• Non ci sono risultati.

Measurement of the Z gamma -> nu(nu)over-bar gamma production cross section in pp collisions at root s=8 TeV and limits on anomalous ZZ gamma and Z gamma gamma trilinear gauge boson couplings

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the Z gamma -> nu(nu)over-bar gamma production cross section in pp collisions at root s=8 TeV and limits on anomalous ZZ gamma and Z gamma gamma trilinear gauge boson couplings"

Copied!
21
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

ννγ

production

cross

section

in

pp

collisions

at

s

=

8 TeV and

limits

on

anomalous

ZZγ

and

Zγ γ

trilinear

gauge

boson

couplings

.The CMS Collaboration

CERN,Switzerland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received 23 February 2016

Received in revised form 30 May 2016 Accepted 30 June 2016

Available online 9 July 2016 Editor: M. Doser

Keywords:

Photon MET

Aninclusivemeasurementofthe Zγννγ productioncrosssectioninpp collisionsat√s=8TeV is presented, using data corresponding to an integratedluminosity of 19.6 fb−1 collectedwith the CMS detectorattheLHC.Thismeasurementisbasedontheobservationofeventswithlargemissingenergy and witha single photon with transverse momentumabove 145 GeV and absolute pseudorapidityin therange|η|<1.44.ThemeasuredZγννγ productioncrosssection,52.7±2.1 (stat)±6.4 (syst)± 1.4 (lumi) fb, agrees well with the standard model prediction of 50.0+22..42fb. A study of the photon transverse momentum spectrumyields the most stringentlimits to dateonthe anomalous ZZγ and Zγ γ trilineargaugebosoncouplings.

©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Thestudyoftheproductionofbosonpairsprovidesan impor-tant test of the electroweak sector of the standard model (SM), sincethisproductionis aconsequenceof thenon-Abeliannature of the underlying SU(2)×U(1) symmetry. Trilinear gauge boson verticesareaconsequenceofthissymmetry,andthevaluesofthe self-couplingsarefixedintheSM.Anymeasureddeviationwould beanindicationofphysicsbeyondthestandardmodelatthat ver-tex. For production of a Z boson anda photon, these couplings are zero in the SM. New symmetries or newparticles that only becomerelevantathigherenergiescould resultinacrosssection thatdiffersfromtheSMprediction[1,2],particularlyforfinal-state bosonswithhightransversemomentum.

Inthislettera measurementispresentedoftheproductionof aZ boson,whichdecaysintoapairofneutrinos,andaphotonin proton–protoncollisions,atacentre-of-massenergyof√s=8TeV, usingdata collected bythe CMSexperimentcorresponding to an integrated luminosity of 19.6 fb−1. This result extends previous measurements at the LHC [3–5]. We describe a measurement of the production cross section as well as the extraction of limits on anomalous ZVγ couplings,where V=Z, γ. In thissearch for anomaloustrilineargaugecouplings(aTGCs),thefinal-stateboson transversemomentumisusedasasensitiveobservable.

 E-mailaddress:cms-publication-committee-chair@cern.ch.

Fig. 1. Feynman diagrams of Zγ production via initial-state radiation in the SM at

tree level (top), and via anomalous ZZγ or Zγ γtrilinear gauge couplings (bottom). The ννγ final state can be produced through initial-state ra-diation (where a photon is emitted by an initial-state parton) orthrough anomalouscouplingvertices.Theallowed electroweak tree-leveldiagramintheSMforZγ productioninpp collisionsis showninFig. 1(top).Thes-channelproductionviaaZZγ orZγ γ aTGCisshowninFig. 1(bottom).

The most general Lorentz-invariant and gauge-invariant ZVγ vertex can be described by four coupling parameters hVi (i = 1,. . . ,4) [6,7]. The first two couplings (i=1,2) are CP-violating, while the latter two (i=3,4) are CP-conserving [7,8]. At tree levelintheSM,theindividualvaluesoftheseaTGCsarezero.The

http://dx.doi.org/10.1016/j.physletb.2016.06.080

0370-2693/©2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

(2)

photontransverse momentumspectrum hassimilar sensitivityto CP-violatingandCP-conservingcouplings.Theresultsaregenerally interpretedintermsoftheCP-conservingaTGCshV

3 andhV4.

The sensitivity to aTGCs in Zγ production is higher in the Z→νν decaymode than inZ boson decaymodeswithcharged leptons, becausethe branching fractionfora Z boson decayto a pairofneutrinosissixtimeshigherthanforadecaytoa particu-larchargedleptonpair,andtheacceptanceintheneutrinochannel ishigher.

The fiducial phase space for this measurement is defined by therequirements ofphoton transverseenergy T > 145 GeV and photonpseudorapidity|ηγ|<1.44,wherethecontaminationfrom otherparticlesmisidentifiedasphotonsislower[9].

2. TheCMSdetector

The central feature of the CMS apparatus is a superconduct-ing solenoidof 6 m internal diameter,providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a sili-conpixelandstriptracker,aleadtungstatecrystalelectromagnetic calorimeter(ECAL),andabrassandscintillatorhadroncalorimeter (HCAL),eachcomposed ofa barrel(|η|<1.479) andtwoendcap (1.479<|η|<3.0) sections, where η is the pseudorapidity. Ex-tensive forward calorimetry complements the coverage provided bythe barrelandendcap detectors.Muonsare measured in gas-ionization detectors embedded in the steelflux-return yoke out-side the solenoid. The energyresolution for photons with trans-versemomentum ≥60GeV varies between1% and2.5%over the solidangleoftheECALbarrel, andfrom2.5% to3.5%inthe end-caps [9]. The timing measurement of the ECAL has a resolution better than 200 ps for energydeposits larger than 10 GeV [9].In the ηφ plane,whereφistheazimuthalangleandfor|η|<1.48, the HCAL cells map onto 5×5 arrays of ECAL crystals to form calorimetertowers projecting radially outward fromthe nominal interactionpoint.

The event reconstruction is performed using a particle-flow (PF)algorithm [10,11], which reconstructs andidentifies individ-ualparticlesusinganoptimizedcombinationofinformationfrom all subdetectors. Photons are identified as energyclusters in the ECAL.Theseenergyclustersaremergedtoformsuperclustersthat are five crystals wide in η, centered around the most energetic crystal, and have a variable width in φ. The energy of charged hadronsis determined froma combination ofthe track momen-tumandthecorrespondingECALandHCALenergies,correctedfor the combined response function of the calorimeters. The energy ofneutral hadrons isobtained from the corresponding corrected ECALandHCALenergies.Foreachevent,hadronicjetsareformed fromthesereconstructedparticleswiththeinfrared- and collinear-safeanti-kT algorithm [12],usingadistanceparameter R=0.5,

whereR=√(η)2+ (φ)2 andηand are the

pseudora-pidityandazimuthalangledifferencebetweenthejetaxisandthe particledirection. Themissingtransverse momentumvector/ET is definedastheprojectionontheplaneperpendiculartothebeams ofthenegativevectorsumofthemomentaofallreconstructedPF candidatesinanevent;itsmagnitudeisreferredtoas/ET.

AmoredetaileddescriptionoftheCMSdetector,togetherwith adefinitionofthecoordinatesystemusedandtherelevant kine-maticvariables,canbefoundinRef.[13].

3. Signalandbackgroundmodeling

Thefinal state consistingof an energeticphoton accompanied byanimbalanceintransverseenergycanbe mimickedbyseveral other processes in the SM. These processes include Wγ → νγ where  is a charged lepton (if the lepton escapes detection),

W→ ν(iftheleptonismisidentifiedasaphoton), γ+jets (ifthe jets are misreconstructed, resulting in /ET), QCD multijet

produc-tionincludingZ(νν)+jets (ifthejetismisidentifiedasaphoton), Zγ→ γ (ifbothleptonsescapedetection), γ γ events(ifoneof thephotonsescapes detection),andalsobackgrounds frombeam halo.

ThecontributionsfromtheWγ → νγ, γ+jet,Zγ → γ,and γ γ processes tothe candidateeventsample are estimatedusing Monte Carlo-based (MC) simulations. The W(ν)γ and Z→ γ samples are generated with MadGraph5v1.3.30 at leading order (LO) [14] and then processed with the pythia 6.426 event gen-erator [15] for showering and hadronization. The other samples are generatedwiththe pythia 6.426 generator[15] atLO.All the samplesaregeneratedusingtheCTEQ6L1[16]partondistribution function(PDF)set,processedthroughtheCMSdetectorsimulation based on Geant4[17,18], andreconstructedin thesame manner ascollisiondata.

The cross section forthe SM background process Wγ → νγ with at mostone jet is corrected with an T dependent K fac-tor estimated from mcfm [19] to account for next-to-leading-order (NLO) effects. The PDF4LHC Working Group recommenda-tions [20–22] are usedto estimate theuncertaintyin thecentral value of theNLO crosssection arising fromthe PDFs,the strong couplingconstant αs,andits scaledependence.The γ+jet cross

sectioniscorrectedtoincludeNLOeffects.

To determine the efficiency for the SM Z(νν)γ production cross section measurement, events are produced with the Mad-Graph5v1.3.30generatoratLOwithamaximumoftwoadditional partonsandsimulatedthroughthefull reconstructionchain. Sim-ulated samples of the Zγ signal for a grid of aTGC values are producedusingthe sherpa v1.2.2generator[23].Thecrosssection withatmostoneextrapartoniscorrectedwithan T dependent Kfactorestimatedfrom mcfm[19]toaccountforNLOeffects.The inclusivemeasurementhasbeencomparedwithatheoretical cal-culationaccurateuptonext-to-next-to-leadingorder(NNLO).

To account fordifferencesarising from imperfect modeling of thedatainthesimulation,atotalcorrectionfactor ρof0.94±0.06 isappliedtoallMC-basedbackgroundestimates.Thisisthe prod-uctofindividualcorrectionfactorsdefinedasratiosofthe efficien-ciesmeasuredindataandinsimulation.Theyinclude0.97±0.02 for photon identification measured using Z→ee events, 0.99± 0.03 fortimingrequirementsmeasuredusingasampleofelectron events,and0.99±0.02 and0.99±0.05 forleptonandjetvetoes measuredusingW→eν events.

4. Eventselection

Events areselectedusingboth asingle-photontriggerthat re-quiresaphotonwithT >150GeV,andphoton+/ETtriggerswith

T >70GeV and/ET>100GeV.Thecombinationofthesetriggers

is 96% efficient for events with photon transverse energy T >

145GeV, photon pseudorapidity |ηγ|<1.44, and /E

T>140GeV.

Events are required to have at least one primary vertex recon-structedwithinalongitudinaldistanceof|z|<24 cm ofthecenter ofthedetectorandata distance<2 cm fromthez axis. The pri-maryvertexischosentobethevertexwiththehighestp2Tsumof itsassociatedtracks,wherepT isthetransversemomentum.

We imposeadditional requirementson theenergydeposits in thecalorimeterstodistinguishphotonsfrommisidentifiedjets[9]. The energy in the HCAL associated with the photon superclus-tershould not exceed5% ofits energyasmeasured in theECAL. Moreover,thephotoncandidatesmusthaveashower distribution inthe ECALconsistentwiththat expectedforan electromagnetic (EM)shower [9].To furtherreduce photon contamination arising

(3)

from misidentified jets, isolation requirements on photon candi-dates are imposed. Energy deposits for isolation are obtained by consideringparticlesinaconearoundtheaxisdefinedbythe su-percluster position and the primary vertex [9]. In particular, the scalarsumoftransversemomenta (in GeV)ofall photonswithin a coneof R=0.3 around thesupercluster, excluding a strip of width in η of 0.015, is required to be less than 0.7+0.005pγT; thescalarsumofthetransversemomenta(inGeV) ofall charged hadrons,associatedwiththeprimaryvertex,withinahollowcone of0.02< R<0.30 aroundthesuperclusterisrequiredtobeless than 1.5;andthescalarsumofthetransversemomenta(in GeV) ofall neutralhadronswithin acone ofR=0.3 around the su-percluster is required to be less than 1.0+0.04pγT. Due to the large numberofadditionalproton–protoninteractions (pileup) in thesamebunchcrossingattheLHC,itisdifficulttoknowthetrue originofthe photonfora γ+/ET finalstate (ourestimate is

cor-rect50% ofthetime),which couldlead toan underestimationof isolationvalues.Therefore,anadditionalPF-basedchargedparticle isolationiscalculatedforeachvertexandthelargestvalueofthis isolationsumisrequiredtobesmallerthanthenominalthreshold usedforchargedparticleisolation.

Photon candidates are required to have the energy deposited inthe highestenergy crystalwithin the EMcluster to be within ±3 ns ofthetime expectedforparticlesfromacollision.This re-quirementreducesinstrumental backgroundarisingfromshowers induced by bremsstrahlung from muonsin the beam halo orin cosmic rays. To further reduce this background, we exploit the characteristic signature of showers frombeam halo in the ECAL. Asearchregionisdefinedaroundthehighestenergycrystalofthe EMclusterinanarrowφ windowandovera wide ηrange,after removalofthe EMshower ina 5×5 array.A straight line, paral-leltothebeamdirection,isfittedovertheremaining cellswithin thisregion.Events are taggedasminimumionizing particle(MIP tag) if the total energydeposited in the crystals associated with thestraight-linefitisgreaterthan6.3 GeV.

SpurioussignalscanbeembeddedwithinEMshowersbydirect ionizationoftheavalanchephotodiodesensitivevolumebyhighly ionizing particles.These signals, whichwouldotherwise passthe EM shower selection criteria, are eliminated by requiring consis-tencyamongtheenergydepositiontimesforallcrystalswithinan EMshower.

Photoncandidatesarealsoremovediftheyarelikelytobe elec-trons,asinferredfrompatternsofhitsinthepixeldetector,called “pixelseeds”,thatarematchedtotheEMclusters[24].

Eventscontaininggoodphotoncandidatesarethenrequiredto have/ET>140GeV.A topologicalrequirementof φ >2 rad

be-tweenthe directionofthephoton candidateandthe vector/ET is appliedtoreducethecontributionfromthe γ+jet background.

In order to suppress backgrounds from QCD multijet produc-tion andleptonic decay ofW/Z+jets, eventsare vetoed ifthey contain significant hadronic/leptonic activitydefinedby: (i) more than one jet with pT>30GeV not passing thepileup jet

identi-fication criteria[25],separatedfrom thephoton by R>0.5, or (ii) an electronor a muon with pT>10GeV andseparated from

thephotonbyR>0.5.

Toreduce thecontaminationfromeventswith/ET arisingfrom

instrumentaleffects,a χ2 functionisconstructedandminimized

χ2=  i=photon, jets (preco T )i− (pT)i (σpT)i 2 +  /E x σ/E x 2 + /Ey σ/E y 2 , (1)

wherethesumrunsoverthephotonandallthejetsintheevent. The(σpT)i arethe expectedmomentumresolutionsofthe

recon-structed (reco) photon and jets, and the (pT)i are the free

pa-rameters allowed to vary in orderto minimize the function. The resolutionparametrizationassociatedwiththe/ET isobtainedfrom

Ref.[26].Lastly,/Ex and/Eyaredefinedas

/E x,y=/Erecox,y +  i=photon, jets (precox,y)i− (px,y)i = −  i=photon, jets (px,y)i, /ET=  /E2x+/E2y. (2)

Foreventswithnotrue/ET,the χ2isexpectedtobesmall,with

values of/ET closeto0, whileforeventswith significanttrue /ET

theminimizationwillresultinhigh χ2values,with/E

Tclosetothe

actual /ETintheevent.Anadditionalrequirementof/ET>120GeV

reducesthenumberof γ+jet (QCDmultijet)eventsby80%(35%), whilekeeping99.5%ofsignalevents.

Afterapplyingtheserequirements,630candidateeventsare ob-servedindata.

5. Backgroundestimation

ThelargestcontributionisfoundintheWγ→ νγ processand is estimatedtobe 103±21 events.The contributionsfromother processes,asmallfractionofthetotalbackground,amountto36± 3 events.

The most significant background contributionestimated using simulation is also validated in a control region dominated by W(ν)γ events. Events are selected using the full candidate se-lectionbutwiththelepton vetoinverted.In data,104eventsare observed,consistentwithanexpectationof126±23 events.

The backgroundoriginatingfromjetsmisidentifiedasphotons isestimatedusingadatadrivenmethod.Themethodisbasedona classofjets,referredtoas“photon-like”jets,thathaveproperties similartoelectromagneticobjects.Photon-likejetsarerequiredto passaveryloosephotonselectionbutatthesametimefailoneof theisolation requirements.Themethodalsoreliesontheratioof jetspassingthefullphotonselectiontothoseidentifiedas photon-like jets. This ratio is measured in a control sample enriched in QCD multijetevents. Tosuppressthecontribution ofelectroweak processes, the missing transverse energy in this control sample is required to be smaller than 30 GeV. Because this sample also containstrueisolatedphotonsfromQCDdirectphotonproduction, thiscontributionmustbesubtractedfromthenumeratorofthe ra-tio.Therequiredcorrectionisestimatedbyperformingafittothe distribution ofthe candidateshower widthvariable σηη [9].Two showershapeprofilesareusedinthisfit,theshowershapeoftrue photons, obtainedfromsimulated γ+jet events, andthe shower shapeofphoton-likejets,obtainedfromthechargedhadron isola-tionsidebandindata.Thiscorrectedratioisusedtoweightasetof dataeventswherethephotoncandidatepassesthephoton-likejet selection criteria. The estimated numberof backgroundevents is foundtobe45±14,wheretheuncertaintyreflectsanuncertainty intheestimationoftheratio,aswellasthestatisticaluncertainty ofthesamplescaledforthefinalestimate.

An instrumentalbackgroundcaused byelectrons arisesdueto the imperfect efficiency for reconstructing and associating pixel seeds with clusters. For our kinematic requirements, this back-groundlargelyoriginatesfromW boson(W→eν)production,and isestimatedfromdata.Thepixelseedefficiency pix ismeasured inZ→ee events usingthestandard“tag-and-probe”method[27] and is estimated to be 0.984±0.002 for electrons with ET >

(4)

Table 1

Summary of estimated Z(→νν) +γ signal, backgrounds, and observed total number of candidates. Backgrounds listed as “Others” include the small contributions from W →μν, Zγ→ γ, γ γ, and γ+jet. Uncertainties include both statistical and systematic contributions.

Process Estimate W(→ ν)+γ 103±21 W→eν 60±6 jet→γMisID 45±14 Beam halo 25±6 Others 36±3 Total background 269±26 Z(→νν)+γ 345±43 Data 630 Data – background 361±36

of (1− pix)/ pix is applied to a set of events in the data with

the same candidateevent selection as the signal candidates and with the additional requirement of a pixel seed match. The re-sultingcontribution is estimatedto be 60±6 events, wherethe uncertaintyisdominated bythe uncertaintyinthe measurement of pix.

Since photon candidates are only identified within the ECAL, thecandidatesampleissusceptibletocontaminationfrom noncol-lision backgrounds. These backgrounds arise from interactions in thecalorimeterofacceleratorrelatedparticles(beamhalo), spuri-oussignalsintheECALitself,andparticlesoriginatingfromcosmic rayinteractions. Thetiming distributionmeasured fromtheECAL foreach ofthese backgrounds isdistinctly different fromthe ar-rivaltime distribution forphotonsproduced incollisions. A fitis performedtothecandidatetimedistributionsusingshapesderived fromdata.Thebackgrounddistributionareconstructedby invert-ing MIP tag (beam halo) and shower shape (anomalous signal) requirements.Thearrivaltimeforphotonsfromtheinteraction re-gionismodeledusingW→eν candidatesindata.Fromtheresult ofthefit,theonlysignificantnoncollisionbackgroundisfoundto befrombeamhaloevents,anditscontributionisestimatedtobe 25±6 events.

Thetotal numberof expectedbackground eventsis 269±26, asmentionedinTable 1.Thenumberofsignal events(data – ex-pectedbackground)is361±36,wheretheuncertaintyisobtained by adding in quadrature the uncertainty from the data and the backgroundestimation.TheexpectednumberofZγννγ signal events,obtainedusing MadGraph5andcorrectedforNNLOeffects, is345±43.

6. Crosssectionmeasurement

Asummaryofthebackgroundsanddatayieldsisgivenin Ta-ble 1, whereinthe uncertainties inthe background estimates in-cludebothstatisticalandsystematicsources.

TheZγννγ crosssectionforT >145GeV and|η|γ<1.44 iscalculatedusingthefollowingformulae:

σB=Ndata−Nbkg

A L , A = (A )simρ,

where Ndata is the number ofobserved events, Nbkg is the

esti-matednumberofbackgroundevents, A isthegeometrical accep-tance, istheselectionefficiencytoselectinclusiveZ(νν)+γ eventsoffline,and L is theintegrated luminosity.The productof A isestimated fromthe simulationto be 0.377±0.001,where

Table 2

Systematic uncertainties considered in A for the Z(νν)γ signal sample from various sources.

Source Z(νν)γ[%]

Photon and/ETenergy scale +3.4,−5.0

Jet and/ETenergy scale ±2.3

Jet energy resolution ±1.3

Unclustered energy ±1.2

Pileup ±0.3

Luminosity ±2.6

Correction factorρ ±6.4

theuncertainty isstatistical. ρ is thecorrection factordefinedin Section3.

The photon, jet and /ET energy scales and resolutions, pileup,

correction factor ρ,andthe uncertaintiesinthe PDFsare consid-ered as sources of systematic uncertainty in the acceptance cal-culation.Theuncertaintyinthephotonenergyscaleisabout1.5%, whichtranslatesintoanuncertaintyinA of+3.45.0%,whereA isthe geometricalandkinematicacceptanceoftheselectioncriteria,and isthesignalselection efficiency.Additionally,there are system-aticuncertaintiesduetothejetenergyscaleandjetresolutionin themeasurement of/ET,whichgive +2.32.3% and +

1.2

−1.4%, respectively,

andtheunclusteredenergyscale,whichgives+1.90.6%.Forpileup,a centralvalueforthetotalinelasticcrosssectionof69.4 mb[28,29] isused.Avariationof±5% inthenumberofinteractionsisusedto covertheuncertaintyin A duetopileupmodeling,whichis0.3%. The uncertainty in the integrated luminosity [30] is 2.6%. Other sources includethe uncertaintyin thecorrection factor ρ, which contributes6.4%.

A summary of the systematic uncertainties in A for the Z(νν)γ signalsampleisshowninTable 2.

Themeasuredproductioncrosssection σ(pp→Zγ)B(Z→νν)

for ETγ>145GeV and |η|<1.44 is52.7±2.1 (stat)±6.4 (syst)± 1.4 (lumi) fb.

The expected cross section of the signal process for T >

145GeV and|η|γ<1.44,obtainedwiththeNLO generator mcfm, is40.7±4.9 fb.Thequoteduncertaintyinthepredictiontakesinto accountthePDFandscaleuncertainties.TheNNLOtheoretical pre-diction [31,32]is50.0+2.42.2fb,wheretheuncertaintyincludes only scalevariations.

Thedistributionsofphotontransverseenergyand/ETareshown

inFig. 2,withthesignalandbackgroundpredictionsoverlaid.The expectedcontributionfromaZγ γ aTGCsignalwith3 = −0.001, 4 =0.0 isalsoshown.NosignificantexcessofeventsovertheSM expectationisobserved.

7. Limitsontrilineargaugecouplings

WeusetheT spectrumtosetlimitsonaTGCsbymeansofa likelihoodformalism.Inthisstudy,wefollowtheCMSconvention ofnotsuppressingtheaTGCsbyanenergy-dependentformfactor. The probability of observing the number of data events in a givenrangeof T isestimatedusinga Poissondistribution given by the expected signal and background predictions. Limits on aTGCs arecalculatedonthebasisofaprofilelikelihoodmethodas describedinRef.[33].Inthefittotheobservedspectra,systematic uncertainties are represented by nuisance parameters with log-normal prior probability densityfunctions. The changes inshape oftheobservedspectrathatresultfromvaryingthephotonenergy scaleandthetheoretical differentialcrosssection withintheir re-spectiveuncertaintiesaretreatedusingamorphingtechnique[34]. Thebestfitvalue fromdatafortheaTGCsisveryclosetothe SMvalues.

(5)

Fig. 2. TheT and /ETdistributions in data (points with error bars) compared with the SM Zγννγ signal and estimated contributions from backgrounds. A typical aTGC

signal from Zγ γwith 3= −0.001, 4=0.0 would provide an excess, as shown in the dot-dashed histogram. The background uncertainty includes statistical and systematic components.

Fig. 3. Two-dimensional 95% CL limits on ZZγcouplings.

Fig. 4. Two-dimensional 95% CL limits on Zγ γ couplings.

Table 3

One-dimensional 95% CL limits on ZVγ anomalous trilinear gauge couplings from

the Zγννγ channel. The limits obtained from data with √s=7 TeV are also shown.

Coupling √s=8 TeV √s=7 TeV

hZ 3 [−1.5,1.6] ×10−3 [−2.7,2.7] ×10−3 hZ 4 [−3.9,4.5] ×10− 6 [−1.3,1.3] ×10−5 3 [−1.1,0.9] ×10−3 [−2.9,2.9] ×10−3 4 [−3.8,4.3] ×10−6 [−1.5,1.5] ×10−5

Limitsat95%confidencelevel(CL)aresetonpairsofaTGC pa-rameters (hZ

3,hZ4) and (h

γ

3,h

γ

4),as presentedin Fig. 3and Fig. 4,

respectively. Furthermore, one-dimensional 95% CL limitsare ob-tained fora givenaTGC whilesetting theother neutralaTGCs to their SM values,i.e., to zero.A summary ofthe one-dimensional limitsalongwith7 TeV isgiveninTable 3.

8. Summary

WehavepresentedaninclusivemeasurementoftheZγννγ productioncrosssection inppcollisions at√s=8TeV usingdata collected with the CMS experiment in 2012, corresponding to an integrated luminosity of 19.6 fb−1. The measured cross sec-tion σ(pp→Zγ)B(Z→νν) forphotonswith T >145GeV and |ηγ|<1.44 is52.7±2.1 (stat)±6.4 (syst)±1.4 (lumi) fb,in agree-mentwiththeNNLOprediction[31,32]of50.0+2.42.2fb.Noevidence was found foranomalous neutraltrilineargauge couplings inZγ production.Limitsat95%CLwereplacedonthehV3 andhV4 param-etersofZZγ andZγ γ couplings:

−1.5×10−3<hZ3<1.6×10−3

−3.9×10−6<hZ4<4.5×10−6

−1.1×10−3<hγ3<0.9×10−3

−3.8×10−6<hγ4<4.3×10−6.

Theseresultsyieldthemoststringentlimitstodateon anoma-lousneutraltrilineargaugecouplings.

Acknowledgements

WethankMassimilianoGrazziniandDirkRathlevforproviding uswiththeNNLOcalculationofthecrosssection.Wecongratulate

(6)

ourcolleagues intheCERNacceleratordepartmentsforthe excel-lentperformanceoftheLHCandthankthetechnicaland adminis-trativestaffsatCERNandatotherCMSinstitutesfortheir contri-butionstothesuccessoftheCMSeffort.Inaddition,wegratefully acknowledgethecomputingcenters andpersonnelof the World-wideLHCComputingGridfordeliveringsoeffectivelythe comput-ing infrastructure essential to our analyses. Finally, we acknowl-edgethe enduring support forthe construction andoperation of theLHCandtheCMSdetectorprovidedby thefollowingfunding agencies:BMWFW andFWF(Austria); FNRSandFWO(Belgium); CNPq,CAPES,FAPERJ,andFAPESP(Brazil); MES (Bulgaria); CERN; CAS,MoST,andNSFC(China);COLCIENCIAS(Colombia);MSESand CSF(Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); AcademyofFinland,MEC,andHIP(Finland);CEAandCNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA andNIH(Hungary);DAEandDST(India);IPM(Iran);SFI(Ireland); INFN (Italy); NRF and WCU (Republic ofKorea); LAS (Lithuania); MOE andUM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland);FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS andRFBR(Russia);MESTD(Serbia);SEIDIandCPAN(Spain);Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU andSFFR(Ukraine);STFC(UnitedKingdom);DOEandNSF(USA). References

[1] J. Ellison, J. Wudka, Study of trilinear gauge-boson couplings at the tevatron collider, Annu. Rev. Nucl. Part. Sci. 48 (1998) 33, http://dx.doi.org/10.1146/ annurev.nucl.48.1.33.

[2] K. Hagiwara, R.D. Peccei, D. Zeppenfeld, Probing the weak boson sector in e+e−→W+W−, Nucl. Phys. B 282 (1987) 253, http://dx.doi.org/10.1016/ 0550-3213(87)90685-7.

[3] CMS Collaboration, Measurement of the production cross section for Zγννγ in pp collisions at √s=7 TeV and limits on ZZγ and Zγ γ triple gauge boson couplings, J. High Energy Phys. 10 (2013) 164, http://dx.doi.org/10.1007/ JHEP10(2013)164, arXiv:1309.1117.

[4] ATLAS Collaboration, Measurements of Wγ and Zγ production in pp col-lisions at √s=7 TeV with the ATLAS detector at the LHC, Phys. Rev. D

87 (2013) 112003, http://dx.doi.org/10.1103/PhysRevD.87.112003, arXiv:1302. 1283; http://dx.doi.org/10.1103/PhysRevD.91.119901(Erratum).

[5] CMS Collaboration, Measurement of the Zγproduction cross section in pp

col-lisions at 8 TeV and search for anomalous triple gauge boson couplings, J. High Energy Phys. 04 (2015) 164, http://dx.doi.org/10.1007/JHEP04(2015)164, arXiv: 1502.05664.

[6] G.J. Gounaris, J. Layssac, F.M. Renard, Signatures of the anomalous Zγ and ZZ

production at the lepton and hadron colliders, Phys. Rev. D 61 (2000) 073013, http://dx.doi.org/10.1103/PhysRevD.61.073013.

[7] U. Baur, E.L. Berger, Probing the weak boson sector in Zγproduction at hadron

colliders, Phys. Rev. D 47 (1993) 4889, http://dx.doi.org/10.1103/PhysRevD. 47.4889.

[8] U. Baur, S. Errede, J. Ohnemus, Ratio of W±γ and Zγcross sections: new tools

in probing the weak boson sector at the Tevatron, Phys. Rev. D 48 (1993) 4103, http://dx.doi.org/10.1103/PhysRevD.48.4103.

[9] CMS Collaboration, Performance of photon reconstruction and identification with the CMS detector in proton–proton collisions at √s=8 TeV, J. In-strum. 10 (2015) P08010, http://dx.doi.org/10.1088/1748-0221/10/08/P08010, arXiv:1502.02702.

[10] CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and Emiss

T , CMS Physics Analysis Summary CMS-PAS-PFT-09-001,

http://cdsweb.cern.ch/record/1194487, 2009.

[11] CMS Collaboration, Commissioning of the particle-flow reconstruction in minimum-bias and jet events from pp collisions at 7 TeV, Technical report CMS-PAS-PFT-10-002, Geneva, http://cds.cern.ch/record/1279341, 2010.

[12] M. Cacciari, G.P. Salam, G. Soyez, The anti-ktjet clustering algorithm, J. High

Energy Phys. 04 (2008) 063, http://dx.doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[13] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3 (2008) S08004, http://dx.doi.org/10.1088/1748-0221/3/08/S08004.

[14] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: going beyond, J. High Energy Phys. 06 (2011) 128, http://dx.doi.org/10.1007/JHEP06 (2011)128, arXiv:1106.0522.

[15] T. Sjöstrand, S. Mrenna, P.Z. Skands, Pythia 6.4 physics and manual, J. High Energy Phys. 05 (2006) 26, http://dx.doi.org/10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[16] J. Pumplin, D.R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, W.-K. Tung, New generation of parton distributions with uncertainties from global QCD analy-sis, J. High Energy Phys. 07 (2002) 012, http://dx.doi.org/10.1088/1126-6708/ 2002/07/012, arXiv:hep-ph/0201195.

[17] S. Agostinelli, et al., GEANT4 Collaboration, GEANT4—a simulation toolkit, Nucl. Instrum. Methods Sect. A 506 (2003) 250, http://dx.doi.org/10.1016/S0168-9002(03)01368-8.

[18] J. Allison, et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270, http://dx.doi.org/10.1109/TNS.2006.869826.

[19] J. Campbell, R. Ellis, C. Williams, MCFM v6.1: a Monte Carlo for FeMtobarn processes at hadron colliders, http://mcfm.fnal.gov/mcfm.pdf, 2011.

[20]S.Alekhin,etal.,ThePDF4LHCWorkingGroupinterimreport,arXiv:1101.0536, 2011.

[21]M. Botje,J.Butterworth, A.Cooper-Sarkar,A.deRoeck,J. Feltesse,S.Forte, A. Glazov,J.Huston,R.McNult˜y,T.Sjöstrand,R.Thorne,ThePDF4LHCWorking Groupinterimrecommendations,arXiv:1101.0538,2011.

[22] R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, J.I. La-torre, J. Rojo, M. Ubiali, NNPDF Collaboration, Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B 849 (2011) 296, http://dx.doi.org/10.1016/j.nuclphysb.2011.03.021, arXiv:1101.1300.

[23] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, J. Win-ter, Event generation with SHERPA 1.1, J. High Energy Phys. 02 (2009) 007, http://dx.doi.org/10.1088/1126-6708/2009/02/007, arXiv:0811.4622.

[24] CMS Collaboration, Performance of electron reconstruction and selection with the CMS detector in proton–proton collisions at √s=8 TeV, J. In-strum. 10 (2015) P06005, http://dx.doi.org/10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.

[25] CMS Collaboration, Pileup jet identification, CMS Physics Analysis Summary CMS-PAS-JME-13–005, http://cdsweb.cern.ch/record/1581583, 2013.

[26] CMS Collaboration, Performance of the CMS missing transverse momentum re-construction in pp data at √s=8 TeV, J. Instrum. 10 (2015) P02006, http:// dx.doi.org/10.1088/1748-0221/10/02/P02006, arXiv:1411.0511.

[27] CMS Collaboration, Measurement of the inclusive W and Z production cross sections in pp collisions at √s=7 TeV with the CMS experiment, J. High En-ergy Phys. 10 (2011) 132, http://dx.doi.org/10.1007/JHEP10(2011)132, arXiv: 1107.4789.

[28] G. Antchev, et al., First measurement of the total proton–proton cross sec-tion at the LHC energy of √s=7 TeV, Europhys. Lett. 96 (2011) 21002, http:// dx.doi.org/10.1209/0295-5075/96/21002, arXiv:1110.1395.

[29] CMS Collaboration, Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at √s=7 TeV, J. High Energy Phys. 06 (2012) 036, http://dx.doi.org/ 10.1007/JHEP06(2012)036, arXiv:1202.0704.

[30] CMS Collaboration, CMS luminosity based on pixel cluster counting – summer 2013 update, CMS Physics Analysis Summary CMS-PAS-LUM-13–001, http:// cdsweb.cern.ch/record/1598864, 2013.

[31] M. Grazzini, S. Kallweit, D. Rathlev, A. Torre, production at hadron

col-liders in NNLO QCD, Phys. Lett. B 731 (2014) 204, http://dx.doi.org/10.1016/ j.physletb.2014.02.037, arXiv:1309.7000.

[32] M. Grazzini, S. Kallweit, D. Rathlev, Wgamma and Zgamma production at the LHC in NNLO QCD, in: Proceedings, 12th International Symposium on Radia-tive Corrections (Radcor 2015) and LoopFest XIV (RadiaRadia-tive Corrections for the LHC and Future Colliders), https://inspirehep.net/record/1416850/files/arXiv: 1601.06751.pdf, 2016.

[33] K.A. Olive, et al., Particle Data Group, Review of particle physics, Chin. Phys. C 38 (2014) 090001, http://dx.doi.org/10.1088/1674-1137/38/9/090001. [34]J.S.Conway,Nuisanceparametersinlikelihoodsformultisourcespectra,in:H.B.

Prosper,L.Lyons(Eds.),ProceedingsofPHYSTAT2011WorkshoponStatistical IssuesRelatedtoDiscoveryClaimsinSearchExperimentsandUnfolding,CERN, Geneva,Switzerland,2011,p. 115.

TheCMSCollaboration

V. Khachatryan,A.M. Sirunyan, A. Tumasyan

(7)

W. Adam, E. Asilar,T. Bergauer, J. Brandstetter, E. Brondolin,M. Dragicevic, J. Erö,M. Flechl, M. Friedl, R. Frühwirth1,V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler1, V. Knünz,A. König,

M. Krammer1,I. Krätschmer, D. Liko,T. Matsushita, I. Mikulec,D. Rabady2, B. Rahbaran,H. Rohringer, J. Schieck1,R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg,W. Waltenberger, C.-E. Wulz1

InstitutfürHochenergiephysikderOeAW,Wien,Austria

V. Mossolov,N. Shumeiko, J. Suarez Gonzalez

NationalCentreforParticleandHighEnergyPhysics,Minsk,Belarus

S. Alderweireldt, T. Cornelis,E.A. De Wolf, X. Janssen,A. Knutsson, J. Lauwers,S. Luyckx, M. Van De Klundert,H. Van Haevermaet, P. Van Mechelen,N. Van Remortel, A. Van Spilbeeck

UniversiteitAntwerpen,Antwerpen,Belgium

S. Abu Zeid,F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous,J. Keaveney, S. Lowette,L. Moreels, A. Olbrechts,Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem,I. Van Parijs

VrijeUniversiteitBrussel,Brussel,Belgium

P. Barria, H. Brun, C. Caillol, B. Clerbaux, G. De Lentdecker, G. Fasanella, L. Favart, R. Goldouzian,

A. Grebenyuk,G. Karapostoli, T. Lenzi,A. Léonard,T. Maerschalk, A. Marinov, L. Perniè, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer,R. Yonamine, F. Zenoni, F. Zhang3

UniversitéLibredeBruxelles,Bruxelles,Belgium

K. Beernaert,L. Benucci, A. Cimmino, S. Crucy, D. Dobur, A. Fagot,G. Garcia,M. Gul, J. Mccartin, A.A. Ocampo Rios, D. Poyraz,D. Ryckbosch, S. Salva, M. Sigamani, M. Tytgat,W. Van Driessche, E. Yazgan, N. Zaganidis

GhentUniversity,Ghent,Belgium

S. Basegmez, C. Beluffi4,O. Bondu, S. Brochet, G. Bruno, A. Caudron, L. Ceard,G.G. Da Silveira, C. Delaere, D. Favart,L. Forthomme, A. Giammanco5,A. Jafari,P. Jez, M. Komm, V. Lemaitre, A. Mertens, M. Musich, C. Nuttens, L. Perrini, A. Pin, K. Piotrzkowski,A. Popov6,L. Quertenmont, M. Selvaggi, M. Vidal Marono

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

N. Beliy, G.H. Hammad

UniversitédeMons,Mons,Belgium

W.L. Aldá Júnior, F.L. Alves,G.A. Alves, L. Brito,M. Correa Martins Junior,M. Hamer, C. Hensel, A. Moraes,M.E. Pol, P. Rebello Teles

CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato7,A. Custódio, E.M. Da Costa,

D. De Jesus Damiao,C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera,L. Mundim, H. Nogima,W.L. Prado Da Silva, A. Santoro,

A. Sznajder,E.J. Tonelli Manganote7, A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

S. Ahujaa, C.A. Bernardesb, A. De Souza Santosb,S. Dograa, T.R. Fernandez Perez Tomeia,

E.M. Gregoresb, P.G. Mercadanteb,C.S. Moona,8,S.F. Novaesa,Sandra S. Padulaa,D. Romero Abad, J.C. Ruiz Vargas

aUniversidadeEstadualPaulista,SãoPaulo,Brazil b

(8)

A. Aleksandrov, R. Hadjiiska,P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

InstituteforNuclearResearchandNuclearEnergy,Sofia,Bulgaria

A. Dimitrov,I. Glushkov, L. Litov, B. Pavlov,P. Petkov

UniversityofSofia,Sofia,Bulgaria

M. Ahmad, J.G. Bian, G.M. Chen,H.S. Chen, M. Chen, T. Cheng,R. Du, C.H. Jiang, R. Plestina9, F. Romeo, S.M. Shaheen,A. Spiezia, J. Tao, C. Wang,Z. Wang, H. Zhang

InstituteofHighEnergyPhysics,Beijing,China

C. Asawatangtrakuldee, Y. Ban,Q. Li, S. Liu, Y. Mao,S.J. Qian, D. Wang, Z. Xu

StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

C. Avila,A. Cabrera, L.F. Chaparro Sierra, C. Florez,J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

UniversidaddeLosAndes,Bogota,Colombia

N. Godinovic, D. Lelas,I. Puljak, P.M. Ribeiro Cipriano

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia

Z. Antunovic,M. Kovac

UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,K. Kadija, J. Luetic,S. Micanovic, L. Sudic

InstituteRudjerBoskovic,Zagreb,Croatia

A. Attikis, G. Mavromanolakis,J. Mousa, C. Nicolaou, F. Ptochos,P.A. Razis, H. Rykaczewski

UniversityofCyprus,Nicosia,Cyprus

M. Bodlak,M. Finger10, M. Finger Jr.10

CharlesUniversity,Prague,CzechRepublic

E. El-khateeb11,T. Elkafrawy11,A. Mohamed12, E. Salama13,11

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

B. Calpas,M. Kadastik, M. Murumaa, M. Raidal, A. Tiko,C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola,J. Pekkanen, M. Voutilainen

DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Härkönen,V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini,S. Lehti, T. Lindén,P. Luukka, T. Peltola,E. Tuominen, J. Tuominiemi,E. Tuovinen, L. Wendland

HelsinkiInstituteofPhysics,Helsinki,Finland

J. Talvitie,T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon,F. Couderc, M. Dejardin, D. Denegri,B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault,P. Jarry, E. Locci, M. Machet,J. Malcles, J. Neveu, J. Rander,A. Rosowsky, M. Titov, A. Zghiche

(9)

I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon,

N. Filipovic,R. Granier de Cassagnac, M. Jo,S. Lisniak, L. Mastrolorenzo, P. Miné, I.N. Naranjo,M. Nguyen, C. Ochando, G. Ortona,P. Paganini, P. Pigard, S. Regnard, R. Salerno,J.B. Sauvan, Y. Sirois, T. Strebler, Y. Yilmaz,A. Zabi

LaboratoireLeprince-Ringuet,EcolePolytechnique,IN2P3-CNRS,Palaiseau,France

J.-L. Agram14, J. Andrea, A. Aubin, D. Bloch,J.-M. Brom, M. Buttignol,E.C. Chabert, N. Chanon, C. Collard, E. Conte14, X. Coubez, J.-C. Fontaine14,D. Gelé, U. Goerlach,C. Goetzmann, A.-C. Le Bihan, J.A. Merlin2, K. Skovpen, P. Van Hove

InstitutPluridisciplinaireHubertCurien,UniversitédeStrasbourg,UniversitédeHauteAlsaceMulhouse,CNRS/IN2P3,Strasbourg,France

S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici,D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, F. Lagarde, I.B. Laktineh,M. Lethuillier, L. Mirabito,A.L. Pequegnot, S. Perries, J.D. Ruiz Alvarez,D. Sabes, L. Sgandurra,V. Sordini, M. Vander Donckt, P. Verdier, S. Viret

UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France

T. Toriashvili15

GeorgianTechnicalUniversity,Tbilisi,Georgia

Z. Tsamalaidze10

TbilisiStateUniversity,Tbilisi,Georgia

C. Autermann, S. Beranek,L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, J.F. Schulte,T. Verlage, H. Weber, V. Zhukov6

RWTHAachenUniversity,I.PhysikalischesInstitut,Aachen,Germany

M. Ata, M. Brodski,E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann,S. Erdweg, T. Esch, R. Fischer,A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner,S. Knutzen, P. Kreuzer,M. Merschmeyer, A. Meyer, P. Millet,S. Mukherjee, M. Olschewski, K. Padeken,P. Papacz, T. Pook,M. Radziej, H. Reithler, M. Rieger, F. Scheuch,L. Sonnenschein, D. Teyssier, S. Thüer

RWTHAachenUniversity,III.PhysikalischesInstitut A,Aachen,Germany

V. Cherepanov, Y. Erdogan,G. Flügge, H. Geenen, M. Geisler, F. Hoehle, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, A. Nehrkorn, A. Nowack,I.M. Nugent, C. Pistone, O. Pooth,A. Stahl

RWTHAachenUniversity,III.PhysikalischesInstitut B,Aachen,Germany

M. Aldaya Martin,I. Asin, N. Bartosik, O. Behnke, U. Behrens,K. Borras16,A. Burgmeier, A. Campbell, C. Contreras-Campana, F. Costanza, C. Diez Pardos,G. Dolinska, S. Dooling,T. Dorland, G. Eckerlin,

D. Eckstein, T. Eichhorn, G. Flucke, E. Gallo17,J. Garay Garcia, A. Geiser, A. Gizhko, P. Gunnellini, J. Hauk, M. Hempel18,H. Jung, A. Kalogeropoulos, O. Karacheban18, M. Kasemann,P. Katsas, J. Kieseler,

C. Kleinwort,I. Korol, W. Lange, J. Leonard,K. Lipka, A. Lobanov, W. Lohmann18,R. Mankel,

I.-A. Melzer-Pellmann,A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme,A. Nayak, E. Ntomari,H. Perrey, D. Pitzl,R. Placakyte, A. Raspereza, B. Roland,M.Ö. Sahin, P. Saxena,

T. Schoerner-Sadenius,C. Seitz, S. Spannagel, K.D. Trippkewitz, R. Walsh, C. Wissing

DeutschesElektronen-Synchrotron,Hamburg,Germany

V. Blobel, M. Centis Vignali, A.R. Draeger,J. Erfle, E. Garutti, K. Goebel, D. Gonzalez, M. Görner, J. Haller, M. Hoffmann,R.S. Höing, A. Junkes, R. Klanner, R. Kogler,N. Kovalchuk, T. Lapsien, T. Lenz,I. Marchesini,

(10)

D. Marconi,M. Meyer, D. Nowatschin, J. Ott, F. Pantaleo2,T. Peiffer, A. Perieanu, N. Pietsch, J. Poehlsen, D. Rathjens,C. Sander,C. Scharf, P. Schleper,E. Schlieckau, A. Schmidt,S. Schumann, J. Schwandt,V. Sola, H. Stadie,G. Steinbrück, H. Tholen, D. Troendle,E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald

UniversityofHamburg,Hamburg,Germany

C. Barth,C. Baus, J. Berger,C. Böser, E. Butz, T. Chwalek, F. Colombo, W. De Boer,A. Descroix,

A. Dierlamm,S. Fink, F. Frensch, R. Friese,M. Giffels, A. Gilbert,D. Haitz, F. Hartmann2,S.M. Heindl, U. Husemann,I. Katkov6, A. Kornmayer2, P. Lobelle Pardo, B. Maier, H. Mildner, M.U. Mozer, T. Müller, Th. Müller, M. Plagge, G. Quast, K. Rabbertz,S. Röcker, F. Roscher,M. Schröder, G. Sieber, H.J. Simonis, F.M. Stober,R. Ulrich, J. Wagner-Kuhr, S. Wayand,M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf

InstitutfürExperimentelleKernphysik,Karlsruhe,Germany

G. Anagnostou,G. Daskalakis, T. Geralis,V.A. Giakoumopoulou, A. Kyriakis, D. Loukas,A. Psallidas, I. Topsis-Giotis

InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece

A. Agapitos,S. Kesisoglou, A. Panagiotou,N. Saoulidou, E. Tziaferi

NationalandKapodistrianUniversityofAthens,Athens,Greece

I. Evangelou,G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos,I. Papadopoulos, E. Paradas, J. Strologas

UniversityofIoánnina,Ioánnina,Greece

G. Bencze,C. Hajdu, A. Hazi,P. Hidas, D. Horvath19, F. Sikler,V. Veszpremi, G. Vesztergombi20, A.J. Zsigmond

WignerResearchCentreforPhysics,Budapest,Hungary

N. Beni,S. Czellar, J. Karancsi21,J. Molnar, Z. Szillasi2

InstituteofNuclearResearchATOMKI,Debrecen,Hungary

M. Bartók22,A. Makovec,P. Raics, Z.L. Trocsanyi, B. Ujvari

UniversityofDebrecen,Debrecen,Hungary

S. Choudhury23,P. Mal, K. Mandal, D.K. Sahoo, N. Sahoo,S.K. Swain

NationalInstituteofScienceEducationandResearch,Bhubaneswar,India

S. Bansal,S.B. Beri, V. Bhatnagar, R. Chawla, R. Gupta,U. Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar,A. Mehta,M. Mittal, J.B. Singh, G. Walia

PanjabUniversity,Chandigarh,India

Ashok Kumar,A. Bhardwaj, B.C. Choudhary, R.B. Garg,S. Malhotra, M. Naimuddin,N. Nishu, K. Ranjan, R. Sharma,V. Sharma

UniversityofDelhi,Delhi,India

S. Bhattacharya, K. Chatterjee,S. Dey, S. Dutta, Sa. Jain, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, A. Roy,D. Roy, S. Roy Chowdhury, S. Sarkar,M. Sharan

SahaInstituteofNuclearPhysics,Kolkata,India

A. Abdulsalam,R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty2,L.M. Pant, P. Shukla, A. Topkar

(11)

T. Aziz, S. Banerjee, S. Bhowmik24,R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly,S. Ghosh, M. Guchait,A. Gurtu25,G. Kole, S. Kumar, B. Mahakud, M. Maity24, G. Majumder, K. Mazumdar, S. Mitra, G.B. Mohanty, B. Parida, T. Sarkar24,N. Sur, B. Sutar, N. Wickramage26

TataInstituteofFundamentalResearch,Mumbai,India

S. Chauhan,S. Dube, A. Kapoor, K. Kothekar, S. Sharma

IndianInstituteofScienceEducationandResearch(IISER),Pune,India

H. Bakhshiansohi,H. Behnamian, S.M. Etesami27, A. Fahim28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh29, M. Zeinali

InstituteforResearchinFundamentalSciences(IPM),Tehran,Iran

M. Felcini,M. Grunewald

UniversityCollegeDublin,Dublin,Ireland

M. Abbresciaa,b, C. Calabriaa,b,C. Caputoa,b,A. Colaleoa,D. Creanzaa,c, L. Cristellaa,b,N. De Filippisa,c, M. De Palmaa,b, L. Fiorea,G. Iasellia,c, G. Maggia,c,M. Maggia, G. Minielloa,b, S. Mya,c, S. Nuzzoa,b, A. Pompilia,b,G. Pugliesea,c,R. Radognaa,b,A. Ranieria,G. Selvaggia,b,L. Silvestrisa,2, R. Vendittia,b

aINFNSezionediBari,Bari,Italy bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy

G. Abbiendia,C. Battilana2, A.C. Benvenutia,D. Bonacorsia,b,S. Braibant-Giacomellia,b, L. Brigliadoria,b, R. Campaninia,b, P. Capiluppia,b,A. Castroa,b,F.R. Cavalloa, S.S. Chhibraa,b, G. Codispotia,b,

M. Cuffiania,b,G.M. Dallavallea,F. Fabbria,A. Fanfania,b,D. Fasanellaa,b, P. Giacomellia, C. Grandia, L. Guiduccia,b,S. Marcellinia,G. Masettia,A. Montanaria,F.L. Navarriaa,b, A. Perrottaa,A.M. Rossia,b, T. Rovellia,b,G.P. Sirolia,b,N. Tosia,b,2,R. Travaglinia,b

aINFNSezionediBologna,Bologna,Italy bUniversitàdiBologna,Bologna,Italy

G. Cappelloa,M. Chiorbolia,b,S. Costaa,b,A. Di Mattiaa, F. Giordanoa,b,R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b

aINFNSezionediCatania,Catania,Italy bUniversitàdiCatania,Catania,Italy

G. Barbaglia, V. Ciullia,b,C. Civininia, R. D’Alessandroa,b,E. Focardia,b,V. Goria,b, P. Lenzia,b, M. Meschinia, S. Paolettia,G. Sguazzonia,L. Viliania,b,2

aINFNSezionediFirenze,Firenze,Italy bUniversitàdiFirenze,Firenze,Italy

L. Benussi, S. Bianco, F. Fabbri,D. Piccolo, F. Primavera2

INFNLaboratoriNazionalidiFrascati,Frascati,Italy

V. Calvellia,b, F. Ferroa, M. Lo Veterea,b, M.R. Mongea,b,E. Robuttia,S. Tosia,b

aINFNSezionediGenova,Genova,Italy bUniversitàdiGenova,Genova,Italy

L. Brianza,M.E. Dinardoa,b, S. Fiorendia,b,S. Gennaia,R. Gerosaa,b,A. Ghezzia,b, P. Govonia,b,

S. Malvezzia, R.A. Manzonia,b,2, B. Marzocchia,b,D. Menascea,L. Moronia, M. Paganonia,b,D. Pedrinia, S. Ragazzia,b, N. Redaellia,T. Tabarelli de Fatisa,b

aINFNSezionediMilano-Bicocca,Milano,Italy bUniversitàdiMilano-Bicocca,Milano,Italy

(12)

S. Buontempoa, N. Cavalloa,c,S. Di Guidaa,d,2, M. Espositoa,b, F. Fabozzia,c,A.O.M. Iorioa,b, G. Lanzaa, L. Listaa,S. Meolaa,d,2,M. Merolaa,P. Paoluccia,2,C. Sciaccaa,b,F. Thyssen

aINFNSezionediNapoli,Napoli,Italy bUniversitàdiNapoli‘FedericoII’,Napoli,Italy cUniversitàdellaBasilicata,Potenza,Italy dUniversitàG.Marconi,Roma,Italy

P. Azzia,2,N. Bacchettaa,L. Benatoa,b, D. Biselloa,b, A. Bolettia,b, R. Carlina,b, P. Checchiaa,

M. Dall’Ossoa,b,2,T. Dorigoa, U. Dossellia,F. Gasparinia,b,U. Gasparinia,b,A. Gozzelinoa,S. Lacapraraa, M. Margonia,b, A.T. Meneguzzoa,b,M. Passaseoa, J. Pazzinia,b,2,M. Pegoraroa, N. Pozzobona,b,

P. Ronchesea,b,F. Simonettoa,b, E. Torassaa, M. Tosia,b, S. Vaninia,b, M. Zanetti,P. Zottoa,b, A. Zucchettaa,b,2,G. Zumerlea,b

aINFNSezionediPadova,Padova,Italy bUniversitàdiPadova,Padova,Italy cUniversitàdiTrento,Trento,Italy

A. Braghieria, A. Magnania,b, P. Montagnaa,b,S.P. Rattia,b,V. Rea, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vituloa,b

aINFNSezionediPavia,Pavia,Italy bUniversitàdiPavia,Pavia,Italy

L. Alunni Solestizia,b, G.M. Bileia,D. Ciangottinia,b,2, L. Fanòa,b,P. Laricciaa,b,G. Mantovania,b, M. Menichellia,A. Sahaa,A. Santocchiaa,b

aINFNSezionediPerugia,Perugia,Italy bUniversitàdiPerugia,Perugia,Italy

K. Androsova,30,P. Azzurria,2,G. Bagliesia,J. Bernardinia,T. Boccalia,R. Castaldia, M.A. Cioccia,30, R. Dell’Orsoa,S. Donatoa,c,2, G. Fedi,L. Foàa,c,†,A. Giassia, M.T. Grippoa,30, F. Ligabuea,c,T. Lomtadzea, L. Martinia,b,A. Messineoa,b,F. Pallaa, A. Rizzia,b, A. Savoy-Navarroa,31, A.T. Serbana,P. Spagnoloa, R. Tenchinia,G. Tonellia,b, A. Venturia,P.G. Verdinia

aINFNSezionediPisa,Pisa,Italy bUniversitàdiPisa,Pisa,Italy

cScuolaNormaleSuperiorediPisa,Pisa,Italy

L. Baronea,b, F. Cavallaria,G. D’imperioa,b,2, D. Del Rea,b,2, M. Diemoza,S. Gellia,b, C. Jordaa,

E. Longoa,b, F. Margarolia,b, P. Meridiania,G. Organtinia,b, R. Paramattia,F. Preiatoa,b, S. Rahatloua,b, C. Rovellia,F. Santanastasioa,b,P. Traczyka,b,2

aINFNSezionediRoma,Roma,Italy bUniversitàdiRoma,Roma,Italy

N. Amapanea,b,R. Arcidiaconoa,c,2,S. Argiroa,b,M. Arneodoa,c,R. Bellana,b, C. Biinoa, N. Cartigliaa, M. Costaa,b, R. Covarellia,b, A. Deganoa,b,N. Demariaa,L. Fincoa,b,2,B. Kiania,b, C. Mariottia,S. Masellia, E. Migliorea,b,V. Monacoa,b, E. Monteila,b,M.M. Obertinoa,b,L. Pachera,b,N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b,F. Raveraa,b,A. Romeroa,b,M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa

aINFNSezionediTorino,Torino,Italy bUniversitàdiTorino,Torino,Italy

cUniversitàdelPiemonteOrientale,Novara,Italy

S. Belfortea,V. Candelisea,b, M. Casarsaa,F. Cossuttia,G. Della Riccaa,b,B. Gobboa,C. La Licataa,b, M. Maronea,b, A. Schizzia,b, A. Zanettia

aINFNSezionediTrieste,Trieste,Italy bUniversitàdiTrieste,Trieste,Italy

A. Kropivnitskaya,S.K. Nam

(13)

D.H. Kim,G.N. Kim, M.S. Kim,D.J. Kong, S. Lee, Y.D. Oh,A. Sakharov, D.C. Son

KyungpookNationalUniversity,Daegu,RepublicofKorea

J.A. Brochero Cifuentes, H. Kim,T.J. Kim

ChonbukNationalUniversity,Jeonju,RepublicofKorea

S. Song

ChonnamNationalUniversity,InstituteforUniverseandElementaryParticles,Kwangju,RepublicofKorea

S. Choi, Y. Go, D. Gyun,B. Hong,H. Kim, Y. Kim,B. Lee, K. Lee, K.S. Lee, S. Lee, S.K. Park,Y. Roh

KoreaUniversity,Seoul,RepublicofKorea

H.D. Yoo

SeoulNationalUniversity,Seoul,RepublicofKorea

M. Choi,H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu

UniversityofSeoul,Seoul,RepublicofKorea

Y. Choi,J. Goh, D. Kim, E. Kwon, J. Lee,I. Yu

SungkyunkwanUniversity,Suwon,RepublicofKorea

V. Dudenas, A. Juodagalvis,J. Vaitkus

VilniusUniversity,Vilnius,Lithuania

I. Ahmed,Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali32,F. Mohamad Idris33,W.A.T. Wan Abdullah, M.N. Yusli

NationalCentreforParticlePhysics,UniversitiMalaya,KualaLumpur,Malaysia

E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo,I. Heredia-De La Cruz34, A. Hernandez-Almada,R. Lopez-Fernandez, A. Sanchez-Hernandez

CentrodeInvestigacionydeEstudiosAvanzadosdelIPN,MexicoCity,Mexico

S. Carrillo Moreno, F. Vazquez Valencia

UniversidadIberoamericana,MexicoCity,Mexico

I. Pedraza, H.A. Salazar Ibarguen

BenemeritaUniversidadAutonomadePuebla,Puebla,Mexico

A. Morelos Pineda

UniversidadAutónomadeSanLuisPotosí,SanLuisPotosí,Mexico

D. Krofcheck

UniversityofAuckland,Auckland,NewZealand

P.H. Butler

UniversityofCanterbury,Christchurch,NewZealand

A. Ahmad, M. Ahmad, Q. Hassan,H.R. Hoorani, W.A. Khan, T. Khurshid,M. Shoaib

(14)

H. Bialkowska,M. Bluj, B. Boimska,T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska,M. Szleper, P. Zalewski

NationalCentreforNuclearResearch,Swierk,Poland

G. Brona,K. Bunkowski, A. Byszuk35,K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski,M. Walczak

InstituteofExperimentalPhysics,FacultyofPhysics,UniversityofWarsaw,Warsaw,Poland

P. Bargassa,C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli,P.G. Ferreira Parracho, M. Gallinaro, J. Hollar,N. Leonardo, L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas,O. Toldaiev,

D. Vadruccio,J. Varela, P. Vischia

LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,Lisboa,Portugal

S. Afanasiev,P. Bunin, M. Gavrilenko,I. Golutvin, I. Gorbunov, A. Kamenev,V. Karjavin, A. Lanev, A. Malakhov,V. Matveev36,37, P. Moisenz, V. Palichik,V. Perelygin, S. Shmatov, S. Shulha,N. Skatchkov, V. Smirnov,A. Zarubin

JointInstituteforNuclearResearch,Dubna,Russia

V. Golovtsov,Y. Ivanov, V. Kim38,E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov,L. Uvarov, S. Vavilov, A. Vorobyev

PetersburgNuclearPhysicsInstitute,Gatchina(St.Petersburg),Russia

Yu. Andreev,A. Dermenev,S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov,N. Krasnikov, A. Pashenkov,D. Tlisov, A. Toropin

InstituteforNuclearResearch,Moscow,Russia

V. Epshteyn,V. Gavrilov, N. Lychkovskaya,V. Popov, I. Pozdnyakov,G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin

InstituteforTheoreticalandExperimentalPhysics,Moscow,Russia

A. Bylinkin

NationalResearchNuclearUniversity‘MoscowEngineeringPhysicsInstitute’(MEPhI),Moscow,Russia

V. Andreev,M. Azarkin37,I. Dremin37, M. Kirakosyan, A. Leonidov37,G. Mesyats, S.V. Rusakov

P.N.LebedevPhysicalInstitute,Moscow,Russia

A. Baskakov,A. Belyaev, E. Boos,M. Dubinin39,L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova,I. Lokhtin,I. Myagkov, S. Obraztsov,S. Petrushanko, V. Savrin, A. Snigirev

SkobeltsynInstituteofNuclearPhysics,LomonosovMoscowStateUniversity,Moscow,Russia

I. Azhgirey,I. Bayshev,S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov,V. Krychkine, V. Petrov, R. Ryutin, A. Sobol,L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian,A. Volkov

StateResearchCenterofRussianFederation,InstituteforHighEnergyPhysics,Protvino,Russia

P. Adzic40,P. Cirkovic, J. Milosevic,V. Rekovic

UniversityofBelgrade,FacultyofPhysicsandVincaInstituteofNuclearSciences,Belgrade,Serbia

J. Alcaraz Maestre,E. Calvo, M. Cerrada,M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle,C. Fernandez Bedoya, J.P. Fernández Ramos,J. Flix, M.C. Fouz,P. Garcia-Abia, O. Gonzalez Lopez,S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino,

(15)

A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo,L. Romero,J. Santaolalla, M.S. Soares

CentrodeInvestigacionesEnergéticasMedioambientalesyTecnológicas(CIEMAT),Madrid,Spain

C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

UniversidadAutónomadeMadrid,Madrid,Spain

J. Cuevas, J. Fernandez Menendez,S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, J.M. Vizan Garcia

UniversidaddeOviedo,Oviedo,Spain

I.J. Cabrillo, A. Calderon, J.R. Castiñeiras De Saa, P. De Castro Manzano, M. Fernandez,J. Garcia-Ferrero, G. Gomez, A. Lopez Virto,J. Marco,R. Marco, C. Martinez Rivero, F. Matorras,J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero,A. Ruiz-Jimeno, L. Scodellaro,N. Trevisani,I. Vila, R. Vilar Cortabitarte

InstitutodeFísicadeCantabria(IFCA),CSIC-UniversidaddeCantabria,Santander,Spain

D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis,P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib,G.M. Berruti, P. Bloch, A. Bocci, A. Bonato, C. Botta,H. Breuker, T. Camporesi, R. Castello, G. Cerminara, M. D’Alfonso,D. d’Enterria, A. Dabrowski,V. Daponte, A. David, M. De Gruttola,F. De Guio, A. De Roeck, S. De Visscher, E. Di Marco41,M. Dobson, M. Dordevic, B. Dorney, T. du Pree,D. Duggan, M. Dünser,N. Dupont, A. Elliott-Peisert,G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill,D. Giordano, M. Girone, F. Glege, R. Guida,S. Gundacker, M. Guthoff, J. Hammer, P. Harris,J. Hegeman, V. Innocente, P. Janot,H. Kirschenmann, M.J. Kortelainen, K. Kousouris,K. Krajczar,P. Lecoq,C. Lourenço,M.T. Lucchini, N. Magini,L. Malgeri, M. Mannelli,A. Martelli, L. Masetti,F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, M.V. Nemallapudi,H. Neugebauer, S. Orfanelli42,L. Orsini, L. Pape, E. Perez, M. Peruzzi,A. Petrilli, G. Petrucciani, A. Pfeiffer,M. Pierini, D. Piparo,A. Racz, T. Reis,G. Rolandi43, M. Rovere, M. Ruan, H. Sakulin,C. Schäfer, C. Schwick,M. Seidel, A. Sharma,P. Silva,M. Simon,

P. Sphicas44, J. Steggemann, B. Stieger,M. Stoye, Y. Takahashi,D. Treille, A. Triossi, A. Tsirou,G.I. Veres20, N. Wardle,H.K. Wöhri, A. Zagozdzinska35, W.D. Zeuner

CERN,EuropeanOrganizationforNuclearResearch,Geneva,Switzerland

W. Bertl,K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski,U. Langenegger, D. Renker, T. Rohe

PaulScherrerInstitut,Villigen,Switzerland

F. Bachmair, L. Bäni, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, P. Eller, C. Grab, C. Heidegger, D. Hits, J. Hoss,G. Kasieczka, W. Lustermann,B. Mangano,M. Marionneau,

P. Martinez Ruiz del Arbol, M. Masciovecchio, D. Meister,F. Micheli, P. Musella,F. Nessi-Tedaldi, F. Pandolfi,J. Pata, F. Pauss, L. Perrozzi,M. Quittnat, M. Rossini,M. Schönenberger, A. Starodumov45, M. Takahashi, V.R. Tavolaro, K. Theofilatos, R. Wallny

InstituteforParticlePhysics,ETHZurich,Zurich,Switzerland

T.K. Aarrestad, C. Amsler46, L. Caminada,M.F. Canelli, V. Chiochia,A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster,C. Lange, J. Ngadiuba, D. Pinna,G. Rauco, P. Robmann, F.J. Ronga, D. Salerno, Y. Yang

UniversitätZürich,Zurich,Switzerland

M. Cardaci, K.H. Chen,T.H. Doan, Sh. Jain,R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdnyakov,S.S. Yu

(16)

Arun Kumar, P. Chang,Y.H. Chang, Y.W. Chang,Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori,

U. Grundler,W.-S. Hou,Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya,E. Petrakou, J.f. Tsai,Y.M. Tzeng

NationalTaiwanUniversity(NTU),Taipei,Taiwan

B. Asavapibhop,K. Kovitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee

ChulalongkornUniversity,FacultyofScience,DepartmentofPhysics,Bangkok,Thailand

A. Adiguzel, M.N. Bakirci47,Z.S. Demiroglu, C. Dozen,E. Eskut, F.H. Gecit, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar,I. Hos, E.E. Kangal48,G. Onengut49,M. Ozcan,K. Ozdemir50,S. Ozturk47, D. Sunar Cerci51, B. Tali51,H. Topakli47, M. Vergili,C. Zorbilmez

CukurovaUniversity,Adana,Turkey

I.V. Akin,B. Bilin, S. Bilmis, B. Isildak52,G. Karapinar53,M. Yalvac, M. Zeyrek

MiddleEastTechnicalUniversity,PhysicsDepartment,Ankara,Turkey

E. Gülmez,M. Kaya54,O. Kaya55, E.A. Yetkin56, T. Yetkin57

BogaziciUniversity,Istanbul,Turkey

A. Cakir,K. Cankocak, S. Sen58

IstanbulTechnicalUniversity,Istanbul,Turkey

B. Grynyov

InstituteforScintillationMaterialsofNationalAcademyofScienceofUkraine,Kharkov,Ukraine

L. Levchuk,P. Sorokin

NationalScientificCenter,KharkovInstituteofPhysicsandTechnology,Kharkov,Ukraine

R. Aggleton,F. Ball, L. Beck, J.J. Brooke, E. Clement, D. Cussans,H. Flacher, J. Goldstein,M. Grimes, G.P. Heath, H.F. Heath,J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold59, S. Paramesvaran,A. Poll, T. Sakuma,S. Seif El Nasr-storey, S. Senkin, D. Smith,V.J. Smith

UniversityofBristol,Bristol,UnitedKingdom

K.W. Bell,A. Belyaev60,C. Brew, R.M. Brown,L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan,

K. Harder,S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea,I.R. Tomalin, T. Williams, S.D. Worm

RutherfordAppletonLaboratory,Didcot,UnitedKingdom

M. Baber,R. Bainbridge, O. Buchmuller, A. Bundock,D. Burton, S. Casasso,M. Citron, D. Colling, L. Corpe, P. Dauncey,G. Davies, A. De Wit, M. Della Negra, P. Dunne, A. Elwood, D. Futyan,G. Hall, G. Iles, R. Lane, R. Lucas59,L. Lyons, A.-M. Magnan, S. Malik, J. Nash, A. Nikitenko45,J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, A. Richards,A. Rose,C. Seez, A. Tapper,K. Uchida, M. Vazquez Acosta61, T. Virdee, S.C. Zenz

ImperialCollege,London,UnitedKingdom

J.E. Cole, P.R. Hobson,A. Khan, P. Kyberd,D. Leggat, D. Leslie,I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

BrunelUniversity,Uxbridge,UnitedKingdom

A. Borzou,K. Call,J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika

(17)

O. Charaf,S.I. Cooper, C. Henderson, P. Rumerio

TheUniversityofAlabama,Tuscaloosa,USA

D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson,J. Rohlf, L. Sulak, D. Zou

BostonUniversity,Boston,USA

J. Alimena,E. Berry, D. Cutts, A. Ferapontov, A. Garabedian,J. Hakala, U. Heintz, E. Laird,G. Landsberg, Z. Mao, M. Narain, S. Piperov,S. Sagir, R. Syarif

BrownUniversity,Providence,USA

R. Breedon,G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan,M. Chertok, J. Conway,R. Conway, P.T. Cox, R. Erbacher,G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur,R. Yohay

UniversityofCalifornia,Davis,Davis,USA

R. Cousins, P. Everaerts, A. Florent,J. Hauser, M. Ignatenko, D. Saltzberg,E. Takasugi, V. Valuev, M. Weber

UniversityofCalifornia,LosAngeles,USA

K. Burt, R. Clare,J. Ellison, J.W. Gary, G. Hanson,J. Heilman, M. Ivova PANEVA, P. Jandir, E. Kennedy, F. Lacroix,O.R. Long, M. Malberti, M. Olmedo Negrete, A. Shrinivas,H. Wei, S. Wimpenny,B.R. Yates

UniversityofCalifornia,Riverside,Riverside,USA

J.G. Branson, G.B. Cerati,S. Cittolin, R.T. D’Agnolo, M. Derdzinski, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill,D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel,A. Vartak,

S. Wasserbaech62,C. Welke, F. Würthwein,A. Yagil, G. Zevi Della Porta

UniversityofCalifornia,SanDiego,La Jolla,USA

J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta,K. Flowers, M. Franco Sevilla,P. Geffert, C. George, F. Golf, L. Gouskos,J. Gran, J. Incandela, N. Mccoll, S.D. Mullin,J. Richman, D. Stuart, I. Suarez,C. West, J. Yoo

UniversityofCalifornia,SantaBarbara,SantaBarbara,USA

D. Anderson,A. Apresyan, A. Bornheim,J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman,C. Pena, M. Spiropulu, J.R. Vlimant,S. Xie, R.Y. Zhu

CaliforniaInstituteofTechnology,Pasadena,USA

M.B. Andrews,V. Azzolini, A. Calamba,B. Carlson, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev

CarnegieMellonUniversity,Pittsburgh,USA

J.P. Cumalat, W.T. Ford,A. Gaz, F. Jensen, A. Johnson, M. Krohn,T. Mulholland, U. Nauenberg, K. Stenson, S.R. Wagner

UniversityofColoradoBoulder,Boulder,USA

J. Alexander, A. Chatterjee, J. Chaves,J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson,A. Rinkevicius, A. Ryd, L. Skinnari,L. Soffi, W. Sun, S.M. Tan, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng,P. Wittich

CornellUniversity,Ithaca,USA

S. Abdullin,M. Albrow, G. Apollinari,S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill,P.C. Bhat, G. Bolla,K. Burkett,J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira,I. Fisk, J. Freeman,

Riferimenti

Documenti correlati

A previous paper (9) studied the most com- mon items associated with non-cancer- related cases of ONJ and found that, simi- larly to the oncologic population, invasive

The empirical analysis of interprovincial migration in Canada is carry out by estimating a logit model where the probability that a person moves from one province

Tale forma (figura 1.1.4) si appoggia su una struttura urbana tendente all’accentramento, in cui gli elementi più importanti sono la chiesa, il mercato e il

Per quanto riguarda le abitudini dei cincillà intervistati l’88,8% ha la possibilità di uscire dalla gabbia/voliera almeno parte del tempo e questo dato risulta

Here, we investigate a coding parameter that may provide the first information on an olfactory stimulus, the glomerular re- sponse latencies. Our aim is to clarify the

was previously shown to bind human recombinant PrP C , and inhibit the replication of a mouse prion in vitro.. and in cells, by acting as a pharmacological chaperone for the native

In this section we focus on the time evolution of the one-body density matrix and the momentum distribution function: these are the most suitable quantities to investigate the