• Non ci sono risultati.

The MOSSclone project: creating and testing a novel biotechnological tool to monitor air quality based on a devitalized moss clone

N/A
N/A
Protected

Academic year: 2021

Condividi "The MOSSclone project: creating and testing a novel biotechnological tool to monitor air quality based on a devitalized moss clone"

Copied!
43
0
0

Testo completo

(1)

MOSSCLONE PROJECT

Creating and testing a method for controlling the air

quality based on a new biotechnological tool. Use of a

devitalized moss clone as passive contaminant sensor

S. GIORDANO

1

, J. ABOAL

2

, P. ADAMO

1

, R. BARGAGLI

1

, A.K. BEIKE

3

, M. BOWKETT

4

, F. CAPOZZI

1

, C. B.

CARBALLEIRA

2

, A. CEOLIN

5

,

E. CONCHA-GRAÑA

6

, D. CRESPO PARDO

1

, E. L. DECKER

3

, A. DI PALMA

1

, J. A.

FERNANDEZ

2

, V. FERNANDEZ

7

, A. G. GONZALEZ

8

, S. IGLESIAS-SAMITIER

6

, P. LOPEZ MAHIA

6

, S.

MUNIATEGUI

6

, O. S. POKROVSKY

8

, R. RESKI

3

, A. I. REY-ASENSIO

7

, V. SPAGNUOLO

1

, M. TRETIACH

1

1

AMRA; Napoli, Italy;

2

USC; Santiago de Compostela, Spain;

3

ALU-FR; Freiburg, Germany;

4

TeLabs; Tullow, Ireland;

5

ORION;

Veggiano, Italy;

6

UDC,

A Coruña, Spain;

7

BIOVIA; Santiago de Compostela, Spain;

8

CNRS; Toulouse, France

7

th

BIOMAP - June 15, 2015 - Lisbon, Portugal

1 S. Giordano, 7th BioMap, Lisboa

(2)

Terrestrial mosses &

lichens are especially

adequate for air quality

assessment due to their

high efficiency in loading

both particulate and

gaseous organic and

inorganic pollutants.

Why?

- lack of a root system

- high surface/mass ratio

- good ion exchange properties

- scarce seasonality

- absence of cuticles and

protection tissues

- micromorphology

2 S. Giordano, 7th BioMap, Lisboa

(3)

Why use transplants?

i) the material can be exposed according to a rational scheme

ii) it is possible to calculate enrichment rates since pre-exposure values

are known

iii) the monitoring can be repeated over time

…problems that can arise when using mosses for moss-bags

preparation:

i) the environmental impact due to the sampling of native mosses

ii) the natural variability on moss elemental composition causes a certain

variation of moss-bag pre-exposure conditions over time

iii) bag preparation is often a home-made affair

iv) standardized protocols for bag use are still missing

3 S. Giordano, 7th BioMap, Lisboa

(4)

Previous results…

- biological matrices are more efficient than various

synthetic materials

- devitalized biological samples accumulate more or in

a similar way than alive samples

- mosses (e.g. Hypnum cupressiforme) are more efficient

than lichens (e.g. Pseudevernia furfuracea) for their

greater exposed surface

- pollutant uptake by moss is mostly due to interception

of airborne particulate matter (PM)

- the careful water-washing of moss and lichen

materials selected for bag preparation reduces the

variability of the results

4 S. Giordano, 7th BioMap, Lisboa

(5)

MOSSCLONE: a consortium of 5 Academic partners and 5 SMEs

5 S. Giordano, 7th BioMap, Lisboa

(6)

1) Selection of a moss species on the basis of existing knowledge

2) Cultivation of the selected species as a clone

5) Design and standardisation of moss-bags in terms of element

accumulation through the selection of shape, mesh, ideal ratio

moss mass/bag size; exposure: height and time

3) Morphological, molecular and physical-chemical characterisation

of the selected moss clone

4) Scaling up of the selected clone

6) Tool validation: comparison between moss-bags and traditional

techniques (i.e. bulk deposition collectors, airborne particles and

gaseous pollutants samplers)

Objectives of the MOSSCLONE project:

6 S. Giordano, 7th BioMap, Lisboa

(7)

Mosses in axenic in vitro culture

• Physcomitrella patens & related

species

• 17 additional species were

established in in vitro culture during

the last years

• species established during the

MOSSCLONE project:

• Sphagnum palustre

• Hylocomium splendens

• Hypnum cupressiforme

• Rhynchostegium/Platyhypnidium

riparioides

• Pseudoscleropodium purum

Beike et al. 2014 Pseudoscleropodium purum Sphagnum palustre Hypnum cupressiforme Hylocomium splendens Rhynchostegium riparioides (picture: David Crespo Pardo)

7 S. Giordano, 7th BioMap, Lisboa

(8)

Sphagnum palustre: from spores to in vitro cultivation

sterilization of spores from

capsules

spores germinated within a few

days

single protonemata were isolated

to establish clonal material

independent clones were

cultivated

8 S. Giordano, 7th BioMap, Lisboa

(9)

Different in vitro cultivation techniques

• 5 - 12 L working volume

• no disruption with a stirrer

• aerated with 0.3 vvm air

• 25 ºC

• 120 µE (µmol/m

2

per second) light

intensity

• 16 h light/ 8 h dark photoperiod

• starting pH 4.0 – 4.1, not adjusted

during cultivation

9 S. Giordano, 7th BioMap, Lisboa

(10)

The optimized medium for S. palustre cultivation

Reski & Abel (1985)

Planta 165: 354-358

Schween et al. (2003)

J. Plant Physiol. 160:209-212

* modified according to Simola

(1969)

Physiol. Plant. 22:

1079-1084

Simola (1975)

Physiol. Plant. 35: 194-199

KH

2

PO

4

1.84 mM

KCL

3.35 mM

MgSO

4

* 7 H

2

O

1.01 mM

Ca(NO

3

)

2

* 4 H

2

O

4.24 mM

FeSO

4

* 7 H

2

O

45 µM

H

3

BO

3

50 µM

MnSO

4

* 1 H

2

O

50 µM

ZnSO

4

* 7 H

2

O

15 µM

KJ

2,5 µM

Na

2

MoO

4

* 2 H

2

O

500 nM

CuSO

4

* 5 H

2

O

50 nM

Co(NO

3

)

2

* 6 H

2

O

50 nM

Sucrose

68 mM*

NH

4

NO

3

1.25 mM

1. Sphagnum

palustre was

selected to be

cloned

10 S. Giordano, 7th BioMap, Lisboa

(11)

Morphological comparison

clone

field

length

wideness

length

wideness

stem leaves

1756

731

1600

1150

branch leaves

1969

715

2250

1450

hyalocysts

146

27

338

50

chlorocysts

115

11

62

9

weight

2.72 ± 1.13

14.76 ± 7.20

pore diameter

5-8

10-25

11 S. Giordano, 7th BioMap, Lisboa

(12)

Morphological analysis

12 S. Giordano, 7th BioMap, Lisboa

(13)

Giving the clone a molecular tag

Sample

Locus (repeat motif)

Clone 2a

Clone 12a

Field

1 (CA)

244-254

244-254

244-254

3 (CA)

169

169

169

5 (GT)

192-198

192-198

188-192

9 (CT)

159-174

159-174

169-184

10 (GA)

233

233

233

14 (AG)

228

228

214

17 (AAG)

159

159

162

19 (AAG)

246-267

246-267

246-267

20 (TTC)

264-289

264-289

264-289

22 (GAT)

99-102

99-102

99-102

28 (AC)

225-237

225-235

225-235

29 (AAG)

194-197

194-197

194-197

30 (GAT)

139-142

139-142

139-142

3) Characterization of the selected moss clone

microsatellite analysis

4 polymorphisms detected

M

1000

500

2a 12a FS

analysis of RFLP-PCR of the anonymous region RAPDf*

7 polymorphisms detected

*Shaw et al. (2003) American Journal of Botany 90: 1777–1787.

2. The clone is

slender than field S.

palustre and was

molecularly tagged

(14)

to know initial values

to check homogeneity

to understand the mechanisms of pollutants

uptake and retention

Chemical and physical-chemical

characterisation of Sphagnum palustre clones

14 S. Giordano, 7th BioMap, Lisboa

(15)

Elemental analysis was performed in TeLabs laboratory

3 replicates for each sample

Microwave HNO

3

digestion on powdered moss samples

ICP MS analysis

M2 and M3 certified reference mosses from the Finnish Forest

Research Institute (Steinnes et al., 1997).

Elemental analysis

15 S. Giordano, 7th BioMap, Lisboa

(16)

Chemical composition of clones

macronutrients

micronutrients

16 S. Giordano, 7th BioMap, Lisboa

(17)

Chemical Composition

of clones

vs

field

Sphagnum

palustre

17 S. Giordano, 7th BioMap, Lisboa

(18)

Variation (%) of element concentration in clone after EDTA washing

*Co, As, Be, Cd, Pb, V under detection limit after treatments

3. The EDTA

washed clone has a

very low and

constant elemental

baseline

18 S. Giordano, 7th BioMap, Lisboa

(19)

Specific Surface Area using B.E.T. N

2

multipoint adsorption technique

Danish peat (13.3 m

2

g

-1

) and Heilongjiang peat (9.67 m

2

g

-1

) Qin et al., 2006

,

clone

native

Native

19 S. Giordano, 7th BioMap, Lisboa

(20)

pH

2 4 6 8 10 12

E

xcess

o

f

C

h

ar

g

e,

m

m

o

l

L

-1 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 Clone-2a Clone-12a Sphagnum palustre

Surface acid-base titration

Possible functional groups: phosphodiester (pK

a

=3.6–3.7), carboxyl (pK

a

=

4.7–5.7), phosphoryl (pK

a

= 5.9–7.4), amine (pK

a

= 7.7–9.2) and polyphenols

(pK

a

= 10.1–10.4)

Total binding sites

(mmol g

-1

)

Clone 2a

1.56

Clone 12a

1.31

Native

0.65

pH

PZC

5.6

pH

PZC

4.5

4. higher SSA and

charge in the

clone than in field

S. palustre

20 S. Giordano, 7th BioMap, Lisboa

(21)

7 exposure sites

2 Urban

2 Industrial

2 Rural

1 Background level

Standardisation

Shape effect (Sphere, Bag, Envelope)

Mesh effect (1,2,4 mm)

Weight effect (15,30,45 mg/cm

2

)

Height effect (4, 7, 10 m)

Exposure Time (3, 6, 12 weeks)

Standardisation assay Task:

3 replicates for each item

Country

Austria

Italy

Spain

5) Standardisation assay 21 S. Giordano, 7th BioMap, Lisboa

(22)

Standardisation assay Task

5) Standardisation assay

22 S. Giordano, 7th BioMap, Lisboa

(23)

Species used for the standardisation assay

Pseudoscleropodium

purum

(Hedw.) M.Fleisch.

5) Standardisation assay

14 kg d.w.

1134 bags

prepared!

204 kg f.w.

harvested!

23 S. Giordano, 7th BioMap, Lisboa

(24)

Envelope

Standardisation assay Task

Bag

Sphere

RESULTS “Shape Effect”

Mesh size: 2 mm

5) Standardisation assay

24 S. Giordano, 7th BioMap, Lisboa

(25)

The new device

Ø 11 cm

1 cm

spike

MOSSPHERE

5) Standardisation assay 25 S. Giordano, 7th BioMap, Lisboa

(26)

RESULTS “Shape Effect”

5) Standardisation assay

26 S. Giordano, 7th BioMap, Lisboa

(27)

Shape

Al

Ba

Cr

Cu

Fe

Hg

Pb

Ni

Sr

Zn

Tot

Envelope Vs

Sphere 15

E*>S E=S E=S E=S E<S E=S E=S E=S E<S E>S

=

Bag Vs

Sphere 30

B=S B=S B=S B>S B<S B<S B=S B>S B=S B>S

=

*E=envelope; S=Sphere; B=bag

The Mossphere should be preferred

because it secures an improved

standardisation of bag preparation

RESULTS “Shape Effect”

5) Standardisation assay

Wilcoxon matched pairs test

(28)

Weight:

30 mg/cm

2

1 mm

2 mm

4 mm

RESULTS “Mesh Effect”

5) Standardisation assay

28 S. Giordano, 7th BioMap, Lisboa

(29)

RESULTS “Mesh Effect”

5) Standardisation assay

The mesh size does not show any clear pattern

affecting the accumulation of elements

The selection of the proper mesh size must take into

account the loss of material occurring during the

exposure

Wilcoxon matched pairs test

p-value<0,05

Mesh Al Ba Cr Cu Fe Hg Pb Ni Sr Zn Mesh size Tot

M01 Vs M02

M01=M02 M01=M02 M01>M02 M01>M02 M01>M02 M01=M02 M01=M02 M01=M02 M01=M02 M01=M02

M01

25%

M01 Vs M04

M01=M04 M01<M04 M01>M04 M01>M04 M01=M04 M01=M04 M01<M04 M01=M04 M01<M04 M01<M04

M02

0%

M02 Vs M04

M02=M04 M02<M04 M02=M04 M02=M04 M02=M04 M02=M04 M02<M04 M02=M04 M02<M04 M02<M04

M04

40%

29 S. Giordano, 7th BioMap, Lisboa

(30)

Weight

15 mg/cm

2

30 mg/cm

2

45 mg/cm

2

Mesh size: 2 mm

RESULTS “Weight Effect”

5) Standardisation assay

30 S. Giordano, 7th BioMap, Lisboa

(31)

RESULTS “Weight Effect”

The smallest amount of moss

seems to ensure an improved

accumulation performance

Weight

Al

Ba

Cr

Cu

Fe

Hg

Pb

Ni

Sr

Zn

Weight

Tot

15 Vs 30

15>30 15>30 15=30 15>30 15>30 15=30 15>30 15>30 15>30 15<30

15

80%

15 Vs 45

15>45 15>45 15=45 15>45 15>45 15=45 15>45 15>45 15>45 15>45

30

20%

30 Vs 45

30>45 30=45 30=45 30>45 30>45 30=45 30=45 30<45 30=45 30>45

45

0%

5) Standardisation assay

Wilcoxon matched pairs test

(32)

4 m

10 m

7 m

RESULTS “Height Effect”

The height range investigated (4-10 m) did not

show any pattern related to the enrichment of

the post-exposed moss

The selection of the exposure height

may depend on practical questions

5) Standardisation assay

32 S. Giordano, 7th BioMap, Lisboa

(33)

Al Nat Agr Urb Ind Ba Nat Agr Urb Ind Cr Nat Agr Urb Ind Cu Nat Agr Urb Ind Fe Nat Agr Urb Ind Ni Nat Agr Urb Ind Sr Nat Agr Urb Ind Zn Nat Agr Urb Ind Accumulo crescente Elemento Scenario T3-1° T3-2° T3-3° T3-4° T6-1° T6-2° T12-1°

RESULTS “Time Effect”

5) Standardisation assay

33 S. Giordano, 7th BioMap, Lisboa

(34)

STANDARDIZATION MOSS BAG

Shape

Mossphere

Mesh

2 mm

Weight

15 mg/cm

2

Height

4 m

Exposure period

6 weeks

5) Standardisation assay

5. Exposure was

standardised

(35)

SCALING UP MOSSCLONE

Initial culture : 6 flask

Minimum weight: 100 g f.w./12 L (≈2 g d.w.)

Mean weight: 222 ± 34 g f.w. (4.45 d.w.)

Growth condition

4 Bioreactor

12 L culture medium

Final fresh weight: 1404 ± 285 g

Final dry weght: 118 ± 25 g

Production rate: 3,8 g d.w./day

Annual production (4u): 4 kg d.w.

4) Scaling up

(36)

MOSSPHERE PRODUCTION

Bioreactor culture

Washed

1 EDTA (10 mM)

(20´ ; 1 L/12,5 g d.w.)

3 Distilled water

(20´; 1 L/10 g d.w)

Devitalized

8 h – 50 ºC

8 h – 80 ºC

8 h – 100 ºC

Stored

Bag vacuum bag

Mossphere (3 g d.w.)

4) Scaling up

6. Clone production

was scaled up

600 Mosspheres

produced

36

(37)

Vs

UNSHELTERED MOSSPHERE

BULK DEPOSIMETER FOR METALS

MATTER SAMPLER < 10μm (PM10)

ATMOSPHERIC PARTICULATE

SHELTERED & UNSHELTERED

MOSSPHERE

Vs

6) Tool validation

&

6 sites

4 sites

37 S. Giordano, 7th BioMap, Lisboa

(38)

Correlation

Deposimeter vs.

unsheltered

Mossphere

PM10 vs. sheltered

Mossphere

PM10 vs.

unsheltered

Mossphere

OK

Al, Ba, Cu, Pb,

Ni, Sr

Al, Ba, Pb, Ni

Al, Ba, Cr, Cu, Fe,

Pb

NO

Fe, V, Zn

Cr, Cu, Fe, Zn

V, Ni, Zn

7. Mossphere

vs. deposition

38 S. Giordano, 7th BioMap, Lisboa

(39)

MSPD

0.25 g MOSS

SAMPLE

SPE FLORISL 1g

PTV-GC-MS-MS

CONCENTRATION:

Syncore® Analyst

evaporator

+DISPERSING AGENT

(C18)

+

SURROGATE

STANDARDS

3 MIN

10 ml H

+ 10 ml DCM:H

(20:80)

METHOD QUANTITATION LIMITS: 0.09-2.00 ng g-1

TRUENESS: 83-112% PRECISION: RSD <11%

PAH analysis by

Matrix solid

phase dispersion

method

6) Tool validation 39 S. Giordano, 7th BioMap, Lisboa

(40)

0,00 0,05 0,10 0,15 0,20 0,25 0,00 0,05 0,10 0,15 0,20 0,25 ac en apht hy le ne ac en apht he ne fluo re ne phe na nt hr ene an th rac en e flu or ant he ne pyr ene be nzo( a) an th rac en e chr ys ene be nz o( b+ j)f luo ra nt he ne be nzo( k) flu or an th en e be nz o( e) py re ne be nz o( a) pyr ene di be nz o( a, h) ant hr ac ene inde ne (1 ,2 ,3 -c d) py re ne be nz o( ghi )p er yl ene µg P AH /m 2. day µg P AH /g m os s

moss clone "Mossphere" (R1) moss clone "Mossphere" (R2) Total Deposition 0,00 0,10 0,20 0,30 0,40 0,50 0,00 0,10 0,20 0,30 0,40 0,50 ac en apht hy le ne ac en apht he ne fluo re ne phe na nt hr ene an th rac en e flu or ant he ne pyr ene be nzo( a) an th rac en e chr ys ene be nz o( b+ j)f luo ra nt he ne be nzo( k) flu or an th en e be nz o( e) py re ne be nz o( a) pyr ene di be nz o( a, h) ant hr ac ene inde ne (1 ,2 ,3 -c d) py re ne be nz o( ghi )p er yl ene µg P AH /m 2.d ay µg P AH /g m os s

moss clone "Mossphere" (R1) moss clone "Mossphere" (R2) Total Deposition

SU1 Urban Sample

SI1 Industrial Sample

Mossphere

Total deposition

6) Tool validation

40 S. Giordano, 7th BioMap, Lisboa

(41)

Moss clone "Mossphere"

(µgPAH/g moss)

SPAH light SPAH intermediate SPAH heavy

Total Deposition

(µgPAH/m

2

.day)

SPAH light SPAH intermediate SPAH heavy

SU1 Urban Sample

Moss clone "Mossphere"

(µgPAH/g moss)

SPAH light SPAH intermediate SPAH heavy

SI1 Industrial Sample

Total Deposition

(µgPAH/m

2

.day)

SPAH light SPAH intermediate SPAH heavy

6) Tool validation

8. PAHs profiles

are very similar in

moss and total

depositions

41 S. Giordano, 7th BioMap, Lisboa

(42)

Conclusions

selection, culturing, scaling up and characterisation of a

Sphagnum palustre clone

the clone has a very low and constant elemental baseline

(3 to 100 times lower content)

design of a new device: MOSSPHERE®

exposure protocol standardisation

direct comparability of biomonitoring data

patenting: in progress

TO DO

large scale test over EU

implementation of EU air quality legislation

42 S. Giordano, 7th BioMap, Lisboa

(43)

Thanks for the attention!

43 S. Giordano, 7th BioMap, Lisboa

Riferimenti

Documenti correlati

Genetic polymorphisms in the multidrug resistance-associated protein 3 (ABCC3, MRP3) gene and relationship to its mRNA and protein expression in human liver. Vodicka P, Stetina

- alla facilità d’uso e gestione del bene edilizio da parte degli utilizzatori finali anche Per quanto riguarda la possibilità di valutare quegli aspetti più specifici di

the Cr(III) removal yields displayed by the selected biomass are higher than those obtained using conventional chemical physical wastewater treatment

Culture, sustainable development and social quality: A paradigm shift in the economic analysis of cultural production and heritage conservation.. Terms of use:

Also, even though the proportion of fixations on the target objects is roughly similar in the visual search and free-viewing conditions, the propensity of viewers to return back

On the other hand, in Figure 8c a comparison of the surface temperature values after 800 s at different thickness for the material with and without latent heat is reported.. Even

La spesa delle AC, nel decennio, ha in parte sostituito quella degli Enti territoriali (principalmente delle AR, la cui spesa è stata, in termini pro capite, pressoché nulla sia

Here, we investigate the demography of merging BBHs in young star clusters (SCs), which are the nursery of massive stars. We performed 4 × 10 3 N-body simulations of SCs