• Non ci sono risultati.

Growing Research Networks on Mycorrhizae for Mutual Benefits

N/A
N/A
Protected

Academic year: 2021

Condividi "Growing Research Networks on Mycorrhizae for Mutual Benefits"

Copied!
10
0
0

Testo completo

(1)

Opinion

Growing

Research

Networks

on

Mycorrhizae

for

Mutual

Benefits

Olga

Ferlian,

1,2,

* Arjen

Biere,

3

Paola

Bonfante,

4

François

Buscot,

5,1

Nico

Eisenhauer,

1,2

Ivan

Fernandez,

5

Bettina

Hause,

6

Sylvie

Herrmann,

5,1

Franziska

Krajinski-Barth,

7

Ina

C.

Meier,

8

Maria

J.

Pozo,

9

Sergio

Rasmann,

10

Matthias

C.

Rillig,

11,12

Mika

T.

Tarkka,

5,1

Nicole

M.

van

Dam,

1,13

Cameron

Wagg,

14

and

Ainhoa

Martinez-Medina

1,13,

*

Researchonmycorrhizalinteractionshastraditionallydevelopedintoseparate disciplinesaddressingdifferentorganizationallevels.Thisseparationhasledto anincompleteunderstandingofmycorrhizalfunctioning.Integrationof mycor-rhiza research at different scales is needed to understand the mechanisms underlying the context dependency of mycorrhizal associations, and to use mycorrhizaeforsolvingenvironmentalissues.Here,weprovidearoadmapfor the integration of mycorrhiza research into a unique framework that spans genestoecosystems.Usingtwokeytopics,weidentifyparallelsinmycorrhiza researchatdifferentorganizationallevels.Basedontwocurrentprojects,we showhow scientific integration creates synergies, and discuss future direc-tions. Only by overcoming disciplinary boundaries, we will achieve a more comprehensiveunderstandingofthefunctioningofmycorrhizalassociations.

TrajectoriesinMycorrhizaResearch

In2000,MillerandKlingstated that‘tosucceed,the mycorrhiza(seeGlossary)research communitymustgobeyondtheirusualdisciplinaryboundariesandintegratetheirworkwith thatofotherresearchers’[1].Althoughsomeadvanceshavebeenmadeinthe18yearssince, mycorrhiza research still largely develops by specializing within different disciplines of biology. During the 19th century, researchinto arbuscular mycorrhiza commenced with the discovery of fungal structures colonizing roots [2,3]. This early research was initially dominatedbythedescriptionsoffungalmorphologicaltraitsandpotentialfungaleffectson plantperformance.Suchearlyresearchstayedattheorganismallevel,revealingmoreabout thefungi,andstudyingeffectsattheindividualhostplantlevel.Duringthesecondhalfofthe 20thcentury,researchonmycorrhizaeandtheirinteractionsdevelopedintotwomaindistinct directions:cellularand,later,subcellularbiologyontheonehand,andecologyontheother hand.

Thisspecializationhasled tomanycrucial discoveriesinmycorrhizalbiology. Focusingon cellularprocesses,ultrastructuralstudiesduringthe1970sledtothefirstdetaileddescriptionof plant–fungalinteractions.Thisincludedarbuscule formation,the identification ofthe peri-arbuscularmembrane,aswellasidentificationoftheinterface(i.e.,thecontactareabetween theinteractionpartners)[4].Ontheecologicalside,therealizationthatunequalbenefitsmaybe providedtodifferentplantspecies[5]ledtoinvestigationsoftheimportanceofmycorrhizaein mediatingplant adaptationand evolutionas well as in structuringplant communities and biogeochemicalcycles[6].Amilestoneherewastheexperimentaldemonstrationofarbuscular mycorrhizal(AM)fungaldiversityeffectsonplantcommunitydiversityandproductivity[7].

Highlights

Mycorrhizaresearch hastraditionally

developedinto distinctdisciplinesat

different organizational levels from

thecellulartoecosystemlevel.

This separation leads to a limited

understandingofmycorrhiza

function-inganditsrolewithinecosystems.

Here,weshowhowthedifferent

dis-ciplinesinmycorrhizaresearch

com-monly address the same general

questionsand how thesequestions

arenestedinthenextorganizational

level.

By integrating different disciplines, these

disciplines are abletocomplementeach

otherandfosterthedevelopmentofa

comprehensive understanding of

mycorrhizalassociations.

Weintroducetwoongoingprojectsas

exampleswheretheintegrationof

dis-ciplines in mycorrhiza research is

alreadycommonpractice.

1

GermanCentreforIntegrative

BiodiversityResearch(iDiv)

Halle-Jena-Leipzig,DeutscherPlatz5e,

04103Leipzig,Germany

2

InstituteofBiology,Leipzig

University,DeutscherPlatz5e,04103

Leipzig,Germany

3

NetherlandsInstituteofEcology

(NIOO-KNAW),Droevendaalsesteeg

10,6708PBWageningen,The

Netherlands

4

DepartmentofLifeSciencesand

SystemsBiology,UniversityofTorino,

VialeMattioli25,10125Torino,Italy

5

DepartmentofSoilEcology,

Helmholtz-CentreforEnvironmental

(2)

Withmethodologicalandconceptualadvances,thefieldofmycorrhizaresearchhasextended furtherfollowingstudiesonthephysiologyofplants[8]andonecosystemeffects[7,9].Eachof thefieldsaddresses differentscalesandlevelsoforganization.Consequently, theyhave developedindistinctdirectionsintermsofthequestionsaddressed,scope,methods,and, perhaps most importantly, training and specialization of researchers. This division of the researchfieldisillustratedbythefactthattherearetwomaininternationalscientificconferences onmycorrhizalresearch:theInternationalConferenceofMycorrhiza(ICOM),focusingmostly onecologicalresearch onmycorrhiza, andthe International MolecularMycorrhiza Meeting (iMMM),focusingmostlyonmolecularmycorrhizaresearch.Albeiteffectiveinmanyrespects, thishistoricpartitioningintoseparatefieldssometimeshindersacomprehensiveunderstanding ofhowmycorrhizaefunctionandinfluencetheirbioticandabioticenvironment.Forinstance, ourknowledgeoftheimpactofmycorrhizaeonecosystemfunctionsandservicesisrelatively incomplete.Thisisduetothecontext-dependentnatureofthesymbiosis,whichisdrivenby environmentalconditionsaswellasthespeciesidentityoftheplantand/orfungalpartner.The interactioncanexistalongacontinuumofpossibleoutcomesfortheplant,frommutualisticto detrimental[10].Onlybydevelopingnewinvestigationmodelsthatintegratemultiplelevelsof organizationwillwebeabletounderstandhowenvironmentalcontextimpactstherelationships ofplantswiththeirmycorrhizalsymbionts.Thiswillallowustomakerealisticpredictionsofthe contributionofmycorrhizaetothefunctioningofecosystemsandtoagriculturalpractices[11]. Thus,wearguethatmycorrhizaresearchcanreachanewlevelofinsightbyintegratingthe strengths of the increasingly separated research disciplines, both from the cellular to the ecosystemlevelandviceversa.

Here, we highlight how major topics in mycorrhiza research have been independently addressedbydifferentdisciplinesacrossdifferentorganizationallevels, andhowtheycould complementeachother.Withineachtopic,wefocusonfourorganizationallevelsoflife:the cellularandsubcellularlevel(hereaftercalledthecellularlevel),theplantphysiologicallevel, theplantcommunity level,and theecosystemlevel.To stressthe gainsofintegrating researchacrosslevelsoforganization,wepresentanoverviewofthebenefitstheymayprovide toeach other.Moreover,westressthat,among theorganizationallevels, aconsensuson researchpracticesmustbereached.Finally,wegiverecommendationsforfuturedirections towards integrative research networks, which aim at a more complete understanding of mycorrhizalassociationsandtheirfunctioning.Asproofofconcept,weintroducetworecently developedprojectsinwhichsucheffortsarealreadyunderway.Wefocusonthetwomost commonlystudiedmycorrhizaltypes,namelyAMandectomycorrhizae(ECM),whicharealso themostcommonmycorrhizalsymbiosesinnaturalecosystems.Studiesofmycorrhizaeatthe physiologicalandcellularlevelarestronglybiasedtowardsAMcomparedwithECM.However, thisimbalance,whichisreflectedinthepredominanceofAMcomparedwithECMexamplesin ourpaper, does notimpede the validityof thepresented framework, because this can in principlebeappliedtoanytypeofmycorrhizae.

Multi-LevelConnectionsinMycorrhizaResearch

Mycorrhizaresearchspanslower-organizationallevelprocesses[e.g.,inorganicphosphorus (Pi)uptakeandtransportmechanisms,andmodulationofplantimmunity]to

higher-organiza-tionallevelsthataffectplantcommunityandecosystemfunctioning(e.g.,biogeochemical cyclesormultitrophicinteractions).Whilemoststudiesfocusononeortwolevelsof organiza-tion,mycorrhiza-relatedprocessesatonelevel arelikely nested inand,thus,may provide mechanismsunderlyingthefindingsof,thenexthigherlevel(Figure1,KeyFigure).Here,we illustratethepotentialnestingandlinksacrossthedifferentorganizationallevelsinmycorrhiza

Research–UFZ,

Theodor-Lieser-Straße4,06120Halle,Germany

6

LeibnizInstituteofPlant

Biochemistry,Weinberg3,06120

Halle,Germany

7

InstituteofBiology,Leipzig

University,Johannisallee21-23,04103

Leipzig,Germany

8

PlantEcology,Universityof

Goettingen,UntereKarspüle2,37073

Göttingen,Germany

9

DepartmentofSoilMicrobiologyand

SymbioticSystems,Estación

ExperimentaldelZaidín(CSIC),Prof.

Albareda1,18008Granada,Spain

10

InstituteofBiology,Universityof

Neuchâtel,RueEmile-Argand11,

2000Neuchâtel,Switzerland

11

InstituteofBiology,FreieUniversität

Berlin,Altensteinstr.6,14195Berlin,

Germany

12

Berlin-BrandenburgInstituteof

AdvancedBiodiversityResearch

(BBIB),Altensteinstr.6,14195Berlin,

Germany

13

InstituteofBiodiversity,Friedrich

SchillerUniversityJena,Dornburger

Str.159,07743Jena,Germany

14

DepartmentofEvolutionaryBiology

andEnvironmentalStudies,University

ofZurich,Winterthurerstrasse190,

CH-8057Zürich,Switzerland

*Correspondence:

olga.ferlian@idiv.de(O.Ferlian)and

ainhoa_martinez.medina@idiv.de(A. Martinez-Medina).

(3)

Glossary

Arbuscule:ahighlybranched

structureproducedbyAMfungi

insidearootcorticalcelloftheir

host.Arbusculesareconsideredto

bethemainsiteofnutrientexchange

betweenthefungalandplant

symbioticpartners.

Cellularlevel:researchthatfocuses

onthestructureandfunctionsof

plantandfungalcellsinvolvedinthe

symbiosis.

Commonmycelialnetworks

(CMNs):abelowgroundnetworkof

mycorrhizalhyphaelinkingrootsof

plantsofthesameordifferent

species.

Defensepriming:aprocessthat

conditionsplantspeciesforthe

enhancedinductionofdefenses,

oftenresultinginenhancedpestand

diseaseresistanceandabioticstress

tolerance.

Discipline:fieldofresearchwitha

specificfocus.Itoftenfocusesona

specificleveloforganization.

Ecosystemfunctioning:physical,

geochemical,andbiologicalactivities

andtheireffectswithinan

ecosystem.Theycanbegrouped

intosizes(orstocks),suchas

nutrientpools,andratesof

processes,andfluxesofmaterial.

Ecosystemlevel:researchthat

focusesonthewholeecosystem

(i.e.,acommunityoforganismsthat

interactwitheachotherandtheir

environment).

Leveloforganization

(organizationallevel):unitwithina

hierarchicalsystemofbiological

structuresandsystems

characterizinglife.Witheachlevel,

organizationalcomplexityincreases

becauseitcomprisestheprevious

level;notethat,inthispaper,we

refertoasystemwithfourlevels

(ecosystem,plantcommunity,plant

physiological,andcellularlevel),

whichmaydifferfromtheclassical

ecologicallevelsoforganization.

Mycorrhiza:asymbioticassociation

betweenasoilfungus(the

mycorrhizalfungus)andaplantroot,

inwhichplantphotosynthatesare

exchangedformineralresources

acquiredbythefungusfromthesoil.

Periarbuscularmembrane:novel

symbiosis-specificmembrane,

derivedfromtheplantand

developedatthemomentoffungal

penetrationandarbuscule

researchbyusingtwoexamplesofkeytopicsinmycorrhizaresearch:Piuptakeand

multi-trophicinteractions.

Example1:EffectofMycorrhizalAssociationsonPlantPhosphorusUptake

TheAMsymbiosis provides aneffective way(the AM pathway)to scavenge Pifrom large

volumesof soilandrapidlydeliver it to rootcorticalcells, thereby bypassingdirect rootPi

uptake.CellularresearchrevealedPitransportersinvolvedinthemycorrhizalphosphateuptake

KeyFigure

Schematic

Overview

of

Research

at

the

Different

Levels

of

Organization

and

the

Processes

Studied

in

Mycorrhizal

Biology

in

the

Context

of

(A)

Inorganic

Phosphorous

(P

i

)

Uptake

and

(B)

Multitrophic

Interactions

Pi uptake Mul trophic interac ons

Ecosystem level Plant community level Plant physiology level Cellular level PO PO PO

PO soil organic ma erSoil/

Primary producers Herbivores Decom-posers Herbivore a ack Plant stress signals Mycorrhizal signaling Periarbuscular space Plant cell AMF Pi Pi Pi PiHH⁺ H⁺ ADP ATP + Plant cell wall Plant cell Effectors MTI AMF PRR (B)

(A) Figure1.Eachdrawingdepictsonelevel

oforganizationcoveringthecellular,plant

physiological,plantcommunity,and

eco-systemlevel.Eachlevelwithitsprocesses

isnestedwithinthenexthigherlevel,as

indicatedbythemagnifying circles. (A)

ThePcycleofan ecosystemandthe

contribution of plant communities (top

offigure).Zoomingintothese

contribu-tions,mycorrhizalinteractionswithinthe

plantcommunityandtheirdiverse

myce-lialnetworksbecomevisible.Plant

phy-siologicalresponsestomycorrhizalfungi,

suchasalteredplantgrowthandaltered

susceptibilitytoantagonists,driveplant

communityresponses.Atthebase,

sub-cellularandcellularprocessesofPi

trans-portattheinterfaceofthefungusandthe

plantrootcelldetermineplant

physiolo-gicalresponses.(B)Organismal

interac-tionsatthewholeecosystemlevel(top

figure). Zooming into the interactions

among mycorrhizal plants, multitrophic

interactions via signaling pathways

(inducedbyherbivoreattackand

subse-quent parasitoid recruitment) become

apparentaswellassignalingofherbivore

attack within the plant community via

common mycelial networks. The

pro-cesses by which the plant allocates

defensecompoundsto itsleaves

(fos-teredbytheassociationwith

mycorrhi-zae),which preventtheherbivorefrom

feeding,become apparent atthe next

level.Atthebase,mycorrhizalfungi

mod-ulateplantimmunitytoestablishthe

sym-biosis, leading to a defense signaling

cascadethatcanenhanceplantimmunity

againstherbivores.Abbreviations:AMF,

arbuscular mycorrhizal fungus; MTI,

microbial-associated molecular pattern

(MAMP)-triggered immunity; PRR:

(4)

pathway.Someofthesetransportersshowconstitutive transcriptlevelsinnon-mycorrhizal roots[12],whileothersaremostlyexpressedinarbuscule-containingcells[13] (Figure1A). TheseplantPitransportersarelocatedintheperiarbuscularmembraneandtakeupphosphate

ionsfromtheperiarbuscular space,theapoplastic compartmentbetweentheplant periar-buscular membrane and fungal plasma membrane in arbuscule-containing cells. Recent molecularstudiesdemonstratedthatspecificH+-ATPaseproteinsintheperiarbuscular mem-branearerequiredtogeneratetheprotongradientnecessaryfortheactionofPitransporters

[14].Theseresultsarerelevantfor understandingtheregulationofPiacquisitioninthe AM

symbiosis.However,withoutaddressingthephysiologicallevel,thisinformationisnotsufficient fordeterminingtherelevanceoftheAMpathwaywithrespecttothedirectPiuptakepathway.

ThesameappliestoassessingitsnetcontributiontoplantPiuptakeand,thus,plantnutrition

andfitness.

PlantphysiologicalresearchrevealedthattheAMpathwayhasamajorroleinPiuptakeand,

consequently,inplantgrowth(Figure1A).Experimentswithsingleplantsandplant communi-tiesshowedthatAMfungicontributeupto90%ofplantPlevels[15–17].However,colonization bydifferentAMfungalspeciescanresultindifferentfitnessresponsesoftheplant[18].Similarly, colonizationbythesameAMfungalspeciesdoesnotnecessarilyresultinthesamefitness responseindifferentplantspecies.Thisindicatesthatthereisconsiderablefunctionaldiversity amongplant–AMfungalsymbioses.Indeed,AMassociationshavealsobeenshowntovaryin theirphysiologicalcharacteristics[19].Still,themajorforcesdrivingthisfunctionaldiversityare widelyunknown.Combiningacellularapproachwithphysiologicalexperimentsisapowerful approach to illuminatemycorrhizal functions, whileproviding a genetic explanationfor the functionalvariationobserved.Suchinformationcanevenbeimplementedinthedevelopment ofbiomarkersfortheassessmentofmycorrhizalfunctionaldiversityandfortheselectionof efficient crop–fungus combinations for increasing agricultural productivity. Moreover, the symbiotic efficiency in termsof plant Pi uptake is further influenced by fungalcommunity

composition[7].TopredictthenetimpactofmycorrhizaeonPiuptake,itisessentialtocombine

physiologicalstudieswithstudiesatthecommunitylevel,whereplantsarepartofcomplex species interaction networks. To achieve this, it is crucial that techniques, such as high-throughputsequencing,transcriptomics,andmetabolomics,areusedinthefield.

Studiesattheplantcommunitylevelshowedthatboththeproductivityandcompositionof plant communities arealtered by mycorrhizalassociations. Mycorrhizae indirectly causea redistributionofsoilresourcesamongplants(Pi)byenhancingtheresourceacquisitionand

competitiveabilitiesofsomeplantsoverothers [20].Furthermore,agreaterrichnessofAM fungalspecieshasbeenshownnotonlytoincreasenetprimaryproductivitythroughPisupply,

butalsotomaintainamorediverseplantcommunityonwhichotherorganismsmaydepend[9]. Directly, Pi allocation among plants is also changed through common mycelial networks

(CMNs)[16] (Figure1A). However,our knowledgeofPitransport(and nutrientsingeneral)

amongplantsandcarbontransferbetweenplantsandmycorrhizalfungiinCMNsislimited[21]. Assessingthepotentialcausesandeffectsoftheseresourcefluxesoncommunityfunctioning requiresanunderstandingofthecellularandphysiologicalprocessesdrivingthistransfer,and thefactorsregulatingtheseprocesses.Moreover,abioticfactors,suchassoilnutrient avail-ability,aswellasmicro-andmacroclimate,canaffectthenetimpactofmycorrhizaeonplantPi

uptakeand distribution in the community.The globalimpact of such factorscan only be assessedinecologicalsettings.

Researchatthe ecosystemlevel revealedthatmycorrhizal associationshave a keyrole in shapingecosystemstructureandfunctionbyalteringthedistributionofPamongspecies,how

development;alsoknownasthe

perifungalmembrane.

Plantcommunitylevel:research

thatfocusesoninteractionswithina

plantcommunity(i.e.,all

co-occurringplantsinagiventimeand

space).

Plantphysiologicallevel:research

thatfocusesontheinternal(chemical

orphysical)functioningofplantsand

theirpartsthataffectplantfunctions,

(5)

itisrecycledbetweenabove–belowgroundecosystemcompartments,andultimatelyretained withinanecosystem[7,22](Figure1A). Alltheseprocessesmaydiffer betweenecosystem typesandareaffectedbydifferentabioticfactors,suchas thosementionedabove.Thisis typicallyreferredtoas‘contextdependency’.However,withoutknowledgeofthephysiological andplant community perspectiveon processesof resource distribution among plants via CMNs,itishardtopredicthowchangesintheprocessesareaffectedbydifferentcontextsand toidentifythedriversofthechanges.

Example2:EffectsofMycorrhizalAssociationsonMultitrophicInteractions

Cellular biological research on multitrophic interactions with mycorrhizae has yielded two important insights.First,following theexchange of signalsduring the presymbioticphase, plantsinitiallyrecognizemycorrhizalfungitoacertainextentaspotentialinvaders,triggeringa mild immune response [23]. This immune response resembles the microbial-associated molecularpattern(MAMP)-triggeredimmunity(MTI)mountedafterpathogenrecognition.Such plantresponsescansubsequentlybecounteractedbythesecretionoffungaleffector mol-ecules[24,25]and/orbytheplantperceptionofMYCfactors[26].Asaresultofthismolecular dialogbetweenbothpartners,thelevelsofseveraldefense-relatedphytohormonesandother metabolitescan bealtered in mycorrhizalroots, and even shoots[27,28]. Second,recent studiessuggestthat,asaconsequenceofthismodulationofplantimmunitybymycorrhizal fungi,mycorrhizalplantscanenter intoastateofsensitization oftheimmune system.This defense-primedstateallowsplantstorespondfasterand/orstrongerwhentheyare chal-lenged by subsequent herbivore and pathogen attack [28–30] (Figure 1B). The pathway regulatedbytheplanthormonejasmonicacid(JA)hasacrucialroleinplantdefensepriming [28,31].Althoughmorerobustplantdefenseisusuallyassociatedwithbetterperformancein timesofstress,boostinginduceddefenseresponsesdoesnotalwaysprovideanadvantageto theplant[32].Theincorporationofaphysiologicalapproachisessentialto understandthe effectsonwhole-plantperformance.Forinstance,fundamentalquestionsonthecontribution ofmycorrhizal-boosteddefenses toplant resistanceagainstantagonists, orontheirrole in herbivore-inducedchangesincarbonassimilationandpartitioningofassimilates,canonlybe addressed byintegrating the mycorrhizalimpact on plant defensesignaling networks into whole-plantmodels.

Plantphysiological researchrevealedthat both AMand ECMfungiinducechanges inthe immune system of a plant that impact the interaction of the plant with other community membersatdifferenttrophiclevels[33](Figure1B).Giventhatmycorrhizalfungiprimeplants forJA-signaleddefenses,itwasspeculatedthatmycorrhizalcolonizationwouldpredominantly negatively affect leaf-chewing herbivores and necrotrophic pathogens. Both attackers are mostlyresponsivetoJA-mediateddefenses[34].Atthesametime,mycorrhizalcolonization wouldbenefitpiercingandsap-suckingherbivores,andbiotrophicpathogens,whicharemore responsivetosalicylic(SA)-mediateddefenses.However,studiesshowedhighvariationinthe effect of mycorrhizal colonization on plant–herbivore interactions [35]. This suggests that additionalfactorsare involvedindetermining the finaloutcome ofmycorrhiza–plant–insect interactions[36].Moreaccurate predictionsat thewhole-plantlevelwouldrequirea better integrationofcellularandphysiologicalstudies,providinginsightintothemechanismsinvolved withstudiesoftheecologicalfunctionoftraitsthatareinfluencedbymycorrhizae.Furthermore, thiscombinationofphysiologicalandcellbiologicalinformationhasthepotentialtoprovidethe foundationfortheapplicationofmycorrhizaeinpestmanagementstrategies.Besidesdirectly affectingplantantagonists,mycorrhizaemightinfluenceplant–herbivoreinteractionsby affect-ingtheattractionofnaturalenemiesofinsectherbivores[37].Additionally,theycanalterthe competitiveabilityofplantswithinthecommunity[38].Finally,plantscanexchange

(6)

defense-relatedinformationwithotherplantsinthecommunityviaCMNs,asshowninlaboratorystudies [39].Therefore,including thecommunity perspectiveinreal-worldscenariosis essentialto predictthenetimpactofmycorrhizaeonplant–herbivoreinteractionsatthewhole-plantlevel. Theeffectsofmycorrhizationonplantphysiologytrickleuptoinfluencemicrobial,animal,and plantcommunitystructureandecosystemfunctioning[40].Besidesmodifyingaboveground plantproductivity,mycorrhizalassociationshavebeenshowntoinfluencethediversityofplant species as well as that of higher trophic levels, such as herbivores and parasitoids [41]. Moreover,CMNsconnectingmycorrhizalplantswithinacommunityactnotonlyasconduits forcarbonandmineralnutrients,butalsoasanundergroundmessagingsystem(‘signaling highway’)[42].Thisallowsneighboringplantstoactivatedefensesbeforetheyareattacked themselves[43,44](Figure1B).Althoughthisphenomenonhasbeenexclusivelystudiedin laboratorysettings,CMNshavethepotentialtodeterminetheoutcomeofmultitrophic inter-actionsbeyondtheindividualplantlevel,byconferringinformationaboutherbivorepresence withinacommunity.Consequently,theymayalsochangepredatorandparasitoidrecruitment atthecommunitylevel.Still,thecostandbenefitsofinterplantsignaling,andtheirevolutionary consequences,remainmostlyunknown.AnalyzingtheimpactofCMNsinplant-and insect-relatedtraitsatthephysiologicallevelandthemainmechanismsofinterplantsignalingatthe cellularlevelwill helptoaddressthesequestions.Typically,innature,theoutcome ofsuch interactionsisnotexclusivelydeterminedbytheinteractionpartnersperse.A multitudeof environmentalfactorsthatcanonlybemeasuredattheecosystemlevel(underfieldconditions) maystrengthenorweakenspeciesinteractions.

Mycorrhizal fungi alter plant community performance and higher-trophic level community structure, thereby impacting element and energy cycling of the whole ecosystem (Figure1B).Forexample,bychangingthechemicalcompositionofleavesandroots, mycor-rhizaewill likelyaffectthedecompositionofplant litter[45],whichservesasthemainbasal resourceinthebelowgroundfoodweb.Changesinbasalresourcesaffectthetrophicstructure andmultitrophicinteractionsofthefoodweb,andaddtoplantcommunityeffectsonnutrient cyclingofthewholeecosystem.Patternsinmultitrophicinteractionsobservedatthe ecosys-temlevelwillremaincorrelativeifnotintegratedwithmoremechanisticstudiesattheplant physiologicalandcommunitylevels. Thisisalso importantto applymycorrhiza researchto agricultureand/orcropproduction.Forinstance,theapplicationoffertilizersandpesticidesis subject to strong political and industrial pressures. Understanding the mechanisms and processes involved in AM function could underpin the development of novel crop plant– mycorrhizalassociationsforoptimalnutrientuptakeefficiencyand,simultaneously,forhigher resistanceagainstantagonists.

OpportunitiesandChallengesRelated totheIntegration ofDisciplinesin MycorrhizaResearch

To create a conceptual framework that transcends individual disciplines in mycorrhiza research,researchersneedtolearnhowtoappreciatethereciprocalbenefitsthatthedifferent disciplinesoffer. Forexample,molecular toolsof modelorganisms canprovide meansfor identifyinggeneswithimportantrolesinmycorrhizalecology.Thisisessentialforour under-standingofthedistributionandfunctionofmycorrhizaeinspaceandtime,andforpredicting howmycorrhizaerespondtochangesintheirenvironment.However,mycorrhizaecologists interested inusing genomics toolsare hampered by the low numberof fungal and plant genomescurrentlyavailable. Nevertheless,the rapidlyincreasing numberofplant genome sequencesbecomingavailablewillallow thesetoolstobeappliedmoreoftento ecological studies.Inaddition,noveltechniquesforgeneticengineering,suchasCRISPR/Cas9,willallow

(7)

for the elucidation of the function and ecological relevance of single or multiple genes in mycorrhizalfunctioninnon-modelorganisms.Theapplicationofthesegenetictools,combined withknowledgeatthe cellularlevel,will becrucial forbetterunderstanding thefunctionof mycorrhizaeintheecosystem.Bycontrast,cellularbiologistsaremakingimportantadvances inunderstandingthemolecularandcellularprocessesinvolvedinmycorrhizalestablishment andfunctioning.Nonetheless,thefunctionsofthousandsofgenesidentifiedby high-through-putgenomicsandtranscriptomicsremainpoorlydeciphered.Ecologistscanprovideguidance astothespecificcontextsandsituationsinwhichtoexaminethefunctionalecologyof‘omics patterns.Thiscanonly berealizediflaboratoryapproachesandmethodsare usedinfield settings.

Initiatingandsuccessfullymaintainingcrossdisciplinaryresearchcanbenotonlyrewarding,but alsochallenging.Onespecificchallengeisthedifferenceinconceptsandterminologiesinthe differentdisciplines.Mycorrhizaresearchersmaymeandifferentthingswhenconsideringresults as‘beingproven’[46],whichisoftenequivalenttothe‘gainofmechanisticunderstanding’.For manyecologists,theterm‘mechanism’definesaprocessorinteractionthattakesplaceatthe organizationallevelbeneaththeleveloftheobservationinastudy.Thismeansthatthistermis relativetothelevelofobservation.Forcellularbiologistsandphysiologists,itcommonlydefines somethingthattakesplaceatthecellularlevel(i.e.,itisanabsoluteterm).Furtherchallengesfor crossdisciplinaryresearcharerelatedtothedesignofcollaborativeprojects.Forinstance,what constitutesa‘control’and‘replicate’cansignificantlydifferforecologicalandcellularstudieson mycorrhizafunctioning.Inparticular,ecosystem-levelstudiesinthefieldlackanon-mycorrhizal control,whereasthisisnotthecaseinlaboratorysettings,wheresoilscanbesterilized.Infield experimentalstudies,replicationisoftenbasedonanexperimentalunitthatcanbeanindividual,a species,oraplantcommunity.However,forcellularstudiesconductedinlaboratorysettings,the wholeexperimentcanbereplicatedseveraltimestovalidatetheresults.Inotherwords,thelackof statisticalpowerwithinoneexperimentiscounterbalancedbytheconsistencyofresultsacross experiments.Suchastrategyisnotpossibleinecologicalsettings,sincevariabilityacrossyears, seasons,orweekscanonlybecounterbalancedbyarobustexperimentaldesignandhigh replication. Therefore,amainchallenge ofcombiningmultiplemycorrhiza researchfieldsresidesin integratingtheecologicalcontextdependencyfoundinnaturalsettingswithmechanistic discov-eriesobtainedinartificiallaboratoryconditions.

ConcludingRemarksandFuturePerspectives

Keytoachievingtheintegrationofmycorrhizaresearchacrossdifferentorganizationallevelsis todesignandexecutecommonprojectswhereresearchquestionsareaddressedatdifferent levelsatthesametime(seeOutstandingQuestions).Afruitfulapproachistolinklaboratoryand fieldexperimentsthroughcommonquestions,whichbuildoneachother.Inthelaboratory, importantprocessescanbestudiedbymanipulatingspecificbioticandabioticparameters precisely.Thesefindingsgeneratehypothesesontheirecologicalrole,whichshouldbetested infieldsettings.Here,thetestorganismsaresubjecttodifferenttreatmentswithinthecontextof amultitudeofbioticandabioticinteractions.Inturn,basedonpatternsthatarefoundin real-worldecosystems,single processesandmechanisms can bedisentangledusingtargeted laboratoryexperiments.Giventhatreal-worldecosystemscompriseamultitudeofinteracting andinterwoven processes,it remainschallenging to select single processesto betested independentlyinthelaboratory.Overall,bothapproachescancreatepositivefeedbackloops thatfueleachother,promotinghypothesis-drivenresearchatdifferentlevels.Anothercourseis to incorporate laboratory approaches and methods in field experimental settings for the integrationof differentorganizationallevels. However,themainchallengeisthe application of highly sensitive analytical techniques designed for in vitro laboratory environments.

OutstandingQuestions

Dofield-samplingconditionsallowthe

useofhighlysensitiveanalytical

tech-niquesas doneininvitrolaboratory

environmentstoidentifycellular

mech-anismsinmodelsystems?

Isitpossibletoidentifysinglepotentially

relevantprocessesfromgeneral

pat-ternsinreal-worldecosystemsto

inde-pendentlytestanddisentanglethemin

targetedlaboratoryexperiments?

Howcanwecreateacommon

practi-calbaseintermsofproblemdetection,

hypothesisdevelopment,andanalysis

for building a full crossdisciplinary

framework?

What is the common denominator

regarding concepts, approaches,

anddefinitionsinexperimentalstudies

thatcanlinkalldisciplinesintoa

com-pleteintegrativeresearch?

How can a ‘genes-to-ecosystem’

approachinmycorrhizaresearchbe

applied for solving environmental

issues,suchasnutritionofagrowing

(8)

Furthermore,it requires the collaboration ofresearchers from both fieldsto overcomethe limitationsofindividualdisciplines.Toachievethisgoal,itisessential,althoughchallenging,to fostercollaborationsincommonprojectsatalllevels;fromproblemdetectionandhypothesis developmenttoexperimental(orobservational)setup,analysis,andinterpretationoffindings [46].Therealizationofjointworkshopsandconferencesmaylayfoundationsforsuch enter-prises.Similarly,integrativeMSandPhDcourseswilltrainthenextgenerationofmycorrhizal scientiststoapplybothecologicalandmolecularapproachesintheirresearchprojects. Initialattemptstomakemycorrhizaresearchcrossdisciplinaryareunderwayinthe PhytOak-meterproject.Here,clonaloaks(QuercusroburL.),whichwereoriginallydevelopedforhighly standardizedmolecularmeasurements,arenowtransplantedintofieldexperimentsoverwide environmentalgradients(Box1). Anotherexampleis the tree diversity experiment,MyDiv, whereplotsconsistoftreecommunitiesthatarecharacterizedbydifferenttypesof mycorrh-ization(namelyECMandAM).MyDivintegratespartoftheclonaloaksfromthePhytOakmeter project,andfurtherimplementsomics’approaches(i.e.,metabolomics)inthefield(Box2). Theseareonlytwoexampleprojectsamongseveralthatareintheprocessofovercomingthe specifictechnicalandscientificboundariesofthesingledisciplines.Suchsynergisticprojects canultimatelyadvancethecomprehensiveunderstandingofmycorrhizalassociationsandtheir functioning that spansfrom genes to ecosystems and howthis can contribute to solving

Box1.TrophinOak-PhytOakmeter:ACloneLaboratoryandFieldExperimentalPlatform

Treeperformancedependsontheinterplaybetweenresource-demandingbeneficialanddetrimentalbiotrophicinteractionsandtheowndevelopmentalprogram.

Thisprogramisnotonlycontrolledbyinternalprocesses,butalsoinfluencedbyexternalfactors[47].TrophinOakandPhytOakmeteraretwocomplementary

experimentalsystemsthatcanbeusedtounravelsuchinterplayatthelaboratoryandfieldlevel,respectively.Theybothuseacloneofcommonoak(Quercusrobur

L.;DF159;FigureIA)becauseofitsendogenousrhythmicgrowth(ERG)characterizedbyalternatinggrowthflushesinshootandrootsparalleledbyresource

allocationshiftsbetweenbelow-andabovegroundparts[48].APetridishsystemwithsterilesoilandrootedmicrocuttingsofDF159wasestablishedtostudythe

impactoftheECMfungusPilodermacroceumontheinterplaybetweenERGandbiotrophicinteractionswithabove-andbelowgroundinteractors(FigureIB)[49].

OaktranscriptomicprofilingusingRNAseqwaspromptedbyestablishingthelargespecificreferencelibraryOakcontigDF159.1[50].ThePhytOakmeterprojectisan

extensionofTrophinOak,releasingclonalDF159oaksasphytometersinthefieldalongEuropeanclimatic,land-useintensity,andplantdiversitygradients(FigureIC).

Such‘PhytOakmeters’wereintegratedinthetreediversityexperimentMyDiv[51](seeBox2inthemaintext).DataonPhytOakmeterdevelopmentand

transcriptomicswillcomplementtheanalysesofphysiologicalandcellularresponseanalysesinrelationtothediversityofAMandECMtreeneighborsmanipulated

inMyDiv.TheuseofclonaloakphytometersallowstheoptimalevaluationandcomparisonofdifferentecosystemfunctionsinMyDiv.Alsoseehttp://www.ufz.de/

trophinoak-phytoakmeter.

(A) (B) (C)

FigureI.MainElementsandStepsintheTrophinOak-PhytOakmeterExperimentalPlatform.(A)InvitropropagationoftheOakDF159,(B)mycorrhization

withPilodermacroceuminmicrocosmsintheTrophinOakproject,and(C)outplantingofthePhytOakmeterstoafieldsite.Adaptedfrom[49](A,B).Photographby

(9)

fundamental issues, such as sustainable food production while preserving our planet’s biodiversity.

Acknowledgments

AllauthorsacknowledgefundingfromtheGermanCentreforIntegrativeBiodiversityResearch(iDiv)Halle-Jena-Leipzig

fundedbytheGermanResearchFoundation(DFG;FZT118).A.M.M.,A.B.,M.P.,S.R.,andN.M.v.D.acknowledge

stimulatingdiscussionswithinCOSTActionFA1405andfundingfromEUMC-ITNMiRA(grantno.765290).I.C.M.

acknowledgesfinancialsupportfromtheDFG(grantno.ME4156/2-1)andVolkswagenFoundation[grantno.

11-76251-99-34/13(ZN2928)].M.C.R.acknowledgesfundingfromtheEuropeanResearchCouncil(ERC,AdvancedGrant‘Gradual

Change’)andBMBFfundingfortheproject‘BridginginBiodiversityScience(BIBS)’.M.P.acknowledgessupportfrom

MINECO(grantno.AGL2015-64990-C2-1-R).I.F.acknowledgessupportfromiDivFlexpoolProgram(grantno.RA-185/

17).O.F.andN.E.acknowledgesupportfromtheERC(EuropeanUnion’sHorizon2020researchandinnovationprogram,

grantno.677232).S.R.acknowledgestheSwissScienceFoundation(grantno.159869).F.B.,S.H.,andM.T.

acknowl-edgeDFGforfinancialsupport(GrantsBU941/20-1andTA290/4-1).AlltheauthorsacknowledgesupportfromtheiDiv

OpenSciencePublicationFund.

References

1. Miller,R.M.andKling,M.(2000)Theimportanceofintegration andscaleinthearbuscularmycorrhizalsymbiosis.PlantSoil226, 295–309

2. Nägeli,C.(1842)PilzeimInnernvonZellen.Linnaea16,278–285

3. Frank,A.B.(1885)ÜberdieaufWurzelsymbioseberuhende ErnährunggewisserBäumedurchunterirdischePilze.Ber.Dtsch. Bot.Ges.3,128–145

Box2.MyDiv:ATreeDiversityExperimentManipulatingMycorrhizae

MyDivisafieldexperimentstudyingtherelationshipbetweentreediversityandecosystemfunctioning[51].Thismostly

positiverelationshiphasbeenattributedtocomplementaryuseofsoilresources[52].Recentstudiessuggestthatthe

strengthofresourceusecomplementarityiscontextdependentand thatbioticinteractions withotherorganismguilds,such

asmycorrhizae,arecrucialinthisrespect[53].Giventhatmycorrhizaehaveacriticalroleinresourceusebyplants,theymay

beanimportantdriverofbiodiversity–ecosystemfunctioningrelationships[54].ThishypothesisistestedexplicitlyinMyDiv.

Theexperimentcomprisesatreespeciesrichnessgradientaswellasamycorrhizal-typetreatmentusingtreecommunities,

whichhaveAM,ECM,orbothmycorrhizaltypes(FigureIA).MyDivallowsforinvestigatingbiodiversity–ecosystem

functioningrelationshipsinthelightofphysiologicalinteractionsattheinterfaceofplantrootsandmycorrhizalfungias

wellastherhizosphere.Thelatterareanalyzedusinglaboratory-basedchemicaland‘omicsapproaches.Incollaboration

withplantphysiologists,different15N-labelednitrogencompoundsolutionsareusedtotracenutrientacquisitionoftree

speciesindifferentcommunities.Rootexudatesarefurtherstudiedinsituandanalyzedusingmetabolomicapproaches

(Figure IB).Thisyieldsinformationontheroleofmycorrhizalassociationsforthereleaseoflabileplantresourcesintosoiland,

thus,fornutrientcycling.Alsoseehttps://www.idiv.de/en/research/platforms_and_networks/mydiv.html.

(A) (B)

FigureI.TheMyDivSiteLocatedinBadLauchstädt,Germany.(A)Plotsfromanaerialperspective.(B)The

preparationofthemediumforexudatecollectioninsitufromfinerootsofatreeinthefield.Photographstakenby

(10)

4. Bonfante,P.(1984)AnatomyandmorphologyofVAmycorrhizae. InVAMycorrhizae(Powell,C.L.andBagyaraj,D.J.,eds),pp.5– 33,CRCPress

5. Baylis,G.T.S.(1970)Roothairsandphycomycetousmycorrhizas inphosphorus-deficientsoil.PlantSoil33,713–716

6. VanderHeijden,M.G.A.etal.(2015)Mycorrhizalecologyand evolution:thepast,thepresent,andthefuture.NewPhytol.205, 1406–1423

7. VanderHeijden,M.G.A.etal.(1998)Mycorrhizalfungaldiversity determinesplantbiodiversity,ecosystemvariabilityand produc-tivity.Nature396,69–72

8. Koide,R.T.andMosse,B.(2004) Ahistoryof researchon arbuscularmycorrhiza.Mycorrhiza14,145–163

9. Powell,J.R.andRillig,M.C.(2018)Biodiversityofarbuscular

mycorrhizalfungiandecosystemfunction.NewPhytol.Published

onlineMarch30,2018.http://dx.doi.org/10.1111/nph.15119

10.Chaudhary,V.B.etal.(2016)MycoDB,aglobaldatabaseofplant responsetomycorrhizalfungi.Sci.Data3,160028

11.Gianinazzi,S.etal.(2010)Agroecology:thekeyroleofarbuscular mycorrhizasinecosystemservices.Mycorrhiza20,519–530

12.Rausch,C.andBucher,M.(2002)Molecularmechanismsof phosphatetransportinplants.Planta216,23–37

13.Javot,H.etal.(2007)Phosphateinthearbuscularmycorrhizal symbiosis:transportpropertiesandregulatoryroles.PlantCell Environ.30,310–322

14.Krajinski,F.etal.(2014)TheH+-ATPaseHA1ofMedicago trunca-tulaisessentialforphosphatetransportandplantgrowthduring arbuscularmycorrhizalsymbiosis.PlantCell26,1808–1817

15.Jakobsen,I.etal.(1992)Externalhyphaeofvesicular-arbuscular mycorrhizalfungiassociatedwithTrifoliumsubterraneumL.New Phytol.120,371–380

16.Leake,J.etal.(2004)Networksofpowerandinfluence:theroleof mycorrhizalmyceliumincontrollingplantcommunitiesand agro-ecosystemfunctioning.Can.J.Bot.82,1016–1045

17.Smith,S.E.andSmith,F.A.(2011)Rolesofarbuscular mycorrhi-zasinplantnutritionandgrowth:newparadigmsfromcellularto ecosystemscales.Annu.Rev.PlantBiol.62,227–250

18.Klironomos,J.N.(2003)Variationinplantresponsetonativeand exoticarbuscularmycorrhizalfungi.Ecology84,2292–2301

19.Cavagnaro,T.R.etal.(2005)Functionaldiversityinarbuscular mycorrhizas:exploitationofsoilpatcheswithdifferentphosphate enrichmentdiffersamongfungalspecies.PlantCellEnviron.28, 642–650

20.Collins,C.D.andFoster,B.L.(2009)Community-level conse-quencesofmycorrhizaedependonphosphorusavailability. Ecol-ogy90,2567–2576

21.Selosse,M.A.etal.(2006)Mycorrhizalnetworks:desliaisons dangereuses?TrendsEcol.Evol.21,621–628

22.Bender,S.F.etal.(2015)Mycorrhizaleffectsonnutrientcycling, nutrientleachingandN2Oproductioninexperimentalgrassland.

SoilBiol.Biochem.80,283–292

23.Bonfante,P.andGenre,A.(2015)Arbuscularmycorrhizal dia-logues:doyouspeak‘plantish’or‘fungish’?TrendsPlantSci.20, 150–154

24.Kloppholz,S.etal.(2011)AsecretedfungaleffectorofGlomus intraradicespromotessymbioticbiotrophy.Curr.Biol.21,1204– 1209

25.Plett,J.M.etal.(2011)AsecretedeffectorproteinofLaccaria bicolorisrequiredforsymbiosisdevelopment.Curr.Biol.21, 1197–1203

26.Siciliano,V.etal.(2007)Transcriptomeanalysisofarbuscular mycorrhizalroots duringdevelopment of theprepenetration apparatus.PlantPhysiol.144,1455–1466

27.Fernandez,I.etal.(2014)Defenserelatedphytohormones regu-lationinarbuscularmycorrhizalsymbiosesdependsonthe part-nergenotypes.J.Chem.Ecol.40,791–803

28.Kaling,M.etal.(2018)Mycorrhiza-triggeredtranscriptomicand metabolomicnetworksimpingeonherbivorefitness.Plant Phys-iol.176,2639–2656

29.Jung,S.C.etal.(2012)Mycorrhiza-inducedresistanceand prim-ingofplantdefenses.J.Chem.Ecol.38,651–664

30.Martinez-Medina,A.etal.(2016)Recognizingplantdefense priming.TrendsPlantSci.21,818–822

31.Song,Y.Y.etal.(2013)Primingofanti-herbivoredefensein tomatobyarbuscularmycorrhizalfungusandinvolvementof thejasmonatepathway.J.Chem.Ecol.39,1036–1044

32.Douma,J.C.etal.(2017)Whendoesitpayofftoprimefor defense?Amodelinganalysis.NewPhytol.216,782–797

33.Pozo,M.J.andAzcon-Aguilar,C.(2007)Unraveling mycorrhiza-inducedresistance.Curr.Opin.PlantBiol.10,393–398

34.Wasternack,C.(2014)Actionofjasmonatesinplantstressresponses anddevelopment-appliedaspects.Biotechnol.Adv.32,31–39

35.Hartley,S.E.andGange,A.C.(2009)Impactsofplantsymbiotic fungioninsectherbivores:mutualisminamultitrophiccontext. Annu.Rev.Entomol.54,323–342

36.Biere,A.etal.(2013)Three-wayinteractionsbetweenplants, microbesandinsects.Funct.Ecol.27,567–573

37.Schausberger,P.etal.(2012)Mycorrhizachangesplantvolatiles toattractspidermiteenemies.Funct.Ecol.26,441–449

38.Wagg,C.etal.(2011)Mycorrhizalfungalidentityanddiversity relaxesplant-plantcompetition.Ecology92,1303–1313

39.Babikova,Z.etal.(2014)Arbuscularmycorrhizalfungiandaphids interactbychanginghostplantqualityandvolatileemission. Funct.Ecol.28,375–385

40.Lee,E.H.etal.(2013)Diversityofarbuscularmycorrhizalfungi andtheirrolesinecosystems.Mycobiology41,121–125

41.Hempel,S.etal.(2009)Specificbottom-upeffectsofarbuscular mycorrhizalfungiacrossaplant–herbivore–parasitoidsystem. Oecologia160,267–277

42.Barto,E.K.etal.(2012)Fungalsuperhighways:docommon mycorrhizalnetworksenhancebelowgroundcommunication? TrendsPlantSci.17,633–637

43.Song,Y.Y.etal.(2010)Interplantcommunicationoftomato plants throughundergroundcommon mycorrhizal networks. PLoSOne5,e13324

44.Babikova,Z.etal.(2013)Undergroundsignalscarriedthrough commonmycelialnetworkswarnneighbouringplantsofaphid attack.Ecol.Lett.16,835–843

45.Phillips,R.P.etal.(2013)Themycorrhizal-associatednutrient economy:anewframeworkforpredictingcarbon-nutrient cou-plingsintemperateforests.NewPhytol.199,41–51

46.Eigenbrode,S.D.etal.(2007)Employingphilosophicaldialoguein collaborativescience.BioScience57,55–64

47.Tscharntke,T.andHawkins,B.A.,eds(2002)MultitrophicLevel Interactions,CambridgeUniversityPress

48.Herrmann,S.etal.(2015)Endogenousrhythmicgrowthinoak treesisregulatedbyinternalclocksratherthanresource avail-ability.J.Exp.Bot.66,7113–7127

49.Herrmann,S.etal.(2016)Endogenousrhythmicgrowth,atrait suitableforthestudyofinterplaysbetweenmultitrophicinteractions andtreedevelopment.Perspect.PlantEcol.Syst.19,40–48

50.Tarkka,M.T.etal.(2013)OakContigDF159.1,areferencelibraryfor studyingdifferentialgeneexpressioninQuercusroburduring con-trolledbioticinteractions:useforquantitativetranscriptomicprofilingof oakrootsinectomycorrhizalsymbiosis.NewPhytol.199,529–540

51.Ferlian,O.etal.(2018)Mycorrhizaintreediversity–ecosystem functionrelationships:conceptualframeworkandexperimental implementation.Ecosphere9,e02226

52.Ebeling,A.etal.(2014)Atrait-basedexperimentalapproachto understandthemechanismsunderlyingbiodiversity–ecosystem functioningrelationships.BasicAppl.Ecol.15,229–240

53.Eisenhauer,N.(2012)Aboveground–belowgroundinteractions asasourceofcomplementarityeffectsinbiodiversity experi-ments.PlantSoil351,1–22

54.Wagg,C.etal.(2015)Facilitationandantagonisminmycorrhizal networks.InMycorrhizalNetworks(Horton,T.R.,ed.),pp.203– 226,Springer

Riferimenti

Documenti correlati

The availability of genome sequences of several economically important crop species combined with modern molecular tools provides significant breakthroughs to understand

prompted investors to look for alternative asset classes able to limit stock (and real estate) returns in bear states. otes ) as vehicles to trade as an asset class in

The second group combines primary and secondary clarifiers and derivation channel of the treatment plant with stations on the river, where the impact of the WWTP is minimal – 300

Stating correspondence between macroscopic symptoms of phytoplasma infected Arabidopsis thaliana and those observed in natural host plants, over the last decade some authors

Y is going to give up, when Z suggests her the first explicit strategy (line 6): “moving the centre of the circle to escape”. Students are now in the reflect- ed game

showed that human heading perception in a heading direction discrimination task was based on a combination of motion (optic flow component) and form (radial glass patterns)

Representative example of recordings from DIV7 up to DIV28 of spontaneous neuronal activity with PEDOT:PSS ultramicroelectrodes (A, left) and extracted spike waveforms (A,

Su questo intervallo temporale sono stati calcolati i valori medi di temperature massima e minima, i valori estremi e gli indici climatici derivati – giorni di gelo e giorni