• Non ci sono risultati.

Direct photon elliptic flow in Pb–Pb collisions at sNN=2.76 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Direct photon elliptic flow in Pb–Pb collisions at sNN=2.76 TeV"

Copied!
15
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Direct

photon

elliptic

flow

in

Pb–Pb

collisions

at

s

NN

=

2

.

76 TeV

.

ALICE

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received23May2018

Receivedinrevisedform16October2018 Accepted19November2018

Availableonline23November2018 Editor:L.Rolandi

Theellipticflowofinclusiveanddirectphotonswasmeasuredatmid-rapidityintwocentralityclasses 0–20% and 20–40% in Pb–Pb collisions at √sNN=2.76 TeV by ALICE. Photons were detected with

the highly segmentedelectromagneticcalorimeter PHOS and viaconversions inthe detectormaterial with the e+e− pairs reconstructed in the central tracking system. The results of the two methods were combinedand the direct-photon elliptic flowwas extracted inthetransverse momentumrange 0.9<pT<6.2 GeV/c.Acomparison toRHICdata showsasimilarmagnitudeofthemeasured

direct-photon ellipticflow.Hydrodynamic andtransportmodelcalculationsare systematicallylowerthanthe data,butarefoundtobecompatible.

©2018TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Thetheoryofthestronginteraction,Quantum ChromoDynam-ics (QCD), predicts a transition from ordinary hadronic matter to a new state where quarks and gluons are no longer con-fined to hadrons [1,2]. Lattice calculations predict a chiral and deconfinement crossover transitions over the temperature range 145–163 MeV[1,2], which is accessiblein collisions of ultrarela-tivisticheavyions.Thecreationandstudyofthepropertiesofthis hotstronglyinteractingmatter–Quark–GluonPlasma(QGP)–are themainobjectivesoftheALICEexperiment.

Thehotstronglyinteractingmatter,createdinnucleus–nucleus collisions,expands,coolsandfinallytransformstoordinary hadro-nicmatter. Toexperimentally studythe quark matter properties, severalobservableswereproposed.Here,weconcentrateon study-ing the development of collectiveflow using directphotons.Direct photonsarethephotonsnotoriginatingfromhadronicdecaysbut produced in electromagnetic interactions. Unlike hadrons, direct photonsare produced atall stagesofthe collision. Incoming nu-cleipassingthrougheachotherproducedirectphotonsin scatter-ingsoftheir partonicconstituents.Inaddition, (thermal)photons are emitted in the deconfined quark–gluon plasma and hadronic matter, characterized bythe thermaldistributions ofpartons and hadrons,respectively.Sincethemeanfreepathofaphotoninhot matterismuchlargerthanthetypicalsizesofthecreatedfireball [3],directphotonsescapethecollisionzoneunaffected,delivering direct informationon the conditions at the productiontime and onthedevelopmentofcollectiveflow.

 E-mailaddress:alice-publications@cern.ch.

The observations ofa strong azimuthal asymmetry of particle production over a wide rapidity range in nucleus–nucleus colli-sions was oneofthekey resultsobtainedatRHIC[4–7] and LHC [8–12] energies. It was interpreted as a consequence of collec-tive expansion – collectiveflow –of thematter having aninitial spatial asymmetry, which is more prominent in collisions with non-zeroimpactparameter.Toquantifythecollectiveflow,the az-imuthal distributions of final state particles are expanded in the series1

+

2



vncos

[

n

(

ϕ

−

R P

)

]

[13],dependingonthedifference

betweentheparticleazimuthalangle

ϕ

andthereactionplane ori-entation



R P,definedbytheimpactparameterandbeamaxis.At

mid-rapiditythesecondharmonicv2(ellipticflow)reflectsthe

ex-pansionofthealmond-likeshapeofthehotmattercreatedbythe mutual penetration of the collidingnuclei. Higher harmonics v3,

v4,etc.aresensitivetofluctuationsoftheinitialshapeofthe

cre-ated hot matter and are typically much smaller than v2, except

forcentralcollisions,where v2 decreases duetoamore

symmet-ric geometry. Collectiveflow is sensitive to the equation of state ofhotmatterandtheamountofshearviscosity.Theinitialspatial asymmetryoftheexpandingfireballdiminisheswithtime,forany equation of state. Forstrongly interactingmatter thisasymmetry translatesintoanazimuthalanisotropyinmomentumspace,while forfreestreamingweaklyinteractingmatterthereisnofinal par-ticleazimuthalanisotropy.

Hadrons providethepossibilitytotestwithhighprecision the flowpatternofthelateststageofthecollision,whenthehot mat-ter decouples intofinal particles. Complementary tothem, direct photonsprovide thepossibilityto investigatethedevelopment of flow during the evolution of hot matter. First calculations pre-dicted that the photon emission rate from the hot quark–gluon orhadronmatterincreaseswithtemperatureas

T2exp

(

/

T

)

[14], whereEγ isthephotonenergyandT isthetemperatureof

https://doi.org/10.1016/j.physletb.2018.11.039

0370-2693/©2018TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

ALICE Collaboration / Direct photon elliptic flow in Pb–Pb 309

thematter. Then, thelow transverse momentum (pT



4 GeV

/

c)

partis controlledby thecoolerlateststage,andthehigh pT part

(pT



5 GeV

/

c)ofthe spectrumbythehot initialstate. However,

detailedcalculationswhich include the full hydrodynamic evolu-tion(seee.g. [15])show thatcontributions ofallstagesare com-parable for all pT regions asa higher temperature of the initial

stageiscompensatedbyalargerspace–timevolumeandstronger radial flow of the later stages. Since the observed direct-photon flowistheconvolutionofallstagesofthecollision,includingthe contributionfromtheinitial stagewhen theflowpatternhasnot yet developed, the calculations predict much smaller azimuthal anisotropyforthermalphotonsthanforhadrons[16,17].

Thefirstmeasurementofadirect-photonspectrumin relativis-ticnucleus–nucleuscollisionswaspresentedbytheWA98 collabo-ration [18], and later also by the PHENIX Collaboration [19–22], and by the ALICE Collaboration [23]. The first measurement of elliptic flow of direct photons in Au–Au collisions at

sNN

=

200 GeV was performedby the PHENIX Collaboration [24]. Sur-prisingly, it was found to be close to the flow of hadrons [25]. RecentPHENIXresults, presentingmoreprecise measurementsof ellipticandtriangularflow extendedto lower pT [26],confirmed

thisearlyresult.Thediscrepancybetweenexperimentalresultsand theorypredictionstriggeredasetoftheoreticalstudies,whichcan besplitintotwo classes.Themain ideainthefirstclassof mod-els[27–44] istoincreasetheemissionofdirectphotonsfromthe laterstagesofthecollisionand/orsuppressemissionoftheinitial stage. In the second class of models [45–47], a new azimuthally asymmetricsourceofdirect photonsisconsideredlike jet-matter interactionsorsynchrotronradiationinthefieldofcollidingnuclei. Thesetheoreticalefforts considerablyreduce thediscrepancy,but consistentreproductionofboththedirect-photonspectraandflow isstill missing.The measurementofdirect-photon flowathigher collision energy is important asan independent confirmation of the results at lower energy, and could also allow to disentangle betweendifferentcontributions.

Inthispaper,we presentthefirstmeasurement ofthe direct-photonflowinPb–PbcollisionsattheLHCandcompareour find-ingstoRHICresultsandtopredictionsofhydrodynamicaswellas transportmodels.

2. Detectorsetup

Thedirectphotonflowisbasedonthemeasurementofthe el-lipticflowofinclusivephotonsandtheestimationofthe contribu-tionofdecayphotonsusingtheavailablehadronflowresults. Pho-tonsarereconstructed viatwo independentmethods: thePhoton ConversionMethod(PCM)andwiththeelectromagnetic calorime-terPHOS.

Intheconversionmethod,theelectronandpositrontracksfrom photonconversionsare measuredwiththeInnerTrackingSystem (ITS)and/ortheTimeProjectionChamber(TPC).TheITS[48] con-sists of two layers of Silicon Pixel Detectors (SPD) positioned at radial distancesof 3.9 cmand7.6 cm, two layers ofSiliconDrift Detectors(SDD)at15.0 cmand23.9 cm,andtwolayersofSilicon StripDetectors(SSD)at38.0 cm and43.0 cm.Thetwoinnermost layers cover a pseudorapidity range of

|

η

|

<

2 and

|

η

|

<

1

.

4, re-spectively.TheTPC[49] isalarge(85 m3)cylindricaldriftdetector filledwithaNe–CO2–N2 (85.7/9.5/4.8%)gasmixture.Itcoversthe

pseudorapidityrange

|

η

|

<

0

.

9 overthefull azimuthalanglewith amaximumtracklengthof159reconstructed spacepoints.With thesolenoidal magnetic field of B

=

0

.

5 T, electron andpositron trackscanbereconstructeddownto pT

50 MeV

/

c.TheTPC

pro-vides particle identification via the measurement of the specific energyloss(dE/dx) witha resolutionof5.2%inppcollisions and 6.5% in central Pb–Pb collisions [50]. The ITS and the TPC were

alignedwithrespecttoeachothertotheleveloflessthan100 μm usingcosmic-rayandpp collisiondata[51].Particle identification isalsoprovided bythe Time-of-Flight(TOF) detector[52] located ataradialdistanceof370

<

r

<

399 cm.Thisdetectorconsistsof MultigapResistivePlateChambers(MRPC)andprovidestiming in-formationwithanintrinsicresolutionof50 ps.

PHOS[53] isan electromagneticcalorimeterwhichconsistsof three modules installed at a radial distance of 4.6 m from the interaction point. It subtends 260◦

<

ϕ

<

320◦ in azimuth and

|

η

|

<

0

.

12 in pseudorapidity. Each module consists of 3584 de-tector cells arranged ina matrix of 64

×

56 lead tungstate crys-tals each of size 2

.

2

×

2

.

2

×

18 cm3. The signal from each cell ismeasured by an avalanchephotodiode (APD)associatedwitha low-noisecharge-sensitivepreamplifier.Toincreasethelightyield, reduce electronic noise,andimproveenergy resolution,theAPDs andpreamplifiersare cooledto atemperatureof

25◦C.The re-sultingenergyresolutionis

σ

E

/

E

= (

1

.

8%

/

E

)

⊕ (

3

.

3%

/

E

)

1

.

1%, where E is inunits ofGeV. The energydeposition ineach PHOS celliscalibratedinpp collisionsbyaligningthe

π

0 peakposition

inthetwo-photoninvariantmassdistribution.

FortheminimumbiastriggerinthePb–Pb runandeventplane orientation calculation,two scintillatorarray detectors (V0–Aand V0–C) [54] are used, which subtend 2

.

8

<

η

<

5

.

1 and

3

.

7

<

η

<

1

.

7,respectively. EachoftheV0 arraysconsistsof32 chan-nels and is segmented in four rings in the radial direction, and each ringis dividedintoeight sectorsintheazimuthal direction. ThesumofthesignalamplitudesoftheV0–AandV0–Cdetectors servesasameasureofcentralityinthePb–Pb collisions.

3. Dataanalysis

ThisanalysisisbasedondatarecordedbytheALICEexperiment in the first LHC heavy-ion run in the fall of 2010. The detector readout was triggered by the minimum bias interaction trigger based on signals from the V0–A, V0–C, and SPD detectors. The efficiencyfortriggeringonaPb–Pb hadronicinteractionranged be-tween98.4%and99.7%.Theeventsaredividedintothecentraland semi-centralcentralityclasses0–20%and20–40%,respectively, ac-cordingtotheV0–AandV0–Csummedamplitudes[55].Toensure auniformtrackacceptanceinpseudorapidity

η

,onlyeventswitha primaryvertexwithin

±

10 cm fromthenominalinteractionpoint along thebeamline(z-direction)areused.Afterofflineevent se-lection, 13

.

6

×

106 eventsare available forthe PCM analysisand

18

.

8

×

106 eventsforthePHOSanalysis.

The direct-photonellipticflow isextractedon astatistical ba-sisbysubtractingtheellipticflowofphotonsfromhadron decays from the inclusive photon elliptic flow. We assume that in each bin ofthe photon transverse momentum the measured inclusive photonflowcanbedecomposedas

2,inc

=

Nγ,dir Nγ,inc

2,dir

+

Nγ,dec Nγ,inc

2,dec

,

(1)

whereNγ,inc

=

Nγ,dir

+

Nγ,decistheinclusivephotonyieldwhich

can be decomposed into the contributions of direct (Nγ,dir) and

decay(Nγ,dec) photons. The ,inc

2 , v

γ,dir

2 and v

γ,dec

2 are the

cor-respondingphotonflows.Itisconvenienttoexpressdirect-photon flowintermsoftheratio

=

Nγ,inc

/

Nγ,dec,theinclusivephoton

flow 2,inc,andthedecayphotonflow2,dec:

2,dir

=

v γ,inc 2

v γ,dec 2

1

.

(2)

The ratioRγ was measuredinthesamedataset in[23],whereas

(3)

which is also known as cocktail simulation. The PCM and PHOS measurements of inclusive photon flow are performed indepen-dently.Theyarethencombinedandusedwiththecombinedratio

Rγ aswellasthecalculateddecayphotonflow.

Thephoton ellipticflow v2 iscalculatedwiththeScalar

Prod-uct(SP)method,whichisa two-particlecorrelationmethod[56], usingapseudorapiditygapof

|

η

|

>

0

.

9 betweenthephotonand thereferenceflow particles.The appliedgapreduces correlations not relatedtotheeventplane



n,such asthe onesdueto

reso-nancedecaysandjets,knownasnon-flow effects.TheSPmethod usesthe Q -vector,computedfromasetofreferenceflowparticles (RFP)definedas:



Qn

=



i∈RFP wieinϕi

,

(3)

where

ϕ

i istheazimuthal angleofthe i-thRFP,n is theorderof

theharmonicandwi isa weightappliedforevery RFP.TheRFPs

aretakenfromtheV0–AandV0–Cdetectors.Sincethesedetectors donotprovidetrackinginformation,wesumovertheV0–A/V0–C cells,whiletheamplitudesofthesignalfromeachcell,whichare proportionaltothenumberofparticlesthat causea hit,areused asaweight wi.Thenon-uniformityofthedetectorazimuthal

effi-ciencyistakenintoaccountbyapplyingtheinverseofthe event-averagedsignalasaweightforeachoftheV0 segments,together witha recenteringprocedure [50,57].More specifically, the ellip-ticflow v2 iscalculatedusingtheunitflowvectoru



2

=

ei2ϕ built

fromreconstructedphotons

v2

=















u2

·

 QA∗ 2 MA





u2

·

 QC∗ 2 MC





QA 2 MA

·

 QC∗ 2 MC



,

(4)

wherethetwopairs ofbracketsinthenumeratorindicatean av-erage over all photonsand over all events; MA and MC are the

estimates of multiplicity from the V0–A andV0–C detectors, re-spectively;and Q



A∗

2 , Q



C∗

2 are thecomplexconjugatesoftheflow

vectorcalculatedinsub-eventAandC,respectively.

In the PCM analysis, photons converting into e+e− pairs are reconstructedwithanalgorithmwhichsearchesfordisplaced ver-tices with two oppositely charged daughter tracks. Only good quality TPCtrackswitha transversemomentum above50 MeV/c and a pseudorapidity of

|

η

|

<

0

.

9 are considered. The vertex finding algorithm uses the Kalman filter technique for the de-cay/conversion point and four-momentum determination of the neutral parent particle (V0) [58]. Further selection is performed

on the level of the reconstructed V0. Only V0s with a con-version points at radii between 5

<

R

<

180 cm are accepted such that the

π

0 and

η

-meson Dalitz decays are rejected and

to ensure a good coverage by the tracking detectors of the con-version daughters. To identify an e+e− pair, the specific energy loss (dE/dx)intheTPC[50] ofbothdaughtersisused.The trans-verse momentum componentqT ofthe electron momentum, pe,

withrespecttotheV0 momentum-vectorisrestrictedtobeq T

<

0

.

05

1

− (

α

/

0

.

95

)

2 GeV/c,where

α

isthe energy asymmetry of the conversion daughters. Random associations of electrons and positronsarefurtherreducedbyselectingV0swithcos

(θ )

>

0

.

85, where

θ

is the pointing angle, which is the angle between the momentum-vector ofthee+e− pairandthevector that connects theprimaryvertexandtheconversionpoint.Basedonthe invari-ant mass of the e+e− pair andthe pointing angle of the V0 to theprimary vertex,thevertexfindercalculatesa

χ

2 valuewhich

reflects the levelof consistency withthe hypothesis that the V0

Table 1

Summaryoftherelativesystematicuncertainties(in%)oftheinclusivephoton el-lipticflowinthePCMandPHOSanalysis,andofthedecayphotonsimulation.All contributionsareexpectedtobecorrelatedinpTwiththemagnitudeoftherelative

uncertaintyvaryingpoint-by-point.

Centrality 0–20% 20–40% pT(GeV/c) 2.0 5.0 2.0 5.0 PCM Photon selection 2.4 4.2 2.1 4.0 Energy resolution 1.0 1.0 1.0 1.0 Efficiency 3 3 1.9 1.9 Total 4.0 5.3 3.0 4.5 PHOS

Efficiency & contamination 3.0 3.0 0.7 0.7

Event plane flatness 2.0 2.0 1.4 1.4

Total 3.5 3.5 1.6 1.6

Decay photon calculation

Parameterization of vπ

2 1.3 3.6 0.8 2.2

η/π0normalization 1.7 3.2 1.7 2.4

Total 2.2 4.8 1.9 3.3

comesfromaphotonoriginatingfromtheprimaryvertex.A selec-tion basedonthis

χ

2 value isusedtofurtherreduce

contamina-tion in thephoton sample. The main sources ofbackgroundthat remain after these selection criteria are V0s reconstructed from

π

±e∓,

π

±

π

∓,

π

±K∓ ande±K∓pairs,whichisimportanttotake intoaccountasshownin[59].Theellipticflowofthisbackground issubtractedusingaside-bandmethodapproach.Inthismethod, the dE/dx informationof bothconversion daughters iscombined into a1-dimensionalquantity.Thesignal isa peakeddistribution andtheside-bandsaredominatedbybackgroundsources. The v2

oftheside-bandsismeasuredandsubtractedfromthemainsignal region using the purityof the photon sample, which isobtained byfittingMonteCarlotemplatestothedata.Thecorrectiontothe measured inclusive photon flow is ofthe order of5% for central and2.5%forsemi-centralcollisions,respectively.

Thesystematicuncertaintiesoftheinclusivephotonflow mea-sured with PCM are summarized in Table 1. The uncertainties related to the photon selection (

|

η

|

, R, min pT, qT,

χ

2

/

ndf and

cos

(θ )

)areobtainedbyvaryingtheselectioncriteria,andthe sys-tematic uncertainties relatedto the contamination of thephoton sample are quantifiedby theuncertaintyonthe backgroundflow subtraction. Theenergyresolutionuncertainties,whicharedueto detector resolution effects and bremsstrahlung of electrons, are estimated by comparing 2,inc distributions as a function of the reconstructedandtruepTusingMCsimulations.Theuncertainties

related to the variation of reconstruction efficiency in- and out-of-plane are calculated from studying the photon reconstruction efficiencyasafunctionofthetrackmultiplicity.Formostofthese sources onlyasmalldependenceon pT andcollisioncentralityis

observed.

InthePHOSanalysis,thesamephotonselectioncriteriaare ap-plied as in the direct-photon spectra analysis [23]. Cells with a common edge with another cell that are both above the energy thresholdof25MeVarecombinedintoclusterswhichareusedas photoncandidates.Toestimatethephoton energy,theenergiesof allcells oronlythosewithcenterswithinaradius Rcore

=

3

.

5 cm

from thecluster center ofgravity are summed. Comparedto the fullclusterenergy,thecoreenergyislesssensitivetooverlapswith low-energyclustersinahighmultiplicityenvironment,andiswell reproducedby GEANT3MonteCarlosimulations[23]. The full en-ergyisusedforthesystematicuncertaintyestimate.The contribu-tionofhadronicclustersisreducedbyrequiringEcluster

>

0

.

3 GeV,

(4)

lat-ALICE Collaboration / Direct photon elliptic flow in Pb–Pb 311

Fig. 1. Comparisonofthemeasuredinclusivephotonflow(vγ ,2inc)totheindividualPCMandPHOSmeasurements(vγ ,2ind)inthe0–20%(left)and20–40%(right)centrality classes.Theindividualresultsaredividedbythecombined vγ ,2inc.Theverticalbarsoneachdatapointindicatethestatisticaluncertaintiesandtheboxesindicatethe systematicuncertainties.

eralclusterdispersion[60].Thelatterselectionrejectsrareevents when hadronspunch through the crystal andhadronically inter-act with APD, producing a large signal in one cell of a cluster, not proportional to the energy deposition. In addition to these cuts, we also apply a pT-dependent dispersion cut and perform

achargedparticleveto(CPV).TheCPVremovesclustersbasedon theminimal distancebetweenthe PHOScluster positionandthe positionofextrapolatedchargedtracks onthe PHOSsurface,and isusedtosuppresshadroncontribution[60]. Bothdispersionand CPVcutsaretuned usingpp collisiondatatoprovide thephoton reconstructionandidentificationefficiencyatthelevelof96–99%. MeasurementswithdifferentcombinationsofdispersionandCPV cutsare used forthe estimate of systematicuncertainties. Possi-blepileupcontributionfromother bunchcrossingsisremoved by aloosecutontheclusterarrival time

|

t

|

<

150 ns,whichissmall comparedtoaminimumtimebetweenbunchcrossingsof525 ns. To estimate the reconstruction and identification efficiencies and correction for energy smearing with their possible depen-denceontheanglewithrespecttotheeventplane,weembedded simulated photon clusters into real data events and applied the standard reconstruction procedure. PHOS properties (energy and position resolutions, residual de-calibration, absolute calibration, non-linear energy response) are tuned in the simulation to re-produce the pT-dependence of the

π

0 peak position and width

[60].Thecorrectionfortheeventplanedependenceofthe recon-structionand identification efficiencies, which comes as additive totheobservedphotonflow,islessthan10−3 bothincentraland

mid-central collisions and is comparableto the statistical uncer-tainties of the embedding procedure. The correction due to the energy smearing, is estimated to be 4% and 1% for central and semi-centralcollisions,respectively.Thecontaminationofthe pho-tonsample measured withPHOSoriginatesmainly from

π

± and

¯

p,n annihilation,

¯

withothercontributionsbeingmuchsmaller.The applicationofthedispersionandCPVcutsreducestheoverall con-taminationatpT

1

.

5 GeV/c fromabout15%to2–3%anddownto

1–2%atpT

3–4 GeV

/

c.Toestimateandsubtractthehadron

con-tribution,thePHOSresponsematricesareconstructedfor

π

±,K,p andp using

¯

realdataorMonteCarlosimulationsandconvoluted withthemeasuredspectra,flowandrelativeyieldsofhadrons.

Systematicuncertaintiesoftheinclusivephotonflowmeasured with PHOS are summarized in Table 1. They can be split into two groups: contributions related to the contamination and de-pendence ofreconstruction,identificationandsmearingefficiency ontheanglewithrespecttotheeventplane,anduncertainties re-latedtotheflatnessoftheeventplanecalculation,theeventplane resolution andthe contributionofnon-flow effects.Uncertainties ofthe firstgroup are estimatedby comparingthefully corrected photonflow measuredwithdifferentsetsofidentificationcriteria andwithfull andcoreenergy.Uncertaintiesof thesecond group areestimatedbycomparinginclusivephotonflowsmeasured sep-arately withthe V0–A andV0–C detectors. Note that because of thelimitedazimuthalacceptance,PHOSismuchmoresensitiveto thenon-flatnessoftheeventplanedistributioncomparedtoPCM. Inthecombinationoftheinclusivephotonv2resultsfromPCM

andPHOS,both measurements aretreatedasindependent. Possi-ble correlations dueto the use of the same V0Aand V0C event plane vectors are found to be negligible. To take into account correlationsofthe individual measurementsin binsoftransverse momentum, we describethe measured inclusivephoton flows as vectorsv



γ2,inc,PCM,v



2γ,inc,PHOS,wherethevectorcomponents corre-spondto themeasured pT bins, andthecorrelations ofthetotal

uncertainties are described by covariance matrices Vv2,PCM and

Vv2,PHOS,respectively. The elements of thecovariance matrixare calculatedassuminguncorrelatedstatisticaluncertaintiesandfully correlated

(

ρ

=

1

)

systematicuncertainties; Vi j

=

Vstat,i j

+

Vsyst,i j,

where Vsyst,i j

=

ρσ

syst,syst,j,for pT bini and j.Then, the

com-binedinclusivephotonflowisthevector



2,inc

= (

Vv−1 2,PCM

+

V −1 v2,PHOS

)

−1

× (

Vv1 2,PCM



v γ,inc,PCM 2

+

V− 1 v2,PHOS



v γ,inc,PHOS 2

).

(5)

The inclusivephoton v2 measured withPCMandPHOSare

com-paredinFig.1,whichshowsthe ratiooftheindividualvalues to the combinedflow. The PCMand PHOSmeasurements arefound to be consistent witheach other with p-values of0.93 and0.43 forthecentralityclasses0–20%and20–40%,respectively.

The decay photon flow is estimated using a cocktail simula-tion.Decaysthatcontribute morethan1% ofthetotaldecay

(5)

pho-Fig. 2. Ellipticflowofdecayphotonsfromπ0,η,ω,andthetotalcocktailsimulationasafunctionoftransversemomentuminthe0–20%(left)and20–40%(right)centrality

classes.Thebandrepresentsthetotaluncertaintyofthetotalcocktailsimulation.

ton yield are taken intoaccount:

π

0

2

γ

,

η

2

γ

,

ω

γ π

0,

K0

s

2

π

0

4

γ

.Other contributions arenegligible comparedto

thesystematicuncertaintiesofthecocktail.Indecaysof

η

and

ω

mesons only photonsproduced directly in decays are accounted, while those coming from daughter

π

0 decays are already

ac-countedin

π

0 contribution.TheK0

s decaydoesnotcontribute

sig-nificantlytothephotonsamplemeasuredwiththePCMapproach. Therefore, we correct the PHOS measurement for this contribu-tionbeforecombiningthePHOSandPCMmeasurements.Herewe usethesameapproach asin thedirect-photonspectrum analysis [23],butthistime thesimulationoftheellipticflowisadded.To estimate the ellipticflow of neutralpions, a parametrization has been made of the charged pion flow measured under the same conditions,i.e., chargedpions measured intheTPCandreference particlesintheV0–AandV0–Cdetectors[61,62] areused.To es-timatethecontributionof

η

and

ω

mesons,themeasured elliptic flowofchargedandneutralkaons[61] isscaled,assumingscaling with the transverse kinetic energy K ET

=

mT

m. The

compar-ison of different contributions and overall decay photon flow is shownin Fig. 2. The v2 contributions were added withweights,

proportionaltotherelativedecayphotonyieldofamesonintotal decayyield[23].Thewidthofthecoloredbandrepresentsthe sys-tematicuncertainties ofthedecayphotonellipticflow 2,dec.The decay photon flow is mainly determined by the

π

0 flow, while

other contributions make relatively small corrections: the

η

and

ω

contributions slightlyreduce the decay photon elliptic flow at

pT

<

2 GeV/c andincrease itcompared tothe

π

0 contributionat

higher pT.The systematicuncertainties ofthedecayphoton flow

are summarized in Table 1. The largest uncertainties come from theparametrizationofthechargedpionellipticflowandfromthe relativeyield

η

/

π

0.

4. Results

The 2,inc measured in two centrality classes are shown in Fig.3.Theellipticflowcoefficientsofinclusivephotonsanddecay photonsareverysimilar overthefullrange0

.

9

<

pT

<

6

.

2 GeV/c.

Asthefractionofdirectphotonovertheinclusivephotonyieldis relativelysmall,

10%inourpT range[23],thecollectiveflowof

inclusivephotonsisdominatedbythedecayphotonflow.In mod-els based on relativistic hydrodynamics the medium is assumed

to be in or close to local thermal equilibrium. An equation of stateisusedtorelatethermodynamicquantitiesliketemperature, energy density, and pressure. Photon production is modeled by foldingthe space–timeevolutionofa collisionwith temperature-dependent photon production rates in the QGP and the hadron gas.Anotherapproachistaken, e.g.,inthePHSDtransportmodel in which the QGP degrees of freedom are modeled as massive strongly-interactingquasi-particles[63].Forbothclassesofmodels the development of a strong early elliptic flow, necessary to re-producetheobserveddirect-photonflow,givesrisetoalargepion elliptic flow atfreeze-out andthereforeto a large inclusive pho-tonellipticflow.Itisthereforeanimportanttesttocheckwhether amodelcandescribeboththeinclusiveandthedirect-photon el-liptic flow. The prediction of the hydrodynamic model described in[64] fortheinclusivephoton v2 intherange1

<

pT

<

3 GeV/c

isabout40%abovethedata,thoughthemagnitudeoftheelliptic flow of unidentifiedhadrons is reproduced within 10–20% accu-racy inthis pT range [65].The PHSDmodel [63] alsopredictsan

40%higherinclusivephotonflow,eventhoughitreproducesthe unidentifiedhadronflowwell.

Thedirect-photonv2iscalculatedfromthecombinedPCMand

PHOSphoton excess Rγ [23], thecombinedinclusive v2,andthe

calculated decay photon v2. In the propagation of uncertainties,

therelativelysmallsignificanceofthephotonexcessofabout1–3 standard deviations(dependingonthecentralityclass andpT

in-terval) requiresspecialattention. This isillustrated fora selected

pT interval in the left panel ofFig. 4 which showsthe obtained

2,dir andits uncertaintyasa function ofthe photonexcess Rγ .

TheGaussianfunctioninthispanelrepresentsthemeasuredvalue ofRγ inthispT interval(dashedline)andits1

σ

totaluncertainty

(darkblueshadedarea).For



1

.

05 onelosesthesensitivityto

2,dir astheuncertainties, indicated bythe redshaded band, in-creasedrastically.WiththecurrentuncertaintiesonRγ wecannot ruleoutcompletelythat



1

.

05.

Weaddressthelimitedsignificanceofthedirect-photonexcess by employing aBayesian approach. The parameters Rγ,t, 2,inc,t,

2,dec,t denotingthetruevaluescarry theindex“t”andthe mea-suredquantities Rγ,m,

,dec,m

2 , v

γ,dec,m

2 theindex“m”.Notethat

(6)

ALICE Collaboration / Direct photon elliptic flow in Pb–Pb 313

Fig. 3. Ellipticflowofinclusivephotonsanddecayphotons,comparedtohydrodynamic[31] andtransportPHSD[30] modelpredictionsinthe0–20%(left)and20–40% (right)centralityclasses.Theverticalbarsoneachdatapointindicatethestatisticaluncertaintiesandtheboxesindicatethesizesofthetotaluncertainties.

Fig. 4. Left:Centralvalue(solidredline)anduncertaintyofthedirect-photonv2foraselectedpTinterval.Theupperandloweredgesoftheredshadedareacorrespondto

thetotaluncertaintyofvγ ,2dirasobtainedfromlinearGaussianpropagationoftheuncertaintiesσ(v

γ ,inc 2 )andσ(v

γ ,dec

2 ).TheGaussian(witharbitrarynormalization)reflects

themeasuredvalueof inthispTinterval(bluedashedline)andits±1σ uncertainty(dark-blueshadedinterval).Right:Posteriordistributionofthetruevalueofvγ ,2dir

forthesameintervalintheBayesianapproach.Notethatthedistributionhasanon-Gaussianshape,implyingthatthe±2σintervaltypicallycorrespondstoaprobabilityof lessthan95.45%aswouldbethecaseforaGaussian.

themeasuredvalue Rγ,m canfluctuatebelowunity.Theposterior

distributionofthetrueparameterscanbewrittenas

P

( 

ϑ

| 

m

)

P

(

m



|ϑ)

π

( 

ϑ ),

π

( 

ϑ )

π

( 

Rγ,t

)

= (

Rγ,t,1

1

, ...,

Rγ,t,n

1

),

(6) whereinm



= (

Rγ,m

,

v



γ2,inc,m

,



v γ,dec,m 2

)

,

ϑ = (

Rγ,t

,



2,inc,t

,



v γ,dec,t 2

)

.

Hereweusethenotation introducedinEq. (5):vectorsrepresent sets of measurements in different pT bins andn is the number

ofthesebins.The function

π

( 

Rγ,t

)

encodes theprior knowledge

aboutRγ .ThemultivariateHeaviside



functioncorrespondstoa constant(improper) priorfor Rγ,t

1.Theprobability toobserve

acertainsetofmeasured valuesgiventhetruevaluesismodeled withmultivariate GaussiansG

(



x

;

μ



,

V

)

(where

μ



is thevectorof meanvaluesandV isthecovariancematrix):

P

(

m



|ϑ) =

x=Rγ,vγ2,inc,vγ2,dec

G

(



xm

; 

xt

,

Vx). (7)

Bysamplingthe posteriordistribution P

( 

ϑ

| 

m

)

,we obtaintriplets

(

,

2,inc

,

2,dec

)

foreach pT binfromwhichwecalculate2,dir

accordingto Eq. (2).An example ofthe resultingdistribution for

2,dir isshown inFig. 4(right panel).The mediansof the 2,dir

distributions are taken as central values. The lower and upper edges oftheerrorbars correspondtovalues ofvdir2 atwhich the integralofthev2 distributionis15.87%and84.13%ofthetotal

in-tegral. In case of a Gaussian distribution thiscorresponds to 1

σ

uncertainties.

Theresultsforthedirect-photonellipticflowforthetwo cen-tralityclasses, 0–20% and20–40%,are shown inFig. 5. The total uncertainties, reflecting the Bayesian posterior distributions, are shown as boxes, and the error bars represent statistical

(7)

uncer-Fig. 5. EllipticflowofdirectphotonscomparedwithPHENIXresults[26] forthe0–20%(left)and20–40%(right)centralityclasses.Theverticalbarsoneachdatapoint indicatethestatisticaluncertaintiesandtheboxesthetotaluncertainty.

Fig. 6. Ellipticflowofdirectphotonscomparedtomodelcalculationsinthe0–20%(left)and20–40%(right)centralityclasses.Theverticalbarsoneachdatapointindicate thestatisticaluncertaintiesandtheboxesthetotaluncertainty.

tainties. The correlation of v2,dir points for different pT bins as

quantifiedbythecorrelationmatrixisstrongatlow pT



2 GeV

/

c

(correlation coefficients typically in the range 0.6–0.75) whereas the uncertainties at high pT are dominated by statistical

uncer-tainties.We compareour resultsto measurements madeatRHIC energiesbythePHENIXcollaboration[26].Theinclusivephotonv2

wasmeasuredbyPHENIXthroughthereconstructionofe+e−pairs from photon conversions and withan electromagnetic calorime-ter.Thedirect-photonellipticflowinAu–AucollisionsatRHICand inPb–Pbcollisions attheLHCare foundtobe compatiblewithin uncertainties.A simpleexplanationofthelargeandsimilar direct-photonellipticflowforpT



2 GeV

/

c atRHICandtheLHCisthat

thebulkofthethermaldirectphotonsisproducedlateat temper-aturesclosetothetransitiontemperatureTc.Thisisinterestingas

naïvelyone wouldexpectthe T2 temperaturedependenceofthe

photonemissionratetomaketheearly hotQGPphaseafter ther-malizationalsothebrightestphase.

Fig.6comparesthemeasureddirect-photonellipticflow2,dir

totheestimateddecayphotonellipticflow2,dec,markedas cock-tail,andtothepredictionsofseveraltheoreticalmodels.Similarly tomeasurementsatRHICenergies[24],wefindthatthedirectand decayphoton ellipticflow are similar. Wecompare our measure-mentstostate-of-the-arthydrodynamicmodelcalculations[31,66] and thePHSDtransport model [63]. The measured direct-photon elliptic flow is systematically higherthan theoretical predictions, butisstillcompatible.

Inordertoquantifythedeviationofthedirect-photon v2

mea-surementfroma certainhypothesiswithafrequentist p-valueor, equivalently,thecorrespondingnumberofstandarddeviations,we use aBayesian-inspired method[67].In thisapproach,the likeli-hoodL

(



2,inc,m

|

v2γ,dir,t

)

servesasateststatisticandisobtainedby

(8)

ALICE Collaboration / Direct photon elliptic flow in Pb–Pb 315

integratingover the nuisance parameters



2,dec,t and



,t using

theirBayesianposteriordistributionsasweights.Wefocusonthe interval 0

.

9

<

pT

<

2

.

1 GeV

/

c inwhich the contributionof

ther-malphotonsis expectedtobe important.The significance ofthe deviationfrom the hypothesis 2,dir,t

=

0 for individual pT bins

isintherange1.8–2.1

σ

forthe0–20%classand0.9–1.5

σ

forthe 20–40%class.Wealsogoastepfurtherandestimatethecombined significanceofthedeviationfromthehypothesis2,dir

0 forthis

pT interval. Thistestsinaddition howwell the shapeof 2,inc,m

asa functionof pT agrees withv2γ,dec,m

/

Rγ ,i.e., withthe

expec-tationfor2,dir

0.Weestimatethecovariancematrixdescribing thecorrelation by characterizing the differentsources of system-aticuncertaintiesof Rγ ,theinclusive,andthedecayphotonflow aseitherfullyuncorrelatedor fullycorrelated in pT. Varyingthe

assumptions about the correlation of the data points we obtain significancesof typically lessthan 1

σ

forboth centrality classes. Whiletheappliedmethodisessentialforameaningfulcomparison ofthe2,dirdatawithdifferentmodelpredictions,themethodsto estimatethecovariancematrixcanbeimprovedinfutureanalyses.

5. Conclusions

Insummary,wereportthefirstmeasurementofellipticflowof inclusiveanddirect photonsasa function of transverse momen-tumintherange0

.

9

<

pT

<

6

.

2 GeV/c forcentralandsemi-central

Pb–Pbcollisionsat

sNN

=

2

.

76 TeV.Theellipticflowofinclusive

photonswas measured withthescalarproductmethod, indepen-dentlyintheelectromagneticcalorimeterPHOSandwiththe pho-tonconversionmethodwherethereferenceparticlesinbothcases were measured by the V0–A and V0–C detectors. The combined inclusivephoton2,inc,togetherwiththecalculateddecayphoton

2,dec andthepreviously measured Rγ areusedto calculatethe elliptic flow of direct photons. The measured direct-photon flow

2,dir appearstobe closeto thedecayphoton flowforboth cen-tralityclasses,similar to observations atlower collision energies. Moreover,themeasured 2,dir issimilar tothemeasurements by the PHENIX collaboration at RHIC. The considered hydrodynamic andtransportmodelspredictalargerinclusivephotonellipticflow (byapproximately 40%) anda smaller direct-photon elliptic flow than observed. With current uncertainties, however, these mod-els are consistent with the presented direct-photon elliptic flow data. Future measurements using a larger statistics dataset will greatlyincreasetheprecisionofthismeasurementandallowusto extendthe measurementtohigher pT,since thestatistical

uncer-taintyisdominatingthe totaluncertaintyfor pT

>

2

.

0 GeV/c and

pT

>

3

.

0 GeV/c forthePHOSandPCMinclusivephotonflow

mea-surement, respectively. Inaddition, a larger statisticsdataset will alsohelptoconstrainthesystematicuncertaintiesontheinclusive anddecayphotonflow,aswellasthemeasurementofRγ overthe wholepTrange.Afurtherreductionofthesystematicuncertainties

is expected from improved detector knowledge. For instance, in caseofPCMthelargestsystematicuncertaintyinthemeasurement of Rγ is related to modeling the material inwhich the photons convert.Calibrating regions ofthe detectorwithlesswell known materialbudget basedonregions withvery well knownmaterial mightsignificantlyreducetheoverallmaterialbudgetuncertainty. TheRγ measurementcanbeimprovedfurtherbymeasuring neu-tralpion and etameson spectra in a combinedPCM-calorimeter approachinwhichonedecayphotonismeasuredthrough conver-sionandtheotherwithacalorimeter.

Acknowledgements

We wouldlike to thank ElenaBratkovskaya andJean-François Paquetforprovidingcalculationsshowninthispaperandfor use-fuldiscussions.

The ALICE Collaboration would like to thank all its engineers andtechniciansfortheir invaluablecontributions tothe construc-tionoftheexperimentandtheCERNacceleratorteamsforthe out-standingperformanceoftheLHCcomplex.TheALICECollaboration gratefully acknowledges the resources and support provided by all Gridcentres andtheWorldwide LHC ComputingGrid (WLCG) collaboration. The ALICE Collaboration acknowledges the follow-ing funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (YerevanPhysicsInstitute)Foundation (ANSL),State Committeeof Science andWorld Federation ofScientists (WFS), Armenia; Aus-trian Academy of Sciences and Österreichische Nationalstiftung für Forschung, Technologie undEntwicklung, Austria; Ministry of CommunicationsandHighTechnologies,NationalNuclearResearch Center, Azerbaijan;Conselho NacionaldeDesenvolvimento Cientí-ficoe Tecnológico(CNPq),UniversidadeFederal doRioGrandedo Sul (UFRGS),Financiadorade Estudose Projetos(Finep)and Fun-dação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), Na-tionalNaturalScienceFoundationofChina(NSFC)andMinistryof EducationofChina(MOEC),China;MinistryofScienceand Educa-tion,Croatia;MinistryofEducation,YouthandSportsoftheCzech Republic,CzechRepublic;TheDanishCouncilforIndependent Re-search – Natural Sciences, the Carlsberg Foundation and Danish NationalResearchFoundation (DNRF),Denmark;HelsinkiInstitute ofPhysics(HIP),Finland;Commissariatàl’EnergieAtomique(CEA) andInstitutNationaldePhysiqueNucléaireetdePhysiquedes Par-ticules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum fürSchwerionenforschungGmbH,Germany;GeneralSecretariatfor ResearchandTechnology,MinistryofEducation,Researchand Re-ligions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE), Department of Science andTechnology, Government of India(DST), University Grants Commission, Governmentof In-dia (UGC)andCouncil of Scientific andIndustrialResearch, India (CSIR), India; Indonesian Institute of Sciences, Indonesia; Centro Fermi –Museo Storicodella Fisica e CentroStudi e Ricerche En-ricoFermiandInstitutoNazionale diFisica Nucleare (INFN),Italy; Institute forInnovativeScienceandTechnology,NagasakiInstitute of AppliedScience (IIST),Japan Societyforthe Promotion of Sci-ence(JSPS)KAKENHIandJapanese MinistryofEducation,Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional deCiencia(CONACYT)yTecnología,throughFondodeCooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; NederlandseOrganisatievoorWetenschappelijkOnderzoek(NWO), Netherlands; The ResearchCouncil ofNorway, Norway; Commis-sion on Science and Technology for Sustainable Development in theSouth(COMSATS),Pakistan;PontificiaUniversidadCatólicadel Perú,Peru;MinistryofScienceandHigherEducationandNational Science Centre, Poland; Korea Institute of Science and Technol-ogyInformationandNationalResearchFoundationofKorea(NRF), Republic ofKorea; Ministry ofEducation and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research(JINR),MinistryofEducation andScience ofthe Russian FederationandNationalResearchCentre Kurchatov Insti-tute, Russia; Ministry of Education, Science, Research and Sport

(9)

of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológi-casyDesarrolloNuclear (CEADEN),Cubaenergía, CubaandCentro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT),Spain;SwedishResearchCouncil(VR)andKnut&Alice WallenbergFoundation(KAW),Sweden;EuropeanOrganizationfor Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technol-ogy(SUT) andOffice ofthe Higher Education Commission under NRUprojectofThailand,Thailand;Turkish AtomicEnergyAgency (TAEK),Turkey;NationalAcademyofSciencesofUkraine,Ukraine; ScienceandTechnology FacilitiesCouncil(STFC),UnitedKingdom; NationalScienceFoundationoftheUnitedStatesofAmerica(NSF) andUnitedStatesDepartmentofEnergy,OfficeofNuclearPhysics (DOENP),UnitedStatesofAmerica.

References

[1]S.Borsanyi,Z.Fodor,etal.,FullresultfortheQCDequationofstatewith2+1 flavors,Phys.Lett.B370 (1)(2014)99–104,arXiv:1309.5258 [hep-lat]. [2]A.Bazavov,etal.,ThechiralanddeconfinementaspectsoftheQCDtransition,

Phys.Rev.D85(2012)054503,arXiv:1111.1710 [hep-lat].

[3]M.H.Thoma,Dampingrateofahardphotoninarelativisticplasma,Phys.Rev. D51(1995)862–865,arXiv:hep-ph/9405309 [hep-ph].

[4]BRAHMSCollaboration,I.Arsene,et al.,Quarkgluonplasmaandcolorglass condensateatRHIC?TheperspectivefromtheBRAHMSexperiment,Nucl.Phys. A757(2005)1–27,arXiv:nucl-ex/0410020 [nucl-ex].

[5]B.B.Back,etal.,ThePHOBOSperspectiveondiscoveriesatRHIC,Nucl.Phys.A 757(2005)28–101,arXiv:nucl-ex/0410022 [nucl-ex].

[6]PHENIX Collaboration, K. Adcox,et al., Formation ofdensepartonicmatter inrelativisticnucleus–nucleuscollisionsatRHIC:experimentalevaluationby the PHENIXcollaboration,Nucl.Phys.A 757(2005)184–283,arXiv:nucl-ex/ 0410003 [nucl-ex].

[7]STARCollaboration,J.Adams,etal.,Experimentalandtheoreticalchallengesin thesearchforthequarkgluonplasma:theSTARcollaboration’scritical assess-mentoftheevidencefromRHICcollisions,Nucl.Phys.A757(2005)102–183, arXiv:nucl-ex/0501009 [nucl-ex].

[8]ALICECollaboration,K.Aamodt,etal.,EllipticflowofchargedparticlesinPb– Pbcollisionsat2.76TeV,Phys.Rev.Lett.105(2010)252302,arXiv:1011.3914 [nucl-ex].

[9]ALICECollaboration,K.Aamodt,etal.,Harmonicdecompositionoftwo-particle angularcorrelationsinPb–Pbcollisionsat√sN N=2.76 TeV,Phys.Lett.B708

(2012)249–264,arXiv:1109.2501 [nucl-ex].

[10]ALICECollaboration,K.Aamodt,etal.,Higherharmonicanisotropicflow mea-surementsofchargedparticlesinPb–Pbcollisionsat√sNN=2.76 TeV,Phys.

Rev.Lett.107(2011)032301,arXiv:1105.3865 [nucl-ex].

[11]ATLAS Collaboration,G.Aad,et al.,Measurementofthepseudorapidityand transversemomentumdependenceoftheellipticflowofchargedparticlesin lead–leadcollisionsat√sN N=2.76 TeVwiththeATLASdetector,Phys.Lett.B

707(2012)330–348,arXiv:1108.6018 [hep-ex].

[12]CMSCollaboration,S.Chatrchyan,etal.,Centralitydependenceofdihadron cor-relations andazimuthalanisotropyharmonicsinPbPbcollisionsat√sN N=

2.76 TeV,Eur.Phys.J.C72(2012)2012,arXiv:1201.3158 [nucl-ex].

[13]S.Voloshin,Y.Zhang,Flowstudy inrelativisticnuclearcollisionsbyFourier expansionofazimuthalparticledistributions,Z.Phys.C70 (1)(1996)665–672, arXiv:hep-ph/9407282 [hep-ph].

[14]J.I. Kapusta, P. Lichard, D. Seibert, High-energy photons from quark–gluon plasmaversushothadronicgas,Phys.Rev.D44(1991)2774–2788,Erratum: Phys.Rev.D47(1993)4171.

[15]C.Shen,U.W.Heinz,J.-F.Paquet,C.Gale,Thermalphotonsasaquark–gluon plasmathermometerreexamined, Phys.Rev.C89 (4) (2014)044910,arXiv: 1308.2440 [nucl-th].

[16]R.Chatterjee,H. Holopainen,I.Helenius,T.Renk,K.J.Eskola,Ellipticflowof thermalphotonsfromevent-by-eventhydrodynamic model,Phys.Rev.C88 (2013)034901,arXiv:1305.6443 [hep-ph].

[17]C.Shen,U.W.Heinz,J.-F.Paquet,I.Kozlov,C.Gale,Anisotropicflowof ther-malphotonsasaquark–gluonplasmaviscometer,Phys.Rev.C91 (2)(2015) 024908,arXiv:1308.2111 [nucl-th].

[18]WA98Collaboration,M.Aggarwal,etal.,Observationofdirectphotonsin cen-tral158AGeV208Pb+208Pbcollisions,Phys.Rev.Lett.85(2000)3595–3599, arXiv:nucl-ex/0006008 [nucl-ex].

[19]PHENIXCollaboration,S.Adler,etal.,Centralitydependenceofdirectphoton production in√sNN=200 GeVAu+Aucollisions, Phys.Rev.Lett.94(2005)

232301,arXiv:nucl-ex/0503003 [nucl-ex].

[20]PHENIXCollaboration,A.Adare,etal.,Enhancedproductionofdirectphotons inAu+Aucollisionsat√sNN=200 GeVandimplicationsfortheinitial

temper-ature,Phys.Rev.Lett.104(2010)132301,arXiv:0804.4168 [nucl-ex]. [21]PHENIXCollaboration,S.Afanasiev,etal.,Measurementofdirectphotonsin

Au+Aucollisionsat√sNN=200 GeV,Phys.Rev.Lett.109(2012)152302,arXiv:

1205.5759 [nucl-ex].

[22]PHENIX Collaboration, A. Adare, et al., Centrality dependence of low-momentumdirect-photonproductioninAu+Aucollisionsat√sNN=200 GeV,

Phys.Rev.Lett.C91 (6)(2015)064904,arXiv:1405.3940 [nucl-ex].

[23]ALICECollaboration,J.Adam,etal.,DirectphotonproductioninPb–Pb colli-sionsat√sNN=2.76 TeV,Phys.Lett.B754(2016)235–248,arXiv:1509.07324

[nucl-ex].

[24]PHENIXCollaboration,A.Adare,etal.,Observationofdirect-photoncollective flowin√sN N=200 GeVAu+Aucollisions,Phys.Rev.Lett.109(2012)122302,

arXiv:1105.4126 [nucl-ex].

[25]PHENIXCollaboration,A.Adare,etal.,Measurementsofhigher-orderflow har-monicsinAu+Aucollisionsat √sN N=200 GeV,Phys.Rev.Lett.107(2011)

252301,arXiv:1105.3928 [nucl-ex].

[26]PHENIXCollaboration,A.Adare,etal.,Azimuthallyanisotropicemissionof low-momentumdirect photonsinAu+Aucollisionsat √sN N=200 GeV, arXiv:

1509.07758 [nucl-ex].

[27]R.Chatterjee,E.S.Frodermann,U.W.Heinz,D.K.Srivastava,Ellipticflowof ther-malphotonsinrelativisticnuclearcollisions,Phys.Rev.Lett.96(2006)202302, arXiv:nucl-th/0511079 [nucl-th].

[28]R.Chatterjee,D.K.Srivastava,Ellipticflowofthermalphotonsandformation timeofquarkgluonplasmaat RHIC,Phys.Rev.C79(2009)021901, arXiv: 0809.0548 [nucl-th].

[29]H.vanHees,C.Gale,R.Rapp,Thermalphotonsandcollectiveflowatthe Rel-ativisticHeavy-IonCollider,Phys. Rev.C84(2011)054906,arXiv:1108.2131 [hep-ph].

[30]O.Linnyk,W.Cassing,E.L.Bratkovskaya,Centralitydependenceofthedirect photonyieldandellipticflowinheavy-ioncollisionsat√sN N=200 GeV,Phys.

Rev.C89 (3)(2014)034908,arXiv:1311.0279 [nucl-th].

[31]C.Gale,Y. Hidaka, S. Jeon, S.Lin,J.-F. Paquet,R.D. Pisarski,D. Satow,V.V. Skokov,G.Vujanovic,Productionandellipticflowofdileptonsandphotonsin amatrixmodelofthequark–gluonplasma,Phys.Rev.Lett.114(2015)072301, arXiv:1409.4778 [hep-ph].

[32]B.Muller,S.-Y.Wu,D.-L.Yang,Ellipticflowfromthermalphotonswith mag-neticfieldinholography,Phys.Rev.D89 (2)(2014)026013,arXiv:1308.6568 [hep-th].

[33]H.vanHees,M.He,R.Rapp,Pseudo-criticalenhancementofthermalphotons inrelativisticheavy-ioncollisions?,Nucl.Phys.A933(2015)256–271,arXiv: 1404.2846 [nucl-th].

[34]A.Monnai,Thermalphoton v2 withslowquarkchemicalequilibration,Phys.

Rev.C90 (2)(2014)021901,arXiv:1403.4225 [nucl-th].

[35]M.Dion,J.-F.Paquet,B.Schenke,C.Young,S.Jeon,C.Gale,Viscousphotonsin relativisticheavyioncollisions,Phys.Rev.C84(2011)064901,arXiv:1109.4405 [hep-ph].

[36]F.-M.Liu,S.-X.Liu,Quark–gluonplasmaformationtimeand directphotons fromheavyioncollisions,Phys.Rev.C89 (3)(2014)034906,arXiv:1212.6587 [nucl-th].

[37]G.Vujanovic,J.-F.Paquet,G.S.Denicol,M.Luzum,B.Schenke,S.Jeon,C.Gale, Probingtheearly-timedynamicsofrelativisticheavy-ioncollisionswith elec-tromagnetic radiation, Nucl. Phys. A 932(2014) 230–234, arXiv:1404.3714 [hep-ph].

[38]L. McLerran, B. Schenke, The glasma, photons and the implications of anisotropy,Nucl.Phys.A929(2014)71–82,arXiv:1403.7462 [hep-ph]. [39]L. McLerran, B. Schenke, A tale of tails: photon rates and flow in

ultra-relativistic heavy ion collisions, Nucl. Phys. A 946(2016) 158–170, arXiv: 1504.07223 [nucl-th].

[40]F. Gelis, H. Niemi, P.V. Ruuskanen, S.S. Rasanen, Photon production from nonequilibriumQGPinheavyioncollisions,J.Phys.G30(2004)S1031–S1036, arXiv:nucl-th/0403040 [nucl-th].

[41]Y.Hidaka,S.Lin,R.D.Pisarski,D.Satow,Dileptonandphotonproductionin thepresenceofanontrivialPolyakovloop,J.HighEnergyPhys.10(2015)005, arXiv:1504.01770 [hep-ph].

[42]O.Linnyk,E.L.Bratkovskaya,W.Cassing,EffectiveQCDandtransport descrip-tionofdileptonandphotonproductioninheavy-ioncollisionsandelementary processes,Prog.Part.Nucl.Phys.87(2016)50–115,arXiv:1512.08126 [nucl-th]. [43]V.Vovchenko,I.A.Karpenko, M.I.Gorenstein,L.M.Satarov,I.N. Mishustin,B. Kämpfer, H.Stoecker, Electromagneticprobesofa pure-glueinitialstatein nucleus–nucleuscollisionsatenergiesavailableattheCERNLargeHadron Col-lider,Phys.Rev.C94 (2)(2016)024906,arXiv:1604.06346 [nucl-th]. [44]T. Koide,T. Kodama, Anisotropy oflow energy direct photons in

relativis-ticheavyion collisions, J.Phys. G43 (9) (2016)095103, arXiv:1605.05127 [nucl-th].

[45]S.Turbide,C.Gale,R.J.Fries,Azimuthalasymmetryofdirectphotonsinhigh energy nuclearcollisions, Phys. Rev.Lett. 96 (2006) 032303, arXiv:hep-ph/ 0508201 [hep-ph].

(10)

ALICE Collaboration / Direct photon elliptic flow in Pb–Pb 317

[46]K. Tuchin, Electromagnetic radiationbyquark–gluon plasmaina magnetic field,Phys.Rev.C87 (2)(2013)024912,arXiv:1206.0485 [hep-ph].

[47]G.Basar,D.Kharzeev,D.Kharzeev,V.Skokov,Conformalanomalyasasource ofsoftphotonsinheavyioncollisions, Phys.Rev.Lett.109(2012)202303, arXiv:1206.1334 [hep-ph].

[48]ALICECollaboration,K.Aamodt,etal.,TheALICEexperimentattheCERNLHC, J.Instrum.3(2008)S08002.

[49]J.Alme,etal.,TheALICETPC,alarge3-dimensionaltrackingdevicewithfast readoutforultra-highmultiplicityevents,Nucl.Instrum.MethodsPhys.Res., Sect.A622(2010)316–367,arXiv:1001.1950 [physics.ins-det].

[50]ALICECollaboration,B.B.Abelev,etal.,PerformanceoftheALICEExperimentat theCERNLHC,Int.J.Mod.Phys.A29(2014)1430044,arXiv:1402.4476 [nucl -ex].

[51]ALICECollaboration,K.Aamodt,etal.,AlignmentoftheALICEInnerTracking Systemwithcosmic-raytracks,J.Instrum.5(2010)P03003,arXiv:1001.0502 [physics.ins-det].

[52]A.Akindinov,etal.,TheALICETime-Of-Flightsystem:construction,assembly andqualitytests,NuovoCimentoB124(2009)235–253.

[53] ALICECollaboration,G.Dellacasa,etal.,ALICEtechnicaldesignreportofthe photonspectrometer(PHOS),CERN-LHCC-99-04.

[54] ALICECollaboration,P.Cortese,etal.,ALICEtechnicaldesignreportonforward detectors:FMD,T0andV0,CERN-LHCC-2004-025.

[55]ALICECollaboration,B.Abelev,et al.,CentralitydeterminationofPb–Pb col-lisionsat √sN N=2.76 TeV withALICE,Phys. Rev.C88 (4)(2013)044909,

arXiv:1301.4361 [nucl-ex].

[56]STARCollaboration,C. Adler,et al.,Ellipticflow fromtwoand fourparticle correlationsinAu+Aucollisionsats(NN)∗∗(1/2) =130-GeV,Phys.Rev.C66 (2002)034904,arXiv:nucl-ex/0206001 [nucl-ex].

[57]ALICECollaboration,E.Abbas,etal.,PerformanceoftheALICEVZEROsystem, J.Instrum.8(2013)P10016,arXiv:1306.3130 [nucl-ex].

[58]ALICECollaboration,B.Abelev,etal.,Neutralpionandηmesonproductionin proton–protoncollisionsat√s=0.9 TeVand√s=7 TeV,Phys.Lett.B717 (2012)162–172,arXiv:1205.5724 [hep-ex].

[59]F.Bock, C.Loizides,T.Peitzmann,M.Sas, Impactofresidualcontamination oninclusiveanddirectphotonflow,J.Phys.G44 (1)(2017)025106,arXiv: 1606.06077 [nucl-ex].

[60]ALICECollaboration,B.B.Abelev,etal.,Neutralpionproductionatmidrapidity inppandPb–Pbcollisionsat√sNN=2.76 TeV,Eur.Phys.J.C74 (10)(2014)

3108,arXiv:1405.3794 [nucl-ex].

[61]ALICE Collaboration,B.B.Abelev,et al.,Ellipticflow ofidentified hadronsin Pb–Pbcollisionsat√sNN=2.76 TeV,J.HighEnergyPhys.06(2015)190,arXiv:

1405.4632 [nucl-ex].

[62]ALICECollaboration,B.Abelev,etal.,Anisotropicflowofchargedhadrons, pi-onsand(anti-)protonsmeasuredathightransversemomentuminPb–Pb col-lisionsat√sN N=2.76 TeV,Phys.Lett.B719(2013)18–28,arXiv:1205.5761

[nucl-ex].

[63]O.Linnyk,V.Konchakovski,T.Steinert,W.Cassing,E.L.Bratkovskaya,Hadronic andpartonicsourcesofdirectphotonsinrelativisticheavy-ioncollisions,Phys. Rev.C92 (5)(2015)054914,arXiv:1504.05699 [nucl-th].

[64]J.-F.Paquet,C.Shen,G.S.Denicol,M.Luzum,B.Schenke,S.Jeon,C.Gale,The productionofphotonsinrelativisticheavy-ioncollisions,Phys.Rev.C93(2016) 044906,arXiv:1509.06738 [hep-ph].

[65]S. Ryu,J.-F.Paquet,C.Shen,G.Denicol,B.Schenke,S. Jeon,C.Gale,Effects ofbulk viscosity and hadronicrescatteringinheavy ioncollisions at ener-giesavailableattheBNLRelativisticHeavyIonColliderandattheCERNLarge HadronCollider,Phys.Rev.C97 (3)(2018)034910,arXiv:1704.04216 [nucl-th]. [66]R.Chatterjee,P.Dasgupta,D.K.Srivastava,Anisotropicflowofthermalphotons atenergiesavailableattheBNLRelativisticHeavyIonColliderandattheCERN LargeHadronCollider,Phys. Rev.C96 (1)(2017)014911, arXiv:1702.02378 [nucl-th].

[67]R.D.Cousins,V.L.Highland,Incorporatingsystematicuncertaintiesintoan up-perlimit,Nucl.Instrum.MethodsPhys.Res.,Sect.A320(1992)331–335.

ALICECollaboration

S. Acharya

139

,

F.T.-. Acosta

21

,

D. Adamová

94

,

J. Adolfsson

81

,

M.M. Aggarwal

98

,

G. Aglieri Rinella

35

,

M. Agnello

32

, N. Agrawal

49

,

Z. Ahammed

139

,

S.U. Ahn

77

,

S. Aiola

144

,

A. Akindinov

65

,

M. Al-Turany

104

,

S.N. Alam

139

,

D.S.D. Albuquerque

121

,

D. Aleksandrov

88

,

B. Alessandro

59

, R. Alfaro Molina

73

, Y. Ali

15

,

A. Alici

10

,

54

,

28

,

A. Alkin

2

,

J. Alme

23

, T. Alt

70

,

L. Altenkamper

23

,

I. Altsybeev

111

,

M.N. Anaam

6

,

C. Andrei

48

,

D. Andreou

35

,

H.A. Andrews

108

,

A. Andronic

142

,

104

, M. Angeletti

35

,

V. Anguelov

102

,

C. Anson

16

, T. Antiˇci ´c

105

, F. Antinori

57

,

P. Antonioli

54

,

R. Anwar

125

,

N. Apadula

80

,

L. Aphecetche

113

,

H. Appelshäuser

70

,

S. Arcelli

28

,

R. Arnaldi

59

,

O.W. Arnold

103

,

116

,

I.C. Arsene

22

,

M. Arslandok

102

,

B. Audurier

113

, A. Augustinus

35

,

R. Averbeck

104

,

M.D. Azmi

17

, A. Badalà

56

,

Y.W. Baek

61

,

41

,

S. Bagnasco

59

, R. Bailhache

70

,

R. Bala

99

,

A. Baldisseri

135

,

M. Ball

43

, R.C. Baral

86

,

A.M. Barbano

27

,

R. Barbera

29

, F. Barile

53

,

L. Barioglio

27

,

G.G. Barnaföldi

143

, L.S. Barnby

93

, V. Barret

132

,

P. Bartalini

6

,

K. Barth

35

,

E. Bartsch

70

,

N. Bastid

132

,

S. Basu

141

,

G. Batigne

113

,

B. Batyunya

76

, P.C. Batzing

22

,

J.L. Bazo Alba

109

,

I.G. Bearden

89

,

H. Beck

102

,

C. Bedda

64

, N.K. Behera

61

,

I. Belikov

134

,

F. Bellini

35

,

H. Bello Martinez

45

,

R. Bellwied

125

,

L.G.E. Beltran

119

,

V. Belyaev

92

, G. Bencedi

143

,

S. Beole

27

,

A. Bercuci

48

,

Y. Berdnikov

96

,

D. Berenyi

143

,

R.A. Bertens

128

,

D. Berzano

35

,

59

,

L. Betev

35

,

P.P. Bhaduri

139

,

A. Bhasin

99

,

I.R. Bhat

99

,

H. Bhatt

49

,

B. Bhattacharjee

42

,

J. Bhom

117

,

A. Bianchi

27

,

L. Bianchi

125

,

N. Bianchi

52

,

J. Bielˇcík

38

,

J. Bielˇcíková

94

,

A. Bilandzic

116

,

103

, G. Biro

143

,

R. Biswas

3

,

S. Biswas

3

,

J.T. Blair

118

, D. Blau

88

,

C. Blume

70

, G. Boca

137

,

F. Bock

35

,

A. Bogdanov

92

,

L. Boldizsár

143

,

M. Bombara

39

,

G. Bonomi

138

,

M. Bonora

35

,

H. Borel

135

,

A. Borissov

19

,

142

,

M. Borri

127

,

E. Botta

27

, C. Bourjau

89

,

L. Bratrud

70

, P. Braun-Munzinger

104

,

M. Bregant

120

,

T.A. Broker

70

,

M. Broz

38

,

E.J. Brucken

44

,

E. Bruna

59

, G.E. Bruno

35

,

34

, D. Budnikov

106

,

H. Buesching

70

,

S. Bufalino

32

, P. Buhler

112

,

P. Buncic

35

,

O. Busch

131

,

i

,

Z. Buthelezi

74

,

J.B. Butt

15

,

J.T. Buxton

18

,

J. Cabala

115

, D. Caffarri

90

,

H. Caines

144

,

A. Caliva

104

,

E. Calvo Villar

109

, R.S. Camacho

45

,

P. Camerini

26

,

A.A. Capon

112

, F. Carena

35

, W. Carena

35

,

F. Carnesecchi

28

,

10

, J. Castillo Castellanos

135

,

A.J. Castro

128

, E.A.R. Casula

55

,

C. Ceballos Sanchez

8

,

S. Chandra

139

, B. Chang

126

,

W. Chang

6

,

S. Chapeland

35

,

M. Chartier

127

, S. Chattopadhyay

139

,

S. Chattopadhyay

107

, A. Chauvin

103

,

116

,

C. Cheshkov

133

,

B. Cheynis

133

, V. Chibante Barroso

35

,

D.D. Chinellato

121

,

S. Cho

61

,

P. Chochula

35

, T. Chowdhury

132

,

P. Christakoglou

90

,

C.H. Christensen

89

,

P. Christiansen

81

, T. Chujo

131

, S.U. Chung

19

, C. Cicalo

55

, L. Cifarelli

10

,

28

,

F. Cindolo

54

,

J. Cleymans

124

,

F. Colamaria

53

,

D. Colella

66

,

35

,

53

,

A. Collu

80

,

M. Colocci

28

, M. Concas

59

,

ii

, G. Conesa Balbastre

79

,

Figura

Fig. 1. Comparison of the measured inclusive photon flow ( v γ , 2 inc ) to the individual PCM and PHOS measurements ( v γ , 2 ind ) in the 0–20% (left) and 20–40% (right) centrality classes
Fig. 2. Elliptic flow of decay photons from π 0 , η , ω , and the total cocktail simulation as a function of transverse momentum in the 0–20% (left) and 20–40% (right) centrality
Fig. 3. Elliptic flow of inclusive photons and decay photons, compared to hydrodynamic [ 31 ] and transport PHSD [ 30 ] model predictions in the 0–20% (left) and 20–40% (right) centrality classes
Fig. 5. Elliptic flow of direct photons compared with PHENIX results [ 26 ] for the 0–20% (left) and 20–40% (right) centrality classes

Riferimenti

Documenti correlati

Recent studies have detected &gt; 275 alien and cryptogenic species in marine and brackish alien waters of Italy (Occhipinti-Ambrogi et al. Several of these species are

8 e 9 mostrano, rispettivamente, il primo calcolatore italiano realizzato a Pisa e il primo calcolatore funzionante in Italia (1954) di costruzione USA, istallato al Politecnico

Figure 1: Spine X-ray showed disc calcifications in D8-D9 and D11-D12 as oval radiopaque spots in the rear part of intervertebral spaces (a) Adjacent vertebral body

Molto probabilmente il modello che sta alla base dell’esperimento della prova non ` e lineare, cio` e mettendo in un grafico i dati sperimentali che avete misurato vi aspettate

Finally, to preliminary check the simulation results we have performed a measurement of the axial shielding factor in the detector zone by a flux gate magnetometer: a HP Clip on

Sense of community was measured, in the school sample only, with four items on a 5-point Likert scale (1 = strongly disagree to 5 = strongly agree). Results suggest good

Le due dime utilizzate dal fornitore per il controllo del profilo di taglio dei carter anteriore e posteriore dei due modelli di montascale, RPsp e Supra, e introdotte in seguito

In this case report, we describe a patient in which a preceding lung infection, associated with a co-administration of simvastatin and clarithromycin, resulting