• Non ci sono risultati.

Roe deer (Capreolus capreolus) spatio-temporal sequential habitat use: an application of Sequence Alignment Methods

N/A
N/A
Protected

Academic year: 2021

Condividi "Roe deer (Capreolus capreolus) spatio-temporal sequential habitat use: an application of Sequence Alignment Methods"

Copied!
2
0
0

Testo completo

(1)

COST Action IC0903

“Knowledge Discovery from Moving Objects” (MOVE)

Title of contribution: ROE DEER (Capreolus capreolus) SPATIO-TEMPORAL SEQUENTIAL

HABITAT USE An application of Sequence Alignment Methods

Authors

Johannes De Groeve, Ghent University/ Research and Innovation Center Edmund Mach

Foun-dation

Nico Van de Weghe, Ghent University

Tijs Neutens, Ghent University

Francesca Cagnacci, Research and Innovation Center Edmund Mach Foundation

Content format and access

Type of contribution: interactive presentation (e.g. PPT)

Format:

.pps, .ppsx, .pdf, .swx, QuickTime/.mov, H.264/MPEG-4, etc.

Access information:

URL or other infos for access/download of the multimedia content

Content description

Keywords: Spatio-Temporal Autocorrelation, Sequence Alignment Methods, Sequential Habitat

Use, European Roe Deer, Spatio-Temporal Patterns

Key results:

-

Roe deer spatio-temporal patterns in habitat use were effectively analysed by means of

Sequence Alignment Methods (SAM).

-

Taking into account the sequence of use of environmental types allowed to evidence

some important ecological patterns. For example, age may affect predisposition to

mi-grate and migration patterns are affected by elevation gradient.

-

Background knowledge in the geography domain such as the awareness of spatial

auto-correlation was fundamental to infer reliable ecological considerations.

-

This contribution shows how a general concept related to moving objects such as the

relevance of spatio-temporal patterns can be applied to a specific domain and

repre-sent an advancement in that field.

Reference(s)

Arthur, S.M., Manly, B.F., McDonald, L.L., Garner, G.W. (1996) “Assessing habitat selection when

availability changes”. Ecology. 77, 215-227.

Boyce, M.S. & McDonald, L.L. (1999) “Relating populations to habitats using resource selection

func-tions”. Trends in Ecology and Evolution. 14, 268–272.

Cagnacci, F., Boitani, L., Powell, R.A., Boyce, M.S. (2010) “Animal ecology meets GPSbased ra

-diotelemetry: a perfect storm of opportunities and challenges”. Philosophical Transactions of the Royal

Society B. 365, 2157-2162.

Cagnacci, F., Focardi, S., Heurich, M., Stache, A., Hewison, A.J.M., Morellet, N., Kjellander, P.,

Lin-nell, J.D.C., Mysterud, A., Neteler, M., Delucchi, L., Ossi, F., Urbano, F. (2011) “Partial migration in

(2)

roe deer: migratory and resident tactics are end points of a behavioural gradient determined by

ecologi-cal factors”. Oikos. 120 (12), 1790-1802.

Dray, S., RoyerCarenzi, M. and Calenge, C. (2010) “The exploratory analysis of autocorrelation in ani

-mal-movement studies”. Ecological Research, 4, 34-41.

Delafontaine, M., Versichele, M., Neutens, T., Van de Weghe, N. (2010) Analysing spatiotemporal

se-quences in Bluetooth tracking data. In: Delafontaine M. (Ed.) Modelling and Analysing Moving Objects

and Travelling Subjects, Bridging theory and practice. Ghent: Ghent University, 127-144.

Fortin, D., Hawthorne, L.B., Boyce, M.S., Smith, D.W., Duchesne, T., Mao, J.S. (2005) “Wolves

influ-ence elk movements: behaviour shapes a trophic cascade in Yellowstone national park ”. Ecology. 86

(5), 1320-1330.

Forester, J.D., Im, H.K., Rathouz, P.J. (2009) “Accounting for animal movement in estimation of

re-source selection functions: sampling and data analysis”. Ecology. 90 (12), 3554-3565.

Johnson, D. H. 1980. The Comparison of usage and availability measurements for evaluating resource

preference. Ecology 61, 65-71.

Nathan, R. (2008) “An emerging movement ecology paradigm”. Proceedings of the National Academy

of Sciences of the United States of America. 105, 19050-19051.

Rhodes, J. R., McAlpine, C. A., Lunney, D. & Possingham, H. P. (2005) “A spatially explicit habitat se

-lection model incorporating home range behavior”. Ecology. 86, 1199-1205.

Wilson, C. (2008) “Activity patterns in space and time: calculation representative Hägerstrand ClustalG

software”. Environment and Planning A. 38 (1) 187-204.

Riferimenti

Documenti correlati

Finally, concerning forest short-term temporal decorrelation [7,11,14,16], in this work first results are presented of an innovative short-term decorrelation profiling

transventricular view (C), dilatation of the third ventricle and severe ventriculomegaly are visible; on the midsagittal, transvaginal view of the fetal brain (D), the third

I ca- pitoli sono suddivisi secondo esempi di eloquenza regionale: lo “stile veneto” (cap. II), strettamen- te legato alla retorica della Roma repubblicana e

(a) Our approach adopts a first model to learn a com- pact representation of the scenario, forcing groups of neurons to distinctly represent two basic concepts crucial to the

I J’abandonne sirventes et cansos et tout ce que j’ai l’habitude de faire et de dire, car plus jamais je n’en parlerai, parce que, de- puis ma naissance, j’ai peiné

[r]

Compared with Western Europe (as defined in this study), patients in other regions were less likely to be virologically suppressed in 2014–15, with the lowest odds of

Condizioni di ristagno Primo stadio di eiezione Secondo stadio di eiezione Relativo al diffusore finale Relativo alla sezioni di uscita Relativo alla camera di miscelamento