• Non ci sono risultati.

Dynamic thermal-hydraulic modelling of the EU DEMO WCLL breeding blanket cooling loops

N/A
N/A
Protected

Academic year: 2021

Condividi "Dynamic thermal-hydraulic modelling of the EU DEMO WCLL breeding blanket cooling loops"

Copied!
5
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Fusion

Engineering

and

Design

j ou rn a l h o m epa g e : w w w . e l s e v i e r . c o m / l o c a t e / f u s e n g d e s

Dynamic

thermal-hydraulic

modelling

of

the

EU

DEMO

WCLL

breeding

blanket

cooling

loops

A.

Froio

a

,

F.

Casella

b

,

F.

Cismondi

c

,

A.

Del

Nevo

d

,

L.

Savoldi

a

,

R.

Zanino

d,∗

aNEMOGroup,DipartimentoEnergia,PolitecnicodiTorino,10129Torino,Italy,Italy

bDipartimentodiElettronica,InformazioneeBioingegneria,PolitecnicodiMilano,20133Milano,Italy cPPPTDepartment,EUROfusionConsortium,85748GarchingbeiMünchen,Germany

dENEACRBrasimone,40032Camugnano,BO,Italy

h

i

g

h

l

i

g

h

t

s

•System-levelthermal-hydraulicmodeloftheWCLLBreedingBlanketcoolingloopdeveloped.

•HighlymodularitythankstotheModelicalanguage.

•SimplifiedmodelabletosimulatethewholeWCLLcoolingsysteminfaster-than-realtime.

•ModelbenchmarkedagainstCFDcalculations.

•Firstapplicationtosteady-statenominalscenario.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30September2016

Receivedinrevisedform9January2017 Accepted19January2017

Availableonline16February2017 Keywords: DEMO Breedingblanket WCLL Coolingcircuit Thermal-hydraulics Modelling

a

b

s

t

r

a

c

t

Aglobalthermal-hydraulicmodeloftheEUDEMOtokamak,basedonanobject-orientedapproachusing

theModelicalanguage,iscurrentlyunderdevelopmentatPolitecnicodiTorino.Thefirstmoduleofthe

globalmodelwillsimulatethedynamicsoftheblanketcoolingsystemanditwillbeabletoinvestigate

dif-ferentcoolantoptionsanddifferentcoolingschemes,adaptedtothedifferentblanketsystemscurrently

underdevelopmentintheBreedingBlanketproject.Followingthedevelopmentofthemodulerelated

totheHelium-CooledPebbleBedblanket,thispaperpresentsthedynamicmodeloftheWater-Cooled

LithiumLead(WCLL)blanket,designedatENEABrasimone,togetherwiththefirstresultsobtainedin

steady-stateconditions.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND

license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The development of a conceptual design of the European DemonstrationFusionPowerReactor(EUDEMO)isoneofthegoals definedintheEUfusionroadmapHorizon2020[1].Startingfrom theresultsobtainedbyITER,thisdevicewillprovethefeasibility ofaclosed fuelcycle,achievingtritiumself-sufficiency,andthe productionofnetelectricity.

Withinthisframework,theEUROfusionProjectManagement Unit(PMU)issupportingthedevelopmentofa global thermal-hydraulicmodelof thewholetokamakat PolitecnicodiTorino, aimedatthesimulationofthecoolingloopsofthemainin-vessel

∗ Correspondingauthor.

E-mailaddress:roberto.zanino@polito.it(R.Zanino).

components,includingtheex-tokamakparts.Themodelshallbe developedinamodularfashion,accordingtoanobject-oriented approach, and willeventually allowtoperformfast parametric analysesofthewholetokamakcoolingsystem.

Thefirstmoduleoftheglobalmodelisdevotedtothesimulation oftheBreedingBlanket(BB)coolingsystem,whichinDEMOwill beatthesametimethecoreelementofthepowergeneration.The developmentofthismodulestartedin2015,withthedevelopment ofthemodelfortheHelium-CooledPebbleBed(HCPB)BBconcept

[2].Inthispaperwepresentthedevelopmentandfirstapplication ofthesecondpartoftheBBmodule,devotedtothemodellingof theWater-CooledLithium-Lead(WCLL)BBconcept.

http://dx.doi.org/10.1016/j.fusengdes.2017.01.062

0920-3796/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4. 0/).

(2)

Fig.1.Blanketsegmentation,showingthenumberingconventionoftheIB1-7and OB1-7BMs(reproducedfrom[5]).

Fig.2.CADoftherearsideoftheWCLLOB4BM,showingthecoolantI/Omanifolds.

2. WCLLcoolingcircuit

Forthedevelopmentofthismodelthe2015designoftheWCLL BB[3,4]hasbeenconsidered.Thetokamakisdividedin18equal toroidalsectors:eachsectorismadeofthreeidenticalOutboard (OB)andtwoidenticalInboard(IB)blanketsegments;each seg-mentcontains7BreedingModules(BMs)[5],seeFig.1.EachBM, showninFig.2,comprisesaportionoftheFirstWall(FW)anda BreedingZone(BZ),containingtheliquid(PbLi)breedermaterial. Thecoolingcircuitissplitwhenenteringthevessel,withtwo dif-ferentsetsofmanifoldsdeliveringthewatercoolanttotheFWand theBZinparallel,asvisibleinFig.2.

3. Modeldescription

AsketchofthecoolingcircuitmodelisreportedinFig.3.The FWloop,composedbyrectangularcoolingchannelsimmersedin theFWsolidstructure,isfurthersplitintwoparts,withthewater coolantrunninginonedirectioninhalfofthechannelsandin coun-terflowintheotherhalf,asshowninFig.4;thisloopisalsousedto cooltheupperandlowerwallsoftheBM.ThesolidpartoftheFW

Fig.3.SchematicoftheWCLLcoolingcircuitmodel(FW#:FirstWallobject;BZ#: BreedingZoneobject;IM:InletManifold;OM:OutletManifold;ID:InletDistributor; MIX:Mixer;HX/SG:HeateXchanger/SteamGenerator).

isincludedintheFWcoolingcircuitmodelbytreatingthechannel wallsas1Dobjectsintheflowdirection,see[2]fordetails.

TheBZpart,whosemodelisshowninFig.5,iscooledby circu-lardouble-walltubes,whichareincontactwiththePbLiflowing inthefreespaceontheirouterside.Thetubesarearrangedina modularlayout,withasetofelementarycellsof21tubes(shown inFig.6)ideallystackedinthepoloidaldirection,withinletorifices tocontrolthemassflowratedistribution.

Theprimaryheatsinkistheheatexchanger(HX),whichcanbe asteamgenerator(SG),iftheprimaryheatistobedirectlyusedto produceelectricity,orawater/moltensaltsHX,ifanintermediate energystorageloopistobeused.Finally,theoperationalpressure andtherangeofwatertemperaturearethesameasintheprimary loopsofpressurisedwaterreactors(i.e.p=15.5MPa,Tbetween285 and325◦C).

ThemodeliswrittenusingModelica,whichisanobject-oriented declarativemodellinglanguageaimedatconvenientmodellingof complex systems, see[2] and references therein.The model is 0D/1D,withthecoolingchannelsmodelledwitha1Dfinite vol-umeapproach,whiletheothercomponents(suchase.g.valves) are0D;alsothemanifoldsaretreatedas0Dobjects,forthetime being.

FortheHX/SGa0DidealHXmodelisadopted,i.e.imposing thattheoutlettemperatureisalwaysatthenominalvalue(285◦C), independentlyoftheinlettemperaturevalue.Thesecondary cir-cuitisnotmodelledforthetimebeing.Inallthecomponents,the time-dependentformofconservationofmass,energyand,forthe 1Dmodelsonly,momentum,isenforced(see[2]fordetailsonthe solvedequations).

Withinthemodel,eachchannelcanbedifferentfromallthe oth-ers,bothintermsofgeometry(e.g.crosssection)andload,making thecodeanidealtooltoperformparametricanalysesaimede.g. attheoptimizationofthecoolantdistribution,withouttheneed

(3)

Fig.4.SchematicofthegenericFW#object(FWC#:FirstWallChannelobject;IM:InletManifold;OM:OutletManifold).Theinletandoutletfluidconnectorsarerepresented byverticaldisksatthebeginningandattheendofthemodel.

Fig.5. SchematicofthegenericBZ#object(BZC#:BreedingZoneChannelobject;IM:InletManifold;OM:OutletManifold).

Fig.6. Radial-poloidal(a)andradial-toroidal(b)cutofOB4,showingthedetailsof theelementarycellintheinset;the21channelsarecircledingreenintheinset (adaptedfrom[3]).(Forinterpretationofthereferencestocolourinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.)

fortime-demandingdetailedComputationalFluidDynamics(CFD) calculations.

Inviewoftheverylargenumberofchannelsneededtomodel thewholeWCLLsystem,somesimplifyingassumptionshavetobe made.Hence,anewfullystandard-compliantModelicalibraryhas beendevelopedtocomputethefluid-dynamicsofthecoolant,

sim-plifyingthecomputationofthefluidproperties.Inparticular,the waterisassumedtobealwaysliquid(singlephase),withspecific heat,densityandthederivativeoftheinternalenergywithrespect tothetemperatureatconstantpressurelinearlydependentonthe temperature;theseassumptionsallowtoperformveryfast simula-tions,whilestillbeingacceptableifthecoolantstaysinsideorclose totheoperationallimits,withtheerrorsontheabove-mentioned variablesalwaysbelow3.5%andbelow2%onaverage.Inaddition tothat,thepressuredropcharacteristicofeachchannelislinearized aroundtheoperatingpoint(i.e.thepressuredropdependslinearly onthemassflowrate).Finally,theheattransfercoefficientbetween thefluidandthesolidstructuresintheFW,aswellasthesolid specificheatanddensity,areconsideredconstant.

Inthecaseofoff-normaltransients,however,theassumptions onthethermophysicalpropertiesofthecoolantmaynotbevalid anymoreandthemodelcannotbeused;forthisreason,asecond versionhasbeendeveloped,withadetaileddescriptionofthe ther-mophysicalpropertiesofthecoolantandsimplifyinggeometrical assumptionstomaintainthecodespeed,whichcanbeusede.g.for transientanalyses(e.g.in-vesselLOCAs).

4. Asimpleapplicationofthemodel

Inordertocheckitscapabilities,thecodehasbeenusedto sim-ulateasimplescenario.Sincethedataontheex-vesselcomponents arenotavailableyet(astheirdesignisstillongoing),theloopisnot closedandonlythein-vesselcomponents(i.e.channelsand man-ifolds)aresimulated.Hence,asboundaryconditions,thenominal valuesofpressureandtemperatureareimposedattheinlet,while attheoutletthepressureisimposed accordingtotheexpected pressuredropof7.7kPa(OBmodules)or7.3kPa(IBmodules)[3]. Moreover,theorificesattheinletofthechannelsaresetinorderto havethemassflowrateuniformlydistributedamongthechannels. Followingasimilarapproachtowhatwasdonein[2]forthe HCPB,inordertocheckifallthepointsintheBZvolumeare ade-quatelycooled,i.e.ifallthecoolingchannelsinsideoneelementary cellreach(almost)thesameoutlettemperaturevalue,a steady-stateheatloadisimposed(equaltothenominalvaluesreportedin

[3]).ThepowerisgeneratedinthePbLiaccordingtoan exponen-tiallawpeakedontheplasmaside,whichisconsideredreasonable

(4)

Fig.7. Powerdistributioninoneelementarycell.

Fig.8.1Dprofilealongthechannel(a)anddistributionintheradial-toroidalplane (b)ofthecoolanttemperatureinfourselectedcoolingchannelsoutofthe21ofan elementaryunitoftheOB4module.

asthepowergeneratedisproportionaltotheneutronflux,thatis assumedtofollowanexponentiallaw[3].Asinthemodeleach channelisconsideredresponsibleforthecoolingofthevolumeof PbLiaroundit,andthesevolumesturnouttobedifferentbecause ofthedispositionofthechannels,theresultingdistributionofthe powerdepositedineachchannel,reportedinFig.7,isnot expo-nential:channelsfurtherawayfromtheplasma,buttakingcareofa largervolumeofPbLi,endupextractingmorepowerthanchannels closertotheplasma.

Fig.8 reports thetemperature distribution for fourselected channelsoutofthe21ofoneelementaryunitoftheOB4 (equa-torial)module;a similarsituationis foundinalltheIBand OB BMs.

Thetemperatureincreaseisdifferentfromchanneltochannel, withsomeofthemreachingatemperatureabovethemaximum designvalueof325◦C[4].Thisresultwasexpected,sincethemass flowratedistributionwasnotregulatedbasedontheheatload

6–18 307.5 315.2

7–10–12–19 303.2 320.1

8–20 337.9 325.7

9–11–13–21 328.5 335.6

distributionamongthechannels,andreflectswithacceptable accu-racytheresultsobtainedin[3]usingCFD,seeTable1,qualitatively confirmingthevalidity ofthemodel,particularlyifconsidering thatintheCFDmodelthedetailedtemperaturedistributioninthe PbLiwastakenintoaccount,whileinthepresentworkasimple exponentialpowerdistributionisassumed.

InordertoensureadequatecoolingofallthepointsoftheBZ andtohave(atleastinnominalconditions)thesameoutlet tem-peratureinallthechannels,itishenceneededtotunethemass flowintothechannels,usingtheorificesatthechannelinlets.This canbedoneapplyingthemodeltoperformaparametricanalysis varyingtherespectivepressuredropsinasuitablerange,which mightbeprohibitivelyexpensiveifperformedthroughCFD.

5. Conclusions

Asystem-leveltransientmodeloftheEUDEMOWCLLBBcooling systemhasbeendeveloped.BeingwrittenusingtheModelica lan-guage,itishighlymodularandcanbeeasilyadaptedtotheongoing designoftheBB.

Thankstoitsspeed,thistoolcanbeveryhelpfulinthisphase ofthedesign, torapidlylookat theeffectofthevariation of a parameter,withouttheneedforcomputationallyexpensiveCFD calculations.

ThemodelhasbeenimplementedasanewModelicalibrary, containingasimplified definitionof thecoolant thermophysical propertiesandalltheobjectsneededtomodelthecoolingloop;this libraryhasbeenspecificallywrittenforthemodeltobeextremely fastinsimulatingthewholecoolingsystem,whilestillkeepingan acceptableaccuracy.

Thenewlydevelopedtoolhasbeentestedinasimple steady-statecasetocheckitsvalidityandperformances,withtheaimof lookingatthemassflowrateunbalancesamongtheBZcooling channels;asexpected,theresultsshowedthattheflowmustbe optimizedinordertobetterredistributethetemperatureincrease inthechannelsandavoidhot-spotswithtemperaturesabovethe saturationvalue.

Acknowledgments

This work has been carried out within the framework of theEUROfusionConsortium and hasreceivedfundingfromthe Euratomresearchandtrainingprogramme2014-2018undergrant agreementNo633053.Theviewsandopinionsexpressedherein donotnecessarilyreflectthoseoftheEuropeanCommission.

References

[1]F.Romanelli,P.Barabaschi,D.Borba,G.Federici,L.Horton,R.Neu,D.Stork,H. Zohm,FusionElectricity—ARoadmaptotheRealisationofFusionEnergy, EuropeanFusionDevelopmentAgreement(EFDA),2012,ISBN

(5)

978-3-00-040720-8T.[Online].Available:https://www.euro-fusion.org/ wpcms/wp-content/uploads/2013/01/JG12.356-web.pdf.

[2]A.Froio,C.Bachmann,F.Cismondi,L.Savoldi,R.Zanino,Dynamic

thermal-hydraulicmodellingoftheEUDEMOHCPBbreedingblanketcooling loops,Prog.Nucl.Energy93(2016)116–132.

[3]A.DelNevo,E.Martelli,M.Oron-Carl,DesignDescriptionDocument2015for WCLL(updateofDDD2014),EFDAD2MU9XC,2016.

[4]A.DelNevo,P.Agostini,P.Arena,G.Bongiovì,G.Caruso,G.DiGironimo,P.A.Di Maio,M.Eboli,R.Giammusso,F.Giannetti,etal.,WCLLbreedingblanketdesign andintegrationforDEMO2015:statusandperspectives,FusionEng.Des.124 (2016)682–686.

[5]L.V.Boccaccini,G.Aiello,J.Aubert,C.Bachmann,T.Barrett,A.DelNevo,D. Demange,L.Forest,F.A.HernándezGonzález,P.Norajitra,etal.,Objectivesand statusofEUROfusionDEMOblanketstudies,FusionEng.Des.109–111(2016) 1199–1206(PartB).

Riferimenti

Documenti correlati

This paper presents algorithms for refactoring a delta-oriented product line into monotonic form, i.e., either to contain add and modify operations only (monotonic increasing) or

What we are facing now is the result of processes that have developed during the last dec- ades in philosophy, sociology, communication studies, and journalism studies. We can indicate

Figure 25 - Case t1: time variation of the inlet, outlet and minimum PbBi temperatures, of the outlet and maximum oil temperature, and of the minimum and maximum temperatures in

With these factors in mind, this work aims to study the management accounting system adopted within an Italian business group of particular interest in terms of type

Up to now this class of low power thrusters has not been deeply studied, in fact, only recently there is a great interest to mini and micro satellites that ask for thruster

For the receiver side we have found that the Memory Acceleration technique is an effective optimization method that permits us to achieve the real-time target with a

This work was carried out in order to assess the geothermal potential of the water and sediment, and this will encourage the use of geothermal heat pump systems in densely

These outcomes will be integrated with the results from UVIFL, FT-IR, Raman and XRF techniques in order to set up a methodology which allowed researchers to non-invasively