• Non ci sono risultati.

Measurement of J /ψ and ψ (2S) prompt double-differential cross sections in pp collisions at s =7TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of J /ψ and ψ (2S) prompt double-differential cross sections in pp collisions at s =7TeV"

Copied!
16
0
0

Testo completo

(1)

Measurement of J=ψ and ψð2SÞ Prompt Double-Differential

Cross Sections in pp Collisions at

p

ffiffis

¼ 7 TeV

V. Khachatryan et al.* (CMS Collaboration)

(Received 13 February 2015; published 14 May 2015)

The double-differential cross sections of promptly produced J=ψ and ψð2SÞ mesons are measured in pp collisions at ffiffiffisp ¼ 7 TeV, as a function of transverse momentum pTand absolute rapidity jyj. The analysis

uses J=ψ and ψð2SÞ dimuon samples collected by the CMS experiment, corresponding to integrated luminosities of 4.55 and 4.90 fb−1, respectively. The results are based on a two-dimensional analysis of the

dimuon invariant mass and decay length, and extend to pT¼ 120 and 100 GeV for the J=ψ and ψð2SÞ,

respectively, when integrated over the interval jyj < 1.2. The ratio of the ψð2SÞ to J=ψ cross sections is also reported for jyj < 1.2, over the range 10 < pT< 100 GeV. These are the highest pTvalues for which the

cross sections and ratio have been measured.

DOI:10.1103/PhysRevLett.114.191802 PACS numbers: 13.20.Gd, 13.85.Qk, 13.88.+e

Studies of heavy-quarkonium production are of central importance for an improved understanding of non-perturbative quantum chromodynamics (QCD) [1]. The nonrelativistic QCD (NRQCD) effective-field-theory framework [2], arguably the best formalism at this time, factorizes high-pTquarkonium production in short-distance

and long-distance scales. First, a heavy quark-antiquark pair, Q ¯Q, is produced in a Fock state2Sþ1L½a&

J , with spin S,

orbital angular momentum L, and total angular momentum J that are either identical to (color singlet, a ¼ 1) or different from (color octet, a ¼ 8) those of the corresponding quarkonium state. The Q ¯Q cross sections are determined by short-distance coefficients (SDCs), kinematic-dependent functions calculable perturbatively as expansions in the strong-coupling constant αs. Then this “preresonant” Q ¯Q

pair binds into the physically observable quarkonium through a nonperturbative evolution that may change L and S, with bound-state formation probabilities proportional to long-distance matrix elements (LDMEs). The LDMEs are conjectured to be constant (i.e., independent of the Q ¯Q momentum) and universal (i.e., process independent). The color-octet terms are expected to scale with powers of the heavy-quark velocity in the Q ¯Q rest frame. In the nonrelativistic limit, an S-wave vector quarkonium state should be formed from a Q ¯Q pair produced as a color singlet (3S½1&

1 ) or as one of three color octets (1S½8&0 , 3S½8&1 ,

and3P½8& J ).

Three “global fits” to measured quarkonium data[3–5]

obtained incompatible octet LDMEs, despite the use of essentially identical theory inputs: next-to-leading-order (NLO) QCD calculations of the singlet and octet SDCs. The disagreement stems from the fact that different sets of measurements were considered. In particular, the results crucially depend on the minimum pT of the fitted

measure-ments[6], because the octet SDCs have different pT

depend-ences. Fits including low-pT cross sections lead to the

conclusion that, at high pT, quarkonium production should

be dominated by transversely polarized octet terms. This prediction is in stark contradiction with the unpolarized production seen by the CDF[7,8]and CMS[9,10] experi-ments, an observation known as the “quarkonium polariza-tion puzzle.” As shown in Ref.[6], the puzzle is seemingly solved by restricting the NRQCD global fits to high-pT

quarkonia, indicating that the presently available fixed-order calculations provide SDCs that are unable to reproduce reality at lower pTvalues or that NRQCD factorization only

holds for pT values much larger than the quarkonium mass.

The polarization measurements add a crucial dimension to the global fits because the various channels have remarkably distinct polarization properties: in the helicity frame,3S½1&

1 is

longitudinally polarized,1S½8&

0 is unpolarized,3S½8&1 is

trans-versely polarized, and3P½8&

J has a polarization that changes

significantly with pT. Bottomonium and prompt

charmo-nium polarizations reaching or exceeding pT ¼ 50 GeV

were measured by CMS[9,10], using a very robust analysis framework[11,12], on the basis of event samples collected in 2011. Instead, the differential charmonium cross sections published by CMS[13]are based on data collected in 2010 and have a much lower pT reach. Measurements of prompt

charmonium cross sections extending well beyond pT ¼

50 GeV will trigger improved NRQCD global fits, restricted to a kinematic domain where the factorization formalism is

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

unquestioned, and will provide more accurate and reli-able LDMEs.

This Letter presents measurements of the double-differential cross sections of J=ψ and ψð2SÞ mesons promptly produced in pp collisions at a center-of-mass energy of 7 TeV, based on dimuon event samples collected by CMS in 2011. They complement other prompt charmonium cross sections measured at the LHC, by ATLAS [14,15], LHCb [16,17], and ALICE [18]. The analysis is made in four bins of absolute rapidity (jyj < 0.3, 0.3 < jyj < 0.6, 0.6 <jyj < 0.9, and 0.9 < jyj < 1.2) and in the pT ranges

10–95 GeV for the J=ψ and 10–75 GeV for the ψð2SÞ. A rapidity-integrated result in the range jyj < 1.2 is also pro-vided, extending the pT reach to 120 GeV for the J=ψ and

100 GeV for the ψð2SÞ. The corresponding ψð2SÞ over J=ψ cross section ratios are also reported. The dimuon invariant massdistribution isusedto separatethe J=ψ andψð2SÞsignals from other processes, mostly pairs of uncorrelated muons, while the dimuon decay length is used to separate the non-promptcharmonia,comingfromdecaysof b hadrons,fromthe prompt component. Feed-down from decays of heavier charmonium states, approximately 33% of the prompt J=ψ cross section [19], is not distinguished from the directly produced charmonia.

The CMS apparatus is based on a superconducting solenoid of 6 m internal diameter, providing a 3.8 T field. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorim-eter, and a brass and scintillator hadron calorimeter. Muons are measured with three kinds of gas-ionization detectors: drift tubes, cathode strip chambers, and resistive-plate chambers. The main subdetectors used in this analysis are the silicon tracker and the muon system, which enable the measurement of muon momenta over the pseudora-pidity range jηj < 2.4. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [20].

The events were collected using a two-level trigger system. The first level, made of custom hardware process-ors, uses data from the muon system to select events with two muon candidates. The high-level trigger, adding information from the silicon tracker, reduces the rate of stored events by requiring an opposite-sign muon pair of invariant mass 2.8 < M < 3.35 GeV, pT > 9.9 GeV, and

jyj < 1.25 for the J=ψ trigger, and 3.35 < M < 4.05 GeV and pT > 6.9 GeV for the ψð2SÞ trigger. No pT

require-ment is imposed on the single muons at trigger level. Both triggers require a dimuon vertex fit χ2 probability greater

than 0.5% and a distance of closest approach between the two muons less than 5 mm. Events where the muons bend towards each other in the magnetic field are rejected to lower the trigger rate while retaining the highest-quality dimuons. The J=ψ and ψð2SÞ analyses are conducted independently, using event samples separated at the trigger

level. The ψð2SÞ sample corresponds to an integrated luminosity of 4.90 fb−1, while the J=ψ sample has a

reduced value, 4.55 fb−1, because the p

T threshold of

the J=ψ trigger was raised to 12.9 GeV in a fraction of the data-taking period; the integrated luminosities have an uncertainty of 2.2%[21].

The muon tracks are required to have hits in at least eleven tracker layers, with at least two in the silicon pixel detector, and to be matched with at least one segment in the muon system. They must have a good track fit quality (χ2 per degree of freedom smaller than 1.8) and point to

the interaction region. The selected muons must also match in pseudorapidity and azimuthal angle with the muon objects responsible for triggering the event. The analysis is restricted to muons produced within a fiducial phase-space window where the muon detection efficiencies are accurately measured: pT > 4.5, 3.5, and 3.0 GeV for

the regions jηj < 1.2, 1.2 < jηj < 1.4, and 1.4 < jηj < 1.6, respectively. The combinatorial dimuon background is reduced by requiring a dimuon vertex fit χ2 probability

larger than 1%. After applying the event selection criteria, the combined yields of prompt and nonprompt charmonia in the range jyj < 1.2 are 5.45 M for the J=ψ and 266 k for the ψð2SÞ. The prompt charmonia are separated from those resulting from decays of b hadrons through the use of the dimuon pseudo-proper-decay-length

[22], l ¼ LxyM=pT, where Lxy is the transverse decay

length in the laboratory frame, measured after removing the two muon tracks from the calculation of the primary vertex position. For events with multiple collision vertices, Lxy is calculated with respect to the vertex closest to the

direction of the dimuon momentum, extrapolated towards the beam line.

For each ðjyj; pTÞ bin, the prompt charmonium yields are

evaluated through an extended unbinned maximum-likelihood fit to the two-dimensional ðM; lÞ event distri-bution. In the mass dimension, the shape of each signal peak is represented by a Crystal Ball (CB) function[23], with free mean (μCB) and width (σCB) parameters. Given

the strong correlation between the two CB tail parameters, αCBand nCB, they are fixed to values evaluated from fits to

event samples integrated in broader pT ranges. A single CB

function provides a good description of the signal mass peaks, given that the dimuon mass distributions are studied in narrow ðjyj; pTÞ bins, within which the dimuon invariant

mass resolution has a negligible variation. The mass distribution of the underlying continuum background is described by an exponential function. Concerning the pseudo-proper-decay-length variable, the prompt signal component is modeled by a resolution function, which exploits the per-event uncertainty information provided by the vertex reconstruction algorithm, while the nonprompt charmonium term is modeled by an exponential function convolved with the resolution function. The continuum background component is represented by a sum of prompt

(3)

and nonprompt empirical forms. The distributions are well described with a relatively small number of free parameters. Figure 1 shows the J=ψ and ψð2SÞ dimuon invariant

mass and pseudo-proper-decay-length projections for two representative ðjyj; pTÞ bins. The decay length projections

are shown for events with dimuon invariant mass within '3σCBof the pole mass. In the highest pT bins, where the

number of dimuons is relatively small, stable results are obtained by fixing μCBand the slope of the exponential-like

function describing the nonprompt combinatorial back-ground to values extrapolated from the trend found from the lower-pT bins. The systematic uncertainties in the signal

yields are evaluated by repeating the fit with different functional forms, varying the values of the fixed param-eters, and allowing for more free parameters in the fit. The fit results are robust with respect to changes in the procedure; the corresponding systematic uncertainties are negligible at low pT and increase to≈2% for the J=ψ and

≈6% for the ψð2SÞ in the highest pT bins.

The single-muon detection efficiencies ϵμare measured

with a “tag-and-probe” (T&P) technique[24], using event samples collected with triggers specifically designed for

this purpose, including a sample enriched in dimuons from J=ψ decays where a muon is combined with another track and the pair is required to have an invariant mass within the range 2.8–3.4 GeV. The procedure was validated in the phase-space window of the analysis with detailed Monte Carlo (MC) simulation studies. The measured efficiencies are parametrized as a function of muon pT,

in eight bins of muon jηj. Their uncertainties, reflecting the statistical precision of the T&P samples and possible imperfections of the parametrization, are ≈2%–3%. The efficiency of the dimuon vertex fit χ2probability

require-ment is also measured with the T&P approach, using a sample of events collected with a dedicated (prescaled) trigger. It is around 95%–97%, improving with increasing pT, with a 2% systematic uncertainty. At high pT, when the

two muons might be emitted relatively close to each other, the efficiency of the dimuon trigger ϵμμ is smaller than the

product of the two single-muon efficiencies [13], ϵμμ ¼ ϵμ1ϵμ2ρ. The correction factor ρ is evaluated with MC simulations, validated from data collected with single-muon triggers. For pT < 35 GeV, ρ is consistent with

being unity, within a systematic uncertainty estimated as

2.85 2.9 2.95 3 3.05 3.1 3.15 3.2 3.25 3.3 Events / 4 MeV 0 50 100 150 200 250 300 350 400 450 Data Total Prompt Nonprompt Background CMS ψ J/ < 32 GeV T 30 < p (7 TeV) -1 4.55 fb

Dimuon invariant mass [GeV] Pseudo-proper decay length [mm]

-0.5 0 0.5 1 1.5 2 2.5 mµ Events / 20 -1 10 1 10 2 10 3 10 Data Total Prompt Nonprompt Background CMS ψ J/ < 32 GeV T 30 < p (7 TeV) -1 4.55 fb

Dimuon invariant mass [GeV]

3.4 3.5 3.6 3.7 3.8 3.9 4 Events / 14 MeV 0 50 100 150 200 250 300 350 Data Total Prompt Nonprompt Background CMS (2S) ψ < 27.5 GeV T 25 < p (7 TeV) -1 4.9 fb

Pseudo-proper decay length [mm]

-0.5 0 0.5 1 1.5 2 2.5 mµ Events / 20 -1 10 1 10 2 10 Data Total Prompt Nonprompt Background CMS (2S) ψ < 27.5 GeV T 25 < p (7 TeV) -1 4.9 fb

FIG. 1 (color online). Projections on the dimuon invariant mass (left) and pseudo-proper-decay-length (right) axes, for the J=ψ (top) and ψð2SÞ (bottom) events in the kinematic bins given in the plots. The right panels show dimuons of invariant mass within '3σCBof the

pole masses. The curves, identified in the legends, represent the result of the fits described in the text. The vertical bars on the data points show the statistical uncertainties.

(4)

2%, except in the 0.9 < jyj < 1.2 bin, where the uncer-tainty increases to 4.3% for the J=ψ if pT < 12 GeV, and

to 2.7% for the ψð2SÞ if pT < 11 GeV. For pT > 35 GeV,

ρ decreases approximately linearly with pT, reaching

60%–70% for pT∼ 85 GeV, with systematic uncertainties

evaluated by comparing the MC simulation results with estimations made using data collected with single-muon triggers: 5% up to pT ¼ 50 (55) GeV for the J=ψ [ψð2SÞ]

and 10% for higher pT. The total dimuon detection

efficiency increases from ϵμμ≈ 78% at pT ¼ 15 GeV

to≈85% at 30 GeV, and then decreases to ≈65% at 80 GeV. To obtain the charmonium cross sections in each ðjyj; pTÞ

bin without any restrictions on the kinematic variables of the two muons, we correct for the corresponding dimuon acceptance, defined as the fraction of dimuon decays having both muons emitted within the single-muon fiducial phase space. These acceptances are calculated using a detailed MC simulation of the CMS experiment. Charmonia are generated using a flat rapidity distribution and pTdistributions based on

previous measurements[13]; using flat pTdistributions leads

to negligible changes. The particles are decayed byEVTGEN [25]interfaced toPYTHIA6.4[26], whilePHOTOS[27]is used

to simulate final-state radiation. The fractions of J=ψ and ψð2SÞ dimuon events in a given ðjyj; pTÞ bin with both

muons surviving the fiducial selections depend on the decay kinematics and, in particular, on the polarization of the mother particle. Acceptances are calculated using polariza-tion scenarios corresponding to different values of the polar anisotropy parameter in the helicity frame, λHX

ϑ : 0

(unpolar-ized), þ1 (transverse), and −1 (longitudinal). A fourth scenario, corresponding to λHX

ϑ ¼ þ0.10 for the J=ψ and

þ0.03 for the ψð2SÞ, reflects the results published by CMS

[10]. The two other parameters characterizing the dimuon angular distributions[28], λφand λϑφ, have been measured to

be essentially zero[10]and have a negligible influence on the acceptance. The acceptances are essentially identical for the two charmonia and are almost rapidity independent for jyj < 1.2. The two-dimensional acceptance maps are calcu-lated with large MC simulation samples, so that statistical fluctuations are small, and in narrow jyj bins, so that variations within the bins can be neglected. Since the efficiencies and acceptances are evaluated for events where the two muons bend away from each other, a factor of 2 is applied to obtain the final cross sections.

The double-differential cross sections of promptly pro-duced J=ψ and ψð2SÞ in the dimuon channel, Bd2σ=dp

Tdy, where B is the J=ψ or ψð2SÞ dimuon

branching fraction, are obtained by dividing the fitted prompt-signal yields, already corrected on an event-by-event basis for efficiencies and acceptance, by the inte-grated luminosity and the widths of the pT and jyj bins. The

numerical values, including the relative statistical and systematic uncertainties, are reported for both charmonia, five rapidity intervals, and four polarization scenarios in Tables 1–4 of the Supplemental Material [29]. Figure 2

shows the results obtained in the unpolarized scenario. With respect to the jyj < 0.3 bin, the cross sections drop by ≈5% for 0.6 < jyj < 0.9 and ≈15% for 0.9 < jyj < 1.2. Measuring the charmonium production cross sections in the broader rapidity range jyj < 1.2 has the advantage that the increased statistical accuracy allows the measurement to be extended to higher-pT values, where comparisons with

theoretical calculations are particularly informative. Figure 3 compares the rapidity-integrated (unpolarized) cross sections, after rescaling with the branching fraction B of the dimuon decay channels[30], with results reported by ATLAS[14,15]. The curve represents a fit of the J=ψ cross section measured in this analysis to a power-law function

[31]. The band labeled FKLSW represents the result of a global fit[6]comparing SDCs calculated at NLO[3]with ψð2SÞ cross sections and polarizations previously reported by CMS [10,13] and LHCb [17]. According to that fit, ψð2SÞ mesons are produced predominantly unpolarized. At high pT, the values reported in this Letter tend to be higher

than the band, which is essentially determined from results for pT < 30 GeV.

The ratio of the ψð2SÞ to J=ψ differential cross sections is also measured in the jyj < 1.2 range, recomputing the J=ψ values in the pT bins of the ψð2SÞ analysis.

The measured values are reported in Table 5 of the Supplemental Material [29]. The corrections owing to the integrated luminosity, acceptances, and efficiencies cancel to a large extent in the measurement of the ratio. The total systematic uncertainty, dominated by the ρ correction for pT > 30 GeV and by the acceptance and

[GeV] T p 0 20 40 60 80 100 120 [nb / GeV] y d T p / d σ d -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 1 CMS -1 2) × y y < 1.2 ( < 0.3 y y y < 0.6 0.3 < < 0.9 0.6 < < 1.2 0.9 < of 2.2% not included Luminosity uncertainty ψ J/ (2S) ψ ψ : L = 4.55 fb J/ (2S) : L = 4.90 fb ψ -1 = 7 TeV s pp 2

FIG. 2 (color online). The J=ψ and ψð2SÞ differential pTcross

sections times the dimuon branching fractions for four rapidity bins and integrated over the range jyj < 1.2 (scaled up by a factor of 2 for presentation purposes), assuming the unpolarized scenario. The vertical bars show the statistical and systematic uncertainties added in quadrature.

(5)

efficiency corrections for pT < 20 GeV, does not exceed

3%, except for pT > 75 GeV, where it reaches 5%. Larger

event samples are needed to clarify the trend of the ratio for pT above ≈35 GeV.

In summary, the double-differential cross sections of the J=ψ and ψð2SÞ mesons promptly produced in pp collisions at ffiffiffisp ¼ 7 TeV have been measured as a function of pTin

four jyj bins, as well as integrated over the jyj < 1.2 range, extending up to or beyond pT ¼ 100 GeV. New global fits

of cross sections and polarizations, including these high-pT

measurements, will probe the theoretical calculations in a kinematical region where NRQCD factorization is believed to be most reliable. The new data should also provide input to stringent tests of recent theory developments, such as those described in Refs.[32–34].

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction

and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/ IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] N. Brambilla et al., Heavy quarkonium: progress, puzzles, and opportunities,Eur. Phys. J. C 71, 1534 (2011). [2] G. T. Bodwin, E. Braaten, and G. P Lepage, Rigorous QCD

analysis of inclusive annihilation and production of heavy quarkonium,Phys. Rev. D 51, 1125 (1995).

[3] M. Butenschoen and B. A. Kniehl, J=ψ Polarization at Tevatron and the LHC: Nonrelativistic-QCD Factorization at the Crossroads,Phys. Rev. Lett. 108, 172002 (2012). [4] B. Gong, L.-P. Wan, J.-X. Wang, and H.-F. Zhang,

Polari-zation for Prompt J=ψ, ψð2SÞ Production at the Tevatron and LHC,Phys. Rev. Lett. 110, 042002 (2013).

[5] K.-T. Chao, Y.-Q. Ma, H.-S. Shao, K. Wang, and Y.-J. Zhang, J=ψ Polarization at Hadron Colliders in Nonrela-tivistic QCD, Phys. Rev. Lett. 108, 242004 (2012). [6] P. Faccioli, V. Knünz, C. Lourenço, J. Seixas, and H. Wöhri,

Quarkonium production in the LHC era: a polarized perspective,Phys. Lett. B 736, 98 (2014).

[7] A. Abulencia et al. (CDF Collaboration), Polarization of J=ψ and ψð2SÞ Mesons Produced in p ¯p Collisions at

ffiffiffis p

¼ 1.96 TeV,Phys. Rev. Lett. 99, 132001 (2007). [8] T. Aaltonen et al. (CDF Collaboration), Measurements of

Angular Distributions of Muons from ϒ Decays in p ¯p Collisions at ffiffiffisp ¼ 1.96 TeV,Phys. Rev. Lett. 108, 151802 (2012).

[9] CMS Collaboration, Measurement of the ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ Polarizations in pp Collisions atpffiffiffis¼ 7 TeV,

Phys. Rev. Lett. 110, 081802 (2013).

[10] CMS Collaboration, Measurement of the prompt J=ψ and ψð2SÞ polarizations in pp collisions atpffiffiffis¼ 7 TeV,Phys. Lett. B 727, 381 (2013).

[11] P. Faccioli, C. Lourenço, and J. Seixas, Rotation-Invariant Relations in Vector Meson Decays into Fermion Pairs,Phys. Rev. Lett. 105, 061601 (2010). 0 20 40 60 80 100 120 -5 10 -4 10 -3 10 -2 10 -1 10 1 10 2 10 ψ J/ (2S) ψ = 7 TeV s pp -1 y -1 y -1 y -1 y y < 1.2, 4.55 fb (2.4%) CMS, < 0.75, 2.3 pb (3.5%) ATLAS, < 1.2, 4.90 fb (10.6%) CMS, < 0.75, 2.1 fb (2.4%) ATLAS, < 1.2 FKLSW, Power-law fit [GeV] T p [nb / GeV] T pd y / d 2 σd

FIG. 3 (color online). The J=ψ (open symbols) and ψð2SÞ (closed symbols) differential (unpolarized) cross sections from this analysis (circles) and from ATLAS (squares) [14,15]. The vertical bars show the statistical and systematic uncertainties added in quadrature, not including the uncertainties from inte-grated luminosities and branching fractions, which are indicated by the percentages given in the legend. The curve shows a fit of the J=ψ cross section measured in this analysis to a power-law function, while the band labeled FKLSW represents a calculation of the ψð2SÞ cross section using LDMEs determined with lower-pT LHC data[6].

(6)

[12] P. Faccioli, C. Lourenço, and J. Seixas, New approach to quarkonium polarization studies,Phys. Rev. D 81, 111502 (R) (2010).

[13] CMS Collaboration, J=ψ and ψð2SÞ production in pp collisions at pffiffiffis¼ 7 TeV, J. High Energy Phys. 02 (2012) 011.

[14] ATLAS Collaboration, Measurement of the differential cross-sections of inclusive, prompt and non-prompt J=ψ production in proton-proton collisions at pffiffiffis¼ 7 TeV,

Nucl. Phys. B850, 387 (2011).

[15] ATLAS Collaboration, Measurement of the production cross-section of ψð2SÞ → J=ψð→ μþμÞπþπin pp

colli-sions atpffiffiffis¼ 7 TeV at ATLAS,J. High Energy Phys. 09, (2014) 079.

[16] LHCb Collaboration, Measurement of J=ψ production in pp collisions at pffiffiffis¼ 7 TeV, Eur. Phys. J. C 71, 1645 (2011).

[17] LHCb Collaboration, Measurement of ψð2SÞ meson pro-duction in pp collisions at ffiffiffisp ¼ 7 TeV,Eur. Phys. J. C 72, 2100 (2012).

[18] ALICE Collaboration, Measurement of prompt J=ψ and beauty hadron production cross sections at mid-rapidity in pp collisions at pffiffiffis¼ 7 TeV, J. High Energy Phys. 11 (2012) 065.

[19] P. Faccioli, C. Lourenço, J. Seixas, and H. Wöhri, Study of ψ0 and χc decays as feed-down sources of J=ψ

hadro-production,J. High Energy Phys. 10, (2008) 004.

[20] CMS Collaboration, The CMS experiment at the CERN LHC,JINST 3, S08004 (2008).

[21] CMS Collaboration, Absolute Calibration of the Luminosity Measurement at CMS: Winter 2012 Update, CMS Physics Analysis Summary Report No. CMS-PAS-SMP-12-008, 2012.

[22] CMS Collaboration, Prompt and non-prompt J=ψ produc-tion in pp collisions atpffiffiffis¼ 7 TeV,Eur. Phys. J. C 71, 1575 (2011).

[23] M. J. Oreglia, Ph.D. thesis, Stanford University, 1980, SLAC-R-236.

[24] CMS Collaboration, Measurements of inclusive W and Z cross sections in pp collisions at pffiffiffis¼ 7 TeV, J. High Energy Phys. 01 (2011) 080.

[25] D. J. Lange, The EvtGen particle decay simulation package,

Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[26] T. Sjöstrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 physics and manual, J. High Energy Phys. 05 (2006) 026.

[27] E. Barberio and Z. Wąs, PHOTOS—a universal Monte Carlo for QED radiative corrections: version 2.0,Comput. Phys. Commun. 79, 291 (1994).

[28] P. Faccioli, C. Lourenço, J. Seixas, and H. Wöhri, Towards the experimental clarification of quarkonium polarization,

Eur. Phys. J. C 69, 657 (2010).

[29] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.114.191802 for tables with detailed results.

[30] K. A. Olive et al. (Particle Data Group), Review of Particle Physics,Chin. Phys. C 38, 090001 (2014).

[31] I. Abt et al. (HERA-B), A measurement of the ψ0 to J=ψ

production ratio in 920 GeV proton-nucleus interactions,

Eur. Phys. J. C 49, 545 (2007).

[32] Z.-B. Kang, J.-W. Qiu, and G. Sterman, Heavy Quarkonium Production and Polarization,Phys. Rev. Lett. 108, 102002 (2012).

[33] Z.-B. Kang, Y.-Q. Ma, J.-W. Qiu, and G. Sterman, Heavy quarkonium production at collider energies: Factorization and evolution, Phys. Rev. D 90, 034006 (2014).

[34] G. T. Bodwin, H. Sok Chung, U.-R. Kim, and J. Lee, Fragmentation Contributions to J=ψ Production at the Tevatron and the LHC, Phys. Rev. Lett. 113, 022001 (2014).

V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 M. Friedl,2

R. Frühwirth,2,bV. M. Ghete,2 C. Hartl,2 N. Hörmann,2 J. Hrubec,2 M. Jeitler,2,b W. Kiesenhofer,2 V. Knünz,2 M. Krammer,2,bI. Krätschmer,2D. Liko,2I. Mikulec,2 D. Rabady,2,c B. Rahbaran,2 H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2W. Treberer-Treberspurg,2W. Waltenberger,2C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3

S. Alderweireldt,4 S. Bansal,4 T. Cornelis,4 E. A. De Wolf,4 X. Janssen,4 A. Knutsson,4J. Lauwers,4 S. Luyckx,4 S. Ochesanu,4 R. Rougny,4 M. Van De Klundert,4H. Van Haevermaet,4 P. Van Mechelen,4 N. Van Remortel,4

A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5J. D’Hondt,5N. Daci,5N. Heracleous,5J. Keaveney,5S. Lowette,5M. Maes,5 A. Olbrechts,5Q. Python,5 D. Strom,5S. Tavernier,5 W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5

C. Caillol,6 B. Clerbaux,6 G. De Lentdecker,6 D. Dobur,6L. Favart,6 A. P. R. Gay,6 A. Grebenyuk,6 A. Léonard,6 A. Mohammadi,6L. Perniè,6,cA. Randle-conde,6T. Reis,6T. Seva,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wang,6

F. Zenoni,6 V. Adler,7K. Beernaert,7 L. Benucci,7 A. Cimmino,7 S. Costantini,7 S. Crucy,7 A. Fagot,7 G. Garcia,7

J. Mccartin,7A. A. Ocampo Rios,7D. Poyraz,7D. Ryckbosch,7S. Salva Diblen,7M. Sigamani,7N. Strobbe,7F. Thyssen,7 M. Tytgat,7 E. Yazgan,7N. Zaganidis,7S. Basegmez,8 C. Beluffi,8,dG. Bruno,8 R. Castello,8A. Caudron,8 L. Ceard,8

G. G. Da Silveira,8 C. Delaere,8T. du Pree,8 D. Favart,8L. Forthomme,8A. Giammanco,8,e J. Hollar,8 A. Jafari,8P. Jez,8 M. Komm,8V. Lemaitre,8C. Nuttens,8D. Pagano,8L. Perrini,8A. Pin,8K. Piotrzkowski,8A. Popov,8,fL. Quertenmont,8

(7)

W. L. Aldá Júnior,10G. A. Alves,10L. Brito,10M. Correa Martins Junior,10T. Dos Reis Martins,10J. Molina,10

C. Mora Herrera,10M. E. Pol,10 P. Rebello Teles,10 W. Carvalho,11J. Chinellato,11,g A. Custódio,11E. M. Da Costa,11 D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11H. Malbouisson,11D. Matos Figueiredo,11

L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11J. Santaolalla,11A. Santoro,11A. Sznajder,11 E. J. Tonelli Manganote,11,g A. Vilela Pereira,11C. A. Bernardes,12b S. Dogra,12aT. R. Fernandez Perez Tomei,12a

E. M. Gregores,12bP. G. Mercadante,12b S. F. Novaes,12a Sandra S. Padula,12a A. Aleksandrov,13V. Genchev,13,c R. Hadjiiska,13P. Iaydjiev,13A. Marinov,13S. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13M. Vutova,13 A. Dimitrov,14I. Glushkov,14L. Litov,14 B. Pavlov,14P. Petkov,14J. G. Bian,15 G. M. Chen,15H. S. Chen,15M. Chen,15 T. Cheng,15R. Du,15C. H. Jiang,15R. Plestina,15,h F. Romeo,15J. Tao,15Z. Wang,15C. Asawatangtrakuldee,16Y. Ban,16 W. Guo,16S. Liu,16Y. Mao,16S. J. Qian,16D. Wang,16Z. Xu,16F. Zhang,16,iL. Zhang,16W. Zou,16C. Avila,17A. Cabrera,17 L. F. Chaparro Sierra,17C. Florez,17J. P. Gomez,17B. Gomez Moreno,17 J. C. Sanabria,17N. Godinovic,18D. Lelas,18 D. Polic,18I. Puljak,18Z. Antunovic,19M. Kovac,19V. Brigljevic,20K. Kadija,20J. Luetic,20D. Mekterovic,20L. Sudic,20 A. Attikis,21G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21H. Rykaczewski,21M. Bodlak,22

M. Finger,22M. Finger Jr.,22,jY. Assran,23,kA. Ellithi Kamel,23,lM. A. Mahmoud,23,mA. Radi,23,n,oM. Kadastik,24 M. Murumaa,24M. Raidal,24A. Tiko,24 P. Eerola,25 M. Voutilainen,25 J. Härkönen,26V. Karimäki,26R. Kinnunen,26 M. J. Kortelainen,26T. Lampén,26K. Lassila-Perini,26S. Lehti,26T. Lindén,26P. Luukka,26T. Mäenpää,26T. Peltola,26

E. Tuominen,26 J. Tuominiemi,26E. Tuovinen,26L. Wendland,26J. Talvitie,27T. Tuuva,27 M. Besancon,28F. Couderc,28 M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28C. Favaro,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28

G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28J. Rander,28A. Rosowsky,28 M. Titov,28S. Baffioni,29 F. Beaudette,29 P. Busson,29E. Chapon,29C. Charlot,29T. Dahms,29L. Dobrzynski,29N. Filipovic,29 A. Florent,29

R. Granier de Cassagnac,29L. Mastrolorenzo,29P. Miné,29 I. N. Naranjo,29 M. Nguyen,29 C. Ochando,29G. Ortona,29 P. Paganini,29S. Regnard,29R. Salerno,29J. B. Sauvan,29Y. Sirois,29C. Veelken,29Y. Yilmaz,29A. Zabi,29J.-L. Agram,30,p J. Andrea,30A. Aubin,30D. Bloch,30J.-M. Brom,30E. C. Chabert,30C. Collard,30E. Conte,30,pJ.-C. Fontaine,30,pD. Gelé,30

U. Goerlach,30 C. Goetzmann,30 A.-C. Le Bihan,30K. Skovpen,30P. Van Hove,30 S. Gadrat,31S. Beauceron,32

N. Beaupere,32C. Bernet,32,h G. Boudoul,32,c E. Bouvier,32S. Brochet,32C. A. Carrillo Montoya,32J. Chasserat,32 R. Chierici,32D. Contardo,32,c B. Courbon,32P. Depasse,32H. El Mamouni,32J. Fan,32J. Fay,32S. Gascon,32 M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32A. L. Pequegnot,32S. Perries,32J. D. Ruiz Alvarez,32

D. Sabes,32L. Sgandurra,32V. Sordini,32M. Vander Donckt,32P. Verdier,32S. Viret,32H. Xiao,32Z. Tsamalaidze,33,j C. Autermann,34S. Beranek,34M. Bontenackels,34M. Edelhoff,34L. Feld,34A. Heister,34K. Klein,34M. Lipinski,34 A. Ostapchuk,34M. Preuten,34F. Raupach,34J. Sammet,34S. Schael,34J. F. Schulte,34H. Weber,34B. Wittmer,34 V. Zhukov,34,fM. Ata,35M. Brodski,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Güth,35 T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35S. Knutzen,35P. Kreuzer,35M. Merschmeyer,35A. Meyer,35 P. Millet,35M. Olschewski,35K. Padeken,35P. Papacz,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35D. Teyssier,35

S. Thüer,35V. Cherepanov,36Y. Erdogan,36G. Flügge,36H. Geenen,36M. Geisler,36W. Haj Ahmad,36F. Hoehle,36 B. Kargoll,36T. Kress,36Y. Kuessel,36A. Künsken,36J. Lingemann,36,c A. Nowack,36I. M. Nugent,36C. Pistone,36 O. Pooth,36A. Stahl,36M. Aldaya Martin,37I. Asin,37N. Bartosik,37J. Behr,37U. Behrens,37A. J. Bell,37A. Bethani,37 K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37S. Choudhury,37F. Costanza,37C. Diez Pardos,37

G. Dolinska,37S. Dooling,37T. Dorland,37G. Eckerlin,37D. Eckstein,37T. Eichhorn,37G. Flucke,37J. Garay Garcia,37 A. Geiser,37A. Gizhko,37P. Gunnellini,37J. Hauk,37M. Hempel,37,qH. Jung,37A. Kalogeropoulos,37O. Karacheban,37,q M. Kasemann,37P. Katsas,37J. Kieseler,37C. Kleinwort,37I. Korol,37D. Krücker,37W. Lange,37J. Leonard,37K. Lipka,37 A. Lobanov,37W. Lohmann,37,qB. Lutz,37R. Mankel,37I. Marfin,37,qI.-A. Melzer-Pellmann,37A. B. Meyer,37G. Mittag,37

J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37A. Nayak,37E. Ntomari,37H. Perrey,37D. Pitzl,37R. Placakyte,37 A. Raspereza,37P. M. Ribeiro Cipriano,37B. Roland,37E. Ron,37 M. Ö. Sahin,37J. Salfeld-Nebgen,37P. Saxena,37

T. Schoerner-Sadenius,37M. Schröder,37C. Seitz,37S. Spannagel,37A. D. R. Vargas Trevino,37R. Walsh,37C. Wissing,37 V. Blobel,38M. Centis Vignali,38 A. R. Draeger,38J. Erfle,38 E. Garutti,38K. Goebel,38M. Görner,38J. Haller,38

M. Hoffmann,38R. S. Höing,38A. Junkes,38H. Kirschenmann,38R. Klanner,38R. Kogler,38T. Lapsien,38T. Lenz,38 I. Marchesini,38D. Marconi,38J. Ott,38T. Peiffer,38A. Perieanu,38N. Pietsch,38J. Poehlsen,38T. Poehlsen,38D. Rathjens,38 C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Seidel,38V. Sola,38H. Stadie,38G. Steinbrück,38 D. Troendle,38E. Usai,38L. Vanelderen,38 A. Vanhoefer,38C. Barth,39C. Baus,39 J. Berger,39C. Böser,39E. Butz,39

(8)

T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39F. Frensch,39M. Giffels,39A. Gilbert,39

F. Hartmann,39,cT. Hauth,39U. Husemann,39I. Katkov,39,fA. Kornmayer,39,cP. Lobelle Pardo,39M. U. Mozer,39T. Müller,39 Th. Müller,39A. Nürnberg,39G. Quast,39K. Rabbertz,39S. Röcker,39H. J. Simonis,39F. M. Stober,39R. Ulrich,39

J. Wagner-Kuhr,39 S. Wayand,39T. Weiler,39R. Wolf,39G. Anagnostou,40G. Daskalakis,40T. Geralis,40 V. A. Giakoumopoulou,40A. Kyriakis,40D. Loukas,40A. Markou,40C. Markou,40A. Psallidas,40I. Topsis-Giotis,40

A. Agapitos,41S. Kesisoglou,41A. Panagiotou,41N. Saoulidou,41E. Stiliaris,41E. Tziaferi,41X. Aslanoglou,42 I. Evangelou,42G. Flouris,42C. Foudas,42P. Kokkas,42 N. Manthos,42I. Papadopoulos,42E. Paradas,42J. Strologas,42 G. Bencze,43 C. Hajdu,43P. Hidas,43 D. Horvath,43,rF. Sikler,43V. Veszpremi,43G. Vesztergombi,43,sA. J. Zsigmond,43 N. Beni,44S. Czellar,44J. Karancsi,44,tJ. Molnar,44J. Palinkas,44Z. Szillasi,44A. Makovec,45P. Raics,45Z. L. Trocsanyi,45 B. Ujvari,45S. K. Swain,46S. B. Beri,47V. Bhatnagar,47R. Gupta,47U. Bhawandeep,47A. K. Kalsi,47M. Kaur,47R. Kumar,47 M. Mittal,47N. Nishu,47J. B. Singh,47Ashok Kumar,48Arun Kumar,48S. Ahuja,48A. Bhardwaj,48B. C. Choudhary,48 A. Kumar,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48V. Sharma,48S. Banerjee,49S. Bhattacharya,49K. Chatterjee,49

S. Dutta,49B. Gomber,49 Sa. Jain,49 Sh. Jain,49R. Khurana,49A. Modak,49 S. Mukherjee,49D. Roy,49S. Sarkar,49 M. Sharan,49A. Abdulsalam,50D. Dutta,50V. Kumar,50A. K. Mohanty,50,cL. M. Pant,50P. Shukla,50A. Topkar,50T. Aziz,51 S. Banerjee,51S. Bhowmik,51,uR. M. Chatterjee,51R. K. Dewanjee,51S. Dugad,51S. Ganguly,51S. Ghosh,51M. Guchait,51

A. Gurtu,51,v G. Kole,51S. Kumar,51M. Maity,51,u G. Majumder,51K. Mazumdar,51G. B. Mohanty,51B. Parida,51

K. Sudhakar,51N. Wickramage,51,w S. Sharma,52H. Bakhshiansohi,53H. Behnamian,53S. M. Etesami,53,x A. Fahim,53,y R. Goldouzian,53M. Khakzad,53M. Mohammadi Najafabadi,53M. Naseri,53 S. Paktinat Mehdiabadi,53

F. Rezaei Hosseinabadi,53B. Safarzadeh,53,zM. Zeinali,53M. Felcini,54M. Grunewald,54 M. Abbrescia,55a,55b C. Calabria,55a,55bS. S. Chhibra,55a,55b A. Colaleo,55a D. Creanza,55a,55c L. Cristella,55a,55b N. De Filippis,55a,55c

M. De Palma,55a,55bL. Fiore,55aG. Iaselli,55a,55cG. Maggi,55a,55cM. Maggi,55aS. My,55a,55cS. Nuzzo,55a,55bA. Pompili,55a,55b G. Pugliese,55a,55cR. Radogna,55a,55b,cG. Selvaggi,55a,55bA. Sharma,55aL. Silvestris,55a,cR. Venditti,55a,55bP. Verwilligen,55a

G. Abbiendi,56a A. C. Benvenuti,56a D. Bonacorsi,56a,56b S. Braibant-Giacomelli,56a,56b L. Brigliadori,56a,56b R. Campanini,56a,56b P. Capiluppi,56a,56bA. Castro,56a,56b F. R. Cavallo,56a G. Codispoti,56a,56b M. Cuffiani,56a,56b

G. M. Dallavalle,56a F. Fabbri,56a A. Fanfani,56a,56bD. Fasanella,56a,56bP. Giacomelli,56a C. Grandi,56a L. Guiducci,56a,56b S. Marcellini,56a G. Masetti,56a A. Montanari,56a F. L. Navarria,56a,56bA. Perrotta,56a A. M. Rossi,56a,56b T. Rovelli,56a,56b G. P. Siroli,56a,56b N. Tosi,56a,56bR. Travaglini,56a,56bS. Albergo,57a,57bG. Cappello,57a M. Chiorboli,57a,57b S. Costa,57a,57b

F. Giordano,57a,c R. Potenza,57a,57bA. Tricomi,57a,57b C. Tuve,57a,57bG. Barbagli,58a V. Ciulli,58a,58b C. Civinini,58a R. D’Alessandro,58a,58bE. Focardi,58a,58b E. Gallo,58a S. Gonzi,58a,58bV. Gori,58a,58bP. Lenzi,58a,58bM. Meschini,58a S. Paoletti,58a G. Sguazzoni,58aA. Tropiano,58a,58bL. Benussi,59 S. Bianco,59F. Fabbri,59 D. Piccolo,59R. Ferretti,60a,60b

F. Ferro,60a M. Lo Vetere,60a,60bE. Robutti,60aS. Tosi,60a,60bM. E. Dinardo,61a,61b S. Fiorendi,61a,61b S. Gennai,61a,c R. Gerosa,61a,61b,c A. Ghezzi,61a,61b P. Govoni,61a,61bM. T. Lucchini,61a,61b,c S. Malvezzi,61aR. A. Manzoni,61a,61b A. Martelli,61a,61b B. Marzocchi,61a,61b,c D. Menasce,61a L. Moroni,61a M. Paganoni,61a,61bD. Pedrini,61a S. Ragazzi,61a,61b

N. Redaelli,61a T. Tabarelli de Fatis,61a,61bS. Buontempo,62a N. Cavallo,62a,62cS. Di Guida,62a,62d,cF. Fabozzi,62a,62c A. O. M. Iorio,62a,62bL. Lista,62aS. Meola,62a,62d,cM. Merola,62aP. Paolucci,62a,cP. Azzi,63aN. Bacchetta,63aD. Bisello,63a,63b

R. Carlin,63a,63bP. Checchia,63aM. Dall’Osso,63a,63bT. Dorigo,63a U. Dosselli,63a F. Gasparini,63a,63bU. Gasparini,63a,63b A. Gozzelino,63a S. Lacaprara,63aM. Margoni,63a,63b A. T. Meneguzzo,63a,63b F. Montecassiano,63a M. Passaseo,63a

J. Pazzini,63a,63b N. Pozzobon,63a,63b P. Ronchese,63a,63bF. Simonetto,63a,63b E. Torassa,63aM. Tosi,63a,63b P. Zotto,63a,63b A. Zucchetta,63a,63bG. Zumerle,63a,63b M. Gabusi,64a,64bS. P. Ratti,64a,64bV. Re,64a C. Riccardi,64a,64b P. Salvini,64a

P. Vitulo,64a,64bM. Biasini,65a,65bG. M. Bilei,65aD. Ciangottini,65a,65b,cL. Fanò,65a,65bP. Lariccia,65a,65bG. Mantovani,65a,65b M. Menichelli,65aA. Saha,65a A. Santocchia,65a,65b A. Spiezia,65a,65b,c K. Androsov,66a,aa P. Azzurri,66a G. Bagliesi,66a

J. Bernardini,66a T. Boccali,66a G. Broccolo,66a,66c R. Castaldi,66a M. A. Ciocci,66a,aaR. Dell’Orso,66a S. Donato,66a,66c,c G. Fedi,66aF. Fiori,66a,66cL. Foà,66a,66c A. Giassi,66a M. T. Grippo,66a,aaF. Ligabue,66a,66c T. Lomtadze,66aL. Martini,66a,66b

A. Messineo,66a,66b C. S. Moon,66a,bb F. Palla,66a,c A. Rizzi,66a,66bA. Savoy-Navarro,66a,ccA. T. Serban,66a P. Spagnolo,66a P. Squillacioti,66a,aa R. Tenchini,66aG. Tonelli,66a,66bA. Venturi,66a P. G. Verdini,66a C. Vernieri,66a,66c L. Barone,67a,67b

F. Cavallari,67a G. D’imperio,67a,67b D. Del Re,67a,67bM. Diemoz,67a C. Jorda,67a E. Longo,67a,67bF. Margaroli,67a,67b P. Meridiani,67aF. Micheli,67a,67b,cG. Organtini,67a,67b R. Paramatti,67a S. Rahatlou,67a,67bC. Rovelli,67a F. Santanastasio,67a,67bL. Soffi,67a,67b P. Traczyk,67a,67b,cN. Amapane,68a,68bR. Arcidiacono,68a,68c S. Argiro,68a,68b M. Arneodo,68a,68c R. Bellan,68a,68bC. Biino,68a N. Cartiglia,68a S. Casasso,68a,68b,c M. Costa,68a,68bR. Covarelli,68a

(9)

A. Degano,68a,68b N. Demaria,68a L. Finco,68a,68b,c C. Mariotti,68a S. Maselli,68aE. Migliore,68a,68bV. Monaco,68a,68b

M. Musich,68a M. M. Obertino,68a,68cL. Pacher,68a,68bN. Pastrone,68a M. Pelliccioni,68a G. L. Pinna Angioni,68a,68b A. Potenza,68a,68bA. Romero,68a,68b M. Ruspa,68a,68c R. Sacchi,68a,68bA. Solano,68a,68bA. Staiano,68a U. Tamponi,68a

S. Belforte,69a V. Candelise,69a,69b,c M. Casarsa,69a F. Cossutti,69a G. Della Ricca,69a,69bB. Gobbo,69a C. La Licata,69a,69b M. Marone,69a,69bA. Schizzi,69a,69bT. Umer,69a,69bA. Zanetti,69aS. Chang,70A. Kropivnitskaya,70S. K. Nam,70D. H. Kim,71

G. N. Kim,71M. S. Kim,71D. J. Kong,71S. Lee,71Y. D. Oh,71H. Park,71A. Sakharov,71D. C. Son,71 T. J. Kim,72 M. S. Ryu,72J. Y. Kim,73D. H. Moon,73S. Song,73S. Choi,74D. Gyun,74B. Hong,74M. Jo,74H. Kim,74Y. Kim,74B. Lee,74 K. S. Lee,74S. K. Park,74Y. Roh,74H. D. Yoo,75M. Choi,76J. H. Kim,76I. C. Park,76G. Ryu,76Y. Choi,77Y. K. Choi,77

J. Goh,77 D. Kim,77E. Kwon,77J. Lee,77I. Yu,77A. Juodagalvis,78J. R. Komaragiri,79M. A. B. Md Ali,79,dd W. A. T. Wan Abdullah,79E. Casimiro Linares,80H. Castilla-Valdez,80E. De La Cruz-Burelo,80I. Heredia-de La Cruz,80 A. Hernandez-Almada,80R. Lopez-Fernandez,80A. Sanchez-Hernandez,80S. Carrillo Moreno,81F. Vazquez Valencia,81 I. Pedraza,82H. A. Salazar Ibarguen,82A. Morelos Pineda,83D. Krofcheck,84P. H. Butler,85S. Reucroft,85A. Ahmad,86 M. Ahmad,86 Q. Hassan,86 H. R. Hoorani,86W. A. Khan,86T. Khurshid,86M. Shoaib,86H. Bialkowska,87M. Bluj,87 B. Boimska,87T. Frueboes,87M. Górski,87M. Kazana,87K. Nawrocki,87K. Romanowska-Rybinska,87M. Szleper,87 P. Zalewski,87G. Brona,88K. Bunkowski,88M. Cwiok,88W. Dominik,88K. Doroba,88A. Kalinowski,88M. Konecki,88

J. Krolikowski,88 M. Misiura,88M. Olszewski,88P. Bargassa,89C. Beirão Da Cruz E Silva,89P. Faccioli,89

P. G. Ferreira Parracho,89M. Gallinaro,89L. Lloret Iglesias,89F. Nguyen,89J. Rodrigues Antunes,89J. Seixas,89 D. Vadruccio,89J. Varela,89P. Vischia,89S. Afanasiev,90I. Golutvin,90V. Karjavin,90V. Konoplyanikov,90V. Korenkov,90

G. Kozlov,90A. Lanev,90A. Malakhov,90V. Matveev,90,eeV. V. Mitsyn,90 P. Moisenz,90V. Palichik,90V. Perelygin,90 S. Shmatov,90N. Skatchkov,90V. Smirnov,90E. Tikhonenko,90A. Zarubin,90V. Golovtsov,91Y. Ivanov,91 V. Kim,91,ff E. Kuznetsova,91P. Levchenko,91V. Murzin,91V. Oreshkin,91I. Smirnov,91V. Sulimov,91L. Uvarov,91S. Vavilov,91

A. Vorobyev,91 An. Vorobyev,91 Yu. Andreev,92A. Dermenev,92S. Gninenko,92N. Golubev,92 M. Kirsanov,92

N. Krasnikov,92A. Pashenkov,92D. Tlisov,92A. Toropin,92V. Epshteyn,93V. Gavrilov,93N. Lychkovskaya,93V. Popov,93 I. Pozdnyakov,93G. Safronov,93S. Semenov,93A. Spiridonov,93V. Stolin,93E. Vlasov,93A. Zhokin,93V. Andreev,94

M. Azarkin,94I. Dremin,94M. Kirakosyan,94A. Leonidov,94G. Mesyats,94S. V. Rusakov,94A. Vinogradov,94A. Belyaev,95 E. Boos,95M. Dubinin,95,gg L. Dudko,95A. Ershov,95A. Gribushin,95V. Klyukhin,95O. Kodolova,95I. Lokhtin,95 S. Obraztsov,95S. Petrushanko,95V. Savrin,95A. Snigirev,95I. Azhgirey,96 I. Bayshev,96S. Bitioukov,96V. Kachanov,96 A. Kalinin,96D. Konstantinov,96V. Krychkine,96V. Petrov,96R. Ryutin,96A. Sobol,96L. Tourtchanovitch,96S. Troshin,96 N. Tyurin,96A. Uzunian,96A. Volkov,96P. Adzic,97,hhM. Ekmedzic,97J. Milosevic,97V. Rekovic,97J. Alcaraz Maestre,98

C. Battilana,98E. Calvo,98M. Cerrada,98M. Chamizo Llatas,98N. Colino,98B. De La Cruz,98A. Delgado Peris,98 D. Domínguez Vázquez,98A. Escalante Del Valle,98C. Fernandez Bedoya,98 J. P. Fernández Ramos,98J. Flix,98

M. C. Fouz,98P. Garcia-Abia,98O. Gonzalez Lopez,98S. Goy Lopez,98J. M. Hernandez,98M. I. Josa,98 E. Navarro De Martino,98A. Pérez-Calero Yzquierdo,98J. Puerta Pelayo,98A. Quintario Olmeda,98I. Redondo,98 L. Romero,98M. S. Soares,98C. Albajar,99J. F. de Trocóniz,99M. Missiroli,99D. Moran,99H. Brun,100J. Cuevas,100

J. Fernandez Menendez,100S. Folgueras,100 I. Gonzalez Caballero,100J. A. Brochero Cifuentes,101 I. J. Cabrillo,101 A. Calderon,101J. Duarte Campderros,101M. Fernandez,101G. Gomez,101A. Graziano,101A. Lopez Virto,101J. Marco,101

R. Marco,101 C. Martinez Rivero,101 F. Matorras,101F. J. Munoz Sanchez,101J. Piedra Gomez,101T. Rodrigo,101

A. Y. Rodríguez-Marrero,101A. Ruiz-Jimeno,101 L. Scodellaro,101 I. Vila,101R. Vilar Cortabitarte,101D. Abbaneo,102 E. Auffray,102G. Auzinger,102 M. Bachtis,102P. Baillon,102A. H. Ball,102D. Barney,102A. Benaglia,102 J. Bendavid,102

L. Benhabib,102 J. F. Benitez,102 P. Bloch,102 A. Bocci,102A. Bonato,102O. Bondu,102 C. Botta,102 H. Breuker,102 T. Camporesi,102G. Cerminara,102S. Colafranceschi,102,iiM. D’Alfonso,102D. d’Enterria,102A. Dabrowski,102A. David,102

F. De Guio,102 A. De Roeck,102 S. De Visscher,102E. Di Marco,102M. Dobson,102 M. Dordevic,102 B. Dorney,102 N. Dupont-Sagorin,102A. Elliott-Peisert,102G. Franzoni,102W. Funk,102D. Gigi,102K. Gill,102D. Giordano,102M. Girone,102

F. Glege,102R. Guida,102 S. Gundacker,102M. Guthoff,102J. Hammer,102 M. Hansen,102 P. Harris,102J. Hegeman,102 V. Innocente,102 P. Janot,102K. Kousouris,102K. Krajczar,102P. Lecoq,102 C. Lourenço,102 N. Magini,102L. Malgeri,102

M. Mannelli,102 J. Marrouche,102 L. Masetti,102 F. Meijers,102S. Mersi,102E. Meschi,102F. Moortgat,102 S. Morovic,102 M. Mulders,102S. Orfanelli,102 L. Orsini,102 L. Pape,102E. Perez,102 A. Petrilli,102 G. Petrucciani,102 A. Pfeiffer,102

M. Pimiä,102D. Piparo,102 M. Plagge,102 A. Racz,102G. Rolandi,102,jj M. Rovere,102 H. Sakulin,102C. Schäfer,102 C. Schwick,102 A. Sharma,102 P. Siegrist,102 P. Silva,102M. Simon,102 P. Sphicas,102,kk D. Spiga,102 J. Steggemann,102

(10)

B. Stieger,102M. Stoye,102 Y. Takahashi,102 D. Treille,102A. Tsirou,102G. I. Veres,102,sN. Wardle,102H. K. Wöhri,102

H. Wollny,102W. D. Zeuner,102W. Bertl,103K. Deiters,103W. Erdmann,103R. Horisberger,103Q. Ingram,103H. C. Kaestli,103 D. Kotlinski,103U. Langenegger,103D. Renker,103 T. Rohe,103F. Bachmair,104L. Bäni,104L. Bianchini,104

M. A. Buchmann,104B. Casal,104N. Chanon,104G. Dissertori,104M. Dittmar,104M. Donegà,104M. Dünser,104P. Eller,104 C. Grab,104D. Hits,104J. Hoss,104G. Kasieczka,104W. Lustermann,104B. Mangano,104A. C. Marini,104M. Marionneau,104

P. Martinez Ruiz del Arbol,104 M. Masciovecchio,104 D. Meister,104 N. Mohr,104 P. Musella,104 C. Nägeli,104,ll F. Nessi-Tedaldi,104F. Pandolfi,104F. Pauss,104L. Perrozzi,104M. Peruzzi,104M. Quittnat,104L. Rebane,104M. Rossini,104 A. Starodumov,104,mmM. Takahashi,104K. Theofilatos,104R. Wallny,104H. A. Weber,104C. Amsler,105,nnM. F. Canelli,105 V. Chiochia,105A. De Cosa,105A. Hinzmann,105T. Hreus,105 B. Kilminster,105C. Lange,105J. Ngadiuba,105D. Pinna,105 P. Robmann,105F. J. Ronga,105S. Taroni,105Y. Yang,105M. Cardaci,106K. H. Chen,106C. Ferro,106C. M. Kuo,106W. Lin,106 Y. J. Lu,106R. Volpe,106 S. S. Yu,106 P. Chang,107Y. H. Chang,107 Y. Chao,107K. F. Chen,107 P. H. Chen,107C. Dietz,107 U. Grundler,107W.-S. Hou,107Y. F. Liu,107R.-S. Lu,107M. Miñano Moya,107E. Petrakou,107J. F. Tsai,107Y. M. Tzeng,107 R. Wilken,107B. Asavapibhop,108G. Singh,108N. Srimanobhas,108N. Suwonjandee,108A. Adiguzel,109M. N. Bakirci,109,oo S. Cerci,109,ppC. Dozen,109I. Dumanoglu,109E. Eskut,109S. Girgis,109G. Gokbulut,109Y. Guler,109E. Gurpinar,109I. Hos,109

E. E. Kangal,109,qqA. Kayis Topaksu,109G. Onengut,109,rrK. Ozdemir,109,ss S. Ozturk,109,oo A. Polatoz,109 D. Sunar Cerci,109,pp B. Tali,109,ppH. Topakli,109,ooM. Vergili,109C. Zorbilmez,109I. V. Akin,110B. Bilin,110S. Bilmis,110

H. Gamsizkan,110,tt B. Isildak,110,uu G. Karapinar,110,vv K. Ocalan,110,wwS. Sekmen,110 U. E. Surat,110M. Yalvac,110 M. Zeyrek,110 E. A. Albayrak,111,xx E. Gülmez,111M. Kaya,111,yy O. Kaya,111,zzT. Yetkin,111,aaaK. Cankocak,112

F. I. Vardarlı,112L. Levchuk,113P. Sorokin,113J. J. Brooke,114E. Clement,114D. Cussans,114H. Flacher,114J. Goldstein,114 M. Grimes,114G. P. Heath,114H. F. Heath,114J. Jacob,114L. Kreczko,114C. Lucas,114Z. Meng,114D. M. Newbold,114,bbb

S. Paramesvaran,114 A. Poll,114 T. Sakuma,114S. Seif El Nasr-storey,114S. Senkin,114V. J. Smith,114 K. W. Bell,115 A. Belyaev,115,cccC. Brew,115 R. M. Brown,115D. J. A. Cockerill,115J. A. Coughlan,115 K. Harder,115S. Harper,115

E. Olaiya,115 D. Petyt,115 C. H. Shepherd-Themistocleous,115 A. Thea,115I. R. Tomalin,115T. Williams,115 W. J. Womersley,115S. D. Worm,115 M. Baber,116R. Bainbridge,116 O. Buchmuller,116 D. Burton,116D. Colling,116

N. Cripps,116P. Dauncey,116G. Davies,116M. Della Negra,116P. Dunne,116A. Elwood,116W. Ferguson,116J. Fulcher,116 D. Futyan,116G. Hall,116G. Iles,116M. Jarvis,116G. Karapostoli,116M. Kenzie,116R. Lane,116R. Lucas,116,bbbL. Lyons,116 A.-M. Magnan,116S. Malik,116B. Mathias,116J. Nash,116A. Nikitenko,116,mm J. Pela,116 M. Pesaresi,116K. Petridis,116 D. M. Raymond,116S. Rogerson,116A. Rose,116C. Seez,116P. Sharp,116,aA. Tapper,116M. Vazquez Acosta,116T. Virdee,116

S. C. Zenz,116 J. E. Cole,117 P. R. Hobson,117 A. Khan,117 P. Kyberd,117D. Leggat,117D. Leslie,117I. D. Reid,117 P. Symonds,117L. Teodorescu,117M. Turner,117J. Dittmann,118K. Hatakeyama,118A. Kasmi,118H. Liu,118N. Pastika,118 T. Scarborough,118 Z. Wu,118O. Charaf,119S. I. Cooper,119C. Henderson,119 P. Rumerio,119 A. Avetisyan,120T. Bose,120

C. Fantasia,120P. Lawson,120C. Richardson,120 J. Rohlf,120J. St. John,120L. Sulak,120J. Alimena,121E. Berry,121 S. Bhattacharya,121G. Christopher,121D. Cutts,121 Z. Demiragli,121 N. Dhingra,121 A. Ferapontov,121A. Garabedian,121

U. Heintz,121 E. Laird,121 G. Landsberg,121Z. Mao,121M. Narain,121S. Sagir,121T. Sinthuprasith,121T. Speer,121 J. Swanson,121 R. Breedon,122 G. Breto,122 M. Calderon De La Barca Sanchez,122S. Chauhan,122M. Chertok,122 J. Conway,122R. Conway,122 P. T. Cox,122R. Erbacher,122M. Gardner,122W. Ko,122R. Lander,122M. Mulhearn,122 D. Pellett,122J. Pilot,122F. Ricci-Tam,122S. Shalhout,122J. Smith,122M. Squires,122D. Stolp,122M. Tripathi,122S. Wilbur,122

R. Yohay,122 R. Cousins,123 P. Everaerts,123 C. Farrell,123J. Hauser,123 M. Ignatenko,123 G. Rakness,123 E. Takasugi,123 V. Valuev,123 M. Weber,123K. Burt,124R. Clare,124J. Ellison,124J. W. Gary,124 G. Hanson,124J. Heilman,124

M. Ivova Rikova,124 P. Jandir,124E. Kennedy,124 F. Lacroix,124O. R. Long,124A. Luthra,124 M. Malberti,124 M. Olmedo Negrete,124 A. Shrinivas,124 S. Sumowidagdo,124S. Wimpenny,124 J. G. Branson,125G. B. Cerati,125

S. Cittolin,125R. T. D’Agnolo,125A. Holzner,125 R. Kelley,125D. Klein,125 J. Letts,125 I. Macneill,125 D. Olivito,125 S. Padhi,125 C. Palmer,125M. Pieri,125M. Sani,125V. Sharma,125S. Simon,125M. Tadel,125Y. Tu,125A. Vartak,125

C. Welke,125F. Würthwein,125A. Yagil,125G. Zevi Della Porta,125D. Barge,126J. Bradmiller-Feld,126C. Campagnari,126 T. Danielson,126A. Dishaw,126 V. Dutta,126 K. Flowers,126 M. Franco Sevilla,126 P. Geffert,126 C. George,126 F. Golf,126

L. Gouskos,126J. Incandela,126C. Justus,126N. Mccoll,126S. D. Mullin,126J. Richman,126D. Stuart,126W. To,126C. West,126 J. Yoo,126A. Apresyan,127A. Bornheim,127J. Bunn,127Y. Chen,127J. Duarte,127A. Mott,127H. B. Newman,127C. Pena,127 M. Pierini,127 M. Spiropulu,127J. R. Vlimant,127R. Wilkinson,127S. Xie,127R. Y. Zhu,127V. Azzolini,128A. Calamba,128

(11)

W. T. Ford,129A. Gaz,129M. Krohn,129E. Luiggi Lopez,129U. Nauenberg,129J. G. Smith,129K. Stenson,129S. R. Wagner,129

J. Alexander,130A. Chatterjee,130J. Chaves,130J. Chu,130S. Dittmer,130N. Eggert,130N. Mirman,130G. Nicolas Kaufman,130 J. R. Patterson,130A. Ryd,130E. Salvati,130L. Skinnari,130W. Sun,130W. D. Teo,130J. Thom,130J. Thompson,130J. Tucker,130

Y. Weng,130 L. Winstrom,130P. Wittich,130 D. Winn,131S. Abdullin,132M. Albrow,132J. Anderson,132G. Apollinari,132 L. A. T. Bauerdick,132 A. Beretvas,132 J. Berryhill,132 P. C. Bhat,132 G. Bolla,132 K. Burkett,132J. N. Butler,132 H. W. K. Cheung,132F. Chlebana,132S. Cihangir,132V. D. Elvira,132I. Fisk,132J. Freeman,132E. Gottschalk,132L. Gray,132 D. Green,132S. Grünendahl,132O. Gutsche,132J. Hanlon,132D. Hare,132R. M. Harris,132J. Hirschauer,132B. Hooberman,132 S. Jindariani,132M. Johnson,132U. Joshi,132B. Klima,132B. Kreis,132S. Kwan,132,aJ. Linacre,132D. Lincoln,132R. Lipton,132

T. Liu,132 R. Lopes De Sá,132 J. Lykken,132 K. Maeshima,132 J. M. Marraffino,132V. I. Martinez Outschoorn,132 S. Maruyama,132D. Mason,132P. McBride,132P. Merkel,132K. Mishra,132S. Mrenna,132S. Nahn,132C. Newman-Holmes,132

V. O’Dell,132O. Prokofyev,132 E. Sexton-Kennedy,132 A. Soha,132W. J. Spalding,132 L. Spiegel,132 L. Taylor,132 S. Tkaczyk,132N. V. Tran,132L. Uplegger,132E. W. Vaandering,132R. Vidal,132A. Whitbeck,132J. Whitmore,132F. Yang,132

D. Acosta,133P. Avery,133P. Bortignon,133D. Bourilkov,133 M. Carver,133D. Curry,133S. Das,133M. De Gruttola,133 G. P. Di Giovanni,133R. D. Field,133M. Fisher,133I. K. Furic,133J. Hugon,133J. Konigsberg,133A. Korytov,133T. Kypreos,133

J. F. Low,133K. Matchev,133H. Mei,133 P. Milenovic,133,dddG. Mitselmakher,133 L. Muniz,133A. Rinkevicius,133 L. Shchutska,133M. Snowball,133D. Sperka,133J. Yelton,133M. Zakaria,133S. Hewamanage,134S. Linn,134P. Markowitz,134

G. Martinez,134J. L. Rodriguez,134J. R. Adams,135T. Adams,135A. Askew,135J. Bochenek,135B. Diamond,135J. Haas,135 S. Hagopian,135V. Hagopian,135K. F. Johnson,135H. Prosper,135V. Veeraraghavan,135M. Weinberg,135M. M. Baarmand,136

M. Hohlmann,136H. Kalakhety,136 F. Yumiceva,136 M. R. Adams,137L. Apanasevich,137 D. Berry,137R. R. Betts,137 I. Bucinskaite,137R. Cavanaugh,137 O. Evdokimov,137 L. Gauthier,137 C. E. Gerber,137D. J. Hofman,137 P. Kurt,137

C. O’Brien,137 I. D. Sandoval Gonzalez,137 C. Silkworth,137P. Turner,137N. Varelas,137B. Bilki,138,eeeW. Clarida,138 K. Dilsiz,138M. Haytmyradov,138V. Khristenko,138J.-P. Merlo,138H. Mermerkaya,138,fffA. Mestvirishvili,138A. Moeller,138

J. Nachtman,138 H. Ogul,138Y. Onel,138 F. Ozok,138,xx A. Penzo,138R. Rahmat,138S. Sen,138P. Tan,138E. Tiras,138 J. Wetzel,138K. Yi,138I. Anderson,139B. A. Barnett,139B. Blumenfeld,139S. Bolognesi,139D. Fehling,139A. V. Gritsan,139

P. Maksimovic,139C. Martin,139M. Swartz,139M. Xiao,139P. Baringer,140A. Bean,140G. Benelli,140C. Bruner,140J. Gray,140 R. P. Kenny III,140D. Majumder,140M. Malek,140M. Murray,140D. Noonan,140S. Sanders,140J. Sekaric,140R. Stringer,140 Q. Wang,140J. S. Wood,140 I. Chakaberia,141 A. Ivanov,141 K. Kaadze,141 S. Khalil,141 M. Makouski,141Y. Maravin,141 L. K. Saini,141N. Skhirtladze,141I. Svintradze,141J. Gronberg,142D. Lange,142F. Rebassoo,142D. Wright,142C. Anelli,143

A. Baden,143 A. Belloni,143 B. Calvert,143 S. C. Eno,143 J. A. Gomez,143N. J. Hadley,143S. Jabeen,143R. G. Kellogg,143 T. Kolberg,143 Y. Lu,143A. C. Mignerey,143 K. Pedro,143Y. H. Shin,143A. Skuja,143 M. B. Tonjes,143S. C. Tonwar,143

A. Apyan,144R. Barbieri,144K. Bierwagen,144 W. Busza,144I. A. Cali,144 L. Di Matteo,144G. Gomez Ceballos,144 M. Goncharov,144D. Gulhan,144M. Klute,144Y. S. Lai,144Y.-J. Lee,144A. Levin,144P. D. Luckey,144C. Paus,144D. Ralph,144 C. Roland,144G. Roland,144G. S. F. Stephans,144K. Sumorok,144D. Velicanu,144J. Veverka,144B. Wyslouch,144M. Yang,144

M. Zanetti,144 V. Zhukova,144B. Dahmes,145 A. Gude,145 S. C. Kao,145 K. Klapoetke,145 Y. Kubota,145 J. Mans,145 S. Nourbakhsh,145R. Rusack,145A. Singovsky,145N. Tambe,145 J. Turkewitz,145J. G. Acosta,146 S. Oliveros,146

E. Avdeeva,147K. Bloom,147 S. Bose,147 D. R. Claes,147 A. Dominguez,147 R. Gonzalez Suarez,147 J. Keller,147 D. Knowlton,147I. Kravchenko,147J. Lazo-Flores,147F. Meier,147F. Ratnikov,147G. R. Snow,147M. Zvada,147J. Dolen,148

A. Godshalk,148I. Iashvili,148 A. Kharchilava,148A. Kumar,148S. Rappoccio,148G. Alverson,149E. Barberis,149 D. Baumgartel,149M. Chasco,149A. Massironi,149D. M. Morse,149D. Nash,149T. Orimoto,149D. Trocino,149R.-J. Wang,149

D. Wood,149 J. Zhang,149 K. A. Hahn,150A. Kubik,150N. Mucia,150N. Odell,150 B. Pollack,150 A. Pozdnyakov,150 M. Schmitt,150S. Stoynev,150 K. Sung,150M. Trovato,150M. Velasco,150S. Won,150A. Brinkerhoff,151K. M. Chan,151

A. Drozdetskiy,151 M. Hildreth,151C. Jessop,151 D. J. Karmgard,151 N. Kellams,151K. Lannon,151S. Lynch,151 N. Marinelli,151 Y. Musienko,151,eeT. Pearson,151 M. Planer,151 R. Ruchti,151G. Smith,151 N. Valls,151M. Wayne,151

M. Wolf,151A. Woodard,151L. Antonelli,152J. Brinson,152 B. Bylsma,152 L. S. Durkin,152 S. Flowers,152A. Hart,152 C. Hill,152R. Hughes,152K. Kotov,152T. Y. Ling,152W. Luo,152D. Puigh,152M. Rodenburg,152B. L. Winer,152H. Wolfe,152

H. W. Wulsin,152 O. Driga,153P. Elmer,153J. Hardenbrook,153 P. Hebda,153S. A. Koay,153 P. Lujan,153 D. Marlow,153 T. Medvedeva,153 M. Mooney,153J. Olsen,153 P. Piroué,153X. Quan,153H. Saka,153 D. Stickland,153,c C. Tully,153 J. S. Werner,153A. Zuranski,153 E. Brownson,154S. Malik,154 H. Mendez,154J. E. Ramirez Vargas,154 V. E. Barnes,155 D. Benedetti,155D. Bortoletto,155L. Gutay,155Z. Hu,155M. K. Jha,155M. Jones,155K. Jung,155M. Kress,155N. Leonardo,155

(12)

D. H. Miller,155N. Neumeister,155F. Primavera,155B. C. Radburn-Smith,155 X. Shi,155 I. Shipsey,155D. Silvers,155

A. Svyatkovskiy,155F. Wang,155W. Xie,155L. Xu,155J. Zablocki,155N. Parashar,156J. Stupak,156A. Adair,157B. Akgun,157 K. M. Ecklund,157F. J. M. Geurts,157W. Li,157B. Michlin,157 B. P. Padley,157R. Redjimi,157 J. Roberts,157J. Zabel,157 B. Betchart,158A. Bodek,158P. de Barbaro,158R. Demina,158Y. Eshaq,158T. Ferbel,158M. Galanti,158A. Garcia-Bellido,158

P. Goldenzweig,158J. Han,158A. Harel,158 O. Hindrichs,158A. Khukhunaishvili,158 S. Korjenevski,158 G. Petrillo,158 M. Verzetti,158D. Vishnevskiy,158R. Ciesielski,159 L. Demortier,159K. Goulianos,159 C. Mesropian,159 S. Arora,160

A. Barker,160 J. P. Chou,160 C. Contreras-Campana,160E. Contreras-Campana,160D. Duggan,160 D. Ferencek,160 Y. Gershtein,160 R. Gray,160E. Halkiadakis,160D. Hidas,160E. Hughes,160 S. Kaplan,160A. Lath,160 S. Panwalkar,160 M. Park,160S. Salur,160S. Schnetzer,160D. Sheffield,160 S. Somalwar,160 R. Stone,160 S. Thomas,160P. Thomassen,160 M. Walker,160K. Rose,161S. Spanier,161A. York,161 O. Bouhali,162,gggA. Castaneda Hernandez,162 M. Dalchenko,162

M. De Mattia,162S. Dildick,162R. Eusebi,162W. Flanagan,162J. Gilmore,162T. Kamon,162,hhhV. Khotilovich,162

V. Krutelyov,162 R. Montalvo,162 I. Osipenkov,162Y. Pakhotin,162 R. Patel,162 A. Perloff,162 J. Roe,162 A. Rose,162 A. Safonov,162I. Suarez,162A. Tatarinov,162K. A. Ulmer,162N. Akchurin,163C. Cowden,163J. Damgov,163C. Dragoiu,163 P. R. Dudero,163J. Faulkner,163K. Kovitanggoon,163S. Kunori,163S. W. Lee,163T. Libeiro,163I. Volobouev,163E. Appelt,164

A. G. Delannoy,164S. Greene,164 A. Gurrola,164W. Johns,164C. Maguire,164Y. Mao,164A. Melo,164M. Sharma,164 P. Sheldon,164 B. Snook,164S. Tuo,164J. Velkovska,164M. W. Arenton,165S. Boutle,165B. Cox,165B. Francis,165 J. Goodell,165R. Hirosky,165 A. Ledovskoy,165H. Li,165C. Lin,165C. Neu,165 E. Wolfe,165 J. Wood,165 C. Clarke,166

R. Harr,166 P. E. Karchin,166C. Kottachchi Kankanamge Don,166 P. Lamichhane,166 J. Sturdy,166D. A. Belknap,167 D. Carlsmith,167 M. Cepeda,167S. Dasu,167L. Dodd,167S. Duric,167E. Friis,167 R. Hall-Wilton,167 M. Herndon,167

A. Hervé,167 P. Klabbers,167 A. Lanaro,167C. Lazaridis,167 A. Levine,167 R. Loveless,167A. Mohapatra,167 I. Ojalvo,167 T. Perry,167G. A. Pierro,167G. Polese,167I. Ross,167T. Sarangi,167A. Savin,167 W. H. Smith,167D. Taylor,167

C. Vuosalo167and N. Woods167

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut für Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Université Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Université Catholique de Louvain, Louvain-la-Neuve, Belgium 9Université de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

12aUniversidade Estadual Paulista, São Paulo, Brazil 12bUniversidade Federal do ABC, São Paulo, Brazil 13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia 19University of Split, Faculty of Science, Split, Croatia

20Institute Rudjer Boskovic, Zagreb, Croatia 21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

(13)

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France 32Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut für Experimentelle Kernphysik, Karlsruhe, Germany

40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 41University of Athens, Athens, Greece

42University of Ioánnina, Ioánnina, Greece 43Wigner Research Centre for Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary

46National Institute of Science Education and Research, Bhubaneswar, India 47Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49Saha Institute of Nuclear Physics, Kolkata, India 50Bhabha Atomic Research Centre, Mumbai, India 51Tata Institute of Fundamental Research, Mumbai, India 52Indian Institute of Science Education and Research (IISER), Pune, India

53Institute for Research in Fundamental Sciences (IPM), Tehran, Iran 54University College Dublin, Dublin, Ireland

55aINFN Sezione di Bari, Bari, Italy 55bUniversità di Bari, Bari, Italy 55cPolitecnico di Bari, Bari, Italy 56aINFN Sezione di Bologna, Bologna, Italy

56bUniversità di Bologna, Bologna, Italy 57aINFN Sezione di Catania, Catania, Italy

57bUniversità di Catania, Catania, Italy 57cCSFNSM, Catania, Italy 58aINFN Sezione di Firenze, Firenze, Italy

58bUniversità di Firenze, Firenze, Italy

59INFN Laboratori Nazionali di Frascati, Frascati, Italy 60aINFN Sezione di Genova, Genova, Italy

60bUniversità di Genova, Genova, Italy 61aINFN Sezione di Milano-Bicocca, Milano, Italy

61bUniversità di Milano-Bicocca, Milano, Italy 62aINFN Sezione di Napoli, Napoli, Italy 62bUniversità di Napoli ’Federico II’, Napoli, Italy 62cUniversità della Basilicata (Potenza), Napoli, Italy

62dUniversità G. Marconi (Roma), Napoli, Italy 63aINFN Sezione di Padova, Padova, Italy

63bUniversità di Padova, Padova, Italy 63cUniversità di Trento (Trento), Padova, Italy

64aINFN Sezione di Pavia, Pavia, Italy 64bUniversità di Pavia, Pavia, Italy 65aINFN Sezione di Perugia, Perugia, Italy

65bUniversità di Perugia, Perugia, Italy 66aINFN Sezione di Pisa, Pisa, Italy

66bUniversità di Pisa, Pisa, Italy 66cScuola Normale Superiore di Pisa, Pisa, Italy

67aINFN Sezione di Roma, Roma, Italy 67bUniversità di Roma, Roma, Italy 68aINFN Sezione di Torino, Torino, Italy

Figura

FIG. 1 (color online). Projections on the dimuon invariant mass (left) and pseudo-proper-decay-length (right) axes, for the J=ψ (top) and ψð2SÞ (bottom) events in the kinematic bins given in the plots
FIG. 2 (color online). The J=ψ and ψð2SÞ differential p T cross

Riferimenti

Documenti correlati

While acknowledging that some exceptions in the convergence process emerged in terms of the mean values of the parameters, the authors emphasized the strong link between

Anche altrove la memoria del Pluto è, per lo più, limitata alla ripresa di singole espressioni: è il caso della già citata epistola 104 al fratello, dove, a proposito di un

Figure 3: difference of the external surface temperature between the control wall and the green façade covered with Pandorea jasminoides variegated: data observed at the

In una situazione, come quella attuale, in cui il lavoro di riproduzione (femminile e non) si sovrappone sempre più al lavoro produttivo classicamente inteso, è possibile pensare

To better understand the breast cancer progression and therapeutic resistance is crucial deepen the molecular mechanisms related to regulation of cells behavior in the

A metà degli anni Cinquanta, ancora a Rimini, partecipò all’accesa disputa tra Ba- sinio da Parma e Porcelio Pandone sull’im- portanza della conoscenza della lingua gre- ca per

Without considering the specific sections of the paper which, as everyone knows, quotations and further external references are indicated, like authorities or public services,

CONCLUSION: Our findings suggest that prolonged use of smartphones, which causes mental fatigue, can reduce the physical and technical performance of young footballers.. Therefore, it