• Non ci sono risultati.

Study of the dijet mass spectrum in pp→W+jets events at √s=7 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Study of the dijet mass spectrum in pp→W+jets events at √s=7 TeV"

Copied!
16
0
0

Testo completo

(1)

Study of the Dijet Mass Spectrum in pp ! W þ jets Events at

p

ffiffiffi

s

¼ 7 TeV

S. Chatrchyan et al.*

(CMS Collaboration)

(Received 16 August 2012; published 21 December 2012)

We report an investigation of the invariant mass spectrum of the two jets with highest transverse momentum inpp ! W þ 2-jet and W þ 3-jet events to look for resonant enhancement. The data sample corresponds to an integrated luminosity of 5:0 fb1collected with the CMS detector atpffiffiffis¼ 7 TeV. We find no evidence for the anomalous structure reported by the CDF Collaboration, and establish an upper limit of 5.0 pb at 95% confidence level on the production cross section for a generic Gaussian signal with mass near 150 GeV. Additionally, we exclude two theoretical models that predict a CDF-like dijet resonance near 150 GeV.

DOI:10.1103/PhysRevLett.109.251801 PACS numbers: 12.15.Ji, 12.38.Qk, 13.85.Rm, 14.80.j

The CDF Collaboration reported evidence for an excess in the mass range 120–160 GeV in the invariant mass (mjj) spectrum of the two leading transverse-momentum (pT) jets produced inp p ! W þ 2-jet events with a cross sec-tion of 4 pb [1]. The D0 Collaboration carried out a similar analysis but did not confirm the CDF result, instead setting a 95% confidence level (C.L.) upper limit of 1.9 pb on the cross section [2]. This Letter details the search for a bump-like enhancement in themjjspectrum in events with aW boson using 5:0 fb1 of data collected from pp collisions atpffiffiffis¼ 7 TeV with the Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider (LHC) during 2010 and 2011.

We search for a resonance with a width consistent with detector resolution as reported by CDF. We further inves-tigate three representative models, a technicolorT from the decay of a technicolorT[3], a leptophobicZ0 decay-ing to two jets [4], and the standard model (SM) Higgs boson (mH ¼ 150 GeV) produced in association with a W boson (referred to asWH production) and decaying to a pair of jets. For the unknown state with detector resolution, we follow the convention used at the Tevatron of using the conservativeWH simulation for analysis-dependent quan-tities like efficiencies and acceptances. TheWH produc-tion cross secproduc-tion at the LHC is negligible compared to contributions from other SM processes, which overwhelm any contribution to this analysis fromWH ! ‘jj decays formH  125 GeV [5,6].

A detailed description of the CMS experiment can be found in Ref. [7]. The central feature of the CMS detector is a superconducting solenoid, of 6 m internal diameter, that produces an axial magnetic field of 3.8 T. Located

within the field volume is the silicon pixel and strip tracker extending up to jj ¼ 2:5, as well as a lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass and scintillator hadronic calorimeter (HCAL), both extend-ing up to jj ¼ 3. Outside the field volume in the forward region (3 < jj < 5) is an iron and quartz-fiber hadronic calorimeter. Muons are measured in gas-ionization detec-tors embedded in the steel return yoke outside the solenoid, in the pseudorapidity range jj < 2:4. The CMS coordi-nate system has its origin at the center of the detector, with thez axis pointing along the direction of the counterclock-wise proton beam. The azimuthal angle is denoted as , the polar angle as , and the pseudorapidity is defined as  ¼  ln½tanð=2Þ.

We employ selection criteria similar to those used at the Tevatron [1,2], but modified to adapt to the higher background rates and different experimental conditions at the LHC. We also place more stringent requirements on the jet kinematics, as suggested in Ref. [8], to enhance a signal compared to the irreducible W plus jets background.

Events are selected with one well-identified and isolated lepton (muon or electron), large missing transverse energy 6ET, and exactly two or exactly three high-pTjets. The data were collected with a suite of single-lepton triggers, mostly with apTthreshold of 24 GeV for muons and 25–32 GeV for electrons. The trigger efficiency for the selected muons (electrons) is about 94% (90%). We reconstruct muon candidates in the region jj < 2:1 by combining informa-tion from the silicon tracker and the muon detectors by means of a global fit. We identify electron candidates within jj < 1:44 and 1:57 < jj < 2:5 as clustered en-ergy deposits in the electromagnetic calorimeter that are matched to tracks. Muon and electron candidates need to fulfill quality criteria established for the measurement of the inclusive W and Z cross sections [9]. In addition, all leptons must be well-separated from hadronic activity in the event. Jets within an- cone of radius 0.3 around a lepton candidate are removed.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

The muon (electron) transverse momentum must exceed 25 (35) GeV, and 6ETmust be greater than 25 (30) GeV in the muon (electron) analysis. The transverse mass MT of eachW candidate must be greater than 50 GeV, where

MT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2p‘T6ET½1  cosð‘ 6ETÞ

q

andand6E

Tare the azimuthal angles of the lepton and

6ET, respectively. Events with more than one identified lepton are vetoed.

We reconstruct jets and 6ET[9,10] with the particle-flow algorithm [11], which combines information from several subdetectors. The jet finding uses the anti-kT clustering algorithm [12] with a distance parameter of 0.5. We require jjetj < 2:4 to ensure that they lie within the tracker acceptance, and a minimum jet pT of 30 GeV. Jets must satisfy identification criteria that eliminate jet candidates originating from noisy channels in the hadron calorimeter [13]. Jet-energy corrections are applied to account for the nonlinear response of the calorimeters to the particle ener-gies and other instrumental effects. These corrections are based on in situ measurements using dijet,  þ jet, and Z þ jet data samples [14]. Overlapping minimum-bias events from other pp collisions (pileup) and the underlying event can contribute additional energy to the reconstructed jets. The median energy density due to pileup is evaluated in each event and the corresponding energy is subtracted from each jet [15]. In addition, tracks that do not originate from the primary vertex are not considered for jet cluster-ing [16]. We verify that the procedures successfully remove the dependence of jet response on the number of interactions in a single event. The jetpTresolution varies from 15% atpT¼ 40 GeV to 6% at pT¼ 400 GeV [14]. We evaluate the mass resolutionjjfor a selected jet pair using simulation and verify it using hadronic W decays in data. We findjj to be 10% ofmjj for masses around 150 GeV.

We require k~pTj1þ ~p

Tj2k > 45 GeV and jðj1; j2Þj < 1:2, where the jets are numbered in order of decreasing pT. We retain events with exactly two or exactly three jets satisfying pT> 30 GeV and with the leading jet having pT> 40 GeV and pointing more than 0.4 rad in azimuth from the direction of the 6ET. The selected jets and the lepton from theW decay must originate from the same pri-mary vertex. Additionally, we impose 0:3 <pTj2=mjj<0:7 to take advantage of the Jacobian nature of resonant dijet production as observed in simulation studies compared with nonresonantW plus jets production.

W production with two or more jets dominates the selected sample. Smaller contributions come from top-pair and single-top decays, Drell-Yan events with two or more jets, multijet production, andWW and WZ diboson production where oneW decays into leptons and the other W or Z decays into quarks.

The shapes of the mjj distributions for background processes are modeled using samples of simulated events. The MADGRAPH5 1.3.30 [17] event generator produces parton-level events with aW boson and up to four partons on the basis of matrix-element (ME) calculations. (The Tevatron experiments used the ALPGEN generator [18].) The ME-parton shower matching scale is taken to be 20 GeV [19], and the factorization and renormalization scales are set to q2 ¼ M2Wþ p2T;W. Samples of tt and Drell-Yan events are also generated with MADGRAPH. Single-top production is modeled with POWHEG 1.0 [20]. Multijet and diboson samples (WW, WZ, ZZ) are gener-ated with PYTHIA 6.422 [21]. PYTHIA provides the parton shower simulation in all cases, with parameters of the underlying event set to the Z2 tune [22]. The set of parton distribution functions used is CTEQ6LL [23]. A GEANT4 -based simulation [24] of the CMS detector is used in the production of all Monte Carlo (MC) samples. Multiple proton-proton interactions within a bunch crossing are simulated, and the triggers are emulated. All simulated events are reconstructed and analyzed with the same software as data.

We generate signal samples for the WH model using PYTHIA, with parameters corresponding a SM Higgs boson with mH ¼ 150 GeV. We use PYTHIA for technicolor generation as well. We generate leptophobic Z0 with MADGRAPH. The authors of Refs. [3,4] provided values for masses and other parameters of the technicolor andZ0 models that would best correspond to the signal observed by CDF.

We determine the contributions of the known SM pro-cesses to the observed mjj spectrum by means of an extended unbinned maximum-likelihood fit in the range between 40 GeV and 400 GeV. We fit separately in four event categories, f ; eg  f2-jet; 3-jetg, because the back-ground compositions differ. Themjj signal region, 123 to 186 GeV, corresponding to 2jj, is excluded from this fit in order to arrive at an unbiased estimate of a possible resonant enhancement in this region.

TableIlists the SM processes included in the fit. TheW plus jets normalization is a free fit parameter because it is by far the dominant background. We allow the

TABLE I. Treatment of background mjj shapes and normal-izations in a fit to the data. The background normalnormal-izations are constrained within the fit to Gaussian distributions with the listed central values and widths.

Process Shape Constraint on normalization W plus jets MC and data Unconstrained

Diboson MC 61:2 pb  10%ðNLOÞ [25] tt MC 163 pb  7%ðNLOÞ [26] Single-top MC 84:9 pb  5%ðNNLLÞ [27–29] Drell-Yan plus jets MC 3:05 nb  4:3%ðNNLOÞ [30] Multijet (QCD) data 6ETfit (described in text)

(3)

normalizations of the other background components to vary within Gaussian constraints around the central values also listed in Table I. The central values for all proce-sses except multijet come from next-to-leading-order (NLO), leading-log (NNLL), or next-to-NLO (Nnext-to-NLO) calculations, and the constraints reflect the published uncertainties. We derive templates for the mjj distribution for each background from simulation except for the multijet events, which contribute when jets are misidentified as leptons. In a separate fit to events that fail the lepton isolation requirements, we determine the central value of the multijet normalization, the con-straint on the normalization and the template for the mjj distribution [9]. The fit to data determines the correla-tions among the various fit parameters.

The default CMSMADGRAPHsample of the dominantW plus jets background does not describe well themjj spec-trum in themjj sidebands. Four alternative samples ofW events, with the scales and q increased and reduced by a factor two with respect to those of the default, fail to provide significant improvement. Thus, we employ an empirically driven combination of three shapes to describe this component in the fit model,

FWþjets¼ FWþjetsð 20; q02Þ þ FWþjetsð 02; q20Þ þ ð1   ÞFWþjetsð 20; q20Þ;

where FWþjets denotes the mjj shape from simulation. The parameters 0 ( 0) and q0 (q0) correspond to the default (alternative) values of and q, respectively, while fractional contributions and are free to vary between 0 and 1. We take 0¼ 2 0 or 0:5 0 (q0¼ 2q0or 0:5q0), depending on which alternative sample provides a better fit to data. Furthermore, we verify, via pseudoexperiment

simulations generated with an alternate shape, that the function in the above equation has sufficient freedom to describe theW plus jets shape.

Figure1(a) shows the observed mjj distribution for all four event categories combined, together with the fitted projections of the contributions of various SM processes. Figure1(b)shows the same distribution after subtraction of all SM contributions from data except electroweak diboson WW=WZ events. No peak is visible in the spectrum except that near 80 GeV due to diboson events. Figure1(c)shows the bin-by-bin pull. TableIIpresents the yields of the SM components obtained from the fit. The sum of all the contributions is compared to the number of observed events. All numbers except those in the last two rows are for the mjj range of 40 to 400 GeV. The last two rows compare the observed number of events and the number predicted by the fit in themjjrange of 123 to 186 GeV. The data agree with the SM expectations, and we find no significant excess in the signal region. We observe a sizable deficit in the muon 2-jet data with respect to the prediction from our model. We do not observe similar deviations in the other three categories, suggesting it is a fluctuation and not a systematic bias.

We validate the fit procedure by performing pseudo-experiments. In each experiment, we generate the mjj pseudodata of the SM processes, including the correlations taken from the fit to data, and then fit each pseudodata sample. The results indicate that the bias on the total yield is below 0.2% and that the fit underestimates the total yield uncertainty by about 30%. These effects are corrected for in the final result. Uncertainties in the jet energy are estimated using a sample of W bosons decaying hadroni-cally in a pure sample of semileptonictt events. The mean and resolution of the reconstructed dijet mass distribution

(a) (b) (c)

FIG. 1 (color online). (a) Distribution of the invariant mass spectrum of the leading two jets observed in data. Overlaid are the fit projections of the various components. The region between the vertical dashed lines is excluded from the fit. (b) The same distribution after subtraction of all SM components except the electroweak processes WW=WZ. Error bars correspond to the statistical uncertainties. The hatched band represents the uncertainty on the sum of the SM components including correlations from the fit. The dark blue histogram is a resonance consistent with detector resolution and normalized to the CDF cross section scaled as described in the text. (c) The bin-by-bin pull, (data fit)/(fit uncertainty). The bins in the figures are representative of the expected resolution for a given mass and the number of entries in each bin is scaled by its width.

(4)

in data agree within 0.6% with the expectation from simu-lation. A small difference in 6ET resolution [10] between data and simulation affects the signal acceptance for the new physics models under consideration at the 0.5% level. Further systematic uncertainties are due to the uncertainty of the trigger efficiency estimates (1%) and the estimate of lepton reconstruction and selection efficiency (2%) [9]. The uncertainty on the integrated luminosity is 2.2% [31]. We scrutinize the dijet mass spectrum near 150 GeV, searching for a technicolor, leptophobic Z0, orWH reso-nant enhancement. We also use a generic signal model obtained by convolving a delta function centered at mjj¼ 150 GeV with a Gaussian function having width equal tojj. Figure1(b)shows this generic signal shape. The expected number of signal events at the LHC for a given cross section at the Tevatron can be estimated by considering the ratio of the predicted cross sections for our reference process, WH production with MH ¼ 150 GeV. This process is dominated by quark-antiquark (q q) anni-hilation. As q q processes have the smallest increase in

parton luminosity from the Tevatron to the LHC, this choice provides a conservative limit. We therefore assume

dijet resonance LHC ¼  dijet resonance Tevatron WH LHC WH Tevatron ;

whereWHLHC¼ 300:1 fb [32] andWHTevatron¼ 71:8 fb [33]. A generic Gaussian signal normalized to Tevatron¼ 4 pb corresponds to LHC¼ 16:7 pb. Table III contains the values ofLHCtimes the branching fraction to jets and of the overall efficiency times acceptance"A for the models considered.

Since we observe no resonant enhancement, we proceed to set exclusion limits using a modified frequentist CLS method [34,35] with profile likelihood as the test statistic. Inputs to the limit-setting procedure are the mjj distribu-tion obtained by combining the SM components from the fit, the observed distribution in data, the expectation from the dijet resonance model under consideration, and the uncertainties associated with these quantities. Figure 2(a)

shows the observed and expected CLSvalues versus cross section for a generic Gaussian signal, after combining the results of all four event categories. We set a 95% C.L. upper limit of 5.0 pb and a 99.9% C.L. upper limit of 8.5 pb on the dijet production cross section for a generic reso-nance withWH-like "A.

Figure2(b)compares the 95% C.L. upper limits with the expected cross sections for technicolor, leptophobicZ0, and WH (MH ¼ 150 GeV) signals. The technicolor and Z0 models are excluded. Because we have minimal sensitivity toWH, we compare the limit in Fig.2(b)to 100 times the SM cross section as an illustration.

In summary, we have studied the invariant mass spec-trum of the two jets with highest transverse momentum in

TABLE II. Event yields determined from maximum-likelihood fits to the data. The total fit yields are corrected for bias. The total fit uncertainties include the correlations among the various yields, as determined by the fit, and the corrections derived from the fit validation described in the text. The 2 probability uses the residuals and the data and MC statistical errors.

Muons Electrons

Process 2-jet 3-jet 2-jet 3-jet

W plus jets 58 919  530 13 069  366 29 787  1153 8397  292

Dibosons 1236  114 333  32 685  65 184  18

tt 4570  307 9049  382 2556  174 4265  253

Single-top 1765  87 1001  50 916  46 521  26

Drell-Yan plus jets 1837  79 561  24 1061  46 364  16

Multijet (QCD) 29  284 0  90 3944  1133 324  160

Fit 2probability 0.454 0.729 0.969 0.991

Total from fit 68 294  307 24 013  193 38 949  228 14 055  143

Data 67 900 24 046 38 973 14 145

In the signal region 123 < mjj< 186 GeV (excluded from the fit)

Total predicted 14 511  125 7739  95 7944  92 4347  70

Data 14 050 7751 8023 4438

TABLE III. ThePYTHIAcross sections at 7 TeV times branch-ing fraction to jets (  B) and overall efficiency times acceptance ("A) for various signal models. The relative un-certainties in " measurements are 1–2%. The uncertainty on A is negligible.

"A

Muons Electrons

Signal model   B ðpbÞ 2-jet 3-jet 2-jet 3-jet Technicolor [3] 7.4 0.065 0.020 0.039 0.011 Z0[4]

8.1 0.070 0.023 0.042 0.014

(5)

pp ! W þ 2-jet and W þ 3-jet events, with the W decay-ing leptonically to a muon or electron. The analyzed data sample corresponds to an integrated luminosity of 5:0 fb1at pffiffiffis¼ 7 TeV. We find no evidence for a reso-nant enhancement near a dijet mass of 150 GeV, as reported by the CDF Collaboration, and set upper limits on the dijet production cross section of 5.0 pb at 95% C.L. and 8.5 pb at 99.9% C.L. Two theoretical models, lepto-phobicZ0 and technicolor, which predict the presence of a resonant enhancement near 150 GeV, are excluded.

We thank Adam Martin and Matthew Buckley for help with simulation of technicolor andZ0models, respectively. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge sup-port from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF

(Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and

CNRS/IN2P3 (France); BMBF, DFG, and HGF

(Germany); GSRT (Greece); OTKA and NKTH

(Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

[1] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. Lett. 106, 171801 (2011).

[2] V. M. Abazov (D0 Collaboration), Phys. Rev. Lett. 107, 011804 (2011).

[3] E. J. Eichten, K. Lane, and A. Martin,Phys. Rev. Lett. 106, 251803 (2011).

[4] M. R. Buckley, D. Hooper, J. Kopp, and E. T. Neil,Phys. Rev. D 83, 115013 (2011).

[5] S. Chatrchyan et al. (CMS Collaboration),Phys. Lett. B 716, 30 (2012).

[6] G. Aad et al. (ATLAS Collaboration),Phys. Lett. B 716, 1 (2012).

[7] S. Chatrchyan et al. (CMS Collaboration), JINST 3, S08004 (2008).

[8] E. Eichten, K. Lane, and A. Martin,arXiv:1107.4075. [9] S. Chatrchyan et al. (CMS Collaboration),J. High Energy

Phys. 10 (2011) 132.

[10] S. Chatrchyan et al. (CMS Collaboration), JINST 6, P09001 (2011).

[11] CMS Collaboration, Report No. CMS-PAS-PFT-09- 001, 2009.

[12] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[13] S. Chatrchyan et al. (CMS Collaboration), JINST 5, T03014 (2010).

[14] S. Chatrchyan et al. (CMS Collaboration), JINST 6, P11002 (2011).

[15] M. Cacciari and G. P. Salam,Phys. Lett. B 659, 119 (2008). [16] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy

Phys. 04 (2008) 005.

[17] F. Maltoni and T. Stelzer,J. High Energy Phys. 02 (2003) 027.

[18] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. D. Polosa,J. High Energy Phys. 07 (2003) 001. [19] S. Hoeche, F. Krauss, N. Lavesson, L. Lonnblad, M.

Mangano, A. Schaelicke, and S. Schumann, arXiv:hep-ph/0602031.

[20] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[21] T. Sjostrand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

(a)

(b)

FIG. 2 (color online). (a) The observed and expected values of the CLS statistic for a generic Gaussian signal hypothesis with

M ¼ 150 GeV and jj¼ 15 GeV, as a function of the dijet

signal cross section. (b) Observed and expected 95% C.L. upper limits, with one- and two-sigma error bands, on the cross section divided by the expected values for various signal models. The limits are calculated using the CLS method. A value of the

excluded cross section over the predicted cross section of less than one indicates that the model is excluded at 95% C.L. TableIIIlists the cross sections for these models.

(6)

[22] S. Chatrchyan et al. (CMS Collaboration),J. High Energy Phys. 09 (2011) 109.

[23] H.-L. Lai, J. Huston, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, and C.-P. Yuan, Phys. Rev. D 82, 054021 (2010).

[24] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[25] J. M. Campbell, R. K. Ellis, and C. Williams, J. High Energy Phys. 7 (2011) 018.

[26] N. Kidonakis,Phys. Rev. D 82, 114030 (2010). [27] N. Kidonakis,Phys. Rev. D 81, 054028 (2010). [28] N. Kidonakis,Phys. Rev. D 83, 091503 (2011).

[29] N. Kidonakis,Phys. Rev. D 82, 054018 (2010).

[30] K. Melnikov and F. Petriello,Phys. Rev. D 74, 114017 (2006).

[31] CMS Collaboration, Report No. CMS-PAS-SMP-12-008, 2012.

[32] S. Dittmaier, C. Mariotti, G. Passarino, and R. Tanaka (LHC Higgs Cross Section Working Group), arXiv:1101.0593.

[33] M. S. Carena et al. (Higgs Working Group), arXiv:hep-ph/0010338.

[34] A. L. Read, Report No. CERN-OPEN-2000- 005, 2000. [35] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434,

435 (1999).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2E. Aguilo,2T. Bergauer,2 M. Dragicevic,2J. Ero¨,2C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2J. Hammer,2N. Ho¨rmann,2 J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bI. Kra¨tschmer,2D. Liko,2I. Mikulec,2

M. Pernicka,2,aB. Rahbaran,2C. Rohringer,2H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2 W. Waltenberger,2G. Walzel,2E. Widl,2C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3 M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4 B. Roland,4R. Rougny,4M. Selvaggi,4Z. Staykova,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4 A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5 A. Olbrechts,5W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6

V. Dero,6A. P. R. Gay,6T. Hreus,6A. Le´onard,6P. E. Marage,6T. Reis,6L. Thomas,6G. Vander Marcken,6 C. Vander Velde,6P. Vanlaer,6J. Wang,6V. Adler,7K. Beernaert,7A. Cimmino,7S. Costantini,7G. Garcia,7

M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7 N. Strobbe,7F. Thyssen,7M. Tytgat,7P. Verwilligen,7S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8 G. Bruno,8R. Castello,8L. Ceard,8C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,cJ. Hollar,8

V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8 J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10M. Correa Martins Junior,10

D. De Jesus Damiao,10T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11 A. Custo´dio,11E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11D. Matos Figueiredo,11 L. Mundim,11H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11A. Santoro,11L. Soares Jorge,11A. Sznajder,11 T. S. Anjos,12,dC. A. Bernardes,12,dF. A. Dias,12,eT. R. Fernandez Perez Tomei,12E. M. Gregores,12,dC. Lagana,12 F. Marinho,12P. G. Mercadante,12,dS. F. Novaes,12Sandra S. Padula,12V. Genchev,13,fP. Iaydjiev,13,fS. Piperov,13

M. Rodozov,13S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14 R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15 C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15

J. Zang,15Z. Zhang,15C. Asawatangtrakuldee,16Y. Ban,16S. Guo,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16 S. J. Qian,16H. Teng,16D. Wang,16L. Zhang,16B. Zhu,16W. Zou,16C. Avila,17J. P. Gomez,17B. Gomez Moreno,17

A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18R. Plestina,18,gD. Polic,18I. Puljak,18,f Z. Antunovic,19M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20J. Luetic,20S. Morovic,20A. Attikis,21

M. Galanti,21G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22 M. Finger, Jr.,22Y. Assran,23,hS. Elgammal,23,iA. Ellithi Kamel,23,jS. Khalil,23,iM. A. Mahmoud,23,kA. Radi,23,l,m

M. Kadastik,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25 J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26

S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26 D. Ungaro,26L. Wendland,26K. Banzuzi,27A. Karjalainen,27A. Korpela,27T. Tuuva,27M. Besancon,28 S. Choudhury,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28 P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28L. Millischer,28A. Nayak,28J. Rander,28 A. Rosowsky,28I. Shreyber,28M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29M. Bluj,29,n

(7)

M. Haguenauer,29P. Mine´,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29P. Paganini,29D. Sabes,29 R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,oJ. Andrea,30D. Bloch,30D. Bodin,30 J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,oF. Drouhin,30,oC. Ferro,30J.-C. Fontaine,30,o

D. Gele´,30U. Goerlach,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30F. Fassi,31D. Mercier,31S. Beauceron,32 N. Beaupere,32O. Bondu,32G. Boudoul,32J. Chasserat,32R. Chierici,32,fD. Contardo,32P. Depasse,32 H. El Mamouni,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32 S. Perries,32V. Sordini,32Y. Tschudi,32P. Verdier,32S. Viret,32Z. Tsamalaidze,33,pG. Anagnostou,34S. Beranek,34

M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34R. Jussen,34K. Klein,34J. Merz,34A. Ostapchuk,34 A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34V. Zhukov,34,q M. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Gu¨th,35T. Hebbeker,35

C. Heidemann,35K. Hoepfner,35D. Klingebiel,35P. Kreuzer,35C. Magass,35M. Merschmeyer,35A. Meyer,35 M. Olschewski,35P. Papacz,35H. Pieta,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35 D. Teyssier,35M. Weber,35M. Bontenackels,36V. Cherepanov,36Y. Erdogan,36G. Flu¨gge,36H. Geenen,36 M. Geisler,36W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36A. Nowack,36L. Perchalla,36

O. Pooth,36P. Sauerland,36A. Stahl,36M. Aldaya Martin,37J. Behr,37W. Behrenhoff,37U. Behrens,37 M. Bergholz,37,rA. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37E. Castro,37

F. Costanza,37D. Dammann,37C. Diez Pardos,37G. Eckerlin,37D. Eckstein,37G. Flucke,37A. Geiser,37 I. Glushkov,37P. Gunnellini,37S. Habib,37J. Hauk,37G. Hellwig,37H. Jung,37M. Kasemann,37P. Katsas,37

C. Kleinwort,37H. Kluge,37A. Knutsson,37M. Kra¨mer,37D. Kru¨cker,37E. Kuznetsova,37W. Lange,37 W. Lohmann,37,rB. Lutz,37R. Mankel,37I. Marfin,37M. Marienfeld,37I.-A. Melzer-Pellmann,37A. B. Meyer,37

J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37J. Olzem,37H. Perrey,37A. Petrukhin,37D. Pitzl,37 A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37E. Ron,37M. Rosin,37J. Salfeld-Nebgen,37R. Schmidt,37,r

T. Schoerner-Sadenius,37N. Sen,37A. Spiridonov,37M. Stein,37R. Walsh,37C. Wissing,37C. Autermann,38 V. Blobel,38J. Draeger,38H. Enderle,38J. Erfle,38U. Gebbert,38M. Go¨rner,38T. Hermanns,38R. S. Ho¨ing,38 K. Kaschube,38G. Kaussen,38H. Kirschenmann,38R. Klanner,38J. Lange,38B. Mura,38F. Nowak,38T. Peiffer,38 N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Schro¨der,38

T. Schum,38M. Seidel,38V. Sola,38H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38L. Vanelderen,38C. Barth,39 J. Berger,39C. Bo¨ser,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39M. Guthoff,39,f C. Hackstein,39F. Hartmann,39T. Hauth,39,fM. Heinrich,39H. Held,39K. H. Hoffmann,39S. Honc,39I. Katkov,39,q

J. R. Komaragiri,39P. Lobelle Pardo,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39M. Niegel,39A. Nu¨rnberg,39 O. Oberst,39A. Oehler,39J. Ott,39G. Quast,39K. Rabbertz,39F. Ratnikov,39N. Ratnikova,39S. Ro¨cker,39

A. Scheurer,39F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39D. Troendle,39R. Ulrich,39 J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39M. Zeise,39G. Daskalakis,40T. Geralis,40S. Kesisoglou,40 A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40C. Mavrommatis,40E. Ntomari,40 L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41I. Evangelou,42C. Foudas,42P. Kokkas,42

N. Manthos,42I. Papadopoulos,42V. Patras,42G. Bencze,43C. Hajdu,43P. Hidas,43D. Horvath,43,sF. Sikler,43 V. Veszpremi,43G. Vesztergombi,43,tN. Beni,44S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44J. Karancsi,45

P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. B. Beri,46V. Bhatnagar,46N. Dhingra,46R. Gupta,46M. Kaur,46 M. Z. Mehta,46N. Nishu,46L. K. Saini,46A. Sharma,46J. Singh,46Ashok Kumar,47Arun Kumar,47S. Ahuja,47 A. Bhardwaj,47B. C. Choudhary,47S. Malhotra,47M. Naimuddin,47K. Ranjan,47V. Sharma,47R. K. Shivpuri,47

S. Banerjee,48S. Bhattacharya,48S. Dutta,48B. Gomber,48Sa. Jain,48Sh. Jain,48R. Khurana,48S. Sarkar,48 M. Sharan,48A. Abdulsalam,49R. K. Choudhury,49D. Dutta,49S. Kailas,49V. Kumar,49P. Mehta,49 A. K. Mohanty,49,fL. M. Pant,49P. Shukla,49T. Aziz,50S. Ganguly,50M. Guchait,50,uM. Maity,50,vG. Majumder,50

K. Mazumdar,50G. B. Mohanty,50B. Parida,50K. Sudhakar,50N. Wickramage,50S. Banerjee,51S. Dugad,51 H. Arfaei,52H. Bakhshiansohi,52,wS. M. Etesami,52,xA. Fahim,52,wM. Hashemi,52H. Hesari,52A. Jafari,52,w

M. Khakzad,52M. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52B. Safarzadeh,52,yM. Zeinali,52,x M. Abbrescia,53a,53bL. Barbone,53a,53bC. Calabria,53a,53b,fS. S. Chhibra,53a,53bA. Colaleo,53aD. Creanza,53a,53c N. De Filippis,53a,53c,fM. De Palma,53a,53bL. Fiore,53aG. Iaselli,53a,53cL. Lusito,53a,53bG. Maggi,53a,53cM. Maggi,53a

B. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53bN. Pacifico,53a,53bA. Pompili,53a,53bG. Pugliese,53a,53c G. Selvaggi,53a,53bL. Silvestris,53aG. Singh,53a,53bR. Venditti,53aG. Zito,53aG. Abbiendi,54aA. C. Benvenuti,54a

(8)

F. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54bD. Fasanella,54a,54b,f P. Giacomelli,54aC. Grandi,54aL. Guiducci,54a,54bS. Marcellini,54aG. Masetti,54aM. Meneghelli,54a,54b,f A. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54aF. Primavera,54a,54bA. M. Rossi,54a,54b T. Rovelli,54a,54bG. Siroli,54a,54bR. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55bM. Chiorboli,55a,55b S. Costa,55a,55bR. Potenza,55a,55bA. Tricomi,55a,55bC. Tuve,55a,55bG. Barbagli,56aV. Ciulli,56a,56bC. Civinini,56a R. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56aS. Gonzi,56a,56bM. Meschini,56aS. Paoletti,56a

G. Sguazzoni,56aA. Tropiano,56aL. Benussi,57S. Bianco,57S. Colafranceschi,57,zF. Fabbri,57D. Piccolo,57 P. Fabbricatore,58aR. Musenich,58aS. Tosi,58a,58bA. Benaglia,59a,59b,fF. De Guio,59a,59bL. Di Matteo,59a,59b,f

S. Fiorendi,59a,59bS. Gennai,59a,fA. Ghezzi,59a,59bS. Malvezzi,59aR. A. Manzoni,59a,59bA. Martelli,59a,59b A. Massironi,59a,59b,fD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59aS. Ragazzi,59a,59b N. Redaelli,59aS. Sala,59aT. Tabarelli de Fatis,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60aN. Cavallo,60a,aa

A. De Cosa,60a,60b,fO. Dogangun,60a,60bF. Fabozzi,60a,aaA. O. M. Iorio,60aL. Lista,60aS. Meola,60a,bb M. Merola,60a,60bP. Paolucci,60a,fP. Azzi,61aN. Bacchetta,61a,fD. Bisello,61a,61bA. Branca,61a,61b,fR. Carlin,61a,61b

P. Checchia,61aT. Dorigo,61aU. Dosselli,61aF. Gasparini,61a,61bU. Gasparini,61a,61bA. Gozzelino,61a K. Kanishchev,61a,61cS. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61bA. T. Meneguzzo,61a,61b J. Pazzini,61a,61bN. Pozzobon,61a,61bP. Ronchese,61a,61bF. Simonetto,61a,61bE. Torassa,61aM. Tosi,61a,61b,f

S. Vanini,61a,61bP. Zotto,61a,61bG. Zumerle,61a,61bM. Gabusi,62a,62bS. P. Ratti,62a,62bC. Riccardi,62a,62b P. Torre,62a,62bP. Vitulo,62a,62bM. Biasini,63a,63bG. M. Bilei,63aL. Fano`,63a,63bP. Lariccia,63a,63bA. Lucaroni,63a,63b,f

G. Mantovani,63a,63bM. Menichelli,63aA. Nappi,63a,63b,aF. Romeo,63a,63bA. Saha,63aA. Santocchia,63a,63b A. Spiezia,63a,63bS. Taroni,63a,63bP. Azzurri,64a,64cG. Bagliesi,64aT. Boccali,64aG. Broccolo,64a,64cR. Castaldi,64a

R. T. D’Agnolo,64a,64cR. Dell’Orso,64aF. Fiori,64a,64b,fL. Foa`,64a,64cA. Giassi,64aA. Kraan,64aF. Ligabue,64a,64c T. Lomtadze,64aL. Martini,64a,ccA. Messineo,64a,64bF. Palla,64aA. Rizzi,64a,64bA. T. Serban,64a,ddP. Spagnolo,64a P. Squillacioti,64a,fR. Tenchini,64aG. Tonelli,64a,64b,fA. Venturi,64aP. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65a D. Del Re,65a,65bM. Diemoz,65aC. Fanelli,65aM. Grassi,65a,65b,fE. Longo,65a,65bP. Meridiani,65a,fF. Micheli,65a,65b

S. Nourbakhsh,65a,65bG. Organtini,65a,65bR. Paramatti,65aS. Rahatlou,65a,65bM. Sigamani,65aL. Soffi,65a,65b N. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66aN. Cartiglia,66a M. Costa,66a,66bN. Demaria,66aC. Mariotti,66a,fS. Maselli,66aE. Migliore,66a,66bV. Monaco,66a,66bM. Musich,66a,f

M. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66aA. Potenza,66a,66bA. Romero,66a,66bM. Ruspa,66a,66c R. Sacchi,66a,66bA. Solano,66a,66bA. Staiano,66aA. Vilela Pereira,66aS. Belforte,67aV. Candelise,67a,67b F. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67aM. Marone,67a,67b,fD. Montanino,67a,67b,fA. Penzo,67a A. Schizzi,67a,67bS. G. Heo,68T. Y. Kim,68S. K. Nam,68S. Chang,69D. H. Kim,69G. N. Kim,69D. J. Kong,69 H. Park,69S. R. Ro,69D. C. Son,69T. Son,69J. Y. Kim,70Zero J. Kim,70S. Song,70S. Choi,71D. Gyun,71B. Hong,71

M. Jo,71H. Kim,71T. J. Kim,71K. S. Lee,71D. H. Moon,71S. K. Park,71M. Choi,72J. H. Kim,72C. Park,72 I. C. Park,72S. Park,72G. Ryu,72Y. Cho,73Y. Choi,73Y. K. Choi,73J. Goh,73M. S. Kim,73E. Kwon,73B. Lee,73

J. Lee,73S. Lee,73H. Seo,73I. Yu,73M. J. Bilinskas,74I. Grigelionis,74M. Janulis,74A. Juodagalvis,74 H. Castilla-Valdez,75E. De La Cruz-Burelo,75I. Heredia-de La Cruz,75R. Lopez-Fernandez,75R. Magan˜a Villalba,75

J. Martı´nez-Ortega,75A. Sa´nchez-Herna´ndez,75L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76 F. Vazquez Valencia,76H. A. Salazar Ibarguen,77E. Casimiro Linares,78A. Morelos Pineda,78M. A. Reyes-Santos,78

D. Krofcheck,79A. J. Bell,80P. H. Butler,80R. Doesburg,80S. Reucroft,80H. Silverwood,80M. Ahmad,81 M. H. Ansari,81M. I. Asghar,81H. R. Hoorani,81S. Khalid,81W. A. Khan,81T. Khurshid,81S. Qazi,81M. A. Shah,81 M. Shoaib,81H. Bialkowska,82B. Boimska,82T. Frueboes,82R. Gokieli,82M. Go´rski,82M. Kazana,82K. Nawrocki,82 K. Romanowska-Rybinska,82M. Szleper,82G. Wrochna,82P. Zalewski,82G. Brona,83K. Bunkowski,83M. Cwiok,83

W. Dominik,83K. Doroba,83A. Kalinowski,83M. Konecki,83J. Krolikowski,83N. Almeida,84P. Bargassa,84 A. David,84P. Faccioli,84P. G. Ferreira Parracho,84M. Gallinaro,84J. Seixas,84J. Varela,84P. Vischia,84 I. Belotelov,85P. Bunin,85M. Gavrilenko,85I. Golutvin,85I. Gorbunov,85V. Karjavin,85V. Konoplyanikov,85 G. Kozlov,85A. Lanev,85A. Malakhov,85P. Moisenz,85V. Palichik,85V. Perelygin,85S. Shmatov,85V. Smirnov,85 A. Volodko,85A. Zarubin,85S. Evstyukhin,86V. Golovtsov,86Y. Ivanov,86V. Kim,86P. Levchenko,86V. Murzin,86 V. Oreshkin,86I. Smirnov,86V. Sulimov,86L. Uvarov,86S. Vavilov,86A. Vorobyev,86An. Vorobyev,86Yu. Andreev,87

A. Dermenev,87S. Gninenko,87N. Golubev,87M. Kirsanov,87N. Krasnikov,87V. Matveev,87A. Pashenkov,87 D. Tlisov,87A. Toropin,87V. Epshteyn,88M. Erofeeva,88V. Gavrilov,88M. Kossov,88N. Lychkovskaya,88V. Popov,88

(9)

M. Dubinin,89,eL. Dudko,89A. Ershov,89A. Gribushin,89V. Klyukhin,89O. Kodolova,89I. Lokhtin,89A. Markina,89 S. Obraztsov,89M. Perfilov,89A. Popov,89L. Sarycheva,89,aV. Savrin,89A. Snigirev,89V. Andreev,90M. Azarkin,90

I. Dremin,90M. Kirakosyan,90A. Leonidov,90G. Mesyats,90S. V. Rusakov,90A. Vinogradov,90I. Azhgirey,91 I. Bayshev,91S. Bitioukov,91V. Grishin,91,fV. Kachanov,91D. Konstantinov,91A. Korablev,91V. Krychkine,91 V. Petrov,91R. Ryutin,91A. Sobol,91L. Tourtchanovitch,91S. Troshin,91N. Tyurin,91A. Uzunian,91A. Volkov,91

P. Adzic,92,eeM. Djordjevic,92M. Ekmedzic,92D. Krpic,92,eeJ. Milosevic,92M. Aguilar-Benitez,93 J. Alcaraz Maestre,93P. Arce,93C. Battilana,93E. Calvo,93M. Cerrada,93M. Chamizo Llatas,93N. Colino,93 B. De La Cruz,93A. Delgado Peris,93D. Domı´nguez Va´zquez,93C. Fernandez Bedoya,93J. P. Ferna´ndez Ramos,93 A. Ferrando,93J. Flix,93M. C. Fouz,93P. Garcia-Abia,93O. Gonzalez Lopez,93S. Goy Lopez,93J. M. Hernandez,93 M. I. Josa,93G. Merino,93J. Puerta Pelayo,93A. Quintario Olmeda,93I. Redondo,93L. Romero,93J. Santaolalla,93

M. S. Soares,93C. Willmott,93C. Albajar,94G. Codispoti,94J. F. de Troco´niz,94H. Brun,95J. Cuevas,95 J. Fernandez Menendez,95S. Folgueras,95I. Gonzalez Caballero,95L. Lloret Iglesias,95J. Piedra Gomez,95 J. A. Brochero Cifuentes,96I. J. Cabrillo,96A. Calderon,96S. H. Chuang,96J. Duarte Campderros,96M. Felcini,96,ff

M. Fernandez,96G. Gomez,96J. Gonzalez Sanchez,96A. Graziano,96C. Jorda,96A. Lopez Virto,96J. Marco,96 R. Marco,96C. Martinez Rivero,96F. Matorras,96F. J. Munoz Sanchez,96T. Rodrigo,96A. Y. Rodrı´guez-Marrero,96

A. Ruiz-Jimeno,96L. Scodellaro,96M. Sobron Sanudo,96I. Vila,96R. Vilar Cortabitarte,96D. Abbaneo,97 E. Auffray,97G. Auzinger,97P. Baillon,97A. H. Ball,97D. Barney,97J. F. Benitez,97C. Bernet,97,gG. Bianchi,97 P. Bloch,97A. Bocci,97A. Bonato,97C. Botta,97H. Breuker,97T. Camporesi,97G. Cerminara,97T. Christiansen,97

J. A. Coarasa Perez,97D. D’Enterria,97A. Dabrowski,97A. De Roeck,97S. Di Guida,97M. Dobson,97 N. Dupont-Sagorin,97A. Elliott-Peisert,97B. Frisch,97W. Funk,97G. Georgiou,97M. Giffels,97D. Gigi,97K. Gill,97

D. Giordano,97M. Giunta,97F. Glege,97R. Gomez-Reino Garrido,97P. Govoni,97S. Gowdy,97R. Guida,97 M. Hansen,97P. Harris,97C. Hartl,97J. Harvey,97B. Hegner,97A. Hinzmann,97V. Innocente,97P. Janot,97 K. Kaadze,97E. Karavakis,97K. Kousouris,97P. Lecoq,97Y.-J. Lee,97P. Lenzi,97C. Lourenc¸o,97N. Magini,97

T. Ma¨ki,97M. Malberti,97L. Malgeri,97M. Mannelli,97L. Masetti,97F. Meijers,97S. Mersi,97E. Meschi,97 R. Moser,97M. U. Mozer,97M. Mulders,97P. Musella,97E. Nesvold,97T. Orimoto,97L. Orsini,97

E. Palencia Cortezon,97E. Perez,97L. Perrozzi,97A. Petrilli,97A. Pfeiffer,97M. Pierini,97M. Pimia¨,97D. Piparo,97 G. Polese,97L. Quertenmont,97A. Racz,97W. Reece,97J. Rodrigues Antunes,97G. Rolandi,97,ggC. Rovelli,97,hh M. Rovere,97H. Sakulin,97F. Santanastasio,97C. Scha¨fer,97C. Schwick,97I. Segoni,97S. Sekmen,97A. Sharma,97

P. Siegrist,97P. Silva,97M. Simon,97P. Sphicas,97,iiD. Spiga,97A. Tsirou,97G. I. Veres,97,tJ. R. Vlimant,97 H. K. Wo¨hri,97S. D. Worm,97,jjW. D. Zeuner,97W. Bertl,98K. Deiters,98W. Erdmann,98K. Gabathuler,98

R. Horisberger,98Q. Ingram,98H. C. Kaestli,98S. Ko¨nig,98D. Kotlinski,98U. Langenegger,98F. Meier,98 D. Renker,98T. Rohe,98J. Sibille,98,kkL. Ba¨ni,99P. Bortignon,99M. A. Buchmann,99B. Casal,99N. Chanon,99 A. Deisher,99G. Dissertori,99M. Dittmar,99M. Donega`,99M. Du¨nser,99J. Eugster,99K. Freudenreich,99C. Grab,99 D. Hits,99P. Lecomte,99W. Lustermann,99A. C. Marini,99P. Martinez Ruiz del Arbol,99N. Mohr,99F. Moortgat,99

C. Na¨geli,99,llP. Nef,99F. Nessi-Tedaldi,99F. Pandolfi,99L. Pape,99F. Pauss,99M. Peruzzi,99F. J. Ronga,99 M. Rossini,99L. Sala,99A. K. Sanchez,99A. Starodumov,99,mmB. Stieger,99M. Takahashi,99L. Tauscher,99,a A. Thea,99K. Theofilatos,99D. Treille,99C. Urscheler,99R. Wallny,99H. A. Weber,99L. Wehrli,99C. Amsler,100

V. Chiochia,100S. De Visscher,100C. Favaro,100M. Ivova Rikova,100B. Millan Mejias,100P. Otiougova,100 P. Robmann,100H. Snoek,100S. Tupputi,100M. Verzetti,100Y. H. Chang,101K. H. Chen,101C. M. Kuo,101S. W. Li,101

W. Lin,101Z. K. Liu,101Y. J. Lu,101D. Mekterovic,101A. P. Singh,101R. Volpe,101S. S. Yu,101P. Bartalini,102 P. Chang,102Y. H. Chang,102Y. W. Chang,102Y. Chao,102K. F. Chen,102C. Dietz,102U. Grundler,102W.-S. Hou,102

Y. Hsiung,102K. Y. Kao,102Y. J. Lei,102R.-S. Lu,102D. Majumder,102E. Petrakou,102X. Shi,102J. G. Shiu,102 Y. M. Tzeng,102X. Wan,102M. Wang,102A. Adiguzel,103M. N. Bakirci,103,nnS. Cerci,103,ooC. Dozen,103 I. Dumanoglu,103E. Eskut,103S. Girgis,103G. Gokbulut,103E. Gurpinar,103I. Hos,103E. E. Kangal,103T. Karaman,103 G. Karapinar,103,ppA. Kayis Topaksu,103G. Onengut,103K. Ozdemir,103S. Ozturk,103,qqA. Polatoz,103K. Sogut,103,rr

D. Sunar Cerci,103,ooB. Tali,103,ooH. Topakli,103,nnL. N. Vergili,103M. Vergili,103I. V. Akin,104T. Aliev,104 B. Bilin,104S. Bilmis,104M. Deniz,104H. Gamsizkan,104A. M. Guler,104K. Ocalan,104A. Ozpineci,104M. Serin,104 R. Sever,104U. E. Surat,104M. Yalvac,104E. Yildirim,104M. Zeyrek,104E. Gu¨lmez,105B. Isildak,105,ssM. Kaya,105,tt O. Kaya,105,ttS. Ozkorucuklu,105,uuN. Sonmez,105,vvK. Cankocak,106L. Levchuk,107F. Bostock,108J. J. Brooke,108

E. Clement,108D. Cussans,108H. Flacher,108R. Frazier,108J. Goldstein,108M. Grimes,108G. P. Heath,108 H. F. Heath,108L. Kreczko,108S. Metson,108D. M. Newbold,108,jjK. Nirunpong,108A. Poll,108S. Senkin,108

(10)

V. J. Smith,108T. Williams,108L. Basso,109,wwK. W. Bell,109A. Belyaev,109,wwC. Brew,109R. M. Brown,109 D. J. A. Cockerill,109J. A. Coughlan,109K. Harder,109S. Harper,109J. Jackson,109B. W. Kennedy,109E. Olaiya,109

D. Petyt,109B. C. Radburn-Smith,109C. H. Shepherd-Themistocleous,109I. R. Tomalin,109W. J. Womersley,109 R. Bainbridge,110G. Ball,110R. Beuselinck,110O. Buchmuller,110D. Colling,110N. Cripps,110M. Cutajar,110

P. Dauncey,110G. Davies,110M. Della Negra,110W. Ferguson,110J. Fulcher,110D. Futyan,110A. Gilbert,110 A. Guneratne Bryer,110G. Hall,110Z. Hatherell,110J. Hays,110G. Iles,110M. Jarvis,110G. Karapostoli,110 L. Lyons,110A.-M. Magnan,110J. Marrouche,110B. Mathias,110R. Nandi,110J. Nash,110A. Nikitenko,110,mm A. Papageorgiou,110J. Pela,110M. Pesaresi,110K. Petridis,110M. Pioppi,110,xxD. M. Raymond,110S. Rogerson,110 A. Rose,110M. J. Ryan,110C. Seez,110P. Sharp,110,aA. Sparrow,110M. Stoye,110A. Tapper,110M. Vazquez Acosta,110

T. Virdee,110S. Wakefield,110N. Wardle,110T. Whyntie,110M. Chadwick,111J. E. Cole,111P. R. Hobson,111 A. Khan,111P. Kyberd,111D. Leggat,111D. Leslie,111W. Martin,111I. D. Reid,111P. Symonds,111L. Teodorescu,111

M. Turner,111K. Hatakeyama,112H. Liu,112T. Scarborough,112O. Charaf,113C. Henderson,113P. Rumerio,113 A. Avetisyan,114T. Bose,114C. Fantasia,114A. Heister,114J. St. John,114P. Lawson,114D. Lazic,114J. Rohlf,114

D. Sperka,114L. Sulak,114J. Alimena,115S. Bhattacharya,115D. Cutts,115A. Ferapontov,115U. Heintz,115 S. Jabeen,115G. Kukartsev,115E. Laird,115G. Landsberg,115M. Luk,115M. Narain,115D. Nguyen,115M. Segala,115 T. Sinthuprasith,115T. Speer,115K. V. Tsang,115R. Breedon,116G. Breto,116M. Calderon De La Barca Sanchez,116 S. Chauhan,116M. Chertok,116J. Conway,116R. Conway,116P. T. Cox,116J. Dolen,116R. Erbacher,116M. Gardner,116 R. Houtz,116W. Ko,116A. Kopecky,116R. Lander,116T. Miceli,116D. Pellett,116F. Ricci-tam,116B. Rutherford,116

M. Searle,116J. Smith,116M. Squires,116M. Tripathi,116R. Vasquez Sierra,116V. Andreev,117D. Cline,117 R. Cousins,117J. Duris,117S. Erhan,117P. Everaerts,117C. Farrell,117J. Hauser,117M. Ignatenko,117C. Jarvis,117

C. Plager,117G. Rakness,117P. Schlein,117,aP. Traczyk,117V. Valuev,117M. Weber,117J. Babb,118R. Clare,118 M. E. Dinardo,118J. Ellison,118J. W. Gary,118F. Giordano,118G. Hanson,118G. Y. Jeng,118,yyH. Liu,118 O. R. Long,118A. Luthra,118H. Nguyen,118S. Paramesvaran,118J. Sturdy,118S. Sumowidagdo,118R. Wilken,118

S. Wimpenny,118W. Andrews,119J. G. Branson,119G. B. Cerati,119S. Cittolin,119D. Evans,119F. Golf,119 A. Holzner,119R. Kelley,119M. Lebourgeois,119J. Letts,119I. Macneill,119B. Mangano,119S. Padhi,119C. Palmer,119

G. Petrucciani,119M. Pieri,119M. Sani,119V. Sharma,119S. Simon,119E. Sudano,119M. Tadel,119Y. Tu,119 A. Vartak,119S. Wasserbaech,119,zzF. Wu¨rthwein,119A. Yagil,119J. Yoo,119D. Barge,120R. Bellan,120 C. Campagnari,120M. D’Alfonso,120T. Danielson,120K. Flowers,120P. Geffert,120J. Incandela,120C. Justus,120

P. Kalavase,120S. A. Koay,120D. Kovalskyi,120V. Krutelyov,120S. Lowette,120N. Mccoll,120V. Pavlunin,120 F. Rebassoo,120J. Ribnik,120J. Richman,120R. Rossin,120D. Stuart,120W. To,120C. West,120A. Apresyan,121 A. Bornheim,121Y. Chen,121E. Di Marco,121J. Duarte,121M. Gataullin,121Y. Ma,121A. Mott,121H. B. Newman,121

C. Rogan,121M. Spiropulu,121V. Timciuc,121J. Veverka,121R. Wilkinson,121S. Xie,121Y. Yang,121R. Y. Zhu,121 B. Akgun,122V. Azzolini,122A. Calamba,122R. Carroll,122T. Ferguson,122Y. Iiyama,122D. W. Jang,122Y. F. Liu,122

M. Paulini,122H. Vogel,122I. Vorobiev,122J. P. Cumalat,123B. R. Drell,123C. J. Edelmaier,123W. T. Ford,123 A. Gaz,123B. Heyburn,123E. Luiggi Lopez,123J. G. Smith,123K. Stenson,123K. A. Ulmer,123S. R. Wagner,123 J. Alexander,124A. Chatterjee,124N. Eggert,124L. K. Gibbons,124B. Heltsley,124A. Khukhunaishvili,124B. Kreis,124

N. Mirman,124G. Nicolas Kaufman,124J. R. Patterson,124A. Ryd,124E. Salvati,124W. Sun,124W. D. Teo,124 J. Thom,124J. Thompson,124J. Tucker,124J. Vaughan,124Y. Weng,124L. Winstrom,124P. Wittich,124D. Winn,125 S. Abdullin,126M. Albrow,126J. Anderson,126L. A. T. Bauerdick,126A. Beretvas,126J. Berryhill,126P. C. Bhat,126 I. Bloch,126K. Burkett,126J. N. Butler,126V. Chetluru,126H. W. K. Cheung,126F. Chlebana,126V. D. Elvira,126 I. Fisk,126J. Freeman,126Y. Gao,126D. Green,126O. Gutsche,126J. Hanlon,126R. M. Harris,126J. Hirschauer,126

B. Hooberman,126S. Jindariani,126M. Johnson,126U. Joshi,126B. Kilminster,126B. Klima,126S. Kunori,126 S. Kwan,126C. Leonidopoulos,126J. Linacre,126D. Lincoln,126R. Lipton,126J. Lykken,126K. Maeshima,126 J. M. Marraffino,126S. Maruyama,126D. Mason,126P. McBride,126K. Mishra,126S. Mrenna,126Y. Musienko,126,aaa

C. Newman-Holmes,126V. O’Dell,126O. Prokofyev,126E. Sexton-Kennedy,126S. Sharma,126W. J. Spalding,126 L. Spiegel,126P. Tan,126L. Taylor,126S. Tkaczyk,126N. V. Tran,126L. Uplegger,126E. W. Vaandering,126R. Vidal,126

J. Whitmore,126W. Wu,126F. Yang,126F. Yumiceva,126J. C. Yun,126D. Acosta,127P. Avery,127D. Bourilkov,127 M. Chen,127T. Cheng,127S. Das,127M. De Gruttola,127G. P. Di Giovanni,127D. Dobur,127A. Drozdetskiy,127

R. D. Field,127M. Fisher,127Y. Fu,127I. K. Furic,127J. Gartner,127J. Hugon,127B. Kim,127J. Konigsberg,127 A. Korytov,127A. Kropivnitskaya,127T. Kypreos,127J. F. Low,127K. Matchev,127P. Milenovic,127,bbb G. Mitselmakher,127L. Muniz,127R. Remington,127A. Rinkevicius,127P. Sellers,127N. Skhirtladze,127

(11)

M. Snowball,127J. Yelton,127M. Zakaria,127V. Gaultney,128S. Hewamanage,128L. M. Lebolo,128S. Linn,128 P. Markowitz,128G. Martinez,128J. L. Rodriguez,128T. Adams,129A. Askew,129J. Bochenek,129J. Chen,129 B. Diamond,129S. V. Gleyzer,129J. Haas,129S. Hagopian,129V. Hagopian,129M. Jenkins,129K. F. Johnson,129

H. Prosper,129V. Veeraraghavan,129M. Weinberg,129M. M. Baarmand,130B. Dorney,130M. Hohlmann,130 H. Kalakhety,130I. Vodopiyanov,130M. R. Adams,131I. M. Anghel,131L. Apanasevich,131Y. Bai,131 V. E. Bazterra,131R. R. Betts,131I. Bucinskaite,131J. Callner,131R. Cavanaugh,131O. Evdokimov,131L. Gauthier,131

C. E. Gerber,131D. J. Hofman,131S. Khalatyan,131F. Lacroix,131M. Malek,131C. O’Brien,131C. Silkworth,131 D. Strom,131N. Varelas,131U. Akgun,132E. A. Albayrak,132B. Bilki,132,cccW. Clarida,132F. Duru,132S. Griffiths,132

J.-P. Merlo,132H. Mermerkaya,132,dddA. Mestvirishvili,132A. Moeller,132J. Nachtman,132C. R. Newsom,132 E. Norbeck,132Y. Onel,132F. Ozok,132S. Sen,132E. Tiras,132J. Wetzel,132T. Yetkin,132K. Yi,132B. A. Barnett,133

B. Blumenfeld,133S. Bolognesi,133D. Fehling,133G. Giurgiu,133A. V. Gritsan,133Z. J. Guo,133G. Hu,133 P. Maksimovic,133S. Rappoccio,133M. Swartz,133A. Whitbeck,133P. Baringer,134A. Bean,134G. Benelli,134

O. Grachov,134R. P. Kenny Iii,134M. Murray,134D. Noonan,134S. Sanders,134R. Stringer,134G. Tinti,134 J. S. Wood,134V. Zhukova,134A. F. Barfuss,135T. Bolton,135I. Chakaberia,135A. Ivanov,135S. Khalil,135 M. Makouski,135Y. Maravin,135S. Shrestha,135I. Svintradze,135J. Gronberg,136D. Lange,136D. Wright,136 A. Baden,137M. Boutemeur,137B. Calvert,137S. C. Eno,137J. A. Gomez,137N. J. Hadley,137R. G. Kellogg,137 M. Kirn,137T. Kolberg,137Y. Lu,137M. Marionneau,137A. C. Mignerey,137K. Pedro,137A. Peterman,137A. Skuja,137 J. Temple,137M. B. Tonjes,137S. C. Tonwar,137E. Twedt,137A. Apyan,138G. Bauer,138J. Bendavid,138W. Busza,138

E. Butz,138I. A. Cali,138M. Chan,138V. Dutta,138G. Gomez Ceballos,138M. Goncharov,138K. A. Hahn,138 Y. Kim,138M. Klute,138K. Krajczar,138,eeeW. Li,138P. D. Luckey,138T. Ma,138S. Nahn,138C. Paus,138D. Ralph,138

C. Roland,138G. Roland,138M. Rudolph,138G. S. F. Stephans,138F. Sto¨ckli,138K. Sumorok,138K. Sung,138 D. Velicanu,138E. A. Wenger,138R. Wolf,138B. Wyslouch,138M. Yang,138Y. Yilmaz,138A. S. Yoon,138M. Zanetti,138

S. I. Cooper,139B. Dahmes,139A. De Benedetti,139G. Franzoni,139A. Gude,139S. C. Kao,139K. Klapoetke,139 Y. Kubota,139J. Mans,139N. Pastika,139R. Rusack,139M. Sasseville,139A. Singovsky,139N. Tambe,139 J. Turkewitz,139L. M. Cremaldi,140R. Kroeger,140L. Perera,140R. Rahmat,140D. A. Sanders,140E. Avdeeva,141 K. Bloom,141S. Bose,141J. Butt,141D. R. Claes,141A. Dominguez,141M. Eads,141J. Keller,141I. Kravchenko,141

J. Lazo-Flores,141H. Malbouisson,141S. Malik,141G. R. Snow,141U. Baur,142A. Godshalk,142I. Iashvili,142 S. Jain,142A. Kharchilava,142A. Kumar,142S. P. Shipkowski,142K. Smith,142G. Alverson,143E. Barberis,143 D. Baumgartel,143M. Chasco,143J. Haley,143D. Nash,143D. Trocino,143D. Wood,143J. Zhang,143A. Anastassov,144

A. Kubik,144N. Mucia,144N. Odell,144R. A. Ofierzynski,144B. Pollack,144A. Pozdnyakov,144M. Schmitt,144 S. Stoynev,144M. Velasco,144S. Won,144L. Antonelli,145D. Berry,145A. Brinkerhoff,145M. Hildreth,145 C. Jessop,145D. J. Karmgard,145J. Kolb,145K. Lannon,145W. Luo,145S. Lynch,145N. Marinelli,145D. M. Morse,145

T. Pearson,145M. Planer,145R. Ruchti,145J. Slaunwhite,145N. Valls,145M. Wayne,145M. Wolf,145B. Bylsma,146 L. S. Durkin,146C. Hill,146R. Hughes,146R. Hughes,146K. Kotov,146T. Y. Ling,146D. Puigh,146M. Rodenburg,146 C. Vuosalo,146G. Williams,146B. L. Winer,146N. Adam,147E. Berry,147P. Elmer,147D. Gerbaudo,147V. Halyo,147

P. Hebda,147J. Hegeman,147A. Hunt,147P. Jindal,147D. Lopes Pegna,147P. Lujan,147D. Marlow,147 T. Medvedeva,147M. Mooney,147J. Olsen,147P. Piroue´,147X. Quan,147A. Raval,147B. Safdi,147H. Saka,147 D. Stickland,147C. Tully,147J. S. Werner,147A. Zuranski,147J. G. Acosta,148E. Brownson,148X. T. Huang,148

A. Lopez,148H. Mendez,148S. Oliveros,148J. E. Ramirez Vargas,148A. Zatserklyaniy,148E. Alagoz,149 V. E. Barnes,149D. Benedetti,149G. Bolla,149D. Bortoletto,149M. De Mattia,149A. Everett,149Z. Hu,149M. Jones,149

O. Koybasi,149M. Kress,149A. T. Laasanen,149N. Leonardo,149V. Maroussov,149P. Merkel,149D. H. Miller,149 N. Neumeister,149I. Shipsey,149D. Silvers,149A. Svyatkovskiy,149M. Vidal Marono,149H. D. Yoo,149J. Zablocki,149 Y. Zheng,149S. Guragain,150N. Parashar,150A. Adair,151C. Boulahouache,151K. M. Ecklund,151F. J. M. Geurts,151 B. P. Padley,151R. Redjimi,151J. Roberts,151J. Zabel,151B. Betchart,152A. Bodek,152Y. S. Chung,152R. Covarelli,152

P. de Barbaro,152R. Demina,152Y. Eshaq,152A. Garcia-Bellido,152P. Goldenzweig,152J. Han,152A. Harel,152 D. C. Miner,152D. Vishnevskiy,152M. Zielinski,152A. Bhatti,153R. Ciesielski,153L. Demortier,153K. Goulianos,153

G. Lungu,153S. Malik,153C. Mesropian,153S. Arora,154A. Barker,154J. P. Chou,154C. Contreras-Campana,154 E. Contreras-Campana,154D. Duggan,154D. Ferencek,154Y. Gershtein,154R. Gray,154E. Halkiadakis,154 D. Hidas,154A. Lath,154S. Panwalkar,154M. Park,154R. Patel,154V. Rekovic,154J. Robles,154K. Rose,154S. Salur,154

S. Schnetzer,154C. Seitz,154S. Somalwar,154R. Stone,154S. Thomas,154G. Cerizza,155M. Hollingsworth,155 S. Spanier,155Z. C. Yang,155A. York,155R. Eusebi,156W. Flanagan,156J. Gilmore,156T. Kamon,156,fff

(12)

V. Khotilovich,156R. Montalvo,156I. Osipenkov,156Y. Pakhotin,156A. Perloff,156J. Roe,156A. Safonov,156 T. Sakuma,156S. Sengupta,156I. Suarez,156A. Tatarinov,156D. Toback,156N. Akchurin,157J. Damgov,157

C. Dragoiu,157P. R. Dudero,157C. Jeong,157K. Kovitanggoon,157S. W. Lee,157T. Libeiro,157Y. Roh,157 I. Volobouev,157E. Appelt,158A. G. Delannoy,158C. Florez,158S. Greene,158A. Gurrola,158W. Johns,158 C. Johnston,158P. Kurt,158C. Maguire,158A. Melo,158M. Sharma,158P. Sheldon,158B. Snook,158S. Tuo,158 J. Velkovska,158M. W. Arenton,159M. Balazs,159S. Boutle,159B. Cox,159B. Francis,159J. Goodell,159R. Hirosky,159

A. Ledovskoy,159C. Lin,159C. Neu,159J. Wood,159R. Yohay,159S. Gollapinni,160R. Harr,160P. E. Karchin,160 C. Kottachchi Kankanamge Don,160P. Lamichhane,160A. Sakharov,160M. Anderson,161M. Bachtis,161 D. Belknap,161L. Borrello,161D. Carlsmith,161M. Cepeda,161S. Dasu,161E. Friis,161L. Gray,161K. S. Grogg,161

M. Grothe,161R. Hall-Wilton,161M. Herndon,161A. Herve´,161P. Klabbers,161J. Klukas,161A. Lanaro,161 C. Lazaridis,161J. Leonard,161R. Loveless,161A. Mohapatra,161I. Ojalvo,161F. Palmonari,161G. A. Pierro,161

I. Ross,161A. Savin,161W. H. Smith,161and J. Swanson161 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium 8

Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium

9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

31

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France 33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 40Institute of Nuclear Physics ‘‘Demokritos’’, Aghia Paraskevi, Greece

(13)

41University of Athens, Athens, Greece 42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46Panjab University, Chandigarh, India

47University of Delhi, Delhi, India 48Saha Institute of Nuclear Physics, Kolkata, India

49

Bhabha Atomic Research Centre, Mumbai, India

50Tata Institute of Fundamental Research-EHEP, Mumbai, India 51Tata Institute of Fundamental Research-HECR, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53aINFN Sezione di Bari, Bari, Italy 53bUniversita` di Bari, Bari, Italy 53cPolitecnico di Bari, Bari, Italy 54aINFN Sezione di Bologna, Bologna, Italy

54bUniversita` di Bologna, Bologna, Italy 55aINFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

56bUniversita` di Firenze, Firenze, Italy

57INFN Laboratori Nazionali di Frascati, Frascati, Italy 58aINFN Sezione di Genova, Genova, Italy

58bUniversita` di Genova, Genova, Italy 59a

INFN Sezione di Milano-Bicocca, Milano, Italy

59bUniversita` di Milano-Bicocca, Milano, Italy 60aINFN Sezione di Napoli, Napoli, Italy 60bUniversita` di Napoli ‘‘Federico II’’, Napoli, Italy

61aINFN Sezione di Padova, Padova, Italy 61bUniversita` di Padova, Padova, Italy 61cUniversita` di Trento (Trento), Padova, Italy

62aINFN Sezione di Pavia, Pavia, Italy 62bUniversita` di Pavia, Pavia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy 64aINFN Sezione di Pisa, Pisa, Italy

64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65aINFN Sezione di Roma, Roma, Italy 65bUniversita` di Roma ‘‘La Sapienza’’, Roma, Italy

66aINFN Sezione di Torino, Torino, Italy 66bUniversita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67bUniversita` di Trieste, Trieste, Italy 68Kangwon National University, Chunchon, Korea

69Kyungpook National University, Daegu, Korea 70

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

71Korea University, Seoul, Korea 72University of Seoul, Seoul, Korea 73Sungkyunkwan University, Suwon, Korea

74Vilnius University, Vilnius, Lithuania

75Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 76Universidad Iberoamericana, Mexico City, Mexico

77Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 78Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

79

University of Auckland, Auckland, New Zealand

80University of Canterbury, Christchurch, New Zealand

81National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 82National Centre for Nuclear Research, Swierk, Poland

(14)

84Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 85Joint Institute for Nuclear Research, Dubna, Russia

86Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia 87Institute for Nuclear Research, Moscow, Russia

88Institute for Theoretical and Experimental Physics, Moscow, Russia 89Moscow State University, Moscow, Russia

90P.N. Lebedev Physical Institute, Moscow, Russia

91State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 92

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

93Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 94Universidad Auto´noma de Madrid, Madrid, Spain

95Universidad de Oviedo, Oviedo, Spain

96Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 97CERN, European Organization for Nuclear Research, Geneva, Switzerland

98Paul Scherrer Institut, Villigen, Switzerland

99Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 100Universita¨t Zu¨rich, Zurich, Switzerland

101National Central University, Chung-Li, Taiwan 102National Taiwan University (NTU), Taipei, Taiwan

103Cukurova University, Adana, Turkey

104Middle East Technical University, Physics Department, Ankara, Turkey 105Bogazici University, Istanbul, Turkey

106Istanbul Technical University, Istanbul, Turkey

107National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 108

University of Bristol, Bristol, United Kingdom

109Rutherford Appleton Laboratory, Didcot, United Kingdom 110Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom

112Baylor University, Waco, Texas USA

113The University of Alabama, Tuscaloosa, Alabama USA 114Boston University, Boston, Massachusetts USA 115Brown University, Providence, Rhode Island USA 116University of California, Davis, Davis, California USA 117University of California, Los Angeles, Los Angeles, California USA

118University of California, Riverside, Riverside, California USA 119University of California, San Diego, La Jolla, California USA 120University of California, Santa Barbara, Santa Barbara, California USA

121California Institute of Technology, Pasadena, California USA 122Carnegie Mellon University, Pittsburgh, Pennsylvania USA 123University of Colorado at Boulder, Boulder, Colorado USA

124Cornell University, Ithaca, New York USA 125Fairfield University, Fairfield, Connecticut USA 126Fermi National Accelerator Laboratory, Batavia, Illinois USA

127University of Florida, Gainesville, Florida USA 128Florida International University, Miami, Florida USA

129Florida State University, Tallahassee, Florida USA 130Florida Institute of Technology, Melbourne, Florida USA 131

University of Illinois at Chicago (UIC), Chicago, Illinois USA

132The University of Iowa, Iowa City, Iowa USA 133Johns Hopkins University, Baltimore, Maryland USA

134The University of Kansas, Lawrence, Kansas USA 135Kansas State University, Manhattan, Kansas USA

136Lawrence Livermore National Laboratory, Livermore, California USA 137University of Maryland, College Park, Maryland USA 138Massachusetts Institute of Technology, Cambridge, Massachusetts USA

139University of Minnesota, Minneapolis, Minnesota USA 140

University of Mississippi, University, Mississippi USA

141University of Nebraska-Lincoln, Lincoln, Nebraska USA 142State University of New York at Buffalo, Buffalo, New York USA

143Northeastern University, Boston, Massachusetts USA 144Northwestern University, Evanston, Illinois USA

(15)

145University of Notre Dame, Notre Dame, Indiana USA 146The Ohio State University, Columbus, Ohio USA 147Princeton University, Princeton, New Jersey USA 148University of Puerto Rico, Mayaguez, Puerto Rico USA

149Purdue University, West Lafayette, Indiana USA 150Purdue University Calumet, Hammond, Indiana USA

151Rice University, Houston, Texas USA 152University of Rochester, Rochester, New York USA 153

The Rockefeller University, New York, New York USA

154Rutgers, the State University of New Jersey, Piscataway, New Jersey USA 155University of Tennessee, Knoxville, Tennessee USA

156Texas A&M University, College Station, Texas USA 157Texas Tech University, Lubbock, Texas USA 158Vanderbilt University, Nashville, Tennessee USA 159University of Virginia, Charlottesville, Virginia USA

160Wayne State University, Detroit, Michigan USA 161University of Wisconsin, Madison, Wisconsin USA

aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. dAlso at Universidade Federal do ABC, Santo Andre, Brazil.

eAlso at California Institute of Technology, Pasadena, USA. f

Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. hAlso at Suez Canal University, Suez, Egypt.

iAlso at Zewail City of Science and Technology, Zewail, Egypt. jAlso at Cairo University, Cairo, Egypt.

kAlso at Fayoum University, El-Fayoum, Egypt. lAlso at British University, Cairo, Egypt. mNow at Ain Shams University, Cairo, Egypt.

nAlso at National Centre for Nuclear Research, Swierk, Poland. oAlso at Universite´ de Haute-Alsace, Mulhouse, France. pNow at Joint Institute for Nuclear Research, Dubna, Russia. qAlso at Moscow State University, Moscow, Russia.

rAlso at Brandenburg University of Technology, Cottbus, Germany. sAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. t

Also at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

uAlso at Tata Institute of Fundamental Research—HECR, Mumbai, India. vAlso at University of Visva-Bharati, Santiniketan, India.

wAlso at Sharif University of Technology, Tehran, Iran. xAlso at Isfahan University of Technology, Isfahan, Iran.

yAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran. zAlso at Facolta` Ingegneria Universita` di Roma, Roma, Italy.

aaAlso at Universita` della Basilicata, Potenza, Italy.

bbAlso at Universita` degli Studi Guglielmo Marconi, Roma, Italy. ccAlso at Universita` degli studi di Siena, Siena, Italy.

ddAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania. eeAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia.

ffAlso at University of California, Los Angeles, Los Angeles, USA. ggAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

hhAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. ii

Also at University of Athens, Athens, Greece.

jjAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. kkAlso at The University of Kansas, Lawrence, USA.

llAlso at Paul Scherrer Institut, Villigen, Switzerland.

(16)

nnAlso at Gaziosmanpasa University, Tokat, Turkey. ooAlso at Adiyaman University, Adiyaman, Turkey. ppAlso at Izmir Institute of Technology, Izmir, Turkey. qqAlso at The University of Iowa, Iowa City, USA.

rrAlso at Mersin University, Mersin, Turkey. ssAlso at Ozyegin University, Istanbul, Turkey.

ttAlso at Kafkas University, Kars, Turkey.

uuAlso at Suleyman Demirel University, Isparta, Turkey. vvAlso at Ege University, Izmir, Turkey.

wwAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. xxAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

yyAlso at University of Sydney, Sydney, Australia. zzAlso at Utah Valley University, Orem, USA.

aaaAlso at Institute for Nuclear Research, Moscow, Russia. bbb

Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.

cccAlso at Argonne National Laboratory, Argonne, USA. dddAlso at Erzincan University, Erzincan, Turkey.

eeeAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. fffAlso at Kyungpook National University, Daegu, Korea.

Figura

Table I lists the SM processes included in the fit. The W plus jets normalization is a free fit parameter because it is by far the dominant background
FIG. 1 (color online). (a) Distribution of the invariant mass spectrum of the leading two jets observed in data
TABLE II. Event yields determined from maximum-likelihood fits to the data. The total fit yields are corrected for bias
FIG. 2 (color online). (a) The observed and expected values of the CL S statistic for a generic Gaussian signal hypothesis with

Riferimenti

Documenti correlati

presence of skin lesions of the upper limbs in patients affected by breast cancer requires an accurate differential diagnosis among cancer recurrences or metastasis,

As regards chemical composition, the major elements include Pb and Mo (most intense peaks in the mXRF spectrum), chemically consistent with wulfenite composition ( Fig. In this

It is interesting to highlight that the carbohydrate content in crenate broomrape was higher of about 32, 78, 114, and 281% compared with faba greens, offshoots of Lucera

To investigate in detail the modulatory effect of beat salience on functional connectivity between and within brain areas previously found to be associated with musical beat

involved in the control of (1,3;1,4)-β-glucan and arabinoxylan but none of them were associated to one of the cellulose synthase (CslF, CslH and CslJ) and glycosyl transferase

In conclusion, our analysis of patients with imatinib-treated chronic myeloid leukemia did not reveal a higher incidence of second primary malignancies; however, the outcome of

We thus show that microwave transmittance, reflectance and absorption of the graphene capacitor using the above ChCl-based eutectic mixture can be varied by about 24%, 10% and 15%

Ficarra V, Zattoni F, Cunico CSC et al (2005) Lymphatic and vascular embolizations are independent predictive variables of inguinal lymph node involvement in patients with