N. Krasnikov,87V. Matveev,87A. Pashenkov,87 D. Tlisov,87A. Toropin,87V. Epshteyn,88M. Erofeeva,88V. Gavrilov,88M. Kossov,88N. Lychkovskaya,88V. Popov,88

G. Safronov,88S. Semenov,88V. Stolin,88E. Vlasov,88A. Zhokin,88A. Belyaev,89E. Boos,89V. Bunichev,89 M. Dubinin,89,dL. Dudko,89A. Ershov,89A. Gribushin,89V. Klyukhin,89O. Kodolova,89I. Lokhtin,89A. Markina,89 S. Obraztsov,89M. Perfilov,89A. Popov,89L. Sarycheva,89,aV. Savrin,89A. Snigirev,89V. Andreev,90M. Azarkin,90

I. Dremin,90M. Kirakosyan,90A. Leonidov,90G. Mesyats,90S. V. Rusakov,90A. Vinogradov,90I. Azhgirey,91 I. Bayshev,91S. Bitioukov,91V. Grishin,91,eV. Kachanov,91D. Konstantinov,91A. Korablev,91V. Krychkine,91 V. Petrov,91R. Ryutin,91A. Sobol,91L. Tourtchanovitch,91S. Troshin,91N. Tyurin,91A. Uzunian,91A. Volkov,91

P. Adzic,92,ccM. Djordjevic,92M. Ekmedzic,92D. Krpic,92,ccJ. Milosevic,92M. Aguilar-Benitez,93 J. Alcaraz Maestre,93P. Arce,93C. Battilana,93E. Calvo,93M. Cerrada,93M. Chamizo Llatas,93N. Colino,93 B. De La Cruz,93A. Delgado Peris,93D. Domı´nguez Va´zquez,93C. Fernandez Bedoya,93J. P. Ferna´ndez Ramos,93 A. Ferrando,93J. Flix,93M. C. Fouz,93P. Garcia-Abia,93O. Gonzalez Lopez,93S. Goy Lopez,93J. M. Hernandez,93 M. I. Josa,93G. Merino,93J. Puerta Pelayo,93A. Quintario Olmeda,93I. Redondo,93L. Romero,93J. Santaolalla,93

M. S. Soares,93C. Willmott,93C. Albajar,94G. Codispoti,94J. F. de Troco´niz,94H. Brun,95J. Cuevas,95 J. Fernandez Menendez,95S. Folgueras,95I. Gonzalez Caballero,95L. Lloret Iglesias,95J. Piedra Gomez,95 J. A. Brochero Cifuentes,96I. J. Cabrillo,96A. Calderon,96S. H. Chuang,96J. Duarte Campderros,96M. Felcini,96,dd

M. Fernandez,96G. Gomez,96J. Gonzalez Sanchez,96A. Graziano,96C. Jorda,96A. Lopez Virto,96J. Marco,96 R. Marco,96C. Martinez Rivero,96F. Matorras,96F. J. Munoz Sanchez,96T. Rodrigo,96A. Y. Rodrı´guez-Marrero,96

A. Ruiz-Jimeno,96L. Scodellaro,96M. Sobron Sanudo,96I. Vila,96R. Vilar Cortabitarte,96D. Abbaneo,97 E. Auffray,97G. Auzinger,97P. Baillon,97A. H. Ball,97D. Barney,97J. F. Benitez,97C. Bernet,97,fG. Bianchi,97 P. Bloch,97A. Bocci,97A. Bonato,97C. Botta,97H. Breuker,97T. Camporesi,97G. Cerminara,97T. Christiansen,97

J. A. Coarasa Perez,97D. D’Enterria,97A. Dabrowski,97A. De Roeck,97S. Di Guida,97M. Dobson,97 N. Dupont-Sagorin,97A. Elliott-Peisert,97B. Frisch,97W. Funk,97G. Georgiou,97M. Giffels,97D. Gigi,97K. Gill,97

D. Giordano,97M. Giunta,97F. Glege,97R. Gomez-Reino Garrido,97P. Govoni,97S. Gowdy,97R. Guida,97 M. Hansen,97P. Harris,97C. Hartl,97J. Harvey,97B. Hegner,97A. Hinzmann,97V. Innocente,97P. Janot,97 K. Kaadze,97E. Karavakis,97K. Kousouris,97P. Lecoq,97Y.-J. Lee,97P. Lenzi,97C. Lourenc¸o,97T. Ma¨ki,97 M. Malberti,97L. Malgeri,97M. Mannelli,97L. Masetti,97F. Meijers,97S. Mersi,97E. Meschi,97R. Moser,97 M. U. Mozer,97M. Mulders,97P. Musella,97E. Nesvold,97T. Orimoto,97L. Orsini,97E. Palencia Cortezon,97

E. Perez,97L. Perrozzi,97A. Petrilli,97A. Pfeiffer,97M. Pierini,97M. Pimia¨,97D. Piparo,97G. Polese,97 L. Quertenmont,97A. Racz,97W. Reece,97J. Rodrigues Antunes,97G. Rolandi,97,eeC. Rovelli,97,ffM. Rovere,97 H. Sakulin,97F. Santanastasio,97C. Scha¨fer,97C. Schwick,97I. Segoni,97S. Sekmen,97A. Sharma,97P. Siegrist,97

P. Silva,97M. Simon,97P. Sphicas,97,ggD. Spiga,97A. Tsirou,97G. I. Veres,97,sJ. R. Vlimant,97H. K. Wo¨hri,97 S. D. Worm,97,hhW. D. Zeuner,97W. Bertl,98K. Deiters,98W. Erdmann,98K. Gabathuler,98R. Horisberger,98 Q. Ingram,98H. C. Kaestli,98S. Ko¨nig,98D. Kotlinski,98U. Langenegger,98F. Meier,98D. Renker,98T. Rohe,98 J. Sibille,98,iiL. Ba¨ni,99P. Bortignon,99M. A. Buchmann,99B. Casal,99N. Chanon,99A. Deisher,99G. Dissertori,99

M. Dittmar,99M. Donega`,99M. Du¨nser,99J. Eugster,99K. Freudenreich,99C. Grab,99D. Hits,99P. Lecomte,99 W. Lustermann,99A. C. Marini,99P. Martinez Ruiz del Arbol,99N. Mohr,99F. Moortgat,99C. Na¨geli,99,jjP. Nef,99

F. Nessi-Tedaldi,99F. Pandolfi,99L. Pape,99F. Pauss,99M. Peruzzi,99F. J. Ronga,99M. Rossini,99L. Sala,99

(13)

A. K. Sanchez,99A. Starodumov,99,kkB. Stieger,99M. Takahashi,99L. Tauscher,99,aA. Thea,99K. Theofilatos,99 D. Treille,99C. Urscheler,99R. Wallny,99H. A. Weber,99L. Wehrli,99C. Amsler,100V. Chiochia,100 S. De Visscher,100C. Favaro,100M. Ivova Rikova,100B. Millan Mejias,100P. Otiougova,100P. Robmann,100 H. Snoek,100S. Tupputi,100M. Verzetti,100Y. H. Chang,101K. H. Chen,101C. M. Kuo,101S. W. Li,101W. Lin,101

Z. K. Liu,101Y. J. Lu,101D. Mekterovic,101A. P. Singh,101R. Volpe,101S. S. Yu,101P. Bartalini,102P. Chang,102 Y. H. Chang,102Y. W. Chang,102Y. Chao,102K. F. Chen,102C. Dietz,102U. Grundler,102W.-S. Hou,102Y. Hsiung,102

K. Y. Kao,102Y. J. Lei,102R.-S. Lu,102D. Majumder,102E. Petrakou,102X. Shi,102J. G. Shiu,102Y. M. Tzeng,102 X. Wan,102M. Wang,102A. Adiguzel,103M. N. Bakirci,103,llS. Cerci,103,mmC. Dozen,103I. Dumanoglu,103

E. Eskut,103S. Girgis,103G. Gokbulut,103E. Gurpinar,103I. Hos,103E. E. Kangal,103T. Karaman,103 G. Karapinar,103,nnA. Kayis Topaksu,103G. Onengut,103K. Ozdemir,103S. Ozturk,103,ooA. Polatoz,103 K. Sogut,103,ppD. Sunar Cerci,103,mmB. Tali,103,mmH. Topakli,103,llL. N. Vergili,103M. Vergili,103I. V. Akin,104 T. Aliev,104B. Bilin,104S. Bilmis,104M. Deniz,104H. Gamsizkan,104A. M. Guler,104K. Ocalan,104A. Ozpineci,104 M. Serin,104R. Sever,104U. E. Surat,104M. Yalvac,104E. Yildirim,104M. Zeyrek,104E. Gu¨lmez,105B. Isildak,105,qq M. Kaya,105,rrO. Kaya,105,rrS. Ozkorucuklu,105,ssN. Sonmez,105,ttK. Cankocak,106L. Levchuk,107F. Bostock,108

J. J. Brooke,108E. Clement,108D. Cussans,108H. Flacher,108R. Frazier,108J. Goldstein,108M. Grimes,108 G. P. Heath,108H. F. Heath,108L. Kreczko,108S. Metson,108D. M. Newbold,108,hhK. Nirunpong,108A. Poll,108

S. Senkin,108V. J. Smith,108T. Williams,108L. Basso,109,uuK. W. Bell,109A. Belyaev,109,uuC. Brew,109 R. M. Brown,109D. J. A. Cockerill,109J. A. Coughlan,109K. Harder,109S. Harper,109J. Jackson,109B. W. Kennedy,109

E. Olaiya,109D. Petyt,109B. C. Radburn-Smith,109C. H. Shepherd-Themistocleous,109I. R. Tomalin,109 W. J. Womersley,109R. Bainbridge,110G. Ball,110R. Beuselinck,110O. Buchmuller,110D. Colling,110N. Cripps,110

M. Cutajar,110P. Dauncey,110G. Davies,110M. Della Negra,110W. Ferguson,110J. Fulcher,110D. Futyan,110 A. Gilbert,110A. Guneratne Bryer,110G. Hall,110Z. Hatherell,110J. Hays,110G. Iles,110M. Jarvis,110 G. Karapostoli,110L. Lyons,110A.-M. Magnan,110J. Marrouche,110B. Mathias,110R. Nandi,110J. Nash,110

A. Nikitenko,110,kkA. Papageorgiou,110J. Pela,110,eM. Pesaresi,110K. Petridis,110M. Pioppi,110,vv

D. M. Raymond,110S. Rogerson,110A. Rose,110M. J. Ryan,110C. Seez,110P. Sharp,110,aA. Sparrow,110M. Stoye,110 A. Tapper,110M. Vazquez Acosta,110T. Virdee,110S. Wakefield,110N. Wardle,110T. Whyntie,110M. Chadwick,111 J. E. Cole,111P. R. Hobson,111A. Khan,111P. Kyberd,111D. Leggat,111D. Leslie,111W. Martin,111I. D. Reid,111

P. Symonds,111L. Teodorescu,111M. Turner,111K. Hatakeyama,112H. Liu,112T. Scarborough,112O. Charaf,113 C. Henderson,113P. Rumerio,113A. Avetisyan,114T. Bose,114C. Fantasia,114A. Heister,114J. St. John,114 P. Lawson,114D. Lazic,114J. Rohlf,114D. Sperka,114L. Sulak,114J. Alimena,115S. Bhattacharya,115D. Cutts,115

A. Ferapontov,115U. Heintz,115S. Jabeen,115G. Kukartsev,115E. Laird,115G. Landsberg,115M. Luk,115 M. Narain,115D. Nguyen,115M. Segala,115T. Sinthuprasith,115T. Speer,115K. V. Tsang,115R. Breedon,116 G. Breto,116M. Calderon De La Barca Sanchez,116S. Chauhan,116M. Chertok,116J. Conway,116R. Conway,116

P. T. Cox,116J. Dolen,116R. Erbacher,116M. Gardner,116R. Houtz,116W. Ko,116A. Kopecky,116R. Lander,116 T. Miceli,116D. Pellett,116F. Ricci-Tam,116B. Rutherford,116M. Searle,116J. Smith,116M. Squires,116M. Tripathi,116

R. Vasquez Sierra,116V. Andreev,117D. Cline,117R. Cousins,117J. Duris,117S. Erhan,117P. Everaerts,117 C. Farrell,117J. Hauser,117M. Ignatenko,117C. Jarvis,117C. Plager,117G. Rakness,117P. Schlein,117,aP. Traczyk,117

V. Valuev,117M. Weber,117J. Babb,118R. Clare,118M. E. Dinardo,118J. Ellison,118J. W. Gary,118F. Giordano,118 G. Hanson,118G. Y. Jeng,118,wwH. Liu,118O. R. Long,118A. Luthra,118H. Nguyen,118S. Paramesvaran,118 J. Sturdy,118S. Sumowidagdo,118R. Wilken,118S. Wimpenny,118W. Andrews,119J. G. Branson,119G. B. Cerati,119

S. Cittolin,119D. Evans,119F. Golf,119A. Holzner,119R. Kelley,119M. Lebourgeois,119J. Letts,119I. Macneill,119 B. Mangano,119S. Padhi,119C. Palmer,119G. Petrucciani,119M. Pieri,119M. Sani,119V. Sharma,119S. Simon,119 E. Sudano,119M. Tadel,119Y. Tu,119A. Vartak,119S. Wasserbaech,119,xxF. Wu¨rthwein,119A. Yagil,119J. Yoo,119 D. Barge,120R. Bellan,120C. Campagnari,120M. D’Alfonso,120T. Danielson,120K. Flowers,120P. Geffert,120

J. Incandela,120C. Justus,120P. Kalavase,120S. A. Koay,120D. Kovalskyi,120V. Krutelyov,120S. Lowette,120 N. Mccoll,120V. Pavlunin,120F. Rebassoo,120J. Ribnik,120J. Richman,120R. Rossin,120D. Stuart,120W. To,120 C. West,120A. Apresyan,121A. Bornheim,121Y. Chen,121E. Di Marco,121J. Duarte,121M. Gataullin,121Y. Ma,121

A. Mott,121H. B. Newman,121C. Rogan,121M. Spiropulu,121V. Timciuc,121J. Veverka,121R. Wilkinson,121 S. Xie,121Y. Yang,121R. Y. Zhu,121B. Akgun,122V. Azzolini,122A. Calamba,122R. Carroll,122T. Ferguson,122 Y. Iiyama,122D. W. Jang,122Y. F. Liu,122M. Paulini,122H. Vogel,122I. Vorobiev,122J. P. Cumalat,123B. R. Drell,123

C. J. Edelmaier,123W. T. Ford,123A. Gaz,123B. Heyburn,123E. Luiggi Lopez,123J. G. Smith,123K. Stenson,123

(14)

K. A. Ulmer,123S. R. Wagner,123J. Alexander,124A. Chatterjee,124N. Eggert,124L. K. Gibbons,124B. Heltsley,124 A. Khukhunaishvili,124B. Kreis,124N. Mirman,124G. Nicolas Kaufman,124J. R. Patterson,124A. Ryd,124 E. Salvati,124W. Sun,124W. D. Teo,124J. Thom,124J. Thompson,124J. Tucker,124J. Vaughan,124Y. Weng,124 L. Winstrom,124P. Wittich,124D. Winn,125S. Abdullin,126M. Albrow,126J. Anderson,126L. A. T. Bauerdick,126

A. Beretvas,126J. Berryhill,126P. C. Bhat,126I. Bloch,126K. Burkett,126J. N. Butler,126V. Chetluru,126 H. W. K. Cheung,126F. Chlebana,126V. D. Elvira,126I. Fisk,126J. Freeman,126Y. Gao,126D. Green,126O. Gutsche,126

J. Hanlon,126R. M. Harris,126J. Hirschauer,126B. Hooberman,126S. Jindariani,126M. Johnson,126U. Joshi,126 B. Kilminster,126B. Klima,126S. Kunori,126S. Kwan,126C. Leonidopoulos,126J. Linacre,126D. Lincoln,126 R. Lipton,126J. Lykken,126K. Maeshima,126J. M. Marraffino,126S. Maruyama,126D. Mason,126P. McBride,126

K. Mishra,126S. Mrenna,126Y. Musienko,126,yyC. Newman-Holmes,126V. O’Dell,126O. Prokofyev,126 E. Sexton-Kennedy,126S. Sharma,126W. J. Spalding,126L. Spiegel,126P. Tan,126L. Taylor,126S. Tkaczyk,126

N. V. Tran,126L. Uplegger,126E. W. Vaandering,126R. Vidal,126J. Whitmore,126W. Wu,126F. Yang,126 F. Yumiceva,126J. C. Yun,126D. Acosta,127P. Avery,127D. Bourilkov,127M. Chen,127T. Cheng,127S. Das,127 M. De Gruttola,127G. P. Di Giovanni,127D. Dobur,127A. Drozdetskiy,127R. D. Field,127M. Fisher,127Y. Fu,127

I. K. Furic,127J. Gartner,127J. Hugon,127B. Kim,127J. Konigsberg,127A. Korytov,127A. Kropivnitskaya,127 T. Kypreos,127J. F. Low,127K. Matchev,127P. Milenovic,127,zzG. Mitselmakher,127L. Muniz,127R. Remington,127

A. Rinkevicius,127P. Sellers,127N. Skhirtladze,127M. Snowball,127J. Yelton,127M. Zakaria,127V. Gaultney,128 S. Hewamanage,128L. M. Lebolo,128S. Linn,128P. Markowitz,128G. Martinez,128J. L. Rodriguez,128T. Adams,129

A. Askew,129J. Bochenek,129J. Chen,129B. Diamond,129S. V. Gleyzer,129J. Haas,129S. Hagopian,129 V. Hagopian,129M. Jenkins,129K. F. Johnson,129H. Prosper,129V. Veeraraghavan,129M. Weinberg,129 M. M. Baarmand,130B. Dorney,130M. Hohlmann,130H. Kalakhety,130I. Vodopiyanov,130M. R. Adams,131 I. M. Anghel,131L. Apanasevich,131Y. Bai,131V. E. Bazterra,131R. R. Betts,131I. Bucinskaite,131J. Callner,131

R. Cavanaugh,131C. Dragoiu,131O. Evdokimov,131L. Gauthier,131C. E. Gerber,131D. J. Hofman,131 S. Khalatyan,131F. Lacroix,131M. Malek,131C. O’Brien,131C. Silkworth,131D. Strom,131N. Varelas,131 U. Akgun,132E. A. Albayrak,132B. Bilki,132,aaaW. Clarida,132F. Duru,132S. Griffiths,132J.-P. Merlo,132 H. Mermerkaya,132,bbbA. Mestvirishvili,132A. Moeller,132J. Nachtman,132C. R. Newsom,132E. Norbeck,132 Y. Onel,132F. Ozok,132S. Sen,132E. Tiras,132J. Wetzel,132T. Yetkin,132K. Yi,132B. A. Barnett,133B. Blumenfeld,133

S. Bolognesi,133D. Fehling,133G. Giurgiu,133A. V. Gritsan,133Z. J. Guo,133G. Hu,133P. Maksimovic,133 S. Rappoccio,133M. Swartz,133A. Whitbeck,133P. Baringer,134A. Bean,134G. Benelli,134O. Grachov,134 R. P. Kenny Iii,134M. Murray,134D. Noonan,134S. Sanders,134R. Stringer,134G. Tinti,134J. S. Wood,134 V. Zhukova,134A. F. Barfuss,135T. Bolton,135I. Chakaberia,135A. Ivanov,135S. Khalil,135M. Makouski,135

Y. Maravin,135S. Shrestha,135I. Svintradze,135J. Gronberg,136D. Lange,136D. Wright,136A. Baden,137 M. Boutemeur,137B. Calvert,137S. C. Eno,137J. A. Gomez,137N. J. Hadley,137R. G. Kellogg,137M. Kirn,137

T. Kolberg,137Y. Lu,137M. Marionneau,137A. C. Mignerey,137K. Pedro,137A. Peterman,137A. Skuja,137 J. Temple,137M. B. Tonjes,137S. C. Tonwar,137E. Twedt,137A. Apyan,138G. Bauer,138J. Bendavid,138W. Busza,138

E. Butz,138I. A. Cali,138M. Chan,138V. Dutta,138G. Gomez Ceballos,138M. Goncharov,138K. A. Hahn,138 Y. Kim,138M. Klute,138K. Krajczar,138,cccW. Li,138P. D. Luckey,138T. Ma,138S. Nahn,138C. Paus,138D. Ralph,138

C. Roland,138G. Roland,138M. Rudolph,138G. S. F. Stephans,138F. Sto¨ckli,138K. Sumorok,138K. Sung,138 D. Velicanu,138E. A. Wenger,138R. Wolf,138B. Wyslouch,138M. Yang,138Y. Yilmaz,138A. S. Yoon,138M. Zanetti,138

S. I. Cooper,139B. Dahmes,139A. De Benedetti,139G. Franzoni,139A. Gude,139S. C. Kao,139K. Klapoetke,139 Y. Kubota,139J. Mans,139N. Pastika,139R. Rusack,139M. Sasseville,139A. Singovsky,139N. Tambe,139 J. Turkewitz,139L. M. Cremaldi,140R. Kroeger,140L. Perera,140R. Rahmat,140D. A. Sanders,140E. Avdeeva,141 K. Bloom,141S. Bose,141J. Butt,141D. R. Claes,141A. Dominguez,141M. Eads,141J. Keller,141I. Kravchenko,141

J. Lazo-Flores,141H. Malbouisson,141S. Malik,141G. R. Snow,141U. Baur,142A. Godshalk,142I. Iashvili,142 S. Jain,142A. Kharchilava,142A. Kumar,142S. P. Shipkowski,142K. Smith,142G. Alverson,143E. Barberis,143 D. Baumgartel,143M. Chasco,143J. Haley,143D. Nash,143D. Trocino,143D. Wood,143J. Zhang,143A. Anastassov,144

A. Kubik,144N. Mucia,144N. Odell,144R. A. Ofierzynski,144B. Pollack,144A. Pozdnyakov,144M. Schmitt,144 S. Stoynev,144M. Velasco,144S. Won,144L. Antonelli,145D. Berry,145A. Brinkerhoff,145M. Hildreth,145 C. Jessop,145D. J. Karmgard,145J. Kolb,145K. Lannon,145W. Luo,145S. Lynch,145N. Marinelli,145D. M. Morse,145

T. Pearson,145M. Planer,145R. Ruchti,145J. Slaunwhite,145N. Valls,145M. Wayne,145M. Wolf,145B. Bylsma,146 L. S. Durkin,146C. Hill,146R. Hughes,146R. Hughes,146K. Kotov,146T. Y. Ling,146D. Puigh,146M. Rodenburg,146

(15)

C. Vuosalo,146G. Williams,146B. L. Winer,146N. Adam,147E. Berry,147P. Elmer,147D. Gerbaudo,147V. Halyo,147 P. Hebda,147J. Hegeman,147A. Hunt,147P. Jindal,147D. Lopes Pegna,147P. Lujan,147D. Marlow,147 T. Medvedeva,147M. Mooney,147J. Olsen,147P. Piroue´,147X. Quan,147A. Raval,147B. Safdi,147H. Saka,147 D. Stickland,147C. Tully,147J. S. Werner,147A. Zuranski,147J. G. Acosta,148E. Brownson,148X. T. Huang,148

A. Lopez,148H. Mendez,148S. Oliveros,148J. E. Ramirez Vargas,148A. Zatserklyaniy,148E. Alagoz,149 V. E. Barnes,149D. Benedetti,149G. Bolla,149D. Bortoletto,149M. De Mattia,149A. Everett,149Z. Hu,149M. Jones,149

O. Koybasi,149M. Kress,149A. T. Laasanen,149N. Leonardo,149V. Maroussov,149P. Merkel,149D. H. Miller,149 N. Neumeister,149I. Shipsey,149D. Silvers,149A. Svyatkovskiy,149M. Vidal Marono,149H. D. Yoo,149J. Zablocki,149 Y. Zheng,149S. Guragain,150N. Parashar,150A. Adair,151C. Boulahouache,151K. M. Ecklund,151F. J. M. Geurts,151 B. P. Padley,151R. Redjimi,151J. Roberts,151J. Zabel,151B. Betchart,152A. Bodek,152Y. S. Chung,152R. Covarelli,152

P. de Barbaro,152R. Demina,152Y. Eshaq,152A. Garcia-Bellido,152P. Goldenzweig,152J. Han,152A. Harel,152 D. C. Miner,152D. Vishnevskiy,152M. Zielinski,152A. Bhatti,153R. Ciesielski,153L. Demortier,153K. Goulianos,153

G. Lungu,153S. Malik,153C. Mesropian,153S. Arora,154A. Barker,154J. P. Chou,154C. Contreras-Campana,154 E. Contreras-Campana,154D. Duggan,154D. Ferencek,154Y. Gershtein,154R. Gray,154E. Halkiadakis,154 D. Hidas,154A. Lath,154S. Panwalkar,154M. Park,154R. Patel,154V. Rekovic,154J. Robles,154K. Rose,154S. Salur,154

S. Schnetzer,154C. Seitz,154S. Somalwar,154R. Stone,154S. Thomas,154G. Cerizza,155M. Hollingsworth,155 S. Spanier,155Z. C. Yang,155A. York,155R. Eusebi,156W. Flanagan,156J. Gilmore,156T. Kamon,156,ddd V. Khotilovich,156R. Montalvo,156I. Osipenkov,156Y. Pakhotin,156A. Perloff,156J. Roe,156A. Safonov,156

T. Sakuma,156S. Sengupta,156I. Suarez,156A. Tatarinov,156D. Toback,156N. Akchurin,157J. Damgov,157 P. R. Dudero,157C. Jeong,157K. Kovitanggoon,157S. W. Lee,157T. Libeiro,157Y. Roh,157I. Volobouev,157 E. Appelt,158A. G. Delannoy,158C. Florez,158S. Greene,158A. Gurrola,158W. Johns,158C. Johnston,158P. Kurt,158 C. Maguire,158A. Melo,158M. Sharma,158P. Sheldon,158B. Snook,158S. Tuo,158J. Velkovska,158M. W. Arenton,159

M. Balazs,159S. Boutle,159B. Cox,159B. Francis,159J. Goodell,159R. Hirosky,159A. Ledovskoy,159C. Lin,159 C. Neu,159J. Wood,159R. Yohay,159S. Gollapinni,160R. Harr,160P. E. Karchin,160

C. Kottachchi Kankanamge Don,160P. Lamichhane,160C. Milste`ne,160A. Sakharov,160M. Anderson,161 M. Bachtis,161D. A. Belknap,161L. Borrello,161D. Carlsmith,161M. Cepeda,161S. Dasu,161E. Friis,161L. Gray,161

K. S. Grogg,161M. Grothe,161R. Hall-Wilton,161M. Herndon,161A. Herve´,161P. Klabbers,161J. Klukas,161 A. Lanaro,161C. Lazaridis,161J. Leonard,161R. Loveless,161A. Mohapatra,161I. Ojalvo,161F. Palmonari,161

G. A. Pierro,161I. Ross,161A. Savin,161W. H. Smith,161and J. Swanson161 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2

Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria

3National Centre for Particle and High Energy Physics, Minsk, Belarus 4Universiteit Antwerpen, Antwerpen, Belgium

5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

12aUniversidade Estadual Paulista, Sa˜o Paulo, Brazil 12bUniversidade Federal do ABC, Sa˜o Paulo, Brazil 13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17

Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

(16)

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 30

Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute-Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France 32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 40Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece

41University of Athens, Athens, Greece 42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45

University of Debrecen, Debrecen, Hungary

46Panjab University, Chandigarh, India 47University of Delhi, Delhi, India 48Saha Institute of Nuclear Physics, Kolkata, India

49Bhabha Atomic Research Centre, Mumbai, India 50Tata Institute of Fundamental Research-EHEP, Mumbai, India 51Tata Institute of Fundamental Research-HECR, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53aINFN Sezione di Bari, Bari, Italy 53bUniversita` di Bari, Bari, Italy 53cPolitecnico di Bari, Bari, Italy 54aINFN Sezione di Bologna, Bologna, Italy

54bUniversita` di Bologna, Bologna, Italy 55aINFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

56bUniversita` di Firenze, Firenze, Italy

57INFN Laboratori Nazionali di Frascati, Frascati, Italy 58aINFN Sezione di Genova, Genova, Italy

58bUniversita` di Genova, Genova, Italy 59aINFN Sezione di Milano-Bicocca, Milano, Italy

59bUniversita` di Milano-Bicocca, Milano, Italy 60aINFN Sezione di Napoli, Napoli, Italy 60b

Universita` di Napoli ’Federico II’, Napoli, Italy

60cUniversita` della Basilicata (Potenza), Napoli, Italy 60dUniversita` G. Marconi (Roma), Napoli, Italy

61aINFN Sezione di Padova, Padova, Italy 61bUniversita` di Padova, Padova, Italy

61cUniversita` di Trento, Trento, Italy 62aINFN Sezione di Pavia, Pavia, Italy

62bUniversita` di Pavia, Pavia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63b

Universita` di Perugia, Perugia, Italy

64aINFN Sezione di Pisa, Pisa, Italy 64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65aINFN Sezione di Roma, Roma, Italy

Figura

FIG. 1. Schematic representation of the addition of DY (left diagram) and CI (right diagram) amplitudes, for common helicity states, contributing to the total cross section for pp ! X þ  þ   .
FIG. 2 (color online). Simulated dimuon mass spectra using the left-left isoscalar model for different values of  for (a) destructive interference and (b) constructive interference
TABLE I. Description of event samples with detector simulation. The cross section  and integrated luminosity L are given for each sample generated.
TABLE III. Expected event yields for DY and non-DY SM backgrounds. The uncertainties shown are statistical
+4

Riferimenti

Documenti correlati

Onchocerca lupi paramyosin (Ol-para, 2,643 bp cDNA) was herein isolated and characterised in adults, both males and females, and microfilariae.. The predicted Ol- PARA protein (i.e.

In 2012, during a conference in Rome about Late Antique plates deco- rated with engravings, I presented a paper about the potentially very useful contribute that the

In both cases, an accurate reflection is needed: archaic texts often present palaeographic characters, writing techniques and linguistic issues that are completely different from

Per esempio, venivano ammessi alla ricollocazione solo i richiedenti appartenenti a nazionalità per le quali la percentuale di decisioni di riconoscimento della

To identify the miRNA targetome, the 560 DE mRNAs and the 6 DE miRNAs were selected for gene target analysis, using an integrated approach of validated and predicted interaction

The ALICE Collaboration acknowledges the following funding agencies for their support in building and run- ning the ALICE detector: State Committee of Science, World Fed- eration

The clotting time was evaluated manually, and the anticoagulant activity at each cell concentration was calculated as the ratio between the clotting time of patient plasma and

Peripheral insulin resistance (IR) promotes increased production of free fatty acids (FFA) direct in the liver, resulting in an imbalance between oxidation/divestiture