• Non ci sono risultati.

Prediction of particle sticking efficiency for fly ash deposition at high temperatures

N/A
N/A
Protected

Academic year: 2021

Condividi "Prediction of particle sticking efficiency for fly ash deposition at high temperatures"

Copied!
9
0
0

Testo completo

(1)

Proceedings of the Combustion Institute 37 (2019) 2995–3003

www.elsevier.com/locate/proci

Prediction

of

particle

sticking

efficiency

for

fly

ash

deposition

at

high

temperatures

Xin

Yang

a

,

Derek

Ingham

a

,

Lin

Ma

a ,∗

,

Maurizio

Troiano

b

,

Mohamed

Pourkashanian

a

aEnergy2050,DepartmentofMechanicalEngineering,UniversityofSheffield,SheffieldS102TN,UK bDipartimentodiIngegneriaChimica,deiMaterialiedellaProduzioneIndustriale,Università degliStudidiNapoli

FedericoII,PiazzaleVincenzoTecchio80,80125Napoli,Italy

Received28November2017;accepted3June2018 Availableonline25June2018

Abstract

Thetendencyofashparticlestostickunderhightemperaturesisdictatedbytheashchemistry,particle physicalproperties,depositsurfacepropertiesandfurnaceoperationconditions.Amodelhasbeen devel-opedinordertopredicttheparticlestickingefficiencyforflyashdepositionathightemperatures.Themodel incorporatestheparticlepropertiesrelevanttotheashchemistry,particlekineticenergyandfurnace oper-ationconditionsandtakesintoconsiderationthepartialstickingbehaviourandthedepositlayer.Totest themodel,thestickingbehavioursof syntheticashinadroptubefurnaceareevaluatedandtheslagging formationfromcoalcombustioninadown-firedfurnaceismodelled.Comparedwiththemeasurements,the proposedmodelpresentsreasonablepredictionperformanceontheparticlestickingbehaviourandtheash depositionformation.Throughasensitivityanalysis,furnaceoperationconditions(velocityand tempera-ture),contactangleandparticlesizehavebeenfoundtobethesignificantfactorsincontrollingthesticking behavioursforthesyntheticashparticles.Theashchemistryandfurnacetemperaturedictatethewetting potentialoftheashparticlesandthemeltingabilityofthedepositsurface;particlesizeanddensitynotonly controltheparticlekineticenergy,butalsoaffecttheparticletemperature.Thefurnacevelocityconditionhas beenidentifiedasbeingabletoinfluencetheselectivedepositionbehaviour,wherethemaximumdeposition efficiencymovestosmallerparticleswhenincreasingthegasvelocity.Inaddition,thethermophoresiseffect onthearrivalrateof theparticlesreduceswithincreasingthegasvelocity.Further,increasingthemelting degreeof thedepositlayercouldgreatlyenhancethepredicteddepositionformation,inparticularforthe highfurnacevelocitycondition.

© 2018TheAuthor(s).PublishedbyElsevierInc.onbehalfofTheCombustionInstitute.

ThisisanopenaccessarticleundertheCCBYlicense.(http://creativecommons.org/licenses/by/4.0/ )

Keywords: Ashdeposition;Particlesticking;Slagging;Furnaceoperationcondition;CFD

Correspondingauthor.

E-mailaddress:lin.ma@sheffield.ac.uk (L.Ma). https://doi.org/10.1016/j.proci.2018.06.038

1540-7489© 2018TheAuthor(s).PublishedbyElsevierInc.onbehalfofTheCombustionInstitute.Thisisanopen accessarticleundertheCCBYlicense.(http://creativecommons.org/licenses/by/4.0/ )

(2)

1. Introduction

Prediction of ash deposition formation is of greatimportanceintheefficientutilisationof vari-oussolidfuelsandthedevelopmentofcombustion technologies[1–4] .Predictingtheparticlesticking efficiencyisacriticalstepinmodellingtheash de-positionformation, which isdictated bythe ash chemistry,particleproperties,depositsurface prop-erties,andfurnaceoperationconditions.Ash chem-istry dictates the melting potential and the rhe-ology of ash particles, which controls how the molten/partiallymoltenashparticlesbehavewhen impactingontheheatexchanger surfaces.In ad-dition,ashchemistryisimportantindictatingthe degreeof sinteringof thedeposits,whichis rele-vanttotheremovalofdeposits[5] .Depositsurface propertiesareimportantincontrollingthe spread-ingbehaviourandtheenergydissipationoftheash particles impacting on the surfaces.Further, the surfacescouldgraduallybecomestickyduetothe formationoftheliquidphaseonthedepositlayer [6 ,7 ].Highfurnacetemperaturepromotesthe melt-ingofashparticlesandtheformationofthesticky depositlayer.Thedecreaseinthefurnacevelocity conditionunderoxy-coalcombustionconditionin asmallscalefurnacecouldincreasethedeposit ac-cumulationcomparedtotheair-firedcombustion condition[8] .Withoutenoughairtransportedinto thecombustionchamberincursadelayinthe com-bustionandthiscanaggravatethepyrite-induced slaggingformationinthefurnace[9] .

Manyresearcheshavebeenperformedto pre-dicttheparticlestickinessinordertocalculatethe ashdepositionrate.Walshetal.[6] proposedthe particlestickingmodel,wherethestickinessis in-verselyproportionaltoashviscositybasedonthe assumption that the sticking efficiency increases withan increaseinthecontact area betweenthe ash droplets and the deposit surface. The other widely used model is based on the melting be-haviourproposedbyTranetal.[10] ,whichassumes thatonlywhenashparticlesordepositedsurface hasacertain liquidphasecontentthenit is pos-sibleforparticles tobe sticky. Both twoparticle stickingmodelsattempttotakeintoconsideration theashchemistryandfurnacetemperature. How-ever,thereexistlargediscrepanciesinthecriterion valuesduetothenegligenceoftheparticlekinetic energyinthesetwomodels[11–13] .Ontheother hand,Maoetal.[14] developedasemi-empirical dropletsticking/reboundingmodelthroughan en-ergy conservationanalysis of thespread and re-bound of liquid droplets. The model takes into consideration the main parameters (contact an-gle, viscosity, surface tension, droplet size and density)in controllingthesticking behavioursof liquiddroplets.Muelleretal.[15] predictedthe re-boundingbehaviourof largeparticlesfortheash depositionformationinanentrainedflowreactor

byemployingtheenergyconservationbasedmodel [14 ,16 ]. Ni et al. [17] evaluated the sticking po-tentialof slagdropletsthroughusing thesimilar particlesticking/reboundingmodel. Itwasfound thatunderhighvelocityconditions(3-20m/s),the sticking potentials of slagdroplets increase with increasingthe particle velocity andparticle size, which isinconsistent with thepredicted sticking behaviourof slagdroplets byBalakrishnanetal.

[18] ,whereslagdropletshavehighersticking po-tentialwiththelowerparticlesizeandimpact ve-locity.Recently,Kleinhansetal.[19] explainedthe deposition phenomenon of the small aluminum silicateparticles and thelarge iron-rich particles throughemploying a similarenergy based parti-clesticking/reboundingmodel.Theprediction per-formanceoftheenergyconservationbasedmodel isdependent on theprediction of the maximum spreadfactorduringtheimpactionprocess,which wasderivedfromthespreadingof waterdroplets withparticleReynoldsnumbermuchhigherthan thatfortheash droplets[14 ,16 ]. Inaddition,the partialstickingphenomenonhasbeenfoundinthe experimentalinvestigationsofstickingbehaviours ofthedropletswhichhavesmallexcessenergyafter impaction[20–22] ,whichisneglectedintheenergy conservationbasedparticlestickingmodels[14,17– 19] .It is clear thatthe current energy conserva-tionbasedparticlesticking/reboundingmodelstill needsfurtherdevelopment.

Thispaperaimstodevelopanimproved parti-clestickingmodelbasedontheenergyconservation analysisduringtheparticleimpactionprocessesfor ashdroplets.Theproposedmodelconsiderstheash chemistry,particlephysicalproperties,deposit sur-facepropertiesandfurnaceoperationconditions. Inaddition,asensitivityanalysisofthemajor pa-rametersin controlling the particle sticking effi-ciencyhasbeeninvestigatedusingthenewmodel developed.Twodifferentpreviousexperimental re-sultsonparticlestickingbehaviourshavebeenused tovalidatetheproposedparticlestickingmodel, in-cluding(i)thesoda-limeglassparticlessticking ex-perimentsbySrinivasacharetal.[23] ,and(ii)the ash deposition experimentsduring coal combus-tioninadown-fired furnacebyBeckmannet al. [13] .

2. Particlestickingmodel

Slagging of ash droplets on heat exchanger tubes can be described by the spreadand stick-ing of droplets impacting on a target surface [14,24] ,asshownin Fig. 1 .Fornormalimpacts, at stage 1, just before impaction, ash droplets possess kinetic energy, EKE1,andsurface energy,

ESE1. During impaction, ash droplets spread on the tube surface due to the inertial and viscous forces.Thekineticenergyistransferredtothe sur-face energy and partially dissipated in

(3)

overcom-Fig.1.Sticking/reboundingprocessaftertheimpaction ofashdropletsontheheatexchangertubesurface (mod-ifiedfrom[14,24 ]).

ingtheviscous force duetothedeformation. At stage2,onreachingthemaximumspread diame-ter,theflattenedash dropletshavenokinetic en-ergy and possess the maximum surface energy,

ESE2. After that, the splats gradually recoil up-wards.Atstage3,onreachingthemaximumrecoil, theflattened ashdropletshavenokineticenergy, andpossesssurfaceenergy,ESE3,andpotential en-ergy,EPE3.Atstage4,theexcessenergyisdissipated andthedropletsreachequilibriumandsticktothe heatexchangertubesurfaces.Itisassumedthat,if ashdropletshaveenoughenergytoprovidetheash dropletstodetachfromthesurfaceswiththe orig-inalsphericalshape(surfaceenergyequaltoESE1), thereboundoftheashdropletsuponimpactingon thetubesurfacesoccurs[14] .Atthereboundstage, thepotential energyis neglecteddueto itssmall valuecomparedtosurfaceenergy.Therefore,the re-boundcriterioncanbeformulatedasfollows: E∗= 1 ESE 1 [(ESE 3+EPE 3)− ESE 1] = 1 ESE 1 [(ESE 2− EDiss2→3)− ESE 1] (1)

where,E∗istheexcess energy normalizedbythe surfaceenergy(ESE1)instage1,andEDiss2→3isthe energydissipatedbetweenstages2and3.ESE1and

ESE2canbeexpressedas:

ESE 1=πD20γLV (2) ESE 2=ESE_LV+ESE_SL− ESESV = πD2 0γLV  1 4d 2 m(1− cosθ )+ 2 3dm  (3) where, D0 is the particle size of the ash droplets; ESE_LV, ESE_SL and ESE_SV are the

liquid-vapoursurfaceenergy,thesolid-liquid sur-faceenergy, andthesolid-vapoursurfaceenergy, respectively;γLV istheliquid-vapoursurface

ten-sion;dm isthemaximumspreadratio,definedas

theratioof themaximumspreaddiametertothe original droplet size, D0; θ is the contact angle. Thecontact anglecoulddecreasewithincreasing thefurnacetemperatureandthemeltingpotential of the ash particles (relevant to ash chemistry) [19 ,25 ]. In addition, the apparent contact angle shouldbeusedwhenthesurfaceroughnessof the

Fig.2. Comparisonofthepredictedandmeasuredvalue forthemaximumspreadingratio(R2=0.67)andenergy dissipation(R2=0.92)byusingthederivedcorrelations.

heatexchanger tube istaken intoaccount inthe spreadandimpactionoftheashdroplets[14 ,20 ]. Themaximumspreadratioof theashdropletsis assumed to be dependent on the particle Weber numberunderhightemperaturesandtheparticle Reynoldnumberisnotdirectlyconsidered.Dueto thelimitationinobtainingthespreading dataof ash droplets, theexperimentalspreading data of thesucroseand inkdroplets from[14 ,26 ], which havemuch lower particle Reynolds number (ap-proximately30–1000)thanwaterdroplets(higher than 4000) [14 ,26 ], is employed to obtain the empiricalcorrelationofthemaximumspreadratio using the linearregression analysis (as shownin Fig. 2 ):

dm=1+0.259∗ We0.317 (4)

where,We=(ρpUp2D0)/γLV istheparticleWeber

number,ρp isthedensityof theashdroplets;Up

isthenormalcomponentoftheimpactvelocityof theashdroplets.Basedontheassumptionthatthe energy dissipation(EDiss2→3) isafunctionof the maximumspreadratioandthecontactangle[14] ,

EDiss2→3canbeobtainedbasedontheexperimental data[14 ,20 ,23 ]usingpartialleastsquareregression (asshowninFig. 2 ):

EDiss2→3= πD20γLV



0.00536∗ dm4.70∗ (1− cosθ )0.591

 (5) SubstitutingEqs. (2) ,(3 )and(5 )intoEq. (1) ,the excessenergyratio(E∗)canbeexpressedas: E∗= 1 4d 2 m(1− cosθ )+ 2 3dm −0.00536∗ dm4.70∗ (1− cosθ )0.591− 1 (6)

For E∗≤ 0, the sticking efficiency, Estick,

equals tounity. Byconsideringthe partial stick-ing/reboundphenomenonofthedropletswiththe excessenergyslightlylargerthanzero,thesticking efficiencyisassumedtobeafunctionoftheexcess energy ratio, E∗. It is assumed that the sticking efficiency of droplets is not significantwhen the droplets lose more than half of the incoming surfaceenergy [27] ,whichrepresents thesticking

(4)

Table1

Propertiesofthesoda-limeglassparticles.

Glassproperties,Trepresentstemperaturein°C Ashcomposition,% Contactangle,o 180/(1+eT−930100 ) SiO

2 72

Surfacetension,N/m 0.66− 0.0003∗ T Na2O 15

Viscosity,Pas 10(−2.92+T4700−218.76.13) CaO 8

Density,kg/m3 2535− 0.143∗ T MgO 5

efficiency, Estick,being negligible when theexcess

energy ratio islarger than 0.5.The sticking effi-ciency,Estick,canbe expressedbyan exponential

formulationas:

Estick=exp(a∗ E∗), ifE∗>0 (7)

where,a=−9.21tosatisfytheaboveassumption thatEstick=0.01(asmallvaluefortheexponential

formulation)whenE∗=0.5.Sincethestickinessof themolten/partiallymoltendepositlayercouldbe attributedtotheliquidphasecontent[28 ,29 ],itis assumedthattheformationofthedepositlayercan reducetheexcessenergyratiobyafactorrelatedto itsmeltingdegree.Therefore,thestickingefficiency,

Estick∗ ,canbefurtherexpressedasfollows:

Estick∗ =exp[−9.21∗ E∗(1− fmelt)], ifE∗>0 (8)

where,fmelt istheliquidphasecontent(ortermed

asthemeltfraction)ofthedepositsurface,whichis estimatedbythedepositcompositionand temper-aturethroughthechemicalequilibriummethod.

3. Casedescriptions

3.1. Case1:stickingbehaviourofsyntheticash particles

Syntheticashparticles(soda-limeglass)with di-ametersrangingfrom53μmto74μmwereused toinvestigatethesticking behaviourunder differ-entfurnace temperatures (ranging from approxi-mately890Kto1225K).Moredetailsof the de-positionexperimentscanbefoundintheworkof Srinivasacharetal.[23] .Theproperties(ash com-position,contactangle,surfacetension,viscosity, anddensity)of theusedsoda-lime-glassparticles areshown in Table 1 [19 ,23 ]. Deposition experi-mentalresultsshowthat:(i)glassparticlesstartto stickontheprobeat1075Kandthesticking effi-ciencysharplyincreasetounityatatemperatureof 1225Kwhentheparticlevelocityis4m/sand(ii) ashdepositionoccursatlowertemperaturewhen reducingtheparticlekineticenergy.

3.2. Case2:slaggingformationfromcoal combustion

TheSouthAfricanMiddelburgcoalwasusedto investigatetheashdepositionbehaviourinadrop

tubefurnace.Moredetailsofthedeposition exper-imentscanbefoundintheworkofBeckmannetal.

[13] .Theflyashdepositionresultsatthelower lo-cationinthefurnace,wherethecharburnoutis ap-proximately99.4%andtheeffectoftheunburned charontheashdepositionisassumedtobe negli-gible,aremodelledinthisstudy.Theflyash prop-erties(ashcomposition,particlesize,andparticle loading)andthefurnaceconditionsarefromthe workof Beckmannet al.[13] ,andother proper-ties(particledensity,particlespecificcapacity,and surface tension) are estimated basedon the ash composition,asshowninTable 2 [17,30–32] .Since thereisnoexperimentaldataon thecontact an-gle,a valueof 135° isusedin thecurrent study, whichproducesagoodcorrelationwiththe mea-surementsof thedepositionrate.Anuncertainty studyof thecontact angle rangingfrom120° to 160° indicatesthatthevalueofthedepositionrate rangesfrom0.59to1.54g/hfortheuncooledprobe and0.66to2.03g/hforthecooledprobe.

CFD modelling is carried out to predict the flyash depositionbehaviour.ANSYSFluent ver-sion 16.1 has been employed to perform the basiccalculations,incorporating theuser-defined routine DEFINE_DPM_EROSION in order to predicttheashdepositionformation[12 ,33 ]. Math-ematical submodels, such as the Realizable k-ε model with the enhanced wall treatment, Dis-crete Ordinatemodel andDiscrete Phase Model (DPM), were used formodelling the turbulence, radiation heat transfer and particle trajectories, respectively.Both the gravitationalforce andthe thermophoreticforcebyTalbotetal.[34] are con-sideredforpredictingtheparticletrajectories.The computational domainis considered to be a2D geometry(0.3m∗0.6m)withadepositiontubeof outerdiameter22mmplacedinthecentralregion. Afinemesh,whichmeetsthesizerequirementsfor predictingtheparticleimpactionbehaviour[35] ,is distributedaroundthedepositionprobe.Itshould benotedthat, intheCFDsimulations,the parti-clediameters(rangingfrom1μmto150μm)with 50 intervals are used since the difference in the predictedparticlearrivalrateisapproximately5% comparedtotheresultswith150intervals.In addi-tion,the"steadystate"assumptionisusedforboth thecooled(600°C)anduncooledprobessincethis studyfocusesontheash depositionformationat theearlystageinasmalltimeinterval.However,a dynamicmodelisrequiredforpredictingthewhole

(5)

Table2

FlyashpropertiesandfurnaceconditionsusedintheCFDsimulations.

Flyashproperties,Trepresentstemperaturein°C Ashcomposition,% Sizedistribution,μm Rosin-Rammler,Dmean(21),spreadparameter(0.76) SiO2 38.6

Particleloading,kg/h 1.983∗10−2 Al2O3 32.3

Density,kg/m3 3333 Fe

2O3 5.8 Specificcapacity,J/(kgK) 975.65+0.23∗ (T+273.15)+0.24/(T+273.15)2 CaO 12.3 Surfacetension,N/m 0.415+0.004∗ (T− 1400)/100 MgO 2.0 Viscosity,Pas 10(−8.07+T14100+273.72.15) TiO2 1.9 Furnaceconditions Na2O 0.9 Gastemperature,°C 1125 K2O 1.1 Gasvelocity,m/s 0.357 P2O5 2.0 O2,vol%(dry) 3.68 SO3 3.1 CO2,vol%(dry) 15.7

Fig. 3.Comparison of thesticking efficiency(ST) be-tweenthestickingmodelsandmeasurementsasa func-tion of temperature. (For moredetails of theparticle stickingmodelsused,pleaserefertothesupplemental ma-terial.Thesameusageoftheparticlestickingmodelsis appliedtoCase2,asshowninFig. 5 ).

ashdepositiongrowthprocessinordertoconsider theeffectsofthedepositsurfaceconditions (sur-facetemperature,depositshape,etc.)[32 ,33 ,36 ]. 4. Resultsanddiscussion

4.1. Case1:evaluationofstickingefficiencyfor syntheticash

Figure 3 showsthestickingefficiencyasa func-tionof temperatureamong thedifferent sticking models. Comparedto the viscosity based model (criterion value, 105Pa.s [23] ), the melt fraction basedmodel(criterionvalue,15%[10] ),theother energy conservationbasedparticlesticking mod-els proposed by Mao et al. [14] and Kleinhans etal.[19] ,andtheempiricalcorrelationproposed byKleinhansetal.[19] ,thepredictedsticking effi-ciencyonlywhenusingthepresentmodelismore consistent withthe experimentaldata,where the sticking efficiency rapidly increases fromzero to unity in the temperature range from 1050K to 1200K.Figure 4 showsthesensitivityanalysisof themainfactorsonthestickingbehaviourof the soda-limeglassparticleswhilevaryingthe temper-ature.First,thefactors(includingparticlevelocity,

Fig. 4.Sensitivityanalysisof the mainfactorsonthe stickingefficiencyforthesoda-limeglassparticle (size-63.5μm and velocity-4m/s). (For more details of the sensitivityanalysis,pleaserefertothesupplemental ma-terial.).

contactangle,size,anddensity)havenegative sen-sitivitycoefficients,whichrepresentthaton increas-ingthevaluesofthesefactorsreducesthesticking propensities,whilethetemperature,surfacetension andmelt fraction havean oppositetrend. These predictedresultsareinaccordancewiththe previ-ousexperimentalobservations:(i)soda-limeglass particles with less kinetic energy being easierto stickontheprobe[23] ,(ii)dropletsimpactionon thesubstrateswithahighercontactanglebeingless sticky[14 ,37 ,38 ],and(iii)ashslagwithhigher sur-facetensionhavingthelargeradhesionofworkand bondstrength[39] .Second,thevelocity, tempera-ture,contactangleandparticlesizehavethehigher sensitivitycoefficient totheother factors investi-gated,whichisduetothesignificantrolein deter-miningthemaximumsurfaceenergyandtheenergy dissipation.

4.2. Case2:evaluationofdepositionrateforcoal combustion

Figure 5 showstheslagging ratebetween the experimental andpredicted results bythe differ-entparticlestickingmodels.Thepredictedslagging ratesfromthepresentmodelandthepredicted re-sultsfromBeckmannetal.[13] obtainedbyusing theviscositybasedmodel(criterionvalue,25Pa.s) areclosetothemeasurements.Figure 6 presentsthe

(6)

Fig.5. Comparisonofthedepositionratesbetweenthe stickingmodelsandthemeasurements.

Fig.6.Predicteddepositionbehavioursoftheflyash par-ticles:T,KE,IE,andSEarethemassaveragedparticle temperature,log10(kineticenergy),impactionefficiency andstickingefficiency,respectively.

detaileddepositionbehavioursasafunctionofthe particlesizethroughthepresentmodel.First, ther-mophoresisincreases the impactionefficiency of thesmallashparticlesonthecooledprobe,which resultsinahigherslaggingrateforthecooledprobe asobservedinboththepredictedresultsand mea-surements.Second,thepredictedparticlesticking efficiencyisslightlyhigher (by 0.05–0.10)forthe uncooledprobein thisstudy. Third,small parti-cleshaveamuchhigherstickingefficiencythanthe coarse particles andthisis because of thelower kineticenergyinthesmallparticles.However,the viscositybasedparticlestickingmodelmayleadto anoppositerelationshipbetweenthesticking effi-ciencyandtheparticlesizeforthecooledprobeas thesmallerparticleshavelowertemperaturethan thelargerparticlesatthecoolingstage.Inaddition, fortheuncooledprobe,theparticle sticking effi-ciencieswhenusingtheviscositybasedmodelcould besimilarforashparticleswithdifferentsizes.

The furnacevelocity conditionisquite differ-ent among the combustors (lab-scale, pilot-scale and utility boiler) although the smaller scale combustors are carefully designed to match the

Fig.7.Predicteddepositionbehaviourswithincreasing thegasvelocity:IET,SET,andDETrepresenttheoverall impactionefficiency,overallstickingefficiencyandoverall depositionefficiency,respectively.

Fig.8.Predicteddepositionefficiencyasafunctionof particlesizeunderdifferentgasvelocityconditions.

time-temperature history of the particles within utility boilers [40] . A further analysis is carried outbygraduallyincreasingthegasvelocityofthe baselineCFDcaseswiththeoriginalgasvelocity (0.357m/s).Figure 7 presentsthepredicted depo-sitionbehaviours of thecurrent fly ash particles at different gas velocity conditions. The overall particleimpactionefficiency(forallparticlesinthe projected surface) increases from approximately 10%to40%andtheoverallstickingefficiency(for allarrivalparticlesontheprobesurface)decreases fromapproximately45%to4%withincreasingthe gasvelocityupto15m/s,whichresultsinthe de-creaseintheoveralldepositionefficiency(defined as the impaction efficiency∗sticking efficiency) fromapproximately6.1%to1.5%.Inaddition, un-derahighergasvelocity,thedepositionefficiency fortheuncooledprobe couldbehigher thanthe cooledprobe.Thisisbecausethethermophoretic effectontheflyashdepositionbehaviourgradually reduceswithincreasingthegasvelocity.The cool-ingeffectfromthecooleddepositionprobereduces withincreasingthegasvelocity.Figure 8 showsthe depositionefficiencyasafunctionof particlesize underdifferentgasvelocityconditions.The maxi-mumdepositionefficiencygraduallychangesfrom thecoarseparticlesizeregion(100μm)inthelow gasvelocityconditiontothemedium/smallparticle sizeregion(10–30μm)inthehighgasvelocity con-ditions.Thisindicatesthattheselectivedeposition behaviourisrelevanttothegasvelocityconditions in combustors. Barrosoet al. [41 ,42 ] experimen-tallyfoundthatincreasingtheparticlesizecould increase the ash deposition potential in an en-trained flow reactor (≈ 0.5m/s) while Raask

(7)

Fig.9. Predictedoveralldepositionefficiencyasa func-tionofthemeltfractioninthedepositlayer:the enhance-ment factor, FDET=DET/DET0; DET0 is the overall depositionefficiencyforthebaselinecase.

[39] presentedthatsmallparticles(around10μm) depositeasierthanlargerparticlesinutilityboilers (≈ 10–25m/s).Anotherfurtheranalysisiscarried out by gradually increasing the melting degree of thedepositlayer.Figure 9 showstheeffectof increasingthemeltingdegreeofthedepositlayer onthepredictedoveralldepositionefficiency. In-terestingly,theenhancementfactor(8timeswhen usingthemeltfractionwith80%)forthecasewith the highest gas velocity is muchlarger than the othertwocases.Thisindicatesagainthatsticking anddepositionbehaviourarestrictlyrelatedtothe globalandlocalvelocityconditions.

4.3. Remarksonthecurrentparticlestickingmodel

In this paper, an improved particle sticking methodisdevelopedbasedontheenergy conser-vationanalysis.Comparedwiththeexperimental results in the particle sticking behaviour of the sodalimeglassparticlesandtheslaggingformation fromcoalcombustion,theproposedmodel hasa goodpredictionperformance.Thesensitivity anal-ysisshowsthesignificantroleofparticlevelocity, temperature,contactangleandparticlesizein de-terminingtheparticlestickingefficiencyofthe syn-theticashparticles.Furtheranalysisindicatesthat theselectivedepositionbehaviourisrelevanttothe gasvelocityconditionsinthefurnaces.Inaddition, increasingthemeltingdegreeofthedepositsurface couldsignificantlyincreasethestickingefficiency andenhancethedepositionformation,especially forthelargegasvelocityconditions.Highfurnace temperatureandtubesurfacetemperaturecould in-creasetheparticlestickinessandpromotethe for-mationofthestickydepositlayer,whichresultsin therapiddepositaccumulation.Inaddition, con-trollingthegasvelocitycouldalleviatethedeposit accumulationonthestickydepositlayersincefewer particlesareabletoimpact onthetubesunder a lower velocity.Also,increasingthecontact angle betweentheashdropletsandthetubesurfacecould reducetheashdepositionrate,whichisin

accor-dancewiththefindingsbyNaganumaetal.[37 ,38 ], where the surface coatings are used to increase thecontact angleandcontrolthe ashdeposition formation.

The main assumption of thecurrent sticking modelisthatthestickingbehaviourofflyash depo-sitionunderhightemperaturescouldbedescribed bythespreadandstickingof thedroplets. How-ever,impactingashparticlesmaynotbecompletely molten,especiallyinthesuperheaterregionwhere thefluegastemperatureispossiblylowerthanthe ash fusiontemperatures.Inthe proposedmodel, thepresenceofthesolidphaseintheashparticles isindirectly consideredbyitseffectonthe parti-cle wettingproperties (contactangle andsurface tension),which isdependent on thetemperature andashchemistry.Thisconsiderationisconsistent with theresultsreportedby Songet al.[25] and Kleinhans et al. [19] , where it was shown that, withdecreasingtemperatureofash,thecontact an-gleincreasesalongwiththedecreaseinthe melt-ingpotential.Itshouldbenotedthatash viscos-ityisnotdirectlyconsideredinthepresentmodel. Inthework of BennettandPoulikakos [43] ,the surfacetensionissignificanttothespreadfactor evenwellintotheviscousdissipationdomain,while theeffectofviscousdissipationrapidlydisappears inthesurfacetensiondomain.Thisoutcome con-firmstheimportantroleofthecontactangle dur-ingthespreadingofparticles.Viscositycontributes topartof theenergy dissipation[14] ,butthe en-ergycouldnotbehugelydissipatedbyanincrease in the viscosity because ash particles are easier toreboundwiththedecreaseinthetemperature. Inaddition, thespreading data of relatively vis-cousdropletswerechosentodevelopthecurrent model.Accuratetreatmentoftheviscosityinthe predictionofthespreadingbehaviourandthe en-ergydissipationforcoalashrequiresthedetailed knowledgeof theroleof viscosityinthe spread-ingbehaviourduringcoalashdropletimpactionon thesurface,whichneedsfurtherinvestigation.Also, thedetailedunderstandingof thespreadand im-pactionbehaviourof ashparticlesonthedeposit layer(porous/sinteredlayer)needsfurtherstudyin ordertorigorouslytreattheeffectof thedeposit layeronthestickingbehaviour.Inaddition,the in-fluenceoftheresidualcarbonontheenergy dissi-pationduringtheparticlespreadingandimpaction shouldbeinvestigatedinordertoimprovethe pro-posedmodel.Also,theeffectoftheimpactangleon theenergy dissipation requires investigations un-deratemperature-velocityconditionclosetoreal combustors/gasifiers[44] ,whichcouldbeanother aspect for improving the proposed model. Note thatthebulkashcompositionisusedfor predict-ingthestickingbehaviouroftheCase2wherethe coalburnedwasalow-alkalibituminous.This ap-proximation could be less accurate when the fly ash is highly heterogeneous in ash composition,

(8)

especially for fuels with high alkali/pyrite con-tent,whichneedstheparticlebasedash composi-tionbeingusedinpredictingtheparticlesticking behaviour.

5. Conclusions

(i)Animprovedparticlestickingmodel,based ontheenergyconservationanalysisand con-sidering the ash chemistry, particle physi-calproperties,depositsurfacepropertiesand furnaceoperationconditions,hasbeen devel-opedforflyashdepositionathigh tempera-tures.Theproposedparticlesticking model hasbeenvalidatedbythestickingbehaviour of the synthetic ash in a drop tube fur-nace andtheslaggingformationfromcoal combustioninadown-firedfurnacethrough CFDmodelling.

(ii) The sensitivityanalysisshowsthatthe pro-posed model is able to consider the main factors indictatingtheparticlesticking be-havioursof thesyntheticashparticles. Fur-naceoperationconditions(velocityand tem-perature),contactangleandparticlesizeare foundtobesensitiveparametersin determin-ingtheparticlestickingefficiency.

(iii) Furnacevelocityconditionaffectsthe selec-tive depositionbehaviours of fly ash parti-cles. Increasing thegasvelocitycan reduce the particle size which has the maximum deposition efficiency. This implies that the coarseflyashparticlesareeasiertodeposit in smaller scale furnaces while the small-mediumflyashparticlesareeasiertodeposit inutilityboilers.Increasingthemelting de-greeofthedepositlayergreatlyenhancesthe depositionformation,especiallyforlargegas velocityconditions.

(iv) Tubesurfacetemperatureaffectsthe deposi-tionbehaviourviaitsinfluenceonthe parti-clearrivalrateandtheformationofadeposit layer. Underthelowtubesurface tempera-tureandthelowgasvelocitycondition, ther-mophoresisgreatlyincreasesthearrivalrate of smallparticles.Withoutformingasticky deposit layer, the deposition rate could be higherforthecooledtubethantheuncooled tube.However,ifforminganeffectivedeposit layer,thedepositionrateislikelytobehigher fortheuncooledtubethanthecooledtube, especiallyunderhighvelocityconditions.

Acknowledgement

Theauthorsacknowledgethesupportfromthe EPSRC grants(EP/M015351/1 ,OpeningNew Fu-els for UK Generation; EP/K02115X/1, Devel-opmentandEvaluationof Sustainable

Technolo-giesforFlexibleOperationofConventionalPower Plants).

Supplementarymaterials

Supplementarymaterialassociatedwiththis ar-ticlecan be found, inthe online version,at doi: 10.1016/j.proci.2018.06.038 .

References

[1]T.F. Wall , Proc.Combust.Inst31 (1) (2007) 31–47 . [2]Y.Q. Niu , H.Z. Tan , S.E. Hui , Prog.EnergyCombust

52 (2016) 1–61 .

[3]M. Hupa , O. Karlström , E. Vainio , Proc.Combust. Inst36 (1) (2017) 113–134 .

[4]P.M. Walsh , A.F. Sarofim , J.M. Beer , EnergyFuels6 (6) (1992) 709–715 .

[5]A. Zbogar , F. Frandsen , P.A. Jensen , P. Glarborg ,

Prog.EnergyCombust.35 (1) (2009) 31–56 . [6]P.M. Walsh , A.N. Sayre , D.O. Loehden , L.S. Mon-

roe , J.M. Beér , A.F. Sarofim , Prog.EnergyCombust.

16 (4) (1990) 327–345 .

[7]G.D. Li , S.Q. Li , Q. Huang , Q. Yao , Fuel143 (2015) 430–437 .

[8]D.X. Yu , W.J. Morris , R. Erickson , J.O.L. Wendt , A. Fry , C.L. Senior , Int.J.Greenh.GasControl 5 (Supplement 1) (2011) S159–S167 .

[9]H.L. Wee , H.W. Wu , D.K. Zhang , D. French , Proc. Combust.Inst.30 (2) (2005) 2981–2989 .

[10]H. Tran , X. Mao , D.C.S. Kuhn , R. Backman , M. Hupa , J.PulpPaperSci.103 (9) (2002) 29–33 . [11]C. Wieland , B. Kreutzkam , G. Balan , H. Spliethoff,

Appl.Energy93 (2012) 184–192 .

[12]X. Yang , D. Ingham , L. Ma , A. Williams , M. Pourkashanian , Fuel165 (2016) 41–49 . [13]A.M. Beckmann , M. Mancini , R. Weber , S. Seebold ,

M. Müller , Fuel167 (2016) 168–179 .

[14]T. Mao , D.C.S. Kuhn , H. Tran , AIChE J. 43 (9) (1997) 2169–2179 .

[15]C. Mueller , M. Selenius , M. Theis , et al. , Proc. Com-bust.Inst.30 (2) (2005) 2991–2998 .

[16]M. Pasandideh-Fard , Y.M. Qiao , S. Chandra , J. Mostaghimi , Phys.Fluids8 (3) (1996) 650–659 . [17]J.J. Ni , G.S. Yu , Q.H. Guo , Z.J. Zhou , F.C. Wang ,

EnergyFuels25 (3) (2011) 1004–1009 .

[18]S. Balakrishnan , R. Nagarajan , K. Karthick , Energy

81 (2015) 462–470 .

[19]U. Kleinhans , C. Wieland , S. Babat , G. Scheffknecht , H. Spliethoff, Proc. Combust. Inst. 36 (2) (2017) 2341–2350 .

[20]W.K. Hsiao , J.H. Chun , N. Saka , J.Manuf.Sci.Eng.

131 (2) (2009) 021010-021001-021010-021018 . [21]M. Troiano , F. Montagnaro , P. Salatino ,

R. Solimene , Fuel209 (2017) 674–684 .

[22]M. Troiano , T. Santagata , F. Montagnaro , P. Salatino , R. Solimene , Fuel 202 (Supplement C) (2017) 665–674 .

[23]S. Srinivasachar , J.J. Helble , A.A. Boni , Proc. Com-bust.Inst.23 (1) (1991) 1305–1312 .

[24]S. Chandra , C.T. Avedisian , Proc. R. Soc. A 432 (1884) 13 (1991) .

[25]W.J. Song , Y. Lavallée , F.B. Wadsworth , K.-U. Hess , D.B. Dingwell , J. Phys. Chem. Lett. 8 (8) (2017) 1878–1884 .

(9)

[26] A. Asai , M. Shioya , S. Hirasawa , T. Okazaki , J. ImagingSci.Technol.37 (1993) 205–207 .

[27] S. Singh , D. Tafti , Int.J.HeatFluidFlow 52 (2015) 72–83 .

[28] P. Isaac , H. Tran , D. Barham , D. Reeve , J.PulpPaper Sci.12 (3) (1986) J84–J88 .

[29] S.K. Kær , L.A. Rosendahl , L.L. Baxter , Fuel85 (5) (2006) 833–848 .

[30] A. Kucuk , A.G. Clare , L. Jones , GlassTechnol.40 (5) (1999) 149–153 .

[31] K.C. Mills , J.M. Rhine , Fuel68 (7) (1989) 904–910 . [32] F.L. Wang , Y.L. He , Z.X. Tong , S.Z. Tang , Int.J.

HeatMassTransf.104 (2017) 774–786 .

[33] X. Yang , D. Ingham , L. Ma , H. Zhou , M. Pourkashanian , Fuel194 (2017) 533–543 . [34] L. Talbot , R.K. Cheng , R.W. Schefer , D.R. Willis , J.

FluidMech.101 (4) (2006) 737–758 .

[35] R. Weber , N. Schaffel-Mancini , M. Mancini , T. Kupka , Fuel108 (2013) 586–596 .

[36] M. García Pérez , E. Vakkilainen , T. Hyppänen , Fuel

181 (2016) 408–420 .

[37] H. Naganuma , N. Ikeda , T. Ito , et al. , Fuel106 (2013) 303–309 .

[38] H. Naganuma , N. Ikeda , T. Kawai , et al. , Proc. Com-bust.Inst.32 (2) (2009) 2709–2716 .

[39] E. Raask , Mineral Impurities in Coal Combustion: Behavior, Problems, and Remedial Measures, Hemi- sphere Publishing Corporation, New York, USA, 1985, pp. 172–173. 196-197 .

[40] X. Yang , D. Ingham , L. Ma , N. Srinivasan , M. Pourkashanian , Proc.Combust.Inst.36 (3) (2017) 3341–3350 .

[41] J. Barroso , J. Ballester , L.M. Ferrer , S. Jiménez , Fuel

Process.Technol.87 (8) (2006) 737–752 .

[42] J. Barroso , J. Ballester , A. Pina , FuelProcess. Tech-nol.88 (9) (2007) 865–876 .

[43] T. Bennett , D. Poulikakos , J.Mater.Sci.28 (4) (1993) 963–970 .

[44] M. Troiano , R. Solimene , P. Salatino , F. Montag- naro , Fuel Process. Technol. 141 (Part 1) (2016) 106–116 .

Riferimenti

Documenti correlati

The aim of this work was to compare the fly ash emission and to analyze the particle size distribution of fly ash emitted by coal combustion and co-combustion of coal with

Concrete mixture with a slump cone standard of 8 to 18 cm [8-10], which corresponds to the parameters of concrete mixtures are used in the hot and humid climate of Vietnam [11],

possa essere interpretata come «a block which may, in some cases, be regarded as a substantive (§ 157); it will therefore be possible to consider it as a genitive in re- lation to

Nel presente lavoro, per quanto riguarda l’indice Δ+ nei tre campi considerati, i trattamenti Singolo e Multiplo e il Controllo, in generale, non evidenziano variazioni

Messina (IPA: [mesˈsiːna] ascolta, Missina in siciliano, Μεσσήνη/Μεσσήνα in greco) è un comune italiano di 236 034 abitanti capoluogo dell'omonima città metropolitana

L’analisi attenta della letteratura internazionale sul tema della valutazione dell’ICT in sanità, che ha interessato 190 paper scientifici (sottoposti a peer

Denominazione: Catena di spettrometria gamma ORTEC8 N° serie o matr.:42-P41218A– Dspec 1369 Costruttore: rivelatore ORTEC – elettronica ORTEC Collaudata

Considering the peculiarity of the studied area, three sets of describing parameters at the catchment scale have been selected: the first related to the natural features connected