Contents lists available atScienceDirect
Physics
Letters
B
www.elsevier.com/locate/physletb
Direct
photon
elliptic
flow
in
Pb–Pb
collisions
at
√
s
NN
=
2
.
76 TeV
.
ALICE
Collaboration
a
r
t
i
c
l
e
i
n
f
o
a
b
s
t
r
a
c
t
Articlehistory: Received23May2018
Receivedinrevisedform16October2018 Accepted19November2018
Availableonline23November2018 Editor:L.Rolandi
Theellipticflowofinclusiveanddirectphotonswasmeasuredatmid-rapidityintwocentralityclasses 0–20% and 20–40% in Pb–Pb collisions at √sNN=2.76 TeV by ALICE. Photons were detected with
the highly segmentedelectromagneticcalorimeter PHOS and viaconversions inthe detectormaterial with the e+e− pairs reconstructed in the central tracking system. The results of the two methods were combinedand the direct-photon elliptic flowwas extracted inthetransverse momentumrange 0.9<pT<6.2 GeV/c.Acomparison toRHICdata showsasimilarmagnitudeofthemeasured
direct-photon ellipticflow.Hydrodynamic andtransportmodelcalculationsare systematicallylowerthanthe data,butarefoundtobecompatible.
©2018TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
Thetheoryofthestronginteraction,Quantum ChromoDynam-ics (QCD), predicts a transition from ordinary hadronic matter to a new state where quarks and gluons are no longer con-fined to hadrons [1,2]. Lattice calculations predict a chiral and deconfinement crossover transitions over the temperature range 145–163 MeV[1,2], which is accessiblein collisions of ultrarela-tivisticheavyions.Thecreationandstudyofthepropertiesofthis hotstronglyinteractingmatter–Quark–GluonPlasma(QGP)–are themainobjectivesoftheALICEexperiment.
Thehotstronglyinteractingmatter,createdinnucleus–nucleus collisions,expands,coolsandfinallytransformstoordinary hadro-nicmatter. Toexperimentally studythe quark matter properties, severalobservableswereproposed.Here,weconcentrateon study-ing the development of collectiveflow using directphotons.Direct photonsarethephotonsnotoriginatingfromhadronicdecaysbut produced in electromagnetic interactions. Unlike hadrons, direct photonsare produced atall stagesofthe collision. Incoming nu-cleipassingthrougheachotherproducedirectphotonsin scatter-ingsoftheir partonicconstituents.Inaddition, (thermal)photons are emitted in the deconfined quark–gluon plasma and hadronic matter, characterized bythe thermaldistributions ofpartons and hadrons,respectively.Sincethemeanfreepathofaphotoninhot matterismuchlargerthanthetypicalsizesofthecreatedfireball [3],directphotonsescapethecollisionzoneunaffected,delivering direct informationon the conditions at the productiontime and onthedevelopmentofcollectiveflow.
E-mailaddress:alice-publications@cern.ch.
The observations ofa strong azimuthal asymmetry of particle production over a wide rapidity range in nucleus–nucleus colli-sions was oneofthekey resultsobtainedatRHIC[4–7] and LHC [8–12] energies. It was interpreted as a consequence of collec-tive expansion – collectiveflow –of thematter having aninitial spatial asymmetry, which is more prominent in collisions with non-zeroimpactparameter.Toquantifythecollectiveflow,the az-imuthal distributions of final state particles are expanded in the series1
+
2vncos[
n(
ϕ
−
R P)
]
[13],dependingonthedifferencebetweentheparticleazimuthalangle
ϕ
andthereactionplane ori-entationR P,definedbytheimpactparameterandbeamaxis.At
mid-rapiditythesecondharmonicv2(ellipticflow)reflectsthe
ex-pansionofthealmond-likeshapeofthehotmattercreatedbythe mutual penetration of the collidingnuclei. Higher harmonics v3,
v4,etc.aresensitivetofluctuationsoftheinitialshapeofthe
cre-ated hot matter and are typically much smaller than v2, except
forcentralcollisions,where v2 decreases duetoamore
symmet-ric geometry. Collectiveflow is sensitive to the equation of state ofhotmatterandtheamountofshearviscosity.Theinitialspatial asymmetryoftheexpandingfireballdiminisheswithtime,forany equation of state. Forstrongly interactingmatter thisasymmetry translatesintoanazimuthalanisotropyinmomentumspace,while forfreestreamingweaklyinteractingmatterthereisnofinal par-ticleazimuthalanisotropy.
Hadrons providethepossibilitytotestwithhighprecision the flowpatternofthelateststageofthecollision,whenthehot mat-ter decouples intofinal particles. Complementary tothem, direct photonsprovide thepossibilityto investigatethedevelopment of flow during the evolution of hot matter. First calculations pre-dicted that the photon emission rate from the hot quark–gluon orhadronmatterincreaseswithtemperatureas
∝
T2exp(
−
Eγ/
T)
[14], whereEγ isthephotonenergyandT isthetemperatureof
https://doi.org/10.1016/j.physletb.2018.11.039
0370-2693/©2018TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
ALICE Collaboration / Direct photon elliptic flow in Pb–Pb 309
thematter. Then, thelow transverse momentum (pT
4 GeV/
c)partis controlledby thecoolerlateststage,andthehigh pT part
(pT
5 GeV/
c)ofthe spectrumbythehot initialstate. However,detailedcalculationswhich include the full hydrodynamic evolu-tion(seee.g. [15])show thatcontributions ofallstagesare com-parable for all pT regions asa higher temperature of the initial
stageiscompensatedbyalargerspace–timevolumeandstronger radial flow of the later stages. Since the observed direct-photon flowistheconvolutionofallstagesofthecollision,includingthe contributionfromtheinitial stagewhen theflowpatternhasnot yet developed, the calculations predict much smaller azimuthal anisotropyforthermalphotonsthanforhadrons[16,17].
Thefirstmeasurementofadirect-photonspectrumin relativis-ticnucleus–nucleuscollisionswaspresentedbytheWA98 collabo-ration [18], and later also by the PHENIX Collaboration [19–22], and by the ALICE Collaboration [23]. The first measurement of elliptic flow of direct photons in Au–Au collisions at
√
sNN=
200 GeV was performedby the PHENIX Collaboration [24]. Sur-prisingly, it was found to be close to the flow of hadrons [25]. RecentPHENIXresults, presentingmoreprecise measurementsof ellipticandtriangularflow extendedto lower pT [26],confirmed
thisearlyresult.Thediscrepancybetweenexperimentalresultsand theorypredictionstriggeredasetoftheoreticalstudies,whichcan besplitintotwo classes.Themain ideainthefirstclassof mod-els[27–44] istoincreasetheemissionofdirectphotonsfromthe laterstagesofthecollisionand/orsuppressemissionoftheinitial stage. In the second class of models [45–47], a new azimuthally asymmetricsourceofdirect photonsisconsideredlike jet-matter interactionsorsynchrotronradiationinthefieldofcollidingnuclei. Thesetheoreticalefforts considerablyreduce thediscrepancy,but consistentreproductionofboththedirect-photonspectraandflow isstill missing.The measurementofdirect-photon flowathigher collision energy is important asan independent confirmation of the results at lower energy, and could also allow to disentangle betweendifferentcontributions.
Inthispaper,we presentthefirstmeasurement ofthe direct-photonflowinPb–PbcollisionsattheLHCandcompareour find-ingstoRHICresultsandtopredictionsofhydrodynamicaswellas transportmodels.
2. Detectorsetup
Thedirectphotonflowisbasedonthemeasurementofthe el-lipticflowofinclusivephotonsandtheestimationofthe contribu-tionofdecayphotonsusingtheavailablehadronflowresults. Pho-tonsarereconstructed viatwo independentmethods: thePhoton ConversionMethod(PCM)andwiththeelectromagnetic calorime-terPHOS.
Intheconversionmethod,theelectronandpositrontracksfrom photonconversionsare measuredwiththeInnerTrackingSystem (ITS)and/ortheTimeProjectionChamber(TPC).TheITS[48] con-sists of two layers of Silicon Pixel Detectors (SPD) positioned at radial distancesof 3.9 cmand7.6 cm, two layers ofSiliconDrift Detectors(SDD)at15.0 cmand23.9 cm,andtwolayersofSilicon StripDetectors(SSD)at38.0 cm and43.0 cm.Thetwoinnermost layers cover a pseudorapidity range of
|
η
|
<
2 and|
η
|
<
1.
4, re-spectively.TheTPC[49] isalarge(85 m3)cylindricaldriftdetector filledwithaNe–CO2–N2 (85.7/9.5/4.8%)gasmixture.Itcoversthepseudorapidityrange
|
η
|
<
0.
9 overthefull azimuthalanglewith amaximumtracklengthof159reconstructed spacepoints.With thesolenoidal magnetic field of B=
0.
5 T, electron andpositron trackscanbereconstructeddownto pT≈
50 MeV/
c.TheTPCpro-vides particle identification via the measurement of the specific energyloss(dE/dx) witha resolutionof5.2%inppcollisions and 6.5% in central Pb–Pb collisions [50]. The ITS and the TPC were
alignedwithrespecttoeachothertotheleveloflessthan100 μm usingcosmic-rayandpp collisiondata[51].Particle identification isalsoprovided bythe Time-of-Flight(TOF) detector[52] located ataradialdistanceof370
<
r<
399 cm.Thisdetectorconsistsof MultigapResistivePlateChambers(MRPC)andprovidestiming in-formationwithanintrinsicresolutionof50 ps.PHOS[53] isan electromagneticcalorimeterwhichconsistsof three modules installed at a radial distance of 4.6 m from the interaction point. It subtends 260◦
<
ϕ
<
320◦ in azimuth and|
η
|
<
0.
12 in pseudorapidity. Each module consists of 3584 de-tector cells arranged ina matrix of 64×
56 lead tungstate crys-tals each of size 2.
2×
2.
2×
18 cm3. The signal from each cell ismeasured by an avalanchephotodiode (APD)associatedwitha low-noisecharge-sensitivepreamplifier.Toincreasethelightyield, reduce electronic noise,andimproveenergy resolution,theAPDs andpreamplifiersare cooledto atemperatureof−
25◦C.The re-sultingenergyresolutionisσ
E/
E= (
1.
8%/
E)
⊕ (
3.
3%/
√
E
)
⊕
1.
1%, where E is inunits ofGeV. The energydeposition ineach PHOS celliscalibratedinpp collisionsbyaligningtheπ
0 peakpositioninthetwo-photoninvariantmassdistribution.
FortheminimumbiastriggerinthePb–Pb runandeventplane orientation calculation,two scintillatorarray detectors (V0–Aand V0–C) [54] are used, which subtend 2
.
8<
η
<
5.
1 and−
3.
7<
η
<
−
1.
7,respectively. EachoftheV0 arraysconsistsof32 chan-nels and is segmented in four rings in the radial direction, and each ringis dividedintoeight sectorsintheazimuthal direction. ThesumofthesignalamplitudesoftheV0–AandV0–Cdetectors servesasameasureofcentralityinthePb–Pb collisions.3. Dataanalysis
ThisanalysisisbasedondatarecordedbytheALICEexperiment in the first LHC heavy-ion run in the fall of 2010. The detector readout was triggered by the minimum bias interaction trigger based on signals from the V0–A, V0–C, and SPD detectors. The efficiencyfortriggeringonaPb–Pb hadronicinteractionranged be-tween98.4%and99.7%.Theeventsaredividedintothecentraland semi-centralcentralityclasses0–20%and20–40%,respectively, ac-cordingtotheV0–AandV0–Csummedamplitudes[55].Toensure auniformtrackacceptanceinpseudorapidity
η
,onlyeventswitha primaryvertexwithin±
10 cm fromthenominalinteractionpoint along thebeamline(z-direction)areused.Afterofflineevent se-lection, 13.
6×
106 eventsare available forthe PCM analysisand18
.
8×
106 eventsforthePHOSanalysis.The direct-photonellipticflow isextractedon astatistical ba-sisbysubtractingtheellipticflowofphotonsfromhadron decays from the inclusive photon elliptic flow. We assume that in each bin ofthe photon transverse momentum the measured inclusive photonflowcanbedecomposedas
vγ2,inc
=
Nγ,dir Nγ,incvγ2,dir
+
Nγ,dec Nγ,incvγ2,dec
,
(1)whereNγ,inc
=
Nγ,dir+
Nγ,decistheinclusivephotonyieldwhichcan be decomposed into the contributions of direct (Nγ,dir) and
decay(Nγ,dec) photons. The vγ ,inc
2 , v
γ,dir
2 and v
γ,dec
2 are the
cor-respondingphotonflows.Itisconvenienttoexpressdirect-photon flowintermsoftheratioRγ
=
Nγ,inc/
Nγ,dec,theinclusivephotonflow vγ2,inc,andthedecayphotonflowvγ2,dec:
vγ2,dir
=
v γ,inc 2 Rγ−
v γ,dec 2 Rγ−
1.
(2)The ratioRγ was measuredinthesamedataset in[23],whereas
which is also known as cocktail simulation. The PCM and PHOS measurements of inclusive photon flow are performed indepen-dently.Theyarethencombinedandusedwiththecombinedratio
Rγ aswellasthecalculateddecayphotonflow.
Thephoton ellipticflow v2 iscalculatedwiththeScalar
Prod-uct(SP)method,whichisa two-particlecorrelationmethod[56], usingapseudorapiditygapof
|
η
|
>
0.
9 betweenthephotonand thereferenceflow particles.The appliedgapreduces correlations not relatedtotheeventplanen,such asthe onesdueto
reso-nancedecaysandjets,knownasnon-flow effects.TheSPmethod usesthe Q -vector,computedfromasetofreferenceflowparticles (RFP)definedas:
Qn=
i∈RFP wieinϕi,
(3)where
ϕ
i istheazimuthal angleofthe i-thRFP,n is theorderoftheharmonicandwi isa weightappliedforevery RFP.TheRFPs
aretakenfromtheV0–AandV0–Cdetectors.Sincethesedetectors donotprovidetrackinginformation,wesumovertheV0–A/V0–C cells,whiletheamplitudesofthesignalfromeachcell,whichare proportionaltothenumberofparticlesthat causea hit,areused asaweight wi.Thenon-uniformityofthedetectorazimuthal
effi-ciencyistakenintoaccountbyapplyingtheinverseofthe event-averagedsignalasaweightforeachoftheV0 segments,together witha recenteringprocedure [50,57].More specifically, the ellip-ticflow v2 iscalculatedusingtheunitflowvectoru
2=
ei2ϕ builtfromreconstructedphotons
v2
=
u2·
QA∗ 2 MA u2·
QC∗ 2 MC QA 2 MA·
QC∗ 2 MC,
(4)wherethetwopairs ofbracketsinthenumeratorindicatean av-erage over all photonsand over all events; MA and MC are the
estimates of multiplicity from the V0–A andV0–C detectors, re-spectively;and Q
A∗2 , Q
C∗2 are thecomplexconjugatesoftheflow
vectorcalculatedinsub-eventAandC,respectively.
In the PCM analysis, photons converting into e+e− pairs are reconstructedwithanalgorithmwhichsearchesfordisplaced ver-tices with two oppositely charged daughter tracks. Only good quality TPCtrackswitha transversemomentum above50 MeV/c and a pseudorapidity of
|
η
|
<
0.
9 are considered. The vertex finding algorithm uses the Kalman filter technique for the de-cay/conversion point and four-momentum determination of the neutral parent particle (V0) [58]. Further selection is performedon the level of the reconstructed V0. Only V0s with a con-version points at radii between 5
<
R<
180 cm are accepted such that theπ
0 andη
-meson Dalitz decays are rejected andto ensure a good coverage by the tracking detectors of the con-version daughters. To identify an e+e− pair, the specific energy loss (dE/dx)intheTPC[50] ofbothdaughtersisused.The trans-verse momentum componentqT ofthe electron momentum, pe,
withrespecttotheV0 momentum-vectorisrestrictedtobeq T
<
0
.
051
− (
α
/
0.
95)
2 GeV/c,whereα
isthe energy asymmetry of the conversion daughters. Random associations of electrons and positronsarefurtherreducedbyselectingV0swithcos(θ )
>
0.
85, whereθ
is the pointing angle, which is the angle between the momentum-vector ofthee+e− pairandthevector that connects theprimaryvertexandtheconversionpoint.Basedonthe invari-ant mass of the e+e− pair andthe pointing angle of the V0 to theprimary vertex,thevertexfindercalculatesaχ
2 valuewhichreflects the levelof consistency withthe hypothesis that the V0
Table 1
Summaryoftherelativesystematicuncertainties(in%)oftheinclusivephoton el-lipticflowinthePCMandPHOSanalysis,andofthedecayphotonsimulation.All contributionsareexpectedtobecorrelatedinpTwiththemagnitudeoftherelative
uncertaintyvaryingpoint-by-point.
Centrality 0–20% 20–40% pT(GeV/c) 2.0 5.0 2.0 5.0 PCM Photon selection 2.4 4.2 2.1 4.0 Energy resolution 1.0 1.0 1.0 1.0 Efficiency 3 3 1.9 1.9 Total 4.0 5.3 3.0 4.5 PHOS
Efficiency & contamination 3.0 3.0 0.7 0.7
Event plane flatness 2.0 2.0 1.4 1.4
Total 3.5 3.5 1.6 1.6
Decay photon calculation
Parameterization of vπ
2 1.3 3.6 0.8 2.2
η/π0normalization 1.7 3.2 1.7 2.4
Total 2.2 4.8 1.9 3.3
comesfromaphotonoriginatingfromtheprimaryvertex.A selec-tion basedonthis
χ
2 value isusedtofurtherreducecontamina-tion in thephoton sample. The main sources ofbackgroundthat remain after these selection criteria are V0s reconstructed from
π
±e∓,π
±π
∓,π
±K∓ ande±K∓pairs,whichisimportanttotake intoaccountasshownin[59].Theellipticflowofthisbackground issubtractedusingaside-bandmethodapproach.Inthismethod, the dE/dx informationof bothconversion daughters iscombined into a1-dimensionalquantity.Thesignal isa peakeddistribution andtheside-bandsaredominatedbybackgroundsources. The v2oftheside-bandsismeasuredandsubtractedfromthemainsignal region using the purityof the photon sample, which isobtained byfittingMonteCarlotemplatestothedata.Thecorrectiontothe measured inclusive photon flow is ofthe order of5% for central and2.5%forsemi-centralcollisions,respectively.
Thesystematicuncertaintiesoftheinclusivephotonflow mea-sured with PCM are summarized in Table 1. The uncertainties related to the photon selection (
|
η
|
, R, min pT, qT,χ
2/
ndf andcos
(θ )
)areobtainedbyvaryingtheselectioncriteria,andthe sys-tematic uncertainties relatedto the contamination of thephoton sample are quantifiedby theuncertaintyonthe backgroundflow subtraction. Theenergyresolutionuncertainties,whicharedueto detector resolution effects and bremsstrahlung of electrons, are estimated by comparing vγ2,inc distributions as a function of the reconstructedandtruepTusingMCsimulations.Theuncertaintiesrelated to the variation of reconstruction efficiency in- and out-of-plane are calculated from studying the photon reconstruction efficiencyasafunctionofthetrackmultiplicity.Formostofthese sources onlyasmalldependenceon pT andcollisioncentralityis
observed.
InthePHOSanalysis,thesamephotonselectioncriteriaare ap-plied as in the direct-photon spectra analysis [23]. Cells with a common edge with another cell that are both above the energy thresholdof25MeVarecombinedintoclusterswhichareusedas photoncandidates.Toestimatethephoton energy,theenergiesof allcells oronlythosewithcenterswithinaradius Rcore
=
3.
5 cmfrom thecluster center ofgravity are summed. Comparedto the fullclusterenergy,thecoreenergyislesssensitivetooverlapswith low-energyclustersinahighmultiplicityenvironment,andiswell reproducedby GEANT3MonteCarlosimulations[23]. The full en-ergyisusedforthesystematicuncertaintyestimate.The contribu-tionofhadronicclustersisreducedbyrequiringEcluster
>
0.
3 GeV,lat-ALICE Collaboration / Direct photon elliptic flow in Pb–Pb 311
Fig. 1. Comparisonofthemeasuredinclusivephotonflow(vγ ,2inc)totheindividualPCMandPHOSmeasurements(vγ ,2ind)inthe0–20%(left)and20–40%(right)centrality classes.Theindividualresultsaredividedbythecombined vγ ,2inc.Theverticalbarsoneachdatapointindicatethestatisticaluncertaintiesandtheboxesindicatethe systematicuncertainties.
eralclusterdispersion[60].Thelatterselectionrejectsrareevents when hadronspunch through the crystal andhadronically inter-act with APD, producing a large signal in one cell of a cluster, not proportional to the energy deposition. In addition to these cuts, we also apply a pT-dependent dispersion cut and perform
achargedparticleveto(CPV).TheCPVremovesclustersbasedon theminimal distancebetweenthe PHOScluster positionandthe positionofextrapolatedchargedtracks onthe PHOSsurface,and isusedtosuppresshadroncontribution[60]. Bothdispersionand CPVcutsaretuned usingpp collisiondatatoprovide thephoton reconstructionandidentificationefficiencyatthelevelof96–99%. MeasurementswithdifferentcombinationsofdispersionandCPV cutsare used forthe estimate of systematicuncertainties. Possi-blepileupcontributionfromother bunchcrossingsisremoved by aloosecutontheclusterarrival time
|
t|
<
150 ns,whichissmall comparedtoaminimumtimebetweenbunchcrossingsof525 ns. To estimate the reconstruction and identification efficiencies and correction for energy smearing with their possible depen-denceontheanglewithrespecttotheeventplane,weembedded simulated photon clusters into real data events and applied the standard reconstruction procedure. PHOS properties (energy and position resolutions, residual de-calibration, absolute calibration, non-linear energy response) are tuned in the simulation to re-produce the pT-dependence of theπ
0 peak position and width[60].Thecorrectionfortheeventplanedependenceofthe recon-structionand identification efficiencies, which comes as additive totheobservedphotonflow,islessthan10−3 bothincentraland
mid-central collisions and is comparableto the statistical uncer-tainties of the embedding procedure. The correction due to the energy smearing, is estimated to be 4% and 1% for central and semi-centralcollisions,respectively.Thecontaminationofthe pho-tonsample measured withPHOSoriginatesmainly from
π
± and¯
p,n annihilation,
¯
withothercontributionsbeingmuchsmaller.The applicationofthedispersionandCPVcutsreducestheoverall con-taminationatpT≈
1.
5 GeV/c fromabout15%to2–3%anddownto1–2%atpT
∼
3–4 GeV/
c.Toestimateandsubtractthehadroncon-tribution,thePHOSresponsematricesareconstructedfor
π
±,K,p andp using¯
realdataorMonteCarlosimulationsandconvoluted withthemeasuredspectra,flowandrelativeyieldsofhadrons.Systematicuncertaintiesoftheinclusivephotonflowmeasured with PHOS are summarized in Table 1. They can be split into two groups: contributions related to the contamination and de-pendence ofreconstruction,identificationandsmearingefficiency ontheanglewithrespecttotheeventplane,anduncertainties re-latedtotheflatnessoftheeventplanecalculation,theeventplane resolution andthe contributionofnon-flow effects.Uncertainties ofthe firstgroup are estimatedby comparingthefully corrected photonflow measuredwithdifferentsetsofidentificationcriteria andwithfull andcoreenergy.Uncertaintiesof thesecond group areestimatedbycomparinginclusivephotonflowsmeasured sep-arately withthe V0–A andV0–C detectors. Note that because of thelimitedazimuthalacceptance,PHOSismuchmoresensitiveto thenon-flatnessoftheeventplanedistributioncomparedtoPCM. Inthecombinationoftheinclusivephotonv2resultsfromPCM
andPHOS,both measurements aretreatedasindependent. Possi-ble correlations dueto the use of the same V0Aand V0C event plane vectors are found to be negligible. To take into account correlationsofthe individual measurementsin binsoftransverse momentum, we describethe measured inclusivephoton flows as vectorsv
γ2,inc,PCM,v2γ,inc,PHOS,wherethevectorcomponents corre-spondto themeasured pT bins, andthecorrelations ofthetotaluncertainties are described by covariance matrices Vv2,PCM and
Vv2,PHOS,respectively. The elements of thecovariance matrixare calculatedassuminguncorrelatedstatisticaluncertaintiesandfully correlated
(
ρ
=
1)
systematicuncertainties; Vi j=
Vstat,i j+
Vsyst,i j,where Vsyst,i j
=
ρσ
syst,iσsyst,j,for pT bini and j.Then, thecom-binedinclusivephotonflowisthevector
vγ2,inc= (
Vv−1 2,PCM+
V −1 v2,PHOS)
−1× (
V−v1 2,PCMv γ,inc,PCM 2+
V− 1 v2,PHOSv γ,inc,PHOS 2).
(5)The inclusivephoton v2 measured withPCMandPHOSare
com-paredinFig.1,whichshowsthe ratiooftheindividualvalues to the combinedflow. The PCMand PHOSmeasurements arefound to be consistent witheach other with p-values of0.93 and0.43 forthecentralityclasses0–20%and20–40%,respectively.
The decay photon flow is estimated using a cocktail simula-tion.Decaysthatcontribute morethan1% ofthetotaldecay
pho-Fig. 2. Ellipticflowofdecayphotonsfromπ0,η,ω,andthetotalcocktailsimulationasafunctionoftransversemomentuminthe0–20%(left)and20–40%(right)centrality
classes.Thebandrepresentsthetotaluncertaintyofthetotalcocktailsimulation.
ton yield are taken intoaccount:
π
0→
2γ
,η
→
2γ
,ω
→
γ π
0,K0
s
→
2π
0→
4γ
.Other contributions arenegligible comparedtothesystematicuncertaintiesofthecocktail.Indecaysof
η
andω
mesons only photonsproduced directly in decays are accounted, while those coming from daughterπ
0 decays are alreadyac-countedin
π
0 contribution.TheK0s decaydoesnotcontribute
sig-nificantlytothephotonsamplemeasuredwiththePCMapproach. Therefore, we correct the PHOS measurement for this contribu-tionbeforecombiningthePHOSandPCMmeasurements.Herewe usethesameapproach asin thedirect-photonspectrum analysis [23],butthistime thesimulationoftheellipticflowisadded.To estimate the ellipticflow of neutralpions, a parametrization has been made of the charged pion flow measured under the same conditions,i.e., chargedpions measured intheTPCandreference particlesintheV0–AandV0–Cdetectors[61,62] areused.To es-timatethecontributionof
η
andω
mesons,themeasured elliptic flowofchargedandneutralkaons[61] isscaled,assumingscaling with the transverse kinetic energy K ET=
mT−
m. Thecompar-ison of different contributions and overall decay photon flow is shownin Fig. 2. The v2 contributions were added withweights,
proportionaltotherelativedecayphotonyieldofamesonintotal decayyield[23].Thewidthofthecoloredbandrepresentsthe sys-tematicuncertainties ofthedecayphotonellipticflow vγ2,dec.The decay photon flow is mainly determined by the
π
0 flow, whileother contributions make relatively small corrections: the
η
andω
contributions slightlyreduce the decay photon elliptic flow atpT
<
2 GeV/c andincrease itcompared totheπ
0 contributionathigher pT.The systematicuncertainties ofthedecayphoton flow
are summarized in Table 1. The largest uncertainties come from theparametrizationofthechargedpionellipticflowandfromthe relativeyield
η
/
π
0.4. Results
The vγ2,inc measured in two centrality classes are shown in Fig.3.Theellipticflowcoefficientsofinclusivephotonsanddecay photonsareverysimilar overthefullrange0
.
9<
pT<
6.
2 GeV/c.Asthefractionofdirectphotonovertheinclusivephotonyieldis relativelysmall,
∼
10%inourpT range[23],thecollectiveflowofinclusivephotonsisdominatedbythedecayphotonflow.In mod-els based on relativistic hydrodynamics the medium is assumed
to be in or close to local thermal equilibrium. An equation of stateisusedtorelatethermodynamicquantitiesliketemperature, energy density, and pressure. Photon production is modeled by foldingthe space–timeevolutionofa collisionwith temperature-dependent photon production rates in the QGP and the hadron gas.Anotherapproachistaken, e.g.,inthePHSDtransportmodel in which the QGP degrees of freedom are modeled as massive strongly-interactingquasi-particles[63].Forbothclassesofmodels the development of a strong early elliptic flow, necessary to re-producetheobserveddirect-photonflow,givesrisetoalargepion elliptic flow atfreeze-out andthereforeto a large inclusive pho-tonellipticflow.Itisthereforeanimportanttesttocheckwhether amodelcandescribeboththeinclusiveandthedirect-photon el-liptic flow. The prediction of the hydrodynamic model described in[64] fortheinclusivephoton v2 intherange1
<
pT<
3 GeV/cisabout40%abovethedata,thoughthemagnitudeoftheelliptic flow of unidentifiedhadrons is reproduced within 10–20% accu-racy inthis pT range [65].The PHSDmodel [63] alsopredictsan
∼
40%higherinclusivephotonflow,eventhoughitreproducesthe unidentifiedhadronflowwell.Thedirect-photonv2iscalculatedfromthecombinedPCMand
PHOSphoton excess Rγ [23], thecombinedinclusive v2,andthe
calculated decay photon v2. In the propagation of uncertainties,
therelativelysmallsignificanceofthephotonexcessofabout1–3 standard deviations(dependingonthecentralityclass andpT
in-terval) requiresspecialattention. This isillustrated fora selected
pT interval in the left panel ofFig. 4 which showsthe obtained
vγ2,dir andits uncertaintyasa function ofthe photonexcess Rγ .
TheGaussianfunctioninthispanelrepresentsthemeasuredvalue ofRγ inthispT interval(dashedline)andits1
σ
totaluncertainty(darkblueshadedarea).ForRγ
1.
05 onelosesthesensitivitytovγ2,dir astheuncertainties, indicated bythe redshaded band, in-creasedrastically.WiththecurrentuncertaintiesonRγ wecannot ruleoutcompletelythat Rγ
1.
05.Weaddressthelimitedsignificanceofthedirect-photonexcess by employing aBayesian approach. The parameters Rγ,t, vγ2,inc,t,
vγ2,dec,t denotingthetruevaluescarry theindex“t”andthe mea-suredquantities Rγ,m,vγ
,dec,m
2 , v
γ,dec,m
2 theindex“m”.Notethat
ALICE Collaboration / Direct photon elliptic flow in Pb–Pb 313
Fig. 3. Ellipticflowofinclusivephotonsanddecayphotons,comparedtohydrodynamic[31] andtransportPHSD[30] modelpredictionsinthe0–20%(left)and20–40% (right)centralityclasses.Theverticalbarsoneachdatapointindicatethestatisticaluncertaintiesandtheboxesindicatethesizesofthetotaluncertainties.
Fig. 4. Left:Centralvalue(solidredline)anduncertaintyofthedirect-photonv2foraselectedpTinterval.Theupperandloweredgesoftheredshadedareacorrespondto
thetotaluncertaintyofvγ ,2dirasobtainedfromlinearGaussianpropagationoftheuncertaintiesσ(v
γ ,inc 2 )andσ(v
γ ,dec
2 ).TheGaussian(witharbitrarynormalization)reflects
themeasuredvalueofRγ inthispTinterval(bluedashedline)andits±1σ uncertainty(dark-blueshadedinterval).Right:Posteriordistributionofthetruevalueofvγ ,2dir
forthesameintervalintheBayesianapproach.Notethatthedistributionhasanon-Gaussianshape,implyingthatthe±2σintervaltypicallycorrespondstoaprobabilityof lessthan95.45%aswouldbethecaseforaGaussian.
themeasuredvalue Rγ,m canfluctuatebelowunity.Theposterior
distributionofthetrueparameterscanbewrittenas
P
(
ϑ
|
m)
∝
P(
m|ϑ)
π
(
ϑ ),
π
(
ϑ )
≡
π
(
Rγ,t)
= (
Rγ,t,1−
1, ...,
Rγ,t,n−
1),
(6) whereinm= (
Rγ,m,
vγ2,inc,m,
v γ,dec,m 2)
,ϑ = (
Rγ,t,
vγ2,inc,t,
v γ,dec,t 2)
.Hereweusethenotation introducedinEq. (5):vectorsrepresent sets of measurements in different pT bins andn is the number
ofthesebins.The function
π
(
Rγ,t)
encodes theprior knowledgeaboutRγ .ThemultivariateHeaviside
functioncorrespondstoa constant(improper) priorfor Rγ,t
≥
1.Theprobability toobserveacertainsetofmeasured valuesgiventhetruevaluesismodeled withmultivariate GaussiansG
(
x;
μ
,
V)
(whereμ
is thevectorof meanvaluesandV isthecovariancematrix):P
(
m|ϑ) =
x=Rγ,vγ2,inc,vγ2,dec
G
(
xm;
xt,
Vx). (7)Bysamplingthe posteriordistribution P
(
ϑ
|
m)
,we obtaintriplets(
Rγ,
vγ2,inc,
vγ2,dec)
foreach pT binfromwhichwecalculatevγ2,diraccordingto Eq. (2).An example ofthe resultingdistribution for
vγ2,dir isshown inFig. 4(right panel).The mediansof the vγ2,dir
distributions are taken as central values. The lower and upper edges oftheerrorbars correspondtovalues ofvdir2 atwhich the integralofthev2 distributionis15.87%and84.13%ofthetotal
in-tegral. In case of a Gaussian distribution thiscorresponds to 1
σ
uncertainties.
Theresultsforthedirect-photonellipticflowforthetwo cen-tralityclasses, 0–20% and20–40%,are shown inFig. 5. The total uncertainties, reflecting the Bayesian posterior distributions, are shown as boxes, and the error bars represent statistical
uncer-Fig. 5. EllipticflowofdirectphotonscomparedwithPHENIXresults[26] forthe0–20%(left)and20–40%(right)centralityclasses.Theverticalbarsoneachdatapoint indicatethestatisticaluncertaintiesandtheboxesthetotaluncertainty.
Fig. 6. Ellipticflowofdirectphotonscomparedtomodelcalculationsinthe0–20%(left)and20–40%(right)centralityclasses.Theverticalbarsoneachdatapointindicate thestatisticaluncertaintiesandtheboxesthetotaluncertainty.
tainties. The correlation of v2,dir points for different pT bins as
quantifiedbythecorrelationmatrixisstrongatlow pT
2 GeV/
c(correlation coefficients typically in the range 0.6–0.75) whereas the uncertainties at high pT are dominated by statistical
uncer-tainties.We compareour resultsto measurements madeatRHIC energiesbythePHENIXcollaboration[26].Theinclusivephotonv2
wasmeasuredbyPHENIXthroughthereconstructionofe+e−pairs from photon conversions and withan electromagnetic calorime-ter.Thedirect-photonellipticflowinAu–AucollisionsatRHICand inPb–Pbcollisions attheLHCare foundtobe compatiblewithin uncertainties.A simpleexplanationofthelargeandsimilar direct-photonellipticflowforpT
2 GeV/
c atRHICandtheLHCisthatthebulkofthethermaldirectphotonsisproducedlateat temper-aturesclosetothetransitiontemperatureTc.Thisisinterestingas
naïvelyone wouldexpectthe T2 temperaturedependenceofthe
photonemissionratetomaketheearly hotQGPphaseafter ther-malizationalsothebrightestphase.
Fig.6comparesthemeasureddirect-photonellipticflowvγ2,dir
totheestimateddecayphotonellipticflowvγ2,dec,markedas cock-tail,andtothepredictionsofseveraltheoreticalmodels.Similarly tomeasurementsatRHICenergies[24],wefindthatthedirectand decayphoton ellipticflow are similar. Wecompare our measure-mentstostate-of-the-arthydrodynamicmodelcalculations[31,66] and thePHSDtransport model [63]. The measured direct-photon elliptic flow is systematically higherthan theoretical predictions, butisstillcompatible.
Inordertoquantifythedeviationofthedirect-photon v2
mea-surementfroma certainhypothesiswithafrequentist p-valueor, equivalently,thecorrespondingnumberofstandarddeviations,we use aBayesian-inspired method[67].In thisapproach,the likeli-hoodL
(
vγ2,inc,m|
v2γ,dir,t)
servesasateststatisticandisobtainedbyALICE Collaboration / Direct photon elliptic flow in Pb–Pb 315
integratingover the nuisance parameters
vγ2,dec,t and Rγ ,t usingtheirBayesianposteriordistributionsasweights.Wefocusonthe interval 0
.
9<
pT<
2.
1 GeV/
c inwhich the contributionofther-malphotonsis expectedtobe important.The significance ofthe deviationfrom the hypothesis vγ2,dir,t
=
0 for individual pT binsisintherange1.8–2.1
σ
forthe0–20%classand0.9–1.5σ
forthe 20–40%class.Wealsogoastepfurtherandestimatethecombined significanceofthedeviationfromthehypothesisvγ2,dir≡
0 forthispT interval. Thistestsinaddition howwell the shapeof vγ2,inc,m
asa functionof pT agrees withv2γ,dec,m
/
Rγ ,i.e., withtheexpec-tationforvγ2,dir
≡
0.Weestimatethecovariancematrixdescribing thecorrelation by characterizing the differentsources of system-aticuncertaintiesof Rγ ,theinclusive,andthedecayphotonflow aseitherfullyuncorrelatedor fullycorrelated in pT. Varyingtheassumptions about the correlation of the data points we obtain significancesof typically lessthan 1
σ
forboth centrality classes. Whiletheappliedmethodisessentialforameaningfulcomparison ofthevγ2,dirdatawithdifferentmodelpredictions,themethodsto estimatethecovariancematrixcanbeimprovedinfutureanalyses.5. Conclusions
Insummary,wereportthefirstmeasurementofellipticflowof inclusiveanddirect photonsasa function of transverse momen-tumintherange0
.
9<
pT<
6.
2 GeV/c forcentralandsemi-centralPb–Pbcollisionsat
√
sNN=
2.
76 TeV.Theellipticflowofinclusivephotonswas measured withthescalarproductmethod, indepen-dentlyintheelectromagneticcalorimeterPHOSandwiththe pho-tonconversionmethodwherethereferenceparticlesinbothcases were measured by the V0–A and V0–C detectors. The combined inclusivephotonvγ2,inc,togetherwiththecalculateddecayphoton
vγ2,dec andthepreviously measured Rγ areusedto calculatethe elliptic flow of direct photons. The measured direct-photon flow
vγ2,dir appearstobe closeto thedecayphoton flowforboth cen-tralityclasses,similar to observations atlower collision energies. Moreover,themeasured vγ2,dir issimilar tothemeasurements by the PHENIX collaboration at RHIC. The considered hydrodynamic andtransportmodelspredictalargerinclusivephotonellipticflow (byapproximately 40%) anda smaller direct-photon elliptic flow than observed. With current uncertainties, however, these mod-els are consistent with the presented direct-photon elliptic flow data. Future measurements using a larger statistics dataset will greatlyincreasetheprecisionofthismeasurementandallowusto extendthe measurementtohigher pT,since thestatistical
uncer-taintyisdominatingthe totaluncertaintyfor pT
>
2.
0 GeV/c andpT
>
3.
0 GeV/c forthePHOSandPCMinclusivephotonflowmea-surement, respectively. Inaddition, a larger statisticsdataset will alsohelptoconstrainthesystematicuncertaintiesontheinclusive anddecayphotonflow,aswellasthemeasurementofRγ overthe wholepTrange.Afurtherreductionofthesystematicuncertainties
is expected from improved detector knowledge. For instance, in caseofPCMthelargestsystematicuncertaintyinthemeasurement of Rγ is related to modeling the material inwhich the photons convert.Calibrating regions ofthe detectorwithlesswell known materialbudget basedonregions withvery well knownmaterial mightsignificantlyreducetheoverallmaterialbudgetuncertainty. TheRγ measurementcanbeimprovedfurtherbymeasuring neu-tralpion and etameson spectra in a combinedPCM-calorimeter approachinwhichonedecayphotonismeasuredthrough conver-sionandtheotherwithacalorimeter.
Acknowledgements
We wouldlike to thank ElenaBratkovskaya andJean-François Paquetforprovidingcalculationsshowninthispaperandfor use-fuldiscussions.
The ALICE Collaboration would like to thank all its engineers andtechniciansfortheir invaluablecontributions tothe construc-tionoftheexperimentandtheCERNacceleratorteamsforthe out-standingperformanceoftheLHCcomplex.TheALICECollaboration gratefully acknowledges the resources and support provided by all Gridcentres andtheWorldwide LHC ComputingGrid (WLCG) collaboration. The ALICE Collaboration acknowledges the follow-ing funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (YerevanPhysicsInstitute)Foundation (ANSL),State Committeeof Science andWorld Federation ofScientists (WFS), Armenia; Aus-trian Academy of Sciences and Österreichische Nationalstiftung für Forschung, Technologie undEntwicklung, Austria; Ministry of CommunicationsandHighTechnologies,NationalNuclearResearch Center, Azerbaijan;Conselho NacionaldeDesenvolvimento Cientí-ficoe Tecnológico(CNPq),UniversidadeFederal doRioGrandedo Sul (UFRGS),Financiadorade Estudose Projetos(Finep)and Fun-dação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), Na-tionalNaturalScienceFoundationofChina(NSFC)andMinistryof EducationofChina(MOEC),China;MinistryofScienceand Educa-tion,Croatia;MinistryofEducation,YouthandSportsoftheCzech Republic,CzechRepublic;TheDanishCouncilforIndependent Re-search – Natural Sciences, the Carlsberg Foundation and Danish NationalResearchFoundation (DNRF),Denmark;HelsinkiInstitute ofPhysics(HIP),Finland;Commissariatàl’EnergieAtomique(CEA) andInstitutNationaldePhysiqueNucléaireetdePhysiquedes Par-ticules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum fürSchwerionenforschungGmbH,Germany;GeneralSecretariatfor ResearchandTechnology,MinistryofEducation,Researchand Re-ligions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE), Department of Science andTechnology, Government of India(DST), University Grants Commission, Governmentof In-dia (UGC)andCouncil of Scientific andIndustrialResearch, India (CSIR), India; Indonesian Institute of Sciences, Indonesia; Centro Fermi –Museo Storicodella Fisica e CentroStudi e Ricerche En-ricoFermiandInstitutoNazionale diFisica Nucleare (INFN),Italy; Institute forInnovativeScienceandTechnology,NagasakiInstitute of AppliedScience (IIST),Japan Societyforthe Promotion of Sci-ence(JSPS)KAKENHIandJapanese MinistryofEducation,Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional deCiencia(CONACYT)yTecnología,throughFondodeCooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; NederlandseOrganisatievoorWetenschappelijkOnderzoek(NWO), Netherlands; The ResearchCouncil ofNorway, Norway; Commis-sion on Science and Technology for Sustainable Development in theSouth(COMSATS),Pakistan;PontificiaUniversidadCatólicadel Perú,Peru;MinistryofScienceandHigherEducationandNational Science Centre, Poland; Korea Institute of Science and Technol-ogyInformationandNationalResearchFoundationofKorea(NRF), Republic ofKorea; Ministry ofEducation and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research(JINR),MinistryofEducation andScience ofthe Russian FederationandNationalResearchCentre Kurchatov Insti-tute, Russia; Ministry of Education, Science, Research and Sport
of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológi-casyDesarrolloNuclear (CEADEN),Cubaenergía, CubaandCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT),Spain;SwedishResearchCouncil(VR)andKnut&Alice WallenbergFoundation(KAW),Sweden;EuropeanOrganizationfor Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technol-ogy(SUT) andOffice ofthe Higher Education Commission under NRUprojectofThailand,Thailand;Turkish AtomicEnergyAgency (TAEK),Turkey;NationalAcademyofSciencesofUkraine,Ukraine; ScienceandTechnology FacilitiesCouncil(STFC),UnitedKingdom; NationalScienceFoundationoftheUnitedStatesofAmerica(NSF) andUnitedStatesDepartmentofEnergy,OfficeofNuclearPhysics (DOENP),UnitedStatesofAmerica.
References
[1]S.Borsanyi,Z.Fodor,etal.,FullresultfortheQCDequationofstatewith2+1 flavors,Phys.Lett.B370 (1)(2014)99–104,arXiv:1309.5258 [hep-lat]. [2]A.Bazavov,etal.,ThechiralanddeconfinementaspectsoftheQCDtransition,
Phys.Rev.D85(2012)054503,arXiv:1111.1710 [hep-lat].
[3]M.H.Thoma,Dampingrateofahardphotoninarelativisticplasma,Phys.Rev. D51(1995)862–865,arXiv:hep-ph/9405309 [hep-ph].
[4]BRAHMSCollaboration,I.Arsene,et al.,Quarkgluonplasmaandcolorglass condensateatRHIC?TheperspectivefromtheBRAHMSexperiment,Nucl.Phys. A757(2005)1–27,arXiv:nucl-ex/0410020 [nucl-ex].
[5]B.B.Back,etal.,ThePHOBOSperspectiveondiscoveriesatRHIC,Nucl.Phys.A 757(2005)28–101,arXiv:nucl-ex/0410022 [nucl-ex].
[6]PHENIX Collaboration, K. Adcox,et al., Formation ofdensepartonicmatter inrelativisticnucleus–nucleuscollisionsatRHIC:experimentalevaluationby the PHENIXcollaboration,Nucl.Phys.A 757(2005)184–283,arXiv:nucl-ex/ 0410003 [nucl-ex].
[7]STARCollaboration,J.Adams,etal.,Experimentalandtheoreticalchallengesin thesearchforthequarkgluonplasma:theSTARcollaboration’scritical assess-mentoftheevidencefromRHICcollisions,Nucl.Phys.A757(2005)102–183, arXiv:nucl-ex/0501009 [nucl-ex].
[8]ALICECollaboration,K.Aamodt,etal.,EllipticflowofchargedparticlesinPb– Pbcollisionsat2.76TeV,Phys.Rev.Lett.105(2010)252302,arXiv:1011.3914 [nucl-ex].
[9]ALICECollaboration,K.Aamodt,etal.,Harmonicdecompositionoftwo-particle angularcorrelationsinPb–Pbcollisionsat√sN N=2.76 TeV,Phys.Lett.B708
(2012)249–264,arXiv:1109.2501 [nucl-ex].
[10]ALICECollaboration,K.Aamodt,etal.,Higherharmonicanisotropicflow mea-surementsofchargedparticlesinPb–Pbcollisionsat√sNN=2.76 TeV,Phys.
Rev.Lett.107(2011)032301,arXiv:1105.3865 [nucl-ex].
[11]ATLAS Collaboration,G.Aad,et al.,Measurementofthepseudorapidityand transversemomentumdependenceoftheellipticflowofchargedparticlesin lead–leadcollisionsat√sN N=2.76 TeVwiththeATLASdetector,Phys.Lett.B
707(2012)330–348,arXiv:1108.6018 [hep-ex].
[12]CMSCollaboration,S.Chatrchyan,etal.,Centralitydependenceofdihadron cor-relations andazimuthalanisotropyharmonicsinPbPbcollisionsat√sN N=
2.76 TeV,Eur.Phys.J.C72(2012)2012,arXiv:1201.3158 [nucl-ex].
[13]S.Voloshin,Y.Zhang,Flowstudy inrelativisticnuclearcollisionsbyFourier expansionofazimuthalparticledistributions,Z.Phys.C70 (1)(1996)665–672, arXiv:hep-ph/9407282 [hep-ph].
[14]J.I. Kapusta, P. Lichard, D. Seibert, High-energy photons from quark–gluon plasmaversushothadronicgas,Phys.Rev.D44(1991)2774–2788,Erratum: Phys.Rev.D47(1993)4171.
[15]C.Shen,U.W.Heinz,J.-F.Paquet,C.Gale,Thermalphotonsasaquark–gluon plasmathermometerreexamined, Phys.Rev.C89 (4) (2014)044910,arXiv: 1308.2440 [nucl-th].
[16]R.Chatterjee,H. Holopainen,I.Helenius,T.Renk,K.J.Eskola,Ellipticflowof thermalphotonsfromevent-by-eventhydrodynamic model,Phys.Rev.C88 (2013)034901,arXiv:1305.6443 [hep-ph].
[17]C.Shen,U.W.Heinz,J.-F.Paquet,I.Kozlov,C.Gale,Anisotropicflowof ther-malphotonsasaquark–gluonplasmaviscometer,Phys.Rev.C91 (2)(2015) 024908,arXiv:1308.2111 [nucl-th].
[18]WA98Collaboration,M.Aggarwal,etal.,Observationofdirectphotonsin cen-tral158AGeV208Pb+208Pbcollisions,Phys.Rev.Lett.85(2000)3595–3599, arXiv:nucl-ex/0006008 [nucl-ex].
[19]PHENIXCollaboration,S.Adler,etal.,Centralitydependenceofdirectphoton production in√sNN=200 GeVAu+Aucollisions, Phys.Rev.Lett.94(2005)
232301,arXiv:nucl-ex/0503003 [nucl-ex].
[20]PHENIXCollaboration,A.Adare,etal.,Enhancedproductionofdirectphotons inAu+Aucollisionsat√sNN=200 GeVandimplicationsfortheinitial
temper-ature,Phys.Rev.Lett.104(2010)132301,arXiv:0804.4168 [nucl-ex]. [21]PHENIXCollaboration,S.Afanasiev,etal.,Measurementofdirectphotonsin
Au+Aucollisionsat√sNN=200 GeV,Phys.Rev.Lett.109(2012)152302,arXiv:
1205.5759 [nucl-ex].
[22]PHENIX Collaboration, A. Adare, et al., Centrality dependence of low-momentumdirect-photonproductioninAu+Aucollisionsat√sNN=200 GeV,
Phys.Rev.Lett.C91 (6)(2015)064904,arXiv:1405.3940 [nucl-ex].
[23]ALICECollaboration,J.Adam,etal.,DirectphotonproductioninPb–Pb colli-sionsat√sNN=2.76 TeV,Phys.Lett.B754(2016)235–248,arXiv:1509.07324
[nucl-ex].
[24]PHENIXCollaboration,A.Adare,etal.,Observationofdirect-photoncollective flowin√sN N=200 GeVAu+Aucollisions,Phys.Rev.Lett.109(2012)122302,
arXiv:1105.4126 [nucl-ex].
[25]PHENIXCollaboration,A.Adare,etal.,Measurementsofhigher-orderflow har-monicsinAu+Aucollisionsat √sN N=200 GeV,Phys.Rev.Lett.107(2011)
252301,arXiv:1105.3928 [nucl-ex].
[26]PHENIXCollaboration,A.Adare,etal.,Azimuthallyanisotropicemissionof low-momentumdirect photonsinAu+Aucollisionsat √sN N=200 GeV, arXiv:
1509.07758 [nucl-ex].
[27]R.Chatterjee,E.S.Frodermann,U.W.Heinz,D.K.Srivastava,Ellipticflowof ther-malphotonsinrelativisticnuclearcollisions,Phys.Rev.Lett.96(2006)202302, arXiv:nucl-th/0511079 [nucl-th].
[28]R.Chatterjee,D.K.Srivastava,Ellipticflowofthermalphotonsandformation timeofquarkgluonplasmaat RHIC,Phys.Rev.C79(2009)021901, arXiv: 0809.0548 [nucl-th].
[29]H.vanHees,C.Gale,R.Rapp,Thermalphotonsandcollectiveflowatthe Rel-ativisticHeavy-IonCollider,Phys. Rev.C84(2011)054906,arXiv:1108.2131 [hep-ph].
[30]O.Linnyk,W.Cassing,E.L.Bratkovskaya,Centralitydependenceofthedirect photonyieldandellipticflowinheavy-ioncollisionsat√sN N=200 GeV,Phys.
Rev.C89 (3)(2014)034908,arXiv:1311.0279 [nucl-th].
[31]C.Gale,Y. Hidaka, S. Jeon, S.Lin,J.-F. Paquet,R.D. Pisarski,D. Satow,V.V. Skokov,G.Vujanovic,Productionandellipticflowofdileptonsandphotonsin amatrixmodelofthequark–gluonplasma,Phys.Rev.Lett.114(2015)072301, arXiv:1409.4778 [hep-ph].
[32]B.Muller,S.-Y.Wu,D.-L.Yang,Ellipticflowfromthermalphotonswith mag-neticfieldinholography,Phys.Rev.D89 (2)(2014)026013,arXiv:1308.6568 [hep-th].
[33]H.vanHees,M.He,R.Rapp,Pseudo-criticalenhancementofthermalphotons inrelativisticheavy-ioncollisions?,Nucl.Phys.A933(2015)256–271,arXiv: 1404.2846 [nucl-th].
[34]A.Monnai,Thermalphoton v2 withslowquarkchemicalequilibration,Phys.
Rev.C90 (2)(2014)021901,arXiv:1403.4225 [nucl-th].
[35]M.Dion,J.-F.Paquet,B.Schenke,C.Young,S.Jeon,C.Gale,Viscousphotonsin relativisticheavyioncollisions,Phys.Rev.C84(2011)064901,arXiv:1109.4405 [hep-ph].
[36]F.-M.Liu,S.-X.Liu,Quark–gluonplasmaformationtimeand directphotons fromheavyioncollisions,Phys.Rev.C89 (3)(2014)034906,arXiv:1212.6587 [nucl-th].
[37]G.Vujanovic,J.-F.Paquet,G.S.Denicol,M.Luzum,B.Schenke,S.Jeon,C.Gale, Probingtheearly-timedynamicsofrelativisticheavy-ioncollisionswith elec-tromagnetic radiation, Nucl. Phys. A 932(2014) 230–234, arXiv:1404.3714 [hep-ph].
[38]L. McLerran, B. Schenke, The glasma, photons and the implications of anisotropy,Nucl.Phys.A929(2014)71–82,arXiv:1403.7462 [hep-ph]. [39]L. McLerran, B. Schenke, A tale of tails: photon rates and flow in
ultra-relativistic heavy ion collisions, Nucl. Phys. A 946(2016) 158–170, arXiv: 1504.07223 [nucl-th].
[40]F. Gelis, H. Niemi, P.V. Ruuskanen, S.S. Rasanen, Photon production from nonequilibriumQGPinheavyioncollisions,J.Phys.G30(2004)S1031–S1036, arXiv:nucl-th/0403040 [nucl-th].
[41]Y.Hidaka,S.Lin,R.D.Pisarski,D.Satow,Dileptonandphotonproductionin thepresenceofanontrivialPolyakovloop,J.HighEnergyPhys.10(2015)005, arXiv:1504.01770 [hep-ph].
[42]O.Linnyk,E.L.Bratkovskaya,W.Cassing,EffectiveQCDandtransport descrip-tionofdileptonandphotonproductioninheavy-ioncollisionsandelementary processes,Prog.Part.Nucl.Phys.87(2016)50–115,arXiv:1512.08126 [nucl-th]. [43]V.Vovchenko,I.A.Karpenko, M.I.Gorenstein,L.M.Satarov,I.N. Mishustin,B. Kämpfer, H.Stoecker, Electromagneticprobesofa pure-glueinitialstatein nucleus–nucleuscollisionsatenergiesavailableattheCERNLargeHadron Col-lider,Phys.Rev.C94 (2)(2016)024906,arXiv:1604.06346 [nucl-th]. [44]T. Koide,T. Kodama, Anisotropy oflow energy direct photons in
relativis-ticheavyion collisions, J.Phys. G43 (9) (2016)095103, arXiv:1605.05127 [nucl-th].
[45]S.Turbide,C.Gale,R.J.Fries,Azimuthalasymmetryofdirectphotonsinhigh energy nuclearcollisions, Phys. Rev.Lett. 96 (2006) 032303, arXiv:hep-ph/ 0508201 [hep-ph].
ALICE Collaboration / Direct photon elliptic flow in Pb–Pb 317
[46]K. Tuchin, Electromagnetic radiationbyquark–gluon plasmaina magnetic field,Phys.Rev.C87 (2)(2013)024912,arXiv:1206.0485 [hep-ph].
[47]G.Basar,D.Kharzeev,D.Kharzeev,V.Skokov,Conformalanomalyasasource ofsoftphotonsinheavyioncollisions, Phys.Rev.Lett.109(2012)202303, arXiv:1206.1334 [hep-ph].
[48]ALICECollaboration,K.Aamodt,etal.,TheALICEexperimentattheCERNLHC, J.Instrum.3(2008)S08002.
[49]J.Alme,etal.,TheALICETPC,alarge3-dimensionaltrackingdevicewithfast readoutforultra-highmultiplicityevents,Nucl.Instrum.MethodsPhys.Res., Sect.A622(2010)316–367,arXiv:1001.1950 [physics.ins-det].
[50]ALICECollaboration,B.B.Abelev,etal.,PerformanceoftheALICEExperimentat theCERNLHC,Int.J.Mod.Phys.A29(2014)1430044,arXiv:1402.4476 [nucl -ex].
[51]ALICECollaboration,K.Aamodt,etal.,AlignmentoftheALICEInnerTracking Systemwithcosmic-raytracks,J.Instrum.5(2010)P03003,arXiv:1001.0502 [physics.ins-det].
[52]A.Akindinov,etal.,TheALICETime-Of-Flightsystem:construction,assembly andqualitytests,NuovoCimentoB124(2009)235–253.
[53] ALICECollaboration,G.Dellacasa,etal.,ALICEtechnicaldesignreportofthe photonspectrometer(PHOS),CERN-LHCC-99-04.
[54] ALICECollaboration,P.Cortese,etal.,ALICEtechnicaldesignreportonforward detectors:FMD,T0andV0,CERN-LHCC-2004-025.
[55]ALICECollaboration,B.Abelev,et al.,CentralitydeterminationofPb–Pb col-lisionsat √sN N=2.76 TeV withALICE,Phys. Rev.C88 (4)(2013)044909,
arXiv:1301.4361 [nucl-ex].
[56]STARCollaboration,C. Adler,et al.,Ellipticflow fromtwoand fourparticle correlationsinAu+Aucollisionsats(NN)∗∗(1/2) =130-GeV,Phys.Rev.C66 (2002)034904,arXiv:nucl-ex/0206001 [nucl-ex].
[57]ALICECollaboration,E.Abbas,etal.,PerformanceoftheALICEVZEROsystem, J.Instrum.8(2013)P10016,arXiv:1306.3130 [nucl-ex].
[58]ALICECollaboration,B.Abelev,etal.,Neutralpionandηmesonproductionin proton–protoncollisionsat√s=0.9 TeVand√s=7 TeV,Phys.Lett.B717 (2012)162–172,arXiv:1205.5724 [hep-ex].
[59]F.Bock, C.Loizides,T.Peitzmann,M.Sas, Impactofresidualcontamination oninclusiveanddirectphotonflow,J.Phys.G44 (1)(2017)025106,arXiv: 1606.06077 [nucl-ex].
[60]ALICECollaboration,B.B.Abelev,etal.,Neutralpionproductionatmidrapidity inppandPb–Pbcollisionsat√sNN=2.76 TeV,Eur.Phys.J.C74 (10)(2014)
3108,arXiv:1405.3794 [nucl-ex].
[61]ALICE Collaboration,B.B.Abelev,et al.,Ellipticflow ofidentified hadronsin Pb–Pbcollisionsat√sNN=2.76 TeV,J.HighEnergyPhys.06(2015)190,arXiv:
1405.4632 [nucl-ex].
[62]ALICECollaboration,B.Abelev,etal.,Anisotropicflowofchargedhadrons, pi-onsand(anti-)protonsmeasuredathightransversemomentuminPb–Pb col-lisionsat√sN N=2.76 TeV,Phys.Lett.B719(2013)18–28,arXiv:1205.5761
[nucl-ex].
[63]O.Linnyk,V.Konchakovski,T.Steinert,W.Cassing,E.L.Bratkovskaya,Hadronic andpartonicsourcesofdirectphotonsinrelativisticheavy-ioncollisions,Phys. Rev.C92 (5)(2015)054914,arXiv:1504.05699 [nucl-th].
[64]J.-F.Paquet,C.Shen,G.S.Denicol,M.Luzum,B.Schenke,S.Jeon,C.Gale,The productionofphotonsinrelativisticheavy-ioncollisions,Phys.Rev.C93(2016) 044906,arXiv:1509.06738 [hep-ph].
[65]S. Ryu,J.-F.Paquet,C.Shen,G.Denicol,B.Schenke,S. Jeon,C.Gale,Effects ofbulk viscosity and hadronicrescatteringinheavy ioncollisions at ener-giesavailableattheBNLRelativisticHeavyIonColliderandattheCERNLarge HadronCollider,Phys.Rev.C97 (3)(2018)034910,arXiv:1704.04216 [nucl-th]. [66]R.Chatterjee,P.Dasgupta,D.K.Srivastava,Anisotropicflowofthermalphotons atenergiesavailableattheBNLRelativisticHeavyIonColliderandattheCERN LargeHadronCollider,Phys. Rev.C96 (1)(2017)014911, arXiv:1702.02378 [nucl-th].
[67]R.D.Cousins,V.L.Highland,Incorporatingsystematicuncertaintiesintoan up-perlimit,Nucl.Instrum.MethodsPhys.Res.,Sect.A320(1992)331–335.
ALICECollaboration