• Non ci sono risultati.

Search for pair-produced dijet resonances in four-jet final states in pp collisions at √s=7 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for pair-produced dijet resonances in four-jet final states in pp collisions at √s=7 TeV"

Copied!
15
0
0

Testo completo

(1)

Search for pair-produced dijet resonances in four-jet final states in pp collisions at

p

ffiffiffi

s

¼ 7 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 3 February 2013; published 4 April 2013)

A search for the pair production of a heavy, narrow resonance decaying into two jets has been performed using events collected inpffiffiffis¼ 7 TeV pp collisions with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 5:0 fb1. Events are selected with at least four jets and two dijet combinations with similar dijet mass. No resonances are found in the dijet mass spectrum. The upper limit at 95% confidence level on the product of the resonance pair production cross section, the branching fractions into dijets, and the acceptance varies from 0.22 to 0.005 pb, for resonance masses between 250 and 1200 GeV. Pair-produced colorons decaying into q q are excluded for coloron masses between 250 and 740 GeV.

DOI:10.1103/PhysRevLett.110.141802 PACS numbers: 13.85.Rm, 12.60.i, 13.87.Ce, 14.80.j

The high center-of-mass energy provided by the Large Hadron Collider (LHC) offers opportunities to search for physics beyond the standard model (SM) and, in particular, to search for new strongly interacting particles. Searches for new resonances in the dijet mass spectrum for the jets with the highest transverse momentum (pT) have been

performed at both the Tevatron [1] and the LHC [2–7]. These searches were not optimized for pair-produced par-ticles, which are predicted by some models [8–10]. The ATLAS experiment has performed a search for pair pro-duction of dijet resonances in four-jet events [11,12] and excludes a scalar gluon at 95% confidence level (C.L.) in the mass range between 100 and 287 GeV.

In this Letter, we report the results of a search for the pair production of a narrow resonance, which decays into two jets, using the dijet mass spectrum in four-jet final states, measured with the Compact Muon Solenoid (CMS) detector in pp collisions at the LHC atpffiffiffis¼ 7 TeV. This search focuses on the high mass range between 250 and 1200 GeV. We define the common dijet mass as the average of the invariant masses of the two dijets with the smallest difference in invariant mass, rejecting events where the difference exceeds 15% of the average value. Models [8] predicting pair production through gg interactions of octet vectors, also called colorons (C), and color-octet scalars (S8) would give rise to such a signature. In

addition to q q decays, the coloron can also decay into a pair of color-octet scalars if the mass of the coloron is greater than twice the mass of the two scalars. Pair-produced colorons decaying to quark-antiquark pairs (gg! CC ! q qq q) [8] are used as the benchmark signal

in this analysis, although we separately consider the pos-sibility of decays to S8S8. As a third possibility, we con-sider an R-parity violating SUSY model [13,14] in which pair-produced top squarks (stops) each decay to q q, as this leads to a similar final state.

The CMS detector is a multipurpose apparatus and is described in detail in Ref. [15]. The CMS coordinate system has its origin at the center of the detector, the z axis along the direction of the counterclockwise circulating proton beam, the y axis normal to the LHC plane pointing vertically upward, and the x axis radially inward toward the center of the LHC ring. We define  to be the azimuthal angle,  the polar angle, and ¼  ln½tanð=2Þ the pseu-dorapidity. The central feature of the CMS apparatus is a superconducting solenoid with a 6 m internal diameter, operating at a central field strength of 3.8 T. Within the field volume are, in order of increasing radius, a silicon pixel and strip tracker, a high-granularity PbWO4 crystal

electromagnetic calorimeter (ECAL), and a brass and scin-tillator hadron calorimeter (HCAL). All three systems have both barrel and end cap components, withjj ¼ 2:5 (3.0) the outermost extent of the tracker (calorimeters). The ECAL and HCAL cells are grouped into towers, projecting radially outward from the origin. Outside of the field volume an iron and quartz-fiber hadron calorimeter covers the forward region (3 <jj < 5). A muon system encloses the central and end cap calorimeters out tojj ¼ 2:4.

The data sample used for this analysis was collected in 2011 and corresponds to an integrated luminosity of 5:0 fb1. The triggers used for the analysis require the presence of at least four jets, based on information from the calorimeters. Each jet must havejj less than 3.0 and pT greater than 70 or 80 GeV, depending on the running period. This trigger is 99.5% efficient for events with four leading (highest pT) jets, each with a transverse

momen-tum exceeding 110 GeV.

For offline reconstruction, we employ the CMS particle-flow algorithm [16] in the regionjj  2:5 to reconstruct

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

objects used in jet determinations. This algorithm uses calorimeter information and reconstructed tracks to iden-tify electrons, muons, photons, and both neutral and charged hadrons. Jets are reconstructed from particle-flow objects using the anti-kT algorithm with a distance parameter 0.5 [17,18]. Jet energy is corrected to account for the nonlinearities and nonuniformities in the response of the calorimeters, as determined from Monte Carlo (MC) simulation, test beam, and collision data [19]. Additional corrections accounting for the effect of multiple pp colli-sions per bunch crossing are also applied [20,21].

We require events to have at least one good primary vertex with a z position within 24 cm of the center of the detector and with a transverse distance from the beam spot of less than 2 cm. A set of jet quality criteria are applied to remove possible instrumental and noncollision back-grounds [22]. All data as well as all simulated signal events passing these selection criteria also satisfy standard jet identification requirements [23]. We require that events have at least four jets, each with pT> 110 GeV andjj <

2:5. We require the two jets in each possible pair to have a separation Rjj¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðÞ2þ ðÞ2

p

 0:7. This ensures a negligible overlap between the jets. We calculate the dijet mass combinations from the four leading jets and choose the one with the smallest m=mavg, where m is the mass difference between the two dijets and mavgis their average

mass. We require m < 0:15mavg, which is approximately 3 times the dijet mass resolution of 4.5%.

The benchmark signal events are simulated using the MADGRAPH V5 [24] event generator with the CTEQ6L1 parton distribution functions (PDF) [25], and PYTHIA v6.4.26 [26] parton showering and hadronization. The generated events are further processed through a GEANT4 [27] simulation of the CMS detector. The assumed width of the simulated coloron resonance is negligible compared with the experimental resolution. The dominant back-ground arises from QCD processes resulting in four or more jets. Studies of this background are performed using a sample of simulated QCD events also generated using MADGRAPH.

For each dijet we define a quantity  as the difference between the scalar sum of the transverse momenta of the two jets in the dijet and the average pair mass in the event: ¼Pi¼1;2ðpTÞi mavg. Figure 1 shows the distribution

of  versus mavgfor simulated QCD background events as

well as for coloron signal events. Because of the selection requirements, we observe a broad structure at around mavg¼ 300 GeV from QCD events [28]. To remove this structure, thus leaving a smoothly falling dijet mass spec-trum, we require  > 25 GeV for each of the two dijets in the event. This requirement reduces the QCD background by more than an order of magnitude while retaining ap-proximately 25% of the signal.

Figure2 shows the paired dijet mass spectrum in data with all the selection criteria applied. The observed mass

spectrum extends up to 1200 GeV. We obtain a prediction for the QCD background by fitting the data to a smooth parametrization: d dmavg ¼ P0ð1  mavg= ffiffiffi s p ÞP1 ðmavg= ffiffiffi s p ÞP2þP3lnðmavg= ffiffis p Þ; (1)

where P0, P1, P2, and P3 are free parameters. This func-tional form has been used in previous searches for dijet

(GeV) avg m 0 100 200 300 400 500 600 700 800 900 1000 (GeV)∆ -500 0 500 1000 1500 2000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 = 7 TeV CMS Simulation S QCD Arbitrary Normalization = 300 GeV C m mC = 500 GeV (GeV) avg m 0 500 1000 -200 0 200 400 600 800 0 0.005 0.01 0.015 0.02 0.025 0 500 1000 -200 0 200 400 600 800 0 0.002 0.004 0.006 0.008 0.01 (GeV)∆ (GeV)∆ (GeV) avg m

FIG. 1 (color online). The distribution of ¼Pi¼1;2ðpTÞi mavgversus mavgfor QCD multijet background alone (main plot) and background plus coloron signal (insets), for simulated events. We remove events with an entry below the horizontal line at 25 GeV. There are two entries per event (one for each of the two dijet pairs).

Events per 40 GeV

-1 10 1 10 2 10 3 10 4 10 -1 = 7 TeV 5.0 fb S CMS, Data Background Fit QCD Simulation coloron (400 & 800 GeV) Pulls (GeV) avg m 300 400 500 600 700 800 900 1000 1100 1200 Pulls -3 -2 -10 1 2 3

FIG. 2 (color online). The average paired dijet mass distribu-tion (black points) in data compared with a smooth background fit using Eq. (1) (blue solid curve) and the result of the fit of the same function (dash-dotted red curve) to QCD simulated data (not shown). Also shown are examples of simulation of hypo-thetical coloron resonances decaying 100% to q q (dashed green curves) with masses mC¼ 400 and 800 GeV. The bin-by-bin fit pulls are shown below.

(3)

resonances [4]. The fit to the data and the normalized QCD simulation are given in Fig.2by solid and dashed-dotted curves, respectively. The fit has a 2=d:o:f of 0.94 over the full mavg mass range. Although there is an apparent bias

toward positive pull values in the low mass region, such a bias would result in the quoted limits being conservative in this region.

The signal shapes from colorons and stops have negli-gible difference and we use a single parametrization for both. It is modeled by the sum of two separate Gaussian functions: one Gaussian describes the core and the other the tails, with widths and normalizations determined from a fit to simulated signal events at each assumed mass value. The dijet mass resolution described by the rms of the core Gaussian is approximately 4.5%, the dijet mass tail described by the rms of the other Gaussian is between 150 and 250 GeV, and the fraction of the core Gaussian varies from 85% at 300 GeV to 45% at 1000 GeV. The signal acceptance, listed in TableI, varies from 0.4% for a coloron with mass 200 GeV to 12.1% for a coloron with mass 1000 GeV. The acceptance for the stop signal is larger than that for the coloron signal because the stop production model includes q q interactions and has a different final state angular distribution.

We search for pair production of dijet resonances by fitting the background parametrization in Eq. (1) plus a signal hypothesis at an assumed mass to the data. The signal magnitude is a free parameter in the fit for each fixed value of signal mass. We restrict the fit to dijet masses above 220 GeV in order to avoid the threshold due to the jet pTrequirement. With this requirement the dijet mass

spec-trum is described by both the simulation and the back-ground parametrization. The maximum value of the likelihood obtained from a background-only fit is denoted by L0and the likelihood from a background plus signal fit

by LS. The local significance is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 lnðL0=LSÞ

p

. The results of this analysis are shown in Fig.2. We find that the largest fluctuation in the pair-produced dijet mass spectrum occurs for a hypothetical resonance mass of 1130 GeV and has a local statistical significance of 2:6. The global significance is reduced to 1:2 after taking into account the trials factor [29] within the full mass range of this search. We conclude that there is no evidence for pair-produced narrow dijet resonances in the data.

Upper limits are placed on the product of the production cross section of the pair-produced resonances, the square of the branching fraction to dijets, and the detector accep-tance. The dijet mass for the limit is required to be above

250 GeV to ensure a full coverage of the low mass tail of the resonance between 220 and 250 GeV. To set upper limits we use a modified-frequentist method (CLs) [30,31].

We fit the signalþ background hypothesis to the data, allowing both the signal strength and the background parameters free to vary. The sources of systematic uncer-tainties consist of a luminosity uncertainty of 2.2% [32] and a signal acceptance uncertainty of 10%. The latter is determined by the jet energy scale uncertainty (2.2%) and the jet energy resolution uncertainty (10%) [19]. The variation in expected signal yields due to PDF uncertainties is negligible. The uncertainties in the luminosity, the signal acceptance due to jet energy scale and resolution, and the parameters of the background function are all treated as nuisance parameters and expressed as log-normal distribu-tions with their central values and uncertainties. The observed and expected limits are calculated using the CLs method with a one-sided profile likelihood test

statistic.

Figure 3 shows the observed and expected 95% C.L. limits, the 1 and 2 uncertainty bands around the expected limits, and predictions from the coloron and SUSY models. The observed limit on the product of the resonance pair production cross section, the branching fractions into dijets, and the acceptance varies from 0.22 to 0.005 pb for resonance masses between 250 and 1200 GeV. The limits are generally applicable for pair-produced resonances, each decaying to dijets, and they are compared with calculations for the coloron model [8] described above. At 95% C.L. we exclude pair production of colorons with mass mC in the range 250 < mC< 740 GeV, assuming that colorons have flavor-universal couplings and decay only into q q [10]. Assuming the branching fraction of colorons into q q is reduced due to competition with a C! S8S8 channel where mS8 ¼

150 GeV and tan¼ 0:3 (the suppression factor of gluon coupling to q q compared with the analogous QCD cou-pling) [10], we exclude pair production in the range 250 < mC< 580 GeV. This analysis is not sensitive to the pair-produced S8, where the color-octet scalars decay

exclu-sively to q q. We also compare the results with those of a SUSY model for pair-produced stops, where the stops decay exclusively to q q and R parity is violated [13,14]. The calculation is done at to-leading order with next-to-next-to-leading order corrections [33–37].

In summary, a search for pair production of a narrow dijet resonance has been performed with the CMS detector using 5:0 fb1of pffiffiffis¼ 7 TeV pp collisions produced at

TABLE I. The acceptances for the coloron and stop models after applying all selection criteria. Most of the variation in the acceptance as a function of resonance mass is due to the jet pTrequirement.

Mass [GeV] 200 300 400 500 600 700 800 900 1000

Coloron acceptance 0.4% 2.2% 5.2% 8.0% 9.6% 10.6% 11.6% 11.8% 12.1%

(4)

the LHC. The paired dijet mass spectrum is found to be a smooth distribution and is in agreement with the predic-tions of the standard model. Upper limits are reported on the product of the production cross section, the branching fractions into dijets, and the acceptance of a pair-produced dijet resonance having a width negligible compared with the experimental resolution. At 95% C.L., the pair production of colorons is excluded for coloron masses between 250 and 740 GeV assuming that a coloron decays 100% into q q, or between 250 and 580 GeV assuming that coloron decays into q q compete with decays into S8S8. The search significantly extends previous

results [12].

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge sup-port from BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding

Agencies (Switzerland); NSC (Taipei); ThEP, IPST, and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. D 79, 112002 (2009).

[2] ATLAS Collaboration, Phys. Rev. Lett. 105, 161801 (2010).

[3] CMS Collaboration,Phys. Rev. Lett. 105, 211801 (2010). [4] CMS Collaboration,Phys. Lett. B 704, 123 (2011). [5] ATLAS Collaboration,Phys. Lett. B 708, 37 (2012). [6] ATLAS Collaboration,arXiv:1210.1718.

[7] CMS Collaboration,arXiv:1210.2387.

[8] B. A. Dobrescu, K. Kong, and R. Mahbubani,Phys. Lett. B 670, 119 (2008).

[9] C. Kilic, S. Schumann, and M. Son,J. High Energy Phys. 04 (2009) 128.

[10] Y. Bai and B. A. Dobrescu, J. High Energy Phys. 07 (2011) 100.

[11] ATLAS Collaboration,Eur. Phys. J. C 71, 1828 (2011). [12] ATLAS Collaboration,arXiv:1210.4826.

[13] C. Brust, A. Katz, and R. Sundrum,J. High Energy Phys. 08 (2012) 059.

[14] J. A. Evans and Y. Kats,arXiv:1209.0764. [15] CMS Collaboration,JINST 3, S08004 (2008).

[16] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-001, 2010, http://cds.cern .ch/record/1247373?ln=en.

[17] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[18] M. Cacciari and G. P. Salam,Phys. Lett. B 641, 57 (2006). [19] CMS Collaboration,JINST 6, P11002 (2011).

[20] M. Cacciari and G. P. Salam, Phys. Lett. B 659, 119 (2008).

[21] M. Cacciari, G. P. Salam, and G. Soyez,Eur. Phys. J. C 72, 1896 (2012).

[22] CMS Collaboration,JINST 6, P09001 (2011).

[23] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-JME-10-003, 2010,http://cds.cern .ch/record/1279362?ln=en.

[24] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer,J. High Energy Phys. 06 (2011) 128.

[25] H.-L. Lai, J. Huston, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, and C.-P. Yuan,Phys. Rev. D 82, 054021 (2010). [26] T. Sjo¨strand, S. Mrenna, and P. Z. Skands,J. High Energy

Phys. 05 (2006) 026.

[27] S. Agostinelli et al. (GEANT4),Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[28] R. S. Chivukula, M. Golden, and E. H. Simmons, Nucl. Phys. B363, 83 (1991).

[29] L. Lyons,Ann. Appl. Stat. 2, 887 (2008). [30] A. L. Read,J. Phys. G 28, 2693 (2002).

[31] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).

[32] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-SMP-12-008, 2012,http://cds.cern .ch/record/1434360?ln=en. 300 400 500 600 700 800 900 1000 1100 1200 -3 10 -2 10 -1 10 1

Resonance Mass (GeV)

Acc (pb) × 2 Br× σ = 7 TeV S CMS, 5.0 fb-1 Observed Limit (95% CL) Expected Limit (95% CL) σ 1 ± σ 2 ± only q coloron to q 8 S 8 or S q coloron to q only q stop to q

FIG. 3 (color online). The observed and expected 95% C.L. limits on the product of the resonance pair production cross section, the square of the branching fraction to dijets, and the detector acceptance, given by the solid and dot-dashed black curves, respectively. The shaded regions indicate the 1 and 2 bands around the expected limits. Predictions of a coloron model and a SUSY model are also shown.

(5)

[33] W. Beenakker, S. Brensing, M. Kramer, A. Kulesza, E. Laenen, L. Motyka, and I. Niessen,Int. J. Mod. Phys. A 26, 2637 (2011).

[34] W. Beenakker, S. Brensing, M. Kramer, A. Kulesza, E. Laenen, and I. Niessen, J. High Energy Phys. 12 (2009) 041.

[35] W. Beenakker, R. Ho¨pker, M. Spira, and P. M. Zerwas,

Nucl. Phys. B492, 51 (1997).

[36] A. Kulesza and L. Motyka,Phys. Rev. Lett. 102, 111802 (2009).

[37] A. Kulesza and L. Motyka, Phys. Rev. D 80, 095004 (2009).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2E. Aguilo,2T. Bergauer,2 M. Dragicevic,2J. Ero¨,2C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2N. Ho¨rmann,2J. Hrubec,2 M. Jeitler,2,bW. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bI. Kra¨tschmer,2D. Liko,2I. Mikulec,2M. Pernicka,2,a D. Rabady,2,cB. Rahbaran,2C. Rohringer,2H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2W. Waltenberger,2

C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3M. Bansal,4S. Bansal,4T. Cornelis,4 E. A. De Wolf,4X. Janssen,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4

H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5 J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5A. Olbrechts,5S. Tavernier,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6T. Hreus,6

A. Le´onard,6P. E. Marage,6A. Mohammadi,6T. Reis,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wang,6 V. Adler,7K. Beernaert,7A. Cimmino,7S. Costantini,7G. Garcia,7M. Grunewald,7B. Klein,7J. Lellouch,7 A. Marinov,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7M. Sigamani,7N. Strobbe,7F. Thyssen,7M. Tytgat,7 S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8G. Bruno,8R. Castello,8L. Ceard,8C. Delaere,8T. du Pree,8

D. Favart,8L. Forthomme,8A. Giammanco,8,dJ. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8 D. Pagano,8A. Pin,8K. Piotrzkowski,8J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9

G. A. Alves,10M. Correa Martins Junior,10T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11 W. Carvalho,11A. Custo´dio,11E. M. Da Costa,11D. De Jesus Damiao,11C. De Oliveira Martins,11 S. Fonseca De Souza,11H. Malbouisson,11M. Malek,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11

W. L. Prado Da Silva,11A. Santoro,11L. Soares Jorge,11A. Sznajder,11A. Vilela Pereira,11T. S. Anjos,12b C. A. Bernardes,12bF. A. Dias,12a,eT. R. Fernandez Perez Tomei,12aE. M. Gregores,12bC. Lagana,12aF. Marinho,12a P. G. Mercadante,12bS. F. Novaes,12aSandra S. Padula,12aV. Genchev,13,cP. Iaydjiev,13,cS. Piperov,13M. Rodozov,13

S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14 V. Kozhuharov,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15 D. Liang,15S. Liang,15X. Meng,15J. Tao,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15 Z. Zhang,15C. Asawatangtrakuldee,16Y. Ban,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16H. Teng,16 D. Wang,16L. Zhang,16W. Zou,16C. Avila,17C. A. Carrillo Montoya,17J. P. Gomez,17B. Gomez Moreno,17 A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18R. Plestina,18,fD. Polic,18I. Puljak,18,c Z. Antunovic,19M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20J. Luetic,20D. Mekterovic,20S. Morovic,20 L. Tikvica,20A. Attikis,21M. Galanti,21G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21

M. Finger,22M. Finger, Jr.,22Y. Assran,23,gS. Elgammal,23,hA. Ellithi Kamel,23,iM. A. Mahmoud,23,j A. Mahrous,23,kA. Radi,23,l,mM. Kadastik,24M. Mu¨ntel,24M. Murumaa,24M. Raidal,24L. Rebane,24A. Tiko,24

P. Eerola,25G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26 M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26 T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26A. Korpela,27T. Tuuva,27

M. Besancon,28S. Choudhury,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28 A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28L. Millischer,28 A. Nayak,28J. Rander,28A. Rosowsky,28M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29

M. Bluj,29,nP. Busson,29C. Charlot,29N. Daci,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29A. Florent,29 R. Granier de Cassagnac,29M. Haguenauer,29P. Mine´,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29 P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,oJ. Andrea,30D. Bloch,30

D. Bodin,30J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,oF. Drouhin,30,o J.-C. Fontaine,30,oD. Gele´,30U. Goerlach,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30S. Beauceron,31 N. Beaupere,31O. Bondu,31G. Boudoul,31S. Brochet,31J. Chasserat,31R. Chierici,31,cD. Contardo,31P. Depasse,31

(6)

S. Perries,31L. Sgandurra,31V. Sordini,31Y. Tschudi,31P. Verdier,31S. Viret,31Z. Tsamalaidze,32,pC. Autermann,33 S. Beranek,33B. Calpas,33M. Edelhoff,33L. Feld,33N. Heracleous,33O. Hindrichs,33R. Jussen,33K. Klein,33 J. Merz,33A. Ostapchuk,33A. Perieanu,33F. Raupach,33J. Sammet,33S. Schael,33D. Sprenger,33H. Weber,33

B. Wittmer,33V. Zhukov,33,qM. Ata,34J. Caudron,34E. Dietz-Laursonn,34D. Duchardt,34M. Erdmann,34 R. Fischer,34A. Gu¨th,34T. Hebbeker,34C. Heidemann,34K. Hoepfner,34D. Klingebiel,34P. Kreuzer,34 M. Merschmeyer,34A. Meyer,34M. Olschewski,34P. Papacz,34H. Pieta,34H. Reithler,34S. A. Schmitz,34 L. Sonnenschein,34J. Steggemann,34D. Teyssier,34S. Thu¨er,34M. Weber,34M. Bontenackels,35V. Cherepanov,35

Y. Erdogan,35G. Flu¨gge,35H. Geenen,35M. Geisler,35W. Haj Ahmad,35F. Hoehle,35B. Kargoll,35T. Kress,35 Y. Kuessel,35J. Lingemann,35,cA. Nowack,35L. Perchalla,35O. Pooth,35P. Sauerland,35A. Stahl,35 M. Aldaya Martin,36I. Asin,36J. Behr,36W. Behrenhoff,36U. Behrens,36M. Bergholz,36,rA. Bethani,36K. Borras,36

A. Burgmeier,36A. Cakir,36L. Calligaris,36A. Campbell,36E. Castro,36F. Costanza,36D. Dammann,36 C. Diez Pardos,36T. Dorland,36G. Eckerlin,36D. Eckstein,36G. Flucke,36A. Geiser,36I. Glushkov,36P. Gunnellini,36

S. Habib,36J. Hauk,36G. Hellwig,36H. Jung,36M. Kasemann,36P. Katsas,36C. Kleinwort,36H. Kluge,36 A. Knutsson,36M. Kra¨mer,36D. Kru¨cker,36E. Kuznetsova,36W. Lange,36J. Leonard,36W. Lohmann,36,rB. Lutz,36

R. Mankel,36I. Marfin,36M. Marienfeld,36I.-A. Melzer-Pellmann,36A. B. Meyer,36J. Mnich,36A. Mussgiller,36 S. Naumann-Emme,36O. Novgorodova,36F. Nowak,36J. Olzem,36H. Perrey,36A. Petrukhin,36D. Pitzl,36 A. Raspereza,36P. M. Ribeiro Cipriano,36C. Riedl,36E. Ron,36M. Rosin,36J. Salfeld-Nebgen,36R. Schmidt,36,r T. Schoerner-Sadenius,36N. Sen,36A. Spiridonov,36M. Stein,36R. Walsh,36C. Wissing,36V. Blobel,37H. Enderle,37

J. Erfle,37U. Gebbert,37M. Go¨rner,37M. Gosselink,37J. Haller,37T. Hermanns,37R. S. Ho¨ing,37K. Kaschube,37 G. Kaussen,37H. Kirschenmann,37R. Klanner,37J. Lange,37T. Peiffer,37N. Pietsch,37D. Rathjens,37C. Sander,37 H. Schettler,37P. Schleper,37E. Schlieckau,37A. Schmidt,37M. Schro¨der,37T. Schum,37M. Seidel,37J. Sibille,37,s

V. Sola,37H. Stadie,37G. Steinbru¨ck,37J. Thomsen,37L. Vanelderen,37C. Barth,38J. Berger,38C. Bo¨ser,38 T. Chwalek,38W. De Boer,38A. Descroix,38A. Dierlamm,38M. Feindt,38M. Guthoff,38,cC. Hackstein,38 F. Hartmann,38,cT. Hauth,38,cM. Heinrich,38H. Held,38K. H. Hoffmann,38U. Husemann,38I. Katkov,38,q J. R. Komaragiri,38P. Lobelle Pardo,38D. Martschei,38S. Mueller,38Th. Mu¨ller,38M. Niegel,38A. Nu¨rnberg,38

O. Oberst,38A. Oehler,38J. Ott,38G. Quast,38K. Rabbertz,38F. Ratnikov,38N. Ratnikova,38S. Ro¨cker,38 F.-P. Schilling,38G. Schott,38H. J. Simonis,38F. M. Stober,38D. Troendle,38R. Ulrich,38J. Wagner-Kuhr,38 S. Wayand,38T. Weiler,38M. Zeise,38G. Anagnostou,39G. Daskalakis,39T. Geralis,39S. Kesisoglou,39A. Kyriakis,39

D. Loukas,39I. Manolakos,39A. Markou,39C. Markou,39E. Ntomari,39L. Gouskos,40T. J. Mertzimekis,40 A. Panagiotou,40N. Saoulidou,40I. Evangelou,41C. Foudas,41P. Kokkas,41N. Manthos,41I. Papadopoulos,41

G. Bencze,42C. Hajdu,42P. Hidas,42D. Horvath,42,tF. Sikler,42V. Veszpremi,42G. Vesztergombi,42,u A. J. Zsigmond,42N. Beni,43S. Czellar,43J. Molnar,43J. Palinkas,43Z. Szillasi,43J. Karancsi,44P. Raics,44 Z. L. Trocsanyi,44B. Ujvari,44S. B. Beri,45V. Bhatnagar,45N. Dhingra,45R. Gupta,45M. Kaur,45M. Z. Mehta,45

M. Mittal,45N. Nishu,45L. K. Saini,45A. Sharma,45J. B. Singh,45Ashok Kumar,46Arun Kumar,46S. Ahuja,46 A. Bhardwaj,46B. C. Choudhary,46S. Malhotra,46M. Naimuddin,46K. Ranjan,46P. Saxena,46V. Sharma,46 R. K. Shivpuri,46S. Banerjee,47S. Bhattacharya,47K. Chatterjee,47S. Dutta,47B. Gomber,47Sa. Jain,47Sh. Jain,47

R. Khurana,47A. Modak,47S. Mukherjee,47D. Roy,47S. Sarkar,47M. Sharan,47A. Abdulsalam,48D. Dutta,48 S. Kailas,48V. Kumar,48A. K. Mohanty,48,cL. M. Pant,48P. Shukla,48T. Aziz,49R. M. Chatterjee,49S. Ganguly,49

M. Guchait,49,vA. Gurtu,49,wM. Maity,49,xG. Majumder,49K. Mazumdar,49G. B. Mohanty,49B. Parida,49 K. Sudhakar,49N. Wickramage,49S. Banerjee,50S. Dugad,50H. Arfaei,51,yH. Bakhshiansohi,51S. M. Etesami,51,z

A. Fahim,51,yM. Hashemi,51,aaH. Hesari,51A. Jafari,51M. Khakzad,51M. Mohammadi Najafabadi,51 S. Paktinat Mehdiabadi,51B. Safarzadeh,51,bbM. Zeinali,51M. Abbrescia,52a,52bL. Barbone,52a,52b

C. Calabria,52a,52b,cS. S. Chhibra,52a,52bA. Colaleo,52aD. Creanza,52a,52cN. De Filippis,52a,52c,cM. De Palma,52a,52b L. Fiore,52aG. Iaselli,52a,52cG. Maggi,52a,52cM. Maggi,52aB. Marangelli,52a,52bS. My,52a,52cS. Nuzzo,52a,52b

N. Pacifico,52aA. Pompili,52a,52bG. Pugliese,52a,52cG. Selvaggi,52a,52bL. Silvestris,52aG. Singh,52a,52b R. Venditti,52a,52bP. Verwilligen,52aG. Zito,52aG. Abbiendi,53aA. C. Benvenuti,53aD. Bonacorsi,53a,53b S. Braibant-Giacomelli,53a,53bL. Brigliadori,53a,53bP. Capiluppi,53a,53bA. Castro,53a,53bF. R. Cavallo,53a M. Cuffiani,53a,53bG. M. Dallavalle,53aF. Fabbri,53aA. Fanfani,53a,53bD. Fasanella,53a,53bP. Giacomelli,53a

C. Grandi,53aL. Guiducci,53a,53bS. Marcellini,53aG. Masetti,53aM. Meneghelli,53a,53b,cA. Montanari,53a F. L. Navarria,53a,53bF. Odorici,53aA. Perrotta,53aF. Primavera,53a,53bA. M. Rossi,53a,53bT. Rovelli,53a,53b G. P. Siroli,53a,53bN. Tosi,53aR. Travaglini,53a,53bS. Albergo,54a,54bG. Cappello,54a,54bM. Chiorboli,54a,54b

(7)

S. Costa,54a,54bR. Potenza,54a,54bA. Tricomi,54a,54bC. Tuve,54a,54bG. Barbagli,55aV. Ciulli,55a,55bC. Civinini,55a R. D’Alessandro,55a,55bE. Focardi,55a,55bS. Frosali,55a,55bE. Gallo,55aS. Gonzi,55a,55bM. Meschini,55aS. Paoletti,55a

G. Sguazzoni,55aA. Tropiano,55a,55bL. Benussi,56S. Bianco,56S. Colafranceschi,56,ccF. Fabbri,56D. Piccolo,56 P. Fabbricatore,57aR. Musenich,57aS. Tosi,57a,57bA. Benaglia,58aF. De Guio,58a,58bL. Di Matteo,58a,58b,c S. Fiorendi,58a,58bS. Gennai,58a,cA. Ghezzi,58a,58bS. Malvezzi,58aR. A. Manzoni,58a,58bA. Martelli,58a,58b A. Massironi,58a,58bD. Menasce,58aL. Moroni,58aM. Paganoni,58a,58bD. Pedrini,58aS. Ragazzi,58a,58bN. Redaelli,58a

T. Tabarelli de Fatis,58a,58bS. Buontempo,59aN. Cavallo,59a,59cA. De Cosa,59a,59b,cO. Dogangun,59a,59b F. Fabozzi,59a,59cA. O. M. Iorio,59a,59bL. Lista,59aS. Meola,59a,59d,ddM. Merola,59aP. Paolucci,59a,cP. Azzi,60a N. Bacchetta,60a,cD. Bisello,60a,60bA. Branca,60a,60b,cR. Carlin,60a,60bP. Checchia,60aT. Dorigo,60aU. Dosselli,60a

F. Gasparini,60a,60bA. Gozzelino,60aK. Kanishchev,60a,60cS. Lacaprara,60aI. Lazzizzera,60a,60cM. Margoni,60a,60b A. T. Meneguzzo,60a,60bJ. Pazzini,60a,60bN. Pozzobon,60a,60bP. Ronchese,60a,60bF. Simonetto,60a,60bE. Torassa,60a

M. Tosi,60a,60bS. Vanini,60a,60bP. Zotto,60a,60bA. Zucchetta,60a,60bG. Zumerle,60a,60bM. Gabusi,61a,61b S. P. Ratti,61a,61bC. Riccardi,61a,61bP. Torre,61a,61bP. Vitulo,61a,61bM. Biasini,62a,62bG. M. Bilei,62aL. Fano`,62a,62b

P. Lariccia,62a,62bG. Mantovani,62a,62bM. Menichelli,62aA. Nappi,62a,62b,aF. Romeo,62a,62bA. Saha,62a A. Santocchia,62a,62bA. Spiezia,62a,62bS. Taroni,62a,62bP. Azzurri,63a,63cG. Bagliesi,63aJ. Bernardini,63a T. Boccali,63aG. Broccolo,63a,63cR. Castaldi,63aR. T. D’Agnolo,63a,63c,cR. Dell’Orso,63aF. Fiori,63a,63b,c L. Foa`,63a,63cA. Giassi,63aA. Kraan,63aF. Ligabue,63a,63cT. Lomtadze,63aL. Martini,63a,eeA. Messineo,63a,63b F. Palla,63aA. Rizzi,63a,63bA. T. Serban,63a,ffP. Spagnolo,63aP. Squillacioti,63a,cR. Tenchini,63aG. Tonelli,63a,63b A. Venturi,63aP. G. Verdini,63aL. Barone,64a,64bF. Cavallari,64aD. Del Re,64a,64bM. Diemoz,64aC. Fanelli,64a,64b M. Grassi,64a,64b,cE. Longo,64a,64bP. Meridiani,64a,cF. Micheli,64a,64bS. Nourbakhsh,64a,64bG. Organtini,64a,64b

R. Paramatti,64aS. Rahatlou,64a,64bL. Soffi,64a,64bN. Amapane,65a,65bR. Arcidiacono,65a,65cS. Argiro,65a,65b M. Arneodo,65a,65cC. Biino,65aN. Cartiglia,65aS. Casasso,65a,65bM. Costa,65a,65bN. Demaria,65aC. Mariotti,65a,c

S. Maselli,65aE. Migliore,65a,65bV. Monaco,65a,65bM. Musich,65a,cM. M. Obertino,65a,65cN. Pastrone,65a M. Pelliccioni,65aA. Potenza,65a,65bA. Romero,65a,65bM. Ruspa,65a,65cR. Sacchi,65a,65bA. Solano,65a,65b A. Staiano,65aS. Belforte,66aV. Candelise,66a,66bM. Casarsa,66aF. Cossutti,66aG. Della Ricca,66a,66bB. Gobbo,66a

M. Marone,66a,66b,cD. Montanino,66a,66b,cA. Penzo,66aA. Schizzi,66a,66bT. Y. Kim,67S. K. Nam,67S. Chang,68 D. H. Kim,68G. N. Kim,68D. J. Kong,68H. Park,68D. C. Son,68T. Son,68J. Y. Kim,69Zero J. Kim,69S. Song,69 S. Choi,70D. Gyun,70B. Hong,70M. Jo,70H. Kim,70T. J. Kim,70K. S. Lee,70D. H. Moon,70S. K. Park,70Y. Roh,70 M. Choi,71J. H. Kim,71C. Park,71I. C. Park,71S. Park,71G. Ryu,71Y. Choi,72Y. K. Choi,72J. Goh,72M. S. Kim,72

E. Kwon,72B. Lee,72J. Lee,72S. Lee,72H. Seo,72I. Yu,72M. J. Bilinskas,73I. Grigelionis,73M. Janulis,73 A. Juodagalvis,73H. Castilla-Valdez,74E. De La Cruz-Burelo,74I. Heredia-de La Cruz,74R. Lopez-Fernandez,74

J. Martı´nez-Ortega,74A. Sanchez-Hernandez,74L. M. Villasenor-Cendejas,74S. Carrillo Moreno,75 F. Vazquez Valencia,75H. A. Salazar Ibarguen,76E. Casimiro Linares,77A. Morelos Pineda,77M. A. Reyes-Santos,77

D. Krofcheck,78A. J. Bell,79P. H. Butler,79R. Doesburg,79S. Reucroft,79H. Silverwood,79M. Ahmad,80 M. I. Asghar,80J. Butt,80H. R. Hoorani,80S. Khalid,80W. A. Khan,80T. Khurshid,80S. Qazi,80M. A. Shah,80

M. Shoaib,80H. Bialkowska,81B. Boimska,81T. Frueboes,81M. Go´rski,81M. Kazana,81K. Nawrocki,81 K. Romanowska-Rybinska,81M. Szleper,81G. Wrochna,81P. Zalewski,81G. Brona,82K. Bunkowski,82M. Cwiok,82

W. Dominik,82K. Doroba,82A. Kalinowski,82M. Konecki,82J. Krolikowski,82M. Misiura,82N. Almeida,83 P. Bargassa,83A. David,83P. Faccioli,83P. G. Ferreira Parracho,83M. Gallinaro,83J. Seixas,83J. Varela,83 P. Vischia,83P. Bunin,84I. Golutvin,84A. Kamenev,84V. Karjavin,84V. Konoplyanikov,84G. Kozlov,84A. Lanev,84 A. Malakhov,84P. Moisenz,84V. Palichik,84V. Perelygin,84M. Savina,84S. Shmatov,84S. Shulha,84V. Smirnov,84 A. Volodko,84A. Zarubin,84S. Evstyukhin,85V. Golovtsov,85Y. Ivanov,85V. Kim,85P. Levchenko,85V. Murzin,85 V. Oreshkin,85I. Smirnov,85V. Sulimov,85L. Uvarov,85S. Vavilov,85A. Vorobyev,85An. Vorobyev,85Yu. Andreev,86

A. Dermenev,86S. Gninenko,86N. Golubev,86M. Kirsanov,86N. Krasnikov,86V. Matveev,86A. Pashenkov,86 D. Tlisov,86A. Toropin,86V. Epshteyn,87M. Erofeeva,87V. Gavrilov,87M. Kossov,87N. Lychkovskaya,87V. Popov,87

G. Safronov,87S. Semenov,87I. Shreyber,87V. Stolin,87E. Vlasov,87A. Zhokin,87V. Andreev,88M. Azarkin,88 I. Dremin,88M. Kirakosyan,88A. Leonidov,88G. Mesyats,88S. V. Rusakov,88A. Vinogradov,88A. Belyaev,89 E. Boos,89V. Bunichev,89M. Dubinin,89,eL. Dudko,89A. Ershov,89A. Gribushin,89V. Klyukhin,89O. Kodolova,89 I. Lokhtin,89A. Markina,89S. Obraztsov,89M. Perfilov,89S. Petrushanko,89A. Popov,89L. Sarycheva,89,aV. Savrin,89

I. Azhgirey,90I. Bayshev,90S. Bitioukov,90V. Grishin,90,cV. Kachanov,90D. Konstantinov,90V. Krychkine,90 V. Petrov,90R. Ryutin,90A. Sobol,90L. Tourtchanovitch,90S. Troshin,90N. Tyurin,90A. Uzunian,90A. Volkov,90

(8)

P. Adzic,91,ggM. Djordjevic,91M. Ekmedzic,91D. Krpic,91,ggJ. Milosevic,91M. Aguilar-Benitez,92 J. Alcaraz Maestre,92P. Arce,92C. Battilana,92E. Calvo,92M. Cerrada,92M. Chamizo Llatas,92N. Colino,92 B. De La Cruz,92A. Delgado Peris,92D. Domı´nguez Va´zquez,92C. Fernandez Bedoya,92J. P. Ferna´ndez Ramos,92 A. Ferrando,92J. Flix,92M. C. Fouz,92P. Garcia-Abia,92O. Gonzalez Lopez,92S. Goy Lopez,92J. M. Hernandez,92 M. I. Josa,92G. Merino,92J. Puerta Pelayo,92A. Quintario Olmeda,92I. Redondo,92L. Romero,92J. Santaolalla,92

M. S. Soares,92C. Willmott,92C. Albajar,93G. Codispoti,93J. F. de Troco´niz,93H. Brun,94J. Cuevas,94 J. Fernandez Menendez,94S. Folgueras,94I. Gonzalez Caballero,94L. Lloret Iglesias,94J. Piedra Gomez,94 J. A. Brochero Cifuentes,95I. J. Cabrillo,95A. Calderon,95S. H. Chuang,95J. Duarte Campderros,95M. Felcini,95,hh

M. Fernandez,95G. Gomez,95J. Gonzalez Sanchez,95A. Graziano,95C. Jorda,95A. Lopez Virto,95J. Marco,95 R. Marco,95C. Martinez Rivero,95F. Matorras,95F. J. Munoz Sanchez,95T. Rodrigo,95A. Y. Rodrı´guez-Marrero,95

A. Ruiz-Jimeno,95L. Scodellaro,95I. Vila,95R. Vilar Cortabitarte,95D. Abbaneo,96E. Auffray,96G. Auzinger,96 M. Bachtis,96P. Baillon,96A. H. Ball,96D. Barney,96J. F. Benitez,96C. Bernet,96,fG. Bianchi,96P. Bloch,96

A. Bocci,96A. Bonato,96C. Botta,96H. Breuker,96T. Camporesi,96G. Cerminara,96T. Christiansen,96 J. A. Coarasa Perez,96D. D’Enterria,96A. Dabrowski,96A. De Roeck,96S. Di Guida,96M. Dobson,96 N. Dupont-Sagorin,96A. Elliott-Peisert,96B. Frisch,96W. Funk,96G. Georgiou,96M. Giffels,96D. Gigi,96K. Gill,96

D. Giordano,96M. Girone,96M. Giunta,96F. Glege,96R. Gomez-Reino Garrido,96P. Govoni,96S. Gowdy,96 R. Guida,96S. Gundacker,96J. Hammer,96M. Hansen,96P. Harris,96C. Hartl,96J. Harvey,96B. Hegner,96 A. Hinzmann,96V. Innocente,96P. Janot,96K. Kaadze,96E. Karavakis,96K. Kousouris,96P. Lecoq,96Y.-J. Lee,96

P. Lenzi,96C. Lourenc¸o,96N. Magini,96T. Ma¨ki,96M. Malberti,96L. Malgeri,96M. Mannelli,96L. Masetti,96 F. Meijers,96S. Mersi,96E. Meschi,96R. Moser,96M. Mulders,96P. Musella,96E. Nesvold,96L. Orsini,96 E. Palencia Cortezon,96E. Perez,96L. Perrozzi,96A. Petrilli,96A. Pfeiffer,96M. Pierini,96M. Pimia¨,96D. Piparo,96

G. Polese,96L. Quertenmont,96A. Racz,96W. Reece,96J. Rodrigues Antunes,96G. Rolandi,96,iiC. Rovelli,96,jj M. Rovere,96H. Sakulin,96F. Santanastasio,96C. Scha¨fer,96C. Schwick,96I. Segoni,96S. Sekmen,96A. Sharma,96

P. Siegrist,96P. Silva,96M. Simon,96P. Sphicas,96,kkD. Spiga,96A. Tsirou,96G. I. Veres,96,uJ. R. Vlimant,96 H. K. Wo¨hri,96S. D. Worm,96,llW. D. Zeuner,96W. Bertl,97K. Deiters,97W. Erdmann,97K. Gabathuler,97

R. Horisberger,97Q. Ingram,97H. C. Kaestli,97S. Ko¨nig,97D. Kotlinski,97U. Langenegger,97F. Meier,97 D. Renker,97T. Rohe,97F. Bachmair,98L. Ba¨ni,98P. Bortignon,98M. A. Buchmann,98B. Casal,98N. Chanon,98 A. Deisher,98G. Dissertori,98M. Dittmar,98M. Donega`,98M. Du¨nser,98P. Eller,98J. Eugster,98K. Freudenreich,98

C. Grab,98D. Hits,98P. Lecomte,98W. Lustermann,98A. C. Marini,98P. Martinez Ruiz del Arbol,98N. Mohr,98 F. Moortgat,98C. Na¨geli,98,mmP. Nef,98F. Nessi-Tedaldi,98F. Pandolfi,98L. Pape,98F. Pauss,98M. Peruzzi,98

F. J. Ronga,98M. Rossini,98L. Sala,98A. K. Sanchez,98A. Starodumov,98,nnB. Stieger,98M. Takahashi,98 L. Tauscher,98,aA. Thea,98K. Theofilatos,98D. Treille,98C. Urscheler,98R. Wallny,98H. A. Weber,98L. Wehrli,98 C. Amsler,99,ooV. Chiochia,99S. De Visscher,99C. Favaro,99M. Ivova Rikova,99B. Kilminster,99B. Millan Mejias,99 P. Otiougova,99P. Robmann,99H. Snoek,99S. Tupputi,99M. Verzetti,99Y. H. Chang,100K. H. Chen,100C. Ferro,100 C. M. Kuo,100S. W. Li,100W. Lin,100Y. J. Lu,100A. P. Singh,100R. Volpe,100S. S. Yu,100P. Bartalini,101P. Chang,101 Y. H. Chang,101Y. W. Chang,101Y. Chao,101K. F. Chen,101C. Dietz,101U. Grundler,101W.-S. Hou,101Y. Hsiung,101 K. Y. Kao,101Y. J. Lei,101R.-S. Lu,101D. Majumder,101E. Petrakou,101X. Shi,101J. G. Shiu,101Y. M. Tzeng,101

X. Wan,101M. Wang,101B. Asavapibhop,102N. Srimanobhas,102N. Suwonjandee,102A. Adiguzel,103 M. N. Bakirci,103,ppS. Cerci,103,qqC. Dozen,103I. Dumanoglu,103E. Eskut,103S. Girgis,103G. Gokbulut,103 E. Gurpinar,103I. Hos,103E. E. Kangal,103T. Karaman,103G. Karapinar,103,rrA. Kayis Topaksu,103G. Onengut,103

K. Ozdemir,103S. Ozturk,103,ssA. Polatoz,103K. Sogut,103,ttD. Sunar Cerci,103,qqB. Tali,103,qqH. Topakli,103,pp L. N. Vergili,103M. Vergili,103I. V. Akin,104T. Aliev,104B. Bilin,104S. Bilmis,104M. Deniz,104H. Gamsizkan,104 A. M. Guler,104K. Ocalan,104A. Ozpineci,104M. Serin,104R. Sever,104U. E. Surat,104M. Yalvac,104E. Yildirim,104 M. Zeyrek,104E. Gu¨lmez,105B. Isildak,105,uuM. Kaya,105,vvO. Kaya,105,vvS. Ozkorucuklu,105,wwN. Sonmez,105,xx H. Bahtiyar,106E. Barlas,106K. Cankocak,106Y. O. Gu¨naydin,106,yyF. I. Vardarl,106M. Yu¨cel,106L. Levchuk,107

J. J. Brooke,108E. Clement,108D. Cussans,108H. Flacher,108R. Frazier,108J. Goldstein,108M. Grimes,108 G. P. Heath,108H. F. Heath,108L. Kreczko,108S. Metson,108D. M. Newbold,108,llK. Nirunpong,108A. Poll,108

S. Senkin,108V. J. Smith,108T. Williams,108L. Basso,109,zzK. W. Bell,109A. Belyaev,109,zzC. Brew,109 R. M. Brown,109D. J. A. Cockerill,109J. A. Coughlan,109K. Harder,109S. Harper,109J. Jackson,109B. W. Kennedy,109

E. Olaiya,109D. Petyt,109B. C. Radburn-Smith,109C. H. Shepherd-Themistocleous,109I. R. Tomalin,109 W. J. Womersley,109R. Bainbridge,110G. Ball,110R. Beuselinck,110O. Buchmuller,110D. Colling,110N. Cripps,110

(9)

M. Cutajar,110P. Dauncey,110G. Davies,110M. Della Negra,110W. Ferguson,110J. Fulcher,110D. Futyan,110 A. Gilbert,110A. Guneratne Bryer,110G. Hall,110Z. Hatherell,110J. Hays,110G. Iles,110M. Jarvis,110 G. Karapostoli,110L. Lyons,110A.-M. Magnan,110J. Marrouche,110B. Mathias,110R. Nandi,110J. Nash,110 A. Nikitenko,110,nnJ. Pela,110M. Pesaresi,110K. Petridis,110M. Pioppi,110,aaaD. M. Raymond,110S. Rogerson,110 A. Rose,110C. Seez,110P. Sharp,110,aA. Sparrow,110M. Stoye,110A. Tapper,110M. Vazquez Acosta,110T. Virdee,110

S. Wakefield,110N. Wardle,110T. Whyntie,110M. Chadwick,111J. E. Cole,111P. R. Hobson,111A. Khan,111 P. Kyberd,111D. Leggat,111D. Leslie,111W. Martin,111I. D. Reid,111P. Symonds,111L. Teodorescu,111M. Turner,111

K. Hatakeyama,112H. Liu,112T. Scarborough,112O. Charaf,113C. Henderson,113P. Rumerio,113A. Avetisyan,114 T. Bose,114C. Fantasia,114A. Heister,114P. Lawson,114D. Lazic,114J. Rohlf,114D. Sperka,114J. St. John,114 L. Sulak,114J. Alimena,115S. Bhattacharya,115G. Christopher,115D. Cutts,115Z. Demiragli,115A. Ferapontov,115

A. Garabedian,115U. Heintz,115S. Jabeen,115G. Kukartsev,115E. Laird,115G. Landsberg,115M. Luk,115 M. Narain,115M. Segala,115T. Sinthuprasith,115T. Speer,115R. Breedon,116G. Breto,116

M. Calderon De La Barca Sanchez,116S. Chauhan,116M. Chertok,116J. Conway,116R. Conway,116P. T. Cox,116 J. Dolen,116R. Erbacher,116M. Gardner,116R. Houtz,116W. Ko,116A. Kopecky,116R. Lander,116O. Mall,116 T. Miceli,116D. Pellett,116F. Ricci-Tam,116B. Rutherford,116M. Searle,116J. Smith,116M. Squires,116M. Tripathi,116 R. Vasquez Sierra,116R. Yohay,116V. Andreev,117D. Cline,117R. Cousins,117J. Duris,117S. Erhan,117P. Everaerts,117 C. Farrell,117J. Hauser,117M. Ignatenko,117C. Jarvis,117G. Rakness,117P. Schlein,117,aP. Traczyk,117V. Valuev,117 M. Weber,117J. Babb,118R. Clare,118M. E. Dinardo,118J. Ellison,118J. W. Gary,118F. Giordano,118G. Hanson,118

H. Liu,118O. R. Long,118A. Luthra,118H. Nguyen,118S. Paramesvaran,118J. Sturdy,118S. Sumowidagdo,118 R. Wilken,118S. Wimpenny,118W. Andrews,119J. G. Branson,119G. B. Cerati,119S. Cittolin,119D. Evans,119 A. Holzner,119R. Kelley,119M. Lebourgeois,119J. Letts,119I. Macneill,119B. Mangano,119S. Padhi,119C. Palmer,119

G. Petrucciani,119M. Pieri,119M. Sani,119V. Sharma,119S. Simon,119E. Sudano,119M. Tadel,119Y. Tu,119 A. Vartak,119S. Wasserbaech,119,bbbF. Wu¨rthwein,119A. Yagil,119J. Yoo,119D. Barge,120R. Bellan,120 C. Campagnari,120M. D’Alfonso,120T. Danielson,120K. Flowers,120P. Geffert,120C. George,120F. Golf,120 J. Incandela,120C. Justus,120P. Kalavase,120D. Kovalskyi,120V. Krutelyov,120S. Lowette,120R. Magan˜a Villalba,120

N. Mccoll,120V. Pavlunin,120J. Ribnik,120J. Richman,120R. Rossin,120D. Stuart,120W. To,120C. West,120 A. Apresyan,121A. Bornheim,121J. Bunn,121Y. Chen,121E. Di Marco,121J. Duarte,121M. Gataullin,121D. Kcira,121

Y. Ma,121A. Mott,121H. B. Newman,121C. Rogan,121M. Spiropulu,121V. Timciuc,121J. Veverka,121 R. Wilkinson,121S. Xie,121Y. Yang,121R. Y. Zhu,121V. Azzolini,122A. Calamba,122R. Carroll,122T. Ferguson,122 Y. Iiyama,122D. W. Jang,122Y. F. Liu,122M. Paulini,122H. Vogel,122I. Vorobiev,122J. P. Cumalat,123B. R. Drell,123

W. T. Ford,123A. Gaz,123E. Luiggi Lopez,123J. G. Smith,123K. Stenson,123K. A. Ulmer,123S. R. Wagner,123 J. Alexander,124A. Chatterjee,124N. Eggert,124L. K. Gibbons,124B. Heltsley,124W. Hopkins,124 A. Khukhunaishvili,124B. Kreis,124N. Mirman,124G. Nicolas Kaufman,124J. R. Patterson,124A. Ryd,124 E. Salvati,124W. Sun,124W. D. Teo,124J. Thom,124J. Thompson,124J. Tucker,124J. Vaughan,124Y. Weng,124 L. Winstrom,124P. Wittich,124D. Winn,125S. Abdullin,126M. Albrow,126J. Anderson,126L. A. T. Bauerdick,126

A. Beretvas,126J. Berryhill,126P. C. Bhat,126K. Burkett,126J. N. Butler,126V. Chetluru,126H. W. K. Cheung,126 F. Chlebana,126S. Cihangir,126V. D. Elvira,126I. Fisk,126J. Freeman,126Y. Gao,126D. Green,126O. Gutsche,126

J. Hanlon,126R. M. Harris,126J. Hirschauer,126B. Hooberman,126S. Jindariani,126M. Johnson,126U. Joshi,126 B. Klima,126S. Kunori,126S. Kwan,126C. Leonidopoulos,126,cccJ. Linacre,126D. Lincoln,126R. Lipton,126 J. Lykken,126K. Maeshima,126J. M. Marraffino,126V. I. Martinez Outschoorn,126S. Maruyama,126D. Mason,126

P. McBride,126K. Mishra,126S. Mrenna,126Y. Musienko,126,dddC. Newman-Holmes,126V. O’Dell,126 O. Prokofyev,126E. Sexton-Kennedy,126S. Sharma,126W. J. Spalding,126L. Spiegel,126L. Taylor,126S. Tkaczyk,126 N. V. Tran,126L. Uplegger,126E. W. Vaandering,126R. Vidal,126J. Whitmore,126W. Wu,126F. Yang,126J. C. Yun,126

D. Acosta,127P. Avery,127D. Bourilkov,127M. Chen,127T. Cheng,127S. Das,127M. De Gruttola,127 G. P. Di Giovanni,127D. Dobur,127A. Drozdetskiy,127R. D. Field,127M. Fisher,127Y. Fu,127I. K. Furic,127 J. Gartner,127J. Hugon,127B. Kim,127J. Konigsberg,127A. Korytov,127A. Kropivnitskaya,127T. Kypreos,127 J. F. Low,127K. Matchev,127P. Milenovic,127,eeeG. Mitselmakher,127L. Muniz,127M. Park,127R. Remington,127

A. Rinkevicius,127P. Sellers,127N. Skhirtladze,127M. Snowball,127J. Yelton,127M. Zakaria,127V. Gaultney,128 S. Hewamanage,128L. M. Lebolo,128S. Linn,128P. Markowitz,128G. Martinez,128J. L. Rodriguez,128T. Adams,129

A. Askew,129J. Bochenek,129J. Chen,129B. Diamond,129S. V. Gleyzer,129J. Haas,129S. Hagopian,129 V. Hagopian,129M. Jenkins,129K. F. Johnson,129H. Prosper,129V. Veeraraghavan,129M. Weinberg,129

(10)

M. M. Baarmand,130B. Dorney,130M. Hohlmann,130H. Kalakhety,130I. Vodopiyanov,130F. Yumiceva,130 M. R. Adams,131I. M. Anghel,131L. Apanasevich,131Y. Bai,131V. E. Bazterra,131R. R. Betts,131I. Bucinskaite,131 J. Callner,131R. Cavanaugh,131O. Evdokimov,131L. Gauthier,131C. E. Gerber,131D. J. Hofman,131S. Khalatyan,131

F. Lacroix,131C. O’Brien,131C. Silkworth,131D. Strom,131P. Turner,131N. Varelas,131U. Akgun,132 E. A. Albayrak,132B. Bilki,132,fffW. Clarida,132F. Duru,132S. Griffiths,132J.-P. Merlo,132H. Mermerkaya,132,ggg A. Mestvirishvili,132A. Moeller,132J. Nachtman,132C. R. Newsom,132E. Norbeck,132Y. Onel,132F. Ozok,132,hhh

S. Sen,132P. Tan,132E. Tiras,132J. Wetzel,132T. Yetkin,132K. Yi,132B. A. Barnett,133B. Blumenfeld,133 S. Bolognesi,133D. Fehling,133G. Giurgiu,133A. V. Gritsan,133Z. J. Guo,133G. Hu,133P. Maksimovic,133 M. Swartz,133A. Whitbeck,133P. Baringer,134A. Bean,134G. Benelli,134R. P. Kenny Iii,134M. Murray,134

D. Noonan,134S. Sanders,134R. Stringer,134G. Tinti,134J. S. Wood,134A. F. Barfuss,135T. Bolton,135 I. Chakaberia,135A. Ivanov,135S. Khalil,135M. Makouski,135Y. Maravin,135S. Shrestha,135I. Svintradze,135 J. Gronberg,136D. Lange,136F. Rebassoo,136D. Wright,136A. Baden,137B. Calvert,137S. C. Eno,137J. A. Gomez,137

N. J. Hadley,137R. G. Kellogg,137M. Kirn,137T. Kolberg,137Y. Lu,137M. Marionneau,137A. C. Mignerey,137 K. Pedro,137A. Peterman,137A. Skuja,137J. Temple,137M. B. Tonjes,137S. C. Tonwar,137A. Apyan,138G. Bauer,138

J. Bendavid,138W. Busza,138E. Butz,138I. A. Cali,138M. Chan,138V. Dutta,138G. Gomez Ceballos,138 M. Goncharov,138Y. Kim,138M. Klute,138K. Krajczar,138,iiiA. Levin,138P. D. Luckey,138T. Ma,138S. Nahn,138

C. Paus,138D. Ralph,138C. Roland,138G. Roland,138M. Rudolph,138G. S. F. Stephans,138F. Sto¨ckli,138 K. Sumorok,138K. Sung,138D. Velicanu,138E. A. Wenger,138R. Wolf,138B. Wyslouch,138M. Yang,138Y. Yilmaz,138

A. S. Yoon,138M. Zanetti,138V. Zhukova,138S. I. Cooper,139B. Dahmes,139A. De Benedetti,139G. Franzoni,139 A. Gude,139S. C. Kao,139K. Klapoetke,139Y. Kubota,139J. Mans,139N. Pastika,139R. Rusack,139M. Sasseville,139

A. Singovsky,139N. Tambe,139J. Turkewitz,139L. M. Cremaldi,140R. Kroeger,140L. Perera,140R. Rahmat,140 D. A. Sanders,140E. Avdeeva,141K. Bloom,141S. Bose,141D. R. Claes,141A. Dominguez,141M. Eads,141J. Keller,141

I. Kravchenko,141J. Lazo-Flores,141S. Malik,141G. R. Snow,141A. Godshalk,142I. Iashvili,142S. Jain,142 A. Kharchilava,142A. Kumar,142S. Rappoccio,142Z. Wan,142G. Alverson,143E. Barberis,143D. Baumgartel,143 M. Chasco,143J. Haley,143D. Nash,143T. Orimoto,143D. Trocino,143D. Wood,143J. Zhang,143A. Anastassov,144

K. A. Hahn,144A. Kubik,144L. Lusito,144N. Mucia,144N. Odell,144R. A. Ofierzynski,144B. Pollack,144 A. Pozdnyakov,144M. Schmitt,144S. Stoynev,144M. Velasco,144S. Won,144D. Berry,145A. Brinkerhoff,145 K. M. Chan,145M. Hildreth,145C. Jessop,145D. J. Karmgard,145J. Kolb,145K. Lannon,145W. Luo,145S. Lynch,145

N. Marinelli,145D. M. Morse,145T. Pearson,145M. Planer,145R. Ruchti,145J. Slaunwhite,145N. Valls,145 M. Wayne,145M. Wolf,145L. Antonelli,146B. Bylsma,146L. S. Durkin,146C. Hill,146R. Hughes,146K. Kotov,146 T. Y. Ling,146D. Puigh,146M. Rodenburg,146C. Vuosalo,146G. Williams,146B. L. Winer,146E. Berry,147P. Elmer,147

V. Halyo,147P. Hebda,147J. Hegeman,147A. Hunt,147P. Jindal,147S. A. Koay,147D. Lopes Pegna,147P. Lujan,147 D. Marlow,147T. Medvedeva,147M. Mooney,147J. Olsen,147P. Piroue´,147X. Quan,147A. Raval,147H. Saka,147

D. Stickland,147C. Tully,147J. S. Werner,147S. C. Zenz,147A. Zuranski,147E. Brownson,148A. Lopez,148 H. Mendez,148J. E. Ramirez Vargas,148E. Alagoz,149V. E. Barnes,149D. Benedetti,149G. Bolla,149D. Bortoletto,149

M. De Mattia,149A. Everett,149Z. Hu,149M. Jones,149O. Koybasi,149M. Kress,149A. T. Laasanen,149 N. Leonardo,149V. Maroussov,149P. Merkel,149D. H. Miller,149N. Neumeister,149I. Shipsey,149D. Silvers,149 A. Svyatkovskiy,149M. Vidal Marono,149H. D. Yoo,149J. Zablocki,149Y. Zheng,149S. Guragain,150N. Parashar,150

A. Adair,151B. Akgun,151C. Boulahouache,151K. M. Ecklund,151F. J. M. Geurts,151W. Li,151B. P. Padley,151 R. Redjimi,151J. Roberts,151J. Zabel,151B. Betchart,152A. Bodek,152Y. S. Chung,152R. Covarelli,152 P. de Barbaro,152R. Demina,152Y. Eshaq,152T. Ferbel,152A. Garcia-Bellido,152P. Goldenzweig,152J. Han,152 A. Harel,152D. C. Miner,152D. Vishnevskiy,152M. Zielinski,152A. Bhatti,153R. Ciesielski,153L. Demortier,153

K. Goulianos,153G. Lungu,153S. Malik,153C. Mesropian,153S. Arora,154A. Barker,154J. P. Chou,154 C. Contreras-Campana,154E. Contreras-Campana,154D. Duggan,154D. Ferencek,154Y. Gershtein,154R. Gray,154 E. Halkiadakis,154D. Hidas,154A. Lath,154S. Panwalkar,154M. Park,154R. Patel,154V. Rekovic,154J. Robles,154 K. Rose,154S. Salur,154S. Schnetzer,154C. Seitz,154S. Somalwar,154R. Stone,154S. Thomas,154M. Walker,154

G. Cerizza,155M. Hollingsworth,155S. Spanier,155Z. C. Yang,155A. York,155R. Eusebi,156W. Flanagan,156 J. Gilmore,156T. Kamon,156,jjjV. Khotilovich,156R. Montalvo,156I. Osipenkov,156Y. Pakhotin,156A. Perloff,156 J. Roe,156A. Safonov,156T. Sakuma,156S. Sengupta,156I. Suarez,156A. Tatarinov,156D. Toback,156N. Akchurin,157

J. Damgov,157C. Dragoiu,157P. R. Dudero,157C. Jeong,157K. Kovitanggoon,157S. W. Lee,157T. Libeiro,157 I. Volobouev,157E. Appelt,158A. G. Delannoy,158C. Florez,158S. Greene,158A. Gurrola,158W. Johns,158P. Kurt,158

(11)

C. Maguire,158A. Melo,158M. Sharma,158P. Sheldon,158B. Snook,158S. Tuo,158J. Velkovska,158M. W. Arenton,159 M. Balazs,159S. Boutle,159B. Cox,159B. Francis,159J. Goodell,159R. Hirosky,159A. Ledovskoy,159C. Lin,159

C. Neu,159J. Wood,159S. Gollapinni,160R. Harr,160P. E. Karchin,160C. Kottachchi Kankanamge Don,160 P. Lamichhane,160A. Sakharov,160M. Anderson,161D. A. Belknap,161L. Borrello,161D. Carlsmith,161M. Cepeda,161

S. Dasu,161E. Friis,161L. Gray,161K. S. Grogg,161M. Grothe,161R. Hall-Wilton,161M. Herndon,161A. Herve´,161 P. Klabbers,161J. Klukas,161A. Lanaro,161C. Lazaridis,161R. Loveless,161A. Mohapatra,161M. U. Mozer,161

I. Ojalvo,161F. Palmonari,161G. A. Pierro,161I. Ross,161A. Savin,161W. H. Smith,161and J. Swanson161 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium 8

Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

12aUniversidade Estadual Paulista, Sa˜o Paulo, Brazil 12bUniversidade Federal do ABC, Sa˜o Paulo, Brazil 13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China 16

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France 32Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

33RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 34RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 35RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

36Deutsches Elektronen-Synchrotron, Hamburg, Germany 37University of Hamburg, Hamburg, Germany 38Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 39

Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece 40University of Athens, Athens, Greece

41University of Ioa´nnina, Ioa´nnina, Greece

42KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 43Institute of Nuclear Research ATOMKI, Debrecen, Hungary

44University of Debrecen, Debrecen, Hungary 45Panjab University, Chandigarh, India

(12)

47Saha Institute of Nuclear Physics, Kolkata, India 48Bhabha Atomic Research Centre, Mumbai, India 49Tata Institute of Fundamental Research-EHEP, Mumbai, India 50Tata Institute of Fundamental Research-HECR, Mumbai, India 51Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

52aINFN Sezione di Bari, Bari, Italy 52bUniversita` di Bari, Bari, Italy 52cPolitecnico di Bari, Bari, Italy 53a

INFN Sezione di Bologna, Bologna, Italy 53bUniversita` di Bologna, Bologna, Italy 54aINFN Sezione di Catania, Catania, Italy

54bUniversita` di Catania, Catania, Italy 55aINFN Sezione di Firenze, Firenze, Italy

55bUniversita` di Firenze, Firenze, Italy

56INFN Laboratori Nazionali di Frascati, Frascati, Italy 57aINFN Sezione di Genova, Genova, Italy

57bUniversita` di Genova, Genova, Italy 58aINFN Sezione di Milano-Bicocca, Milano, Italy

58bUniversita` di Milano-Bicocca, Milano, Italy 59aINFN Sezione di Napoli, Napoli, Italy 59bUniversita` di Napoli ‘‘Federico II,’’ Napoli, Italy 59cUniversita` della Basilicata (Potenza), Napoli, Italy

59dUniversita` G. Marconi (Roma), Napoli, Italy 60aINFN Sezione di Padova, Padova, Italy

60b

Universita` di Padova, Padova, Italy 60cUniversita` di Trento (Trento), Padova, Italy

61aINFN Sezione di Pavia, Pavia, Italy 61bUniversita` di Pavia, Pavia, Italy 62aINFN Sezione di Perugia, Perugia, Italy

62bUniversita` di Perugia, Perugia, Italy 63aINFN Sezione di Pisa, Pisa, Italy

63bUniversita` di Pisa, Pisa, Italy 63cScuola Normale Superiore di Pisa, Pisa, Italy

64aINFN Sezione di Roma, Roma, Italy 64bUniversita` di Roma, Roma, Italy 65aINFN Sezione di Torino, Torino, Italy

65bUniversita` di Torino, Torino, Italy

65cUniversita` del Piemonte Orientale (Novara), Torino, Italy 66aINFN Sezione di Trieste, Trieste, Italy

66bUniversita` di Trieste, Trieste, Italy 67Kangwon National University, Chunchon, Korea

68Kyungpook National University, Daegu, Korea

69Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 70Korea University, Seoul, Korea

71University of Seoul, Seoul, Korea 72Sungkyunkwan University, Suwon, Korea

73Vilnius University, Vilnius, Lithuania 74

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 75Universidad Iberoamericana, Mexico City, Mexico

76Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 77Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

78University of Auckland, Auckland, New Zealand 79University of Canterbury, Christchurch, New Zealand

80National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 81National Centre for Nuclear Research, Swierk, Poland

82Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 83

Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 84Joint Institute for Nuclear Research, Dubna, Russia

85Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 86Institute for Nuclear Research, Moscow, Russia

(13)

88P.N. Lebedev Physical Institute, Moscow, Russia

89Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 90State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 91University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

92Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 93Universidad Auto´noma de Madrid, Madrid, Spain

94Universidad de Oviedo, Oviedo, Spain

95Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 96

CERN, European Organization for Nuclear Research, Geneva, Switzerland 97Paul Scherrer Institut, Villigen, Switzerland

98Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 99Universita¨t Zu¨rich, Zurich, Switzerland

100National Central University, Chung-Li, Taiwan 101National Taiwan University (NTU), Taipei, Taiwan

102Chulalongkorn University, Bangkok, Thailand 103Cukurova University, Adana, Turkey

104Middle East Technical University, Physics Department, Ankara, Turkey 105Bogazici University, Istanbul, Turkey

106Istanbul Technical University, Istanbul, Turkey

107National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 108University of Bristol, Bristol, United Kingdom

109Rutherford Appleton Laboratory, Didcot, United Kingdom 110Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom

112

Baylor University, Waco, Texas, USA

113The University of Alabama, Tuscaloosa, Alabama, USA 114Boston University, Boston, Massachusetts, USA 115Brown University, Providence, Rhode Island, USA 116University of California, Davis, Davis, California, USA

117University of California, Los Angeles, California, USA 118University of California, Riverside, Riverside, California, USA 119University of California, San Diego, La Jolla, California, USA 120University of California, Santa Barbara, Santa Barbara, California, USA

121California Institute of Technology, Pasadena, California, USA 122Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 123University of Colorado at Boulder, Boulder, Colorado, USA

124Cornell University, Ithaca, New York, USA 125Fairfield University, Fairfield, Califonia, USA 126Fermi National Accelerator Laboratory, Batavia, Illinois, USA

127University of Florida, Gainesville, Florida, USA 128Florida International University, Miami, Florida, USA

129Florida State University, Tallahassee, Florida, USA 130Florida Institute of Technology, Melbourne, Florida, USA 131University of Illinois at Chicago (UIC), Chicago, Illinois, USA

132The University of Iowa, Iowa City, Iowa, USA 133Johns Hopkins University, Baltimore, Maryland, USA

134The University of Kansas, Lawrence, Kansas, USA 135

Kansas State University, Manhattan, Kansas, USA

136Lawrence Livermore National Laboratory, Livermore, California, USA 137University of Maryland, College Park, Maryland, USA 138Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

139University of Minnesota, Minneapolis, Minnesota, USA 140University of Mississippi, Oxford, Mississippi, USA 141University of Nebraska-Lincoln, Lincoln, Nebraska, USA 142State University of New York at Buffalo, Buffalo, New York, USA

143Northeastern University, Boston, Massachusetts, USA 144

Northwestern University, Evanston, Illinois, USA 145University of Notre Dame, Notre Dame, Indiana, USA

146The Ohio State University, Columbus, Ohio, USA 147Princeton University, Princeton, New Jersey, USA 148University of Puerto Rico, Mayaguez, Puerto Rico

(14)

149Purdue University, West Lafayette, Indiana, USA 150Purdue University Calumet, Hammond, New Jersey, USA

151Rice University, Houston, Texas, USA 152University of Rochester, Rochester, New York, USA 153The Rockefeller University, New York, New York, USA

154Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA 155University of Tennessee, Knoxville, Tennessee, USA

156Texas A&M University, College Station, Texas, USA 157

Texas Tech University, Lubbock, Texas, USA 158Vanderbilt University, Nashville, Tennessee, USA 159University of Virginia, Charlottesville, Virginia, USA

160Wayne State University, Detroit, Michigan, USA 161University of Wisconsin, Madison, Wisconsin, USA

aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. dAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. eAlso at California Institute of Technology, Pasadena, CA, USA.

fAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. gAlso at Suez Canal University, Suez, Egypt.

hAlso at Zewail City of Science and Technology, Zewail, Egypt. i

Also at Cairo University, Cairo, Egypt.

j

Also at Fayoum University, El-Fayoum, Egypt.

kAlso at Helwan University, Cairo, Egypt. lAlso at British University in Egypt, Cairo, Egypt. mNow at Ain Shams University, Cairo, Egypt.

nAlso at National Centre for Nuclear Research, Swierk, Poland. oAlso at Universite´ de Haute Alsace, Mulhouse, France. pAlso at Joint Institute for Nuclear Research, Dubna, Russia.

qAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia. rAlso at Brandenburg University of Technology, Cottbus, Germany.

sAlso at The University of Kansas, Lawrence, KS, USA.

tAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. uAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

vAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India. wNow at King Abdulaziz University, Jeddah, Saudi Arabia.

xAlso at University of Visva-Bharati, Santiniketan, India. y

Also at Sharif University of Technology, Tehran, Iran.

zAlso at Isfahan University of Technology, Isfahan, Iran. aaAlso at Shiraz University, Shiraz, Iran.

bbAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. ccAlso at Facolta` Ingegneria, Universita` di Roma, Roma, Italy.

ddAlso at Universita` degli Studi Guglielmo Marconi, Roma, Italy. eeAlso at Universita` degli Studi di Siena, Siena, Italy.

ffAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania. ggAlso at Faculty of Physics, University of Belgrade, Belgrade, Serbia.

hhAlso at University of California, Los Angeles, CA, USA. iiAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy. jjAlso at INFN Sezione di Roma, Roma, Italy.

kkAlso at University of Athens, Athens, Greece.

llAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. mm

Also at Paul Scherrer Institut, Villigen, Switzerland.

nn

Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.

ooAlso at Albert Einstein Center for Fundamental Physics, Bern, Switzerland. ppAlso at Gaziosmanpasa University, Tokat, Turkey.

(15)

rrAlso at Izmir Institute of Technology, Izmir, Turkey. ssAlso at The University of Iowa, Iowa City, IA, USA.

ttAlso at Mersin University, Mersin, Turkey. uuAlso at Ozyegin University, Istanbul, Turkey. vvAlso at Kafkas University, Kars, Turkey.

wwAlso at Suleyman Demirel University, Isparta, Turkey. xxAlso at Ege University, Izmir, Turkey.

yyAlso at Kahramanmaras Su¨tcu¨ Imam University, Kahramanmaras, Turkey.

zzAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. aaaAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

bbbAlso at Utah Valley University, Orem, UT, USA.

cccNow at University of Edinburgh, Scotland, Edinburgh, United Kingdom. dddAlso at Institute for Nuclear Research, Moscow, Russia.

eeeAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. fff

Also at Argonne National Laboratory, Argonne, IL, USA.

gggAlso at Erzincan University, Erzincan, Turkey.

hhhAlso at Mimar Sinan University, Istanbul, Istanbul, Turkey.

iiiAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. jjjAlso at Kyungpook National University, Daegu, Korea.

Figura

Figure 2 shows the paired dijet mass spectrum in data with all the selection criteria applied
Figure 3 shows the observed and expected 95% C.L. limits, the 1 and 2 uncertainty bands around the expected limits, and predictions from the coloron and SUSY models
FIG. 3 (color online). The observed and expected 95% C.L. limits on the product of the resonance pair production cross section, the square of the branching fraction to dijets, and the detector acceptance, given by the solid and dot-dashed black curves, res

Riferimenti

Documenti correlati

Il mio incontro con Crimp, il cui esito propongo in forma di intervista, ha se- gnato la mia ricerca di ricostruzione del dibattito critico avvenuto sulle pagine della

Anche altrove la memoria del Pluto è, per lo più, limitata alla ripresa di singole espressioni: è il caso della già citata epistola 104 al fratello, dove, a proposito di un

In una situazione, come quella attuale, in cui il lavoro di riproduzione (femminile e non) si sovrappone sempre più al lavoro produttivo classicamente inteso, è possibile pensare

To better understand the breast cancer progression and therapeutic resistance is crucial deepen the molecular mechanisms related to regulation of cells behavior in the

A metà degli anni Cinquanta, ancora a Rimini, partecipò all’accesa disputa tra Ba- sinio da Parma e Porcelio Pandone sull’im- portanza della conoscenza della lingua gre- ca per

Peripheral insulin resistance (IR) promotes increased production of free fatty acids (FFA) direct in the liver, resulting in an imbalance between oxidation/divestiture

Without considering the specific sections of the paper which, as everyone knows, quotations and further external references are indicated, like authorities or public services,

“Say hello to my lil' friend.” Director Brian De Palma and star Al Pacino go full-tilt in Scarface, a violent, blood-soaked hyper-stylized gangster epic based on Howard Hughes'