• Non ci sono risultati.

Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets

N/A
N/A
Protected

Academic year: 2021

Condividi "Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets"

Copied!
16
0
0

Testo completo

(1)

Study of Vector Boson Scattering and Search for New Physics in Events

with Two Same-Sign Leptons and Two Jets

V. Khachatryan et al.* (CMS Collaboration)

(Received 23 October 2014; revised manuscript received 11 December 2014; published 2 February 2015) A study of vector boson scattering in pp collisions at a center-of-mass energy of 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.4 fb−1 collected with the CMS detector.

Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and high dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W-boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for W!W! and WZ

processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons.

DOI:10.1103/PhysRevLett.114.051801 PACS numbers: 14.70.Fm, 12.60.Cn, 13.38.-b, 13.85.Qk

Vector boson scattering (VBS) and quartic boson cou-plings are features of the standard model (SM) that remain largely unexplored by the LHC experiments. The obser-vation of a Higgs boson [1–3], in accordance with a key prediction of the SM, motivates further study of the mechanism of electroweak symmetry breaking through measurements of VBS processes. In the absence of the SM Higgs boson, the amplitudes for these processes would increase as a function of center-of-mass energy and ultimately violate unitarity[4,5]. The Higgs boson actually observed by the LHC experiments may restore the unitarity, although some scenarios of physics beyond the SM predict enhancements for VBS through modifications to the Higgs sector or the presence of additional resonances[6,7].

This Letter presents a study of VBS in pp collisions at ffiffiffis

p

¼ 8 TeV. The data sample corresponds to an integrated luminosity of 19.4 ! 0.5 fb−1 collected with the CMS

detector [8]at the LHC in 2012. The aim of the analysis is to find evidence for the electroweak production of same-sign W-boson pair events. The strong production cross section is reduced by the same-sign requirement, making the experimental signature of same-sign dilepton events with two jets an ideal topology for VBS studies. Candidate events have exactly two identified leptons of the same charge, two jets with large rapidity separation and dijet mass, and moderate missing transverse energy. The final states considered are μþμþν

μνμjj, eþeþνeνejj,

μþνeν

μjj, and their charge conjugates and τ-lepton

decays to electrons and muons. Figure1shows represen-tative Feynman diagrams for the electroweak and QCD induced production.

The study of VBS presented here leads to measurements of the production cross sections for W!W! and WZ in a

fiducial region. Evidence for electroweak production has been reported by the ATLAS Collaboration [9]. Various extensions of the SM alter the couplings of vector bosons. An excess of events could signal the presence of anomalous quartic gauge couplings (AQGCs) [10]. Doubly charged Higgs bosons are predicted in Higgs sectors beyond the SM where weak isotriplet scalars are included[11,12]; they can be produced via weak vector-boson fusion (VBF) and decay to pairs of same-sign W bosons[13].

FIG. 1. Representative Feynman diagrams for the electroweak and QCD induced same-sign W-boson pair production. * Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

The central feature of the CMS apparatus is a super-conducting solenoid, of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a crystal electromagnetic calorimeter, and a brass or scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke of the magnet. The first level of the CMS trigger system, composed of custom hardware processors, is designed to select the most interesting events within 3 μs, using information from the calorimeters and muon detectors. The high level trigger processor farm further reduces the event rate to a few hundred hertz before data storage. Details of the CMS detector and its perfor-mance can be found elsewhere [8].

Several Monte Carlo (MC) event generators are used to simulate the signal and background processes. The leading-order event generator MADGRAPH 5.2 [14] is used to

produce event samples of diboson production via diagrams with two or fewer powers of αs and up to six electroweak

vertices. This includes two categories of diagrams: those with exactly two powers of αswhich we refer to as quantum

chromodynamic (QCD) production and those with no powers of αs, which we refer to as electroweak (EW)

production. The EW category includes diagrams with WWWW quartic interactions and diagrams where two same-sign W bosons scatter through the exchange of a Higgs boson, a Z boson, or a photon. Double-parton scattering, triboson production, and doubly charged Higgs boson production samples are also generated using MADGRAPH5.2. Top-quark background processes are

gen-erated with the next-to-leading-order event generator

POWHEG1.0[15–18]. The set of parton distribution functions

(PDFs) used is CTEQ6L [19] for MADGRAPH and CT10 [20] for POWHEG. All event generators are interfaced to PYTHIA 6.4 [21] for the showering of the partons and

subsequent hadronization. The PYTHIA parameters for the

underlying event were set according to the Z2$ tune [22].

The detector response is simulated by the GEANT4 package [23]using a detailed description of the CMS detector. The average number of simultaneous proton-proton interactions per bunch crossing in the 8 TeV data is approximately 21; additional pp interactions overlapping with the event of interest are included in the simulated samples. Collision events are selected by the trigger system requiring the presence of one or two high transverse momentum (pT)

muons or electrons. The trigger efficiency is greater than 99% for events that pass all other selection criteria explained below. A particle-flow algorithm [24,25]is used to recon-struct all observable particles in the event. It combines all the subdetector information to reconstruct individual particles and identify them as charged hadrons, neutral hadrons, photons, and leptons. The missing transverse energy Emiss

T

is defined as the magnitude of the negative vector sum of the transverse momenta of all reconstructed particles (charged and neutral) in the event.

The selection of events aims to single out same-sign dilepton events with the VBS topology while reducing the top quark, Drell-Yan, and WZ background processes. All objects are selected following the methods described in Ref.[26]. To avoid bias, the number of events passing the selection was not evaluated until the analysis was complete. Two same-sign lepton candidates, muons or electrons, with pT > 20 GeV and jηj < 2.4ð2.5Þ for muons (electrons) are

required to be isolated from other reconstructed particles in a cone ofΔR ¼ 0.3, where ΔR ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiΔη2þ Δϕ2. Jets are

reconstructed using the anti-kT clustering algorithm [27]

with a distance parameter R ¼ 0.5, as implemented in the

FASTJET package [28,29]. Events are required to have at

least two selected jets with ET > 30 GeV and jηj < 4.7.

The VBS topology is targeted by requiring that the two jets with leading pThave large dijet mass, mjj > 500 GeV, and

large pseudorapidity separation, jΔηjjj > 2.5.

To suppress quark backgrounds (t¯t and tW), a top-quark veto technique is used; it is based on the presence of a soft muon in the event from the semileptonic decay of the bottom quark and on bottom-quark jet tagging criteria based on the impact parameters of the constituent tracks

[30]. A minimum dilepton mass, mll> 50 GeV, is required to reduce the W þ jets and top-quark background processes. To reduce the background from WZ production, events with a third, loosely identified lepton with pT >

10 GeV are rejected. Drell-Yan events can be selected if the charge of one lepton is measured incorrectly. To reduce this background, jmll− mZj > 15 GeV is required for e!e!

events. The charge confusion in dimuon events is negli-gible. The Drell-Yan background is further reduced by requiring Emiss

T > 40 GeV.

The nonprompt lepton background originating from leptonic decays of heavy quarks, hadrons misidentified as leptons, and electrons from photon conversions, is suppressed by the identification and isolation requirements imposed on muons and electrons. The remaining contri-bution from the nonprompt lepton background is estimated directly from data. The efficiency for a predefined loose leptonlike object to pass the full lepton selection, typically called the “tight-to-loose ratio” (RTL), is estimated in a

control sample with one additional lepton candidate that passes the standard lepton selection criteria. To account for the dependence on kinematic observables, this ratio is parameterized as a function of pT and η. Systematic

uncertainties are obtained by the application of RTL to

other control samples, accounting for the sample depend-ence in the estimation of RTL. The WZ → 3lν process is

normalized in a data control region by requiring a third fully identified lepton with pT > 10 GeV. The contribution

of opposite-sign dilepton events to the signal region is estimated by applying data-to-simulation charge misiden-tification scale factors to simulated events with two opposite-sign leptons. The charge-misidentification fraction is estimated using Z boson events and is found to be between

(3)

0.1% and 0.3% for electrons, while it is negligible for muons.

After the full selection, about 15% of the background is due to the WZ → 3lν process and about 75% to nonprompt leptons. Backgrounds from opposite-sign lepton pairs misreconstructed as same-sign (“wrong-sign background”), WW production via double parton scattering (DPS), and triboson production (VVV), which includes top-pair plus boson processes, contribute less than 10%.

The expected signal and background yields are shown in Table I for positive and negative pairs separately and for their sum. The signal corresponds to W!W! production,

including EW and QCD contributions, and their interfer-ence, which amounts to approximately 10%. The EW processes constitute 85%–90% of the total signal contri-bution. The mjjand leading-lepton pT distributions for the

signal and background processes are shown in Fig. 2. In order to quantify the significance of the observation of the production via VBS, a statistical analysis of the event yields is performed in eight bins: four bins in mjjwith two bins in

the lepton charge.

The signal efficiencies are estimated using simulated samples. In the statistical analysis, shape and normalization uncertainties are considered. The shape uncertainties are estimated by remaking the distribution of a given observ-able after considering the systematic variations for each source of uncertainty. The lepton trigger, reconstruction, and selection efficiencies are measured using Z=γ$

levents that provide an unbiased sample with high

purity. The estimated uncertainty is 2% per lepton. The uncertainties due to the momentum scale for electrons and muons are also taken into account and contribute 2%. The jet energy scale and resolution uncertainties give rise to an uncertainty in the yields of about 5%. The uncertainty in the event selection efficiency for events with neutrinos yielding genuine Emiss

T in the final state is assessed and leads to an

uncertainty of 2%. The uncertainty in the estimated event yields, which is related to the top-quark veto, is evaluated by using a Z=γ$→ lþlsample with at least two

reconstructed jets and is found to be about 2%. The statistical uncertainty in the yield of each bin and for each process is also taken into account. The uncertainty of 2.6% in the integrated luminosity [31] is considered for all simulated processes. The normalization of the processes with misidentified leptons has a 36% systematic uncer-tainty[26], which has two sources: the dependence on the

sample composition and the method used to estimate it. The WZ normalization uncertainty is 35%, dominated by the small number of events in the trilepton control region. Theoretical uncertainties are estimated by varying the TABLE I. Signal and background yields after the full selection. Only statistical uncertainties are reported. The signal, W!W!jj,

includes EW and QCD processes and their interference.

Nonprompt WZ VVV Wrong sign WW DPS Total bkg. W!W!jj Data

Wþ 2.1! 0.6 0.6! 0.1 0.2! 0.1 0.1! 0.1 0.1! 0.1 3.1! 0.6 7.1! 0.1 10 W−W2.1! 0.5 0.4! 0.1 0.1! 0.1 ' ' ' ' ' ' 2.6! 0.5 1.8! 0.1 2 W!W! 4.2! 0.8 1.0! 0.1 0.3! 0.1 0.1! 0.1 0.1! 0.1 5.7! 0.8 8.9! 0.1 12 (GeV) jj m 500 1000 1500 2000 Events / bin 0 5 10 Data jj ± W ± W Other Bkgs. Nonprompt WZ CMS 19.4 fb-1 (8 TeV) (GeV) l max T p 0 100 200 300 400 500 Events / bin 0 5 10 15 Data jj ± W ± W Other Bkgs. Nonprompt WZ CMS 19.4 fb-1 (8 TeV)

FIG. 2 (color online). The distributions of mjj(top) and leading

lepton pT, pl;maxT , in the signal region (bottom). The hatched bars

include statistical and systematic uncertainties. The WþWþand

W−Wcandidates are combined in these distributions. The

signal, W!W!jj, includes EW and QCD processes and their

interference. The histograms for other backgrounds include the contributions from wrong-sign events, DPS, and VVV processes.

(4)

renormalization and factorization scales up and down by a factor of two from their nominal value in the event, and found to be 5% for the signal normalization and 50% for the triboson background normalization. A PDF uncertainty of 6%–8% in the normalization of the signal and WZ processes is included. The systematic uncertainties of the background normalizations are taken into account using log-normal distributions.

The cross section is extracted for a fiducial signal region. The fiducial region is defined by requiring two same-sign leptons with pTl> 10 GeV and jηlj < 2.5, two jets with

pTj> 20 GeV and jηjj < 5.0, mjj> 300 GeV, and

jΔηjjj > 2.5 and is less stringent than the event selection

for our signal region. The measured cross section is corrected for the acceptance in this region using the MADGRAPH MC generator, which is also used to estimate

the theoretical cross section. The acceptance ratio between the selected signal region and the fiducial region is 36% considering generator-level jet and lepton properties only. The overall acceptance times efficiency is 7.9%.

The MADGRAPH prediction of the same-sign W-boson

pair cross section is corrected by a next-to-leading order to leading-order cross section ratio estimated using

VBFNLO[32–34]. The fiducial cross section is found to be

σfidðW!W!jjÞ ¼ 4.0þ2.4−2.0ðstatÞþ1.1−1.0ðsystÞ fb with an

expect-ation of 5.8 ! 1.2 fb.

In addition to the dilepton same-sign signal region, a WZ → 3lν control region is studied by requiring an additional lepton with pT larger than 10 GeV. This control

region allows the measurement of a fiducial cross section of the WZjj process and is σfidðWZjjÞ ¼ 10.8 ! 4.0ðstatÞ !

1.3ðsystÞ fb with an expectation of 14.4 ! 4.0 fb. The fiducial region is defined in the same way as for the WW analysis, but requiring one more lepton with pTl >

10 GeV andlj < 2.5. The acceptance ratio between the selected signal region and the fiducial region is 20% considering generator-level jet and lepton properties only. The overall acceptance times efficiency is 3.6%.

To compute the limits and significances, the CLs[35–37]

construction is used. The observed (expected) significance for the W!W!jj process is 2.0σ (3.1σ). Considering the

QCD component of the W!W!jj events as background

and the EW component together with the EW-QCD interference as signal, the observed (expected) signal significance reduces to 1.9σ (2.9σ).

Various extensions to the SM alter the couplings between vector bosons. Reference [10] proposes nine independent C- and P-conserving dimension-eight effective operators to modify the quartic couplings between the weak gauge bosons. The variable mllis more sensitive to AQGCs than pl;maxT , mlljj, and mjj. Figure3(top) shows the expected

mlldistribution for three values of FT;0=Λ4; Λ is the scale

of new physics and FT;0is the coefficient of one of the nine

effective operators. The observed and expected upper and lower limits at 95% confidence level (C.L.). on the nine

coefficients are shown in TableII, where all the results are obtained by varying the effective operators one by one. The effect of possible AQGCs on the WZ process in the signal region is negligible. Some operators for anomalous quartic gauge boson couplings may lead to tree-level unitarity violation. We also report the values of the operator coefficient for which unitarity is restored at the scale of 8 TeV, the unitarity limit. In addition to the limits on individual operator coefficients, the expected and observed two-dimensional 95% C.L. on FS;0=Λ4 and FS;1=Λ4 are

presented in Fig.3(bottom): a linear combination of those operators leads to a scaling of the SM cross section.

Doubly charged Higgs bosons are predicted in models that contain a Higgs triplet field. Some of these scenarios

(GeV) ll m 100 200 300 400 500 Events / bin 0 5 10 CMS (8 TeV) -1 19.4 fb Data -4 = 0.0 TeV 4 Λ / T,0 SM F -4 = -5.0 TeV 4 Λ / T,0 AQGC F -4 = +5.0 TeV 4 Λ / T,0 AQGC F S,0 F -200 -100 0 100 200 S,1 F -1000 -500 0 500 1000 Expected 95% CL Observed 95% CL SM CMS 19.4 fb-1 (8 TeV)

FIG. 3 (color online). The mll distributions (top) after full

selection with all SM backgrounds and FT;0=Λ4¼ −5.0, 0 (SM),

and 5.0 TeV−4; the last bin includes overflow events.

Ob-served and expected two-dimensional 95% C.L. (bottom) for FS0=Λ4 and FS1=Λ4.

(5)

predict same-sign dilepton events from W!W!decays with

a VBF topology. The cross section for VBF production of H!! and decay to W!W! is directly proportional to the

vacuum expectation value of the triplet. The remaining five parameters in the model of the Higgs potential are adjusted to get the given mH!!hypothesis while requiring one of the

scalar singlets to have a mass of 125 GeV. The Georgi-Machacek model of Higgs triplets [38] is considered. For mH!! ¼ 200 ð800Þ GeV the following parameters are

used: λ1¼ 1, λ2¼ 1, λ3¼ 1, λ4¼ 2.37 ð4Þ, and λ5¼

0.432ð7.26Þ. By using the mjj distribution, 95% C.L.

upper limits on σH!!BðH!!→ W!W!Þ are derived as

shown in Fig.4. The experimental results are overlaid with theoretical cross sections for three values of the vacuum expectation value.

In summary, a study of vector boson scattering in pp collisions at pffiffiffis¼ 8 TeV has been presented based on a

data sample corresponding to an integrated luminosity of 19.4 fb−1. Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W-boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for W!W! and WZ processes in the fiducial region are

reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons.

We congratulate our colleagues in the CERN accel-erator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effec-tively the computing infrastructure essential to our analy-ses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] ATLAS Collaboration,Phys. Lett. B 716, 1 (2012). [2] CMS Collaboration,Phys. Lett. B 716, 30 (2012). [3] CMS Collaboration,J. High Energy Phys. 06 (2013) 081. [4] B. W. Lee, C. Quigg, and H. B. Thacker,Phys. Rev. Lett. 38,

883 (1977). (GeV) ± ± H m 200 300 400 500 600 700 800 ) (fb) ± W ± W → ±± (HΒ X σ 100 200 CMS ± W ± W → ± ± VBF H (8 TeV) -1 19.4 fb Observed Median expected σ 1 ± Expected σ 2 ± Expected vev = 35 GeV vev = 25 GeV vev = 16 GeV

FIG. 4 (color online). Expected and observed 95% C.L. upper limits on the cross section times branching fraction, σH!!BðH!!→ W!W!Þ. Theoretical cross sections for three

values of the vacuum expectation value (vev) are overlaid. TABLE II. Observed and expected upper and lower limits at 95% C.L. on the nine dimension-eight operators that affect quartic couplings between the weak gauge bosons. Limits from unitarity are reported. The units are TeV−4.

Operator

coefficient lowerExp. upperExp. lowerObs. upperObs. Unitaritylimit

FS;0=Λ4 −42 43 −38 40 0.016 FS;1=Λ4 −129 131 −118 120 0.050 FM;0=Λ4 −35 35 −33 32 80 FM;1=Λ4 −49 51 −44 47 205 FM;6=Λ4 −70 69 −65 63 160 FM;7=Λ4 −76 73 −70 66 105 FT;0=Λ4 −4.6 4.9 −4.2 4.6 0.027 FT;1=Λ4 −2.1 2.4 −1.9 2.2 0.022 FT;2=Λ4 −5.9 7.0 −5.2 6.4 0.08

(6)

[5] B. W. Lee, C. Quigg, and H. B. Thacker,Phys. Rev. D 16, 1519 (1977).

[6] D. Espriu and B. Yencho,Phys. Rev. D 87, 055017 (2013). [7] J. Chang, K. Cheung, C.-T. Lu, and T.-C. Yuan,Phys. Rev.

D 87, 093005 (2013).

[8] CMS Collaboration,JINST 3, S08004 (2008).

[9] ATLAS Collaboration,Phys. Rev. Lett. 113, 141803 (2014). [10] O. J. P. Éboli, M. C. Gonzalez-Garcia, and J. K. Mizukoshi,

Phys. Rev. D 74, 073005 (2006).

[11] Ch. Englert, E. Re, and M. Spannowsky,Phys. Rev. D 87, 095014 (2013).

[12] Ch. Englert, E. Re, and M. Spannowsky,Phys. Rev. D 88, 035024 (2013).

[13] Ch.-W. Chiang, T. Nomura, and K. Tsumura,Phys. Rev. D 85, 095023 (2012).

[14] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, J. High Energy Phys. 07 (2014) 079.

[15] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 07 (2008) 060.

[16] P. Nason,J. High Energy Phys. 11 (2004) 040.

[17] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[18] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 06 (2010) 043.

[19] H.-L. Lai, J. Huston, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, and C.-P. Yuan,Phys. Rev. D 82, 054021 (2010). [20] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J.

Pumplin, and C.-P. Yuan,Phys. Rev. D 82, 074024 (2010). [21] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy

Phys. 05 (2006) 026.

[22] CMS Collaboration,J. High Energy Phys. 09 (2011) 109.

[23] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). [24] CMS Collaboration, CMS Physics Analysis Summary

Report No. CMS-PAS-PFT-09-001, 2009, http://cdsweb .cern.ch/record/1194487.

[25] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-002, 2010.

[26] CMS Collaboration,J. High Energy Phys. 01 (2014) 096. [27] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy

Phys. 04 (2008) 063.

[28] M. Cacciari, G. P. Salam, and G. Soyez,Eur. Phys. J. C72, 1896 (2012).

[29] M. Cacciari and G. P. Salam,Phys. Lett. B 641, 57 (2006). [30] CMS Collaboration,JINST 8, P04013 (2012).

[31] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-LUM-13-001 2013, http://cdsweb .cern.ch/record/1598864.

[32] J. Baglio, J. Bellm, F. Campanario, B. Feigl, J. Frank, T. Figy, M. Kerner, L. D. Ninh, S. Palmer, M. Rauch, F. Schissler, O. Schlimpert, and D. Zeppenfeld, arXiv: 1404.3940.

[33] J. Baglio et al.,arXiv:1107.4038.

[34] K. Arnold et al., Comput. Phys. Commun. 180, 1661 (2009).

[35] A. L. Read,J. Phys. G 28, 2693 (2002).

[36] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).

[37] ATLAS and CMS Collaborations, Tech. Rep No. ATL-PHYS-PUB 2011-11, CMS-NOTE 2011-005 2011,http:// cdsweb.cern.ch/record/1379837.

[38] H. Georgi and M. Machacek, Nucl. Phys. B 262, 463 (1985).

V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 M. Friedl,2 R. Frühwirth,2,bV. M. Ghete,2 C. Hartl,2 N. Hörmann,2 J. Hrubec,2 M. Jeitler,2,b W. Kiesenhofer,2 V. Knünz,2 M. Krammer,2,bI. Krätschmer,2D. Liko,2I. Mikulec,2 D. Rabady,2,c B. Rahbaran,2 H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2W. Treberer-Treberspurg,2W. Waltenberger,2C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3

S. Alderweireldt,4M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4A. Knutsson,4J. Lauwers,4S. Luyckx,4 S. Ochesanu,4 R. Rougny,4 M. Van De Klundert,4H. Van Haevermaet,4 P. Van Mechelen,4 N. Van Remortel,4 A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5J. D’Hondt,5N. Daci,5N. Heracleous,5J. Keaveney,5S. Lowette,5M. Maes,5 A. Olbrechts,5Q. Python,5 D. Strom,5S. Tavernier,5 W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5

C. Caillol,6 B. Clerbaux,6 G. De Lentdecker,6 D. Dobur,6L. Favart,6 A. P. R. Gay,6 A. Grebenyuk,6 A. Léonard,6 A. Mohammadi,6L. Perniè,6,cT. Reis,6T. Seva,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wang,6F. Zenoni,6V. Adler,7

K. Beernaert,7 L. Benucci,7 A. Cimmino,7 S. Costantini,7 S. Crucy,7 S. Dildick,7A. Fagot,7G. Garcia,7 J. Mccartin,7

A. A. Ocampo Rios,7D. Ryckbosch,7S. Salva Diblen,7M. Sigamani,7N. Strobbe,7F. Thyssen,7M. Tytgat,7E. Yazgan,7

N. Zaganidis,7S. Basegmez,8C. Beluffi,8,dG. Bruno,8R. Castello,8A. Caudron,8L. Ceard,8G. G. Da Silveira,8C. Delaere,8 T. du Pree,8D. Favart,8 L. Forthomme,8 A. Giammanco,8,e J. Hollar,8A. Jafari,8 P. Jez,8 M. Komm,8 V. Lemaitre,8

C. Nuttens,8 D. Pagano,8 L. Perrini,8 A. Pin,8 K. Piotrzkowski,8A. Popov,8,f L. Quertenmont,8 M. Selvaggi,8

M. Vidal Marono,8 J. M. Vizan Garcia,8 N. Beliy,9 T. Caebergs,9 E. Daubie,9 G. H. Hammad,9 W. L. Aldá Júnior,10 G. A. Alves,10L. Brito,10M. Correa Martins Junior,10T. Dos Reis Martins,10C. Mora Herrera,10M. E. Pol,10W. Carvalho,11 J. Chinellato,11,gA. Custódio,11E. M. Da Costa,11D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11

H. Malbouisson,11 D. Matos Figueiredo,11L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11J. Santaolalla,11

(7)

T. R. Fernandez Perez Tomei,12a E. M. Gregores,12bP. G. Mercadante,12b S. F. Novaes,12aSandra S. Padula,12a

A. Aleksandrov,13V. Genchev,13,c P. Iaydjiev,13A. Marinov,13S. Piperov,13M. Rodozov,13G. Sultanov,13M. Vutova,13 A. Dimitrov,14I. Glushkov,14R. Hadjiiska,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15

M. Chen,15T. Cheng,15R. Du,15C. H. Jiang,15R. Plestina,15,hF. Romeo,15J. Tao,15Z. Wang,15C. Asawatangtrakuldee,16 Y. Ban,16Q. Li,16S. Liu,16Y. Mao,16S. J. Qian,16D. Wang,16W. Zou,16C. Avila,17A. Cabrera,17L. F. Chaparro Sierra,17 C. Florez,17 J. P. Gomez,17B. Gomez Moreno,17J. C. Sanabria,17 N. Godinovic,18D. Lelas,18 D. Polic,18I. Puljak,18

Z. Antunovic,19 M. Kovac,19V. Brigljevic,20K. Kadija,20J. Luetic,20D. Mekterovic,20L. Sudic,20A. Attikis,21 G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Bodlak,22M. Finger,22M. Finger Jr.,22,i Y. Assran,23,jA. Ellithi Kamel,23,kM. A. Mahmoud,23,lA. Radi,23,m,nM. Kadastik,24M. Murumaa,24M. Raidal,24A. Tiko,24 P. Eerola,25G. Fedi,25M. Voutilainen,25J. Härkönen,26V. Karimäki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampén,26 K. Lassila-Perini,26S. Lehti,26T. Lindén,26P. Luukka,26T. Mäenpää,26T. Peltola,26 E. Tuominen,26J. Tuominiemi,26

E. Tuovinen,26L. Wendland,26J. Talvitie,27T. Tuuva,27M. Besancon,28F. Couderc,28M. Dejardin,28D. Denegri,28 B. Fabbro,28J. L. Faure,28C. Favaro,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28

P. Jarry,28E. Locci,28J. Malcles,28J. Rander,28A. Rosowsky,28M. Titov,28S. Baffioni,29F. Beaudette,29P. Busson,29 C. Charlot,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29N. Filipovic,29A. Florent,29R. Granier de Cassagnac,29 L. Mastrolorenzo,29P. Miné,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29P. Paganini,29S. Regnard,29

R. Salerno,29J. B. Sauvan,29Y. Sirois,29C. Veelken,29Y. Yilmaz,29A. Zabi,29J.-L. Agram,30,oJ. Andrea,30A. Aubin,30 D. Bloch,30J.-M. Brom,30E. C. Chabert,30 C. Collard,30E. Conte,30,o J.-C. Fontaine,30,o D. Gelé,30U. Goerlach,30

C. Goetzmann,30A.-C. Le Bihan,30P. Van Hove,30S. Gadrat,31S. Beauceron,32N. Beaupere,32G. Boudoul,32,c E. Bouvier,32S. Brochet,32C. A. Carrillo Montoya,32J. Chasserat,32R. Chierici,32D. Contardo,32,c P. Depasse,32

H. El Mamouni,32J. Fan,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32 S. Perries,32J. D. Ruiz Alvarez,32D. Sabes,32L. Sgandurra,32V. Sordini,32M. Vander Donckt,32P. Verdier,32S. Viret,32

H. Xiao,32Z. Tsamalaidze,33,iC. Autermann,34S. Beranek,34M. Bontenackels,34M. Edelhoff,34L. Feld,34A. Heister,34 O. Hindrichs,34K. Klein,34A. Ostapchuk,34F. Raupach,34J. Sammet,34S. Schael,34H. Weber,34B. Wittmer,34V. Zhukov,34,f

M. Ata,35M. Brodski,35 E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Güth,35T. Hebbeker,35 C. Heidemann,35K. Hoepfner,35D. Klingebiel,35S. Knutzen,35P. Kreuzer,35M. Merschmeyer,35A. Meyer,35P. Millet,35 M. Olschewski,35K. Padeken,35P. Papacz,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35D. Teyssier,35S. Thüer,35 M. Weber,35V. Cherepanov,36 Y. Erdogan,36G. Flügge,36H. Geenen,36M. Geisler,36 W. Haj Ahmad,36F. Hoehle,36 B. Kargoll,36T. Kress,36Y. Kuessel,36A. Künsken,36J. Lingemann,36,c A. Nowack,36I. M. Nugent,36L. Perchalla,36

O. Pooth,36A. Stahl,36I. Asin,37N. Bartosik,37J. Behr,37U. Behrens,37A. J. Bell,37A. Bethani,37K. Borras,37 A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37S. Choudhury,37F. Costanza,37C. Diez Pardos,37G. Dolinska,37

S. Dooling,37T. Dorland,37G. Eckerlin,37D. Eckstein,37T. Eichhorn,37G. Flucke,37J. Garay Garcia,37A. Geiser,37 P. Gunnellini,37J. Hauk,37M. Hempel,37,pH. Jung,37A. Kalogeropoulos,37M. Kasemann,37P. Katsas,37J. Kieseler,37 C. Kleinwort,37I. Korol,37D. Krücker,37W. Lange,37J. Leonard,37K. Lipka,37A. Lobanov,37W. Lohmann,37,pB. Lutz,37

R. Mankel,37I. Marfin,37,pI.-A. Melzer-Pellmann,37A. B. Meyer,37G. Mittag,37J. Mnich,37 A. Mussgiller,37 S. Naumann-Emme,37A. Nayak,37E. Ntomari,37H. Perrey,37D. Pitzl,37R. Placakyte,37A. Raspereza,37 P. M. Ribeiro Cipriano,37B. Roland,37E. Ron,37M. Ö. Sahin,37J. Salfeld-Nebgen,37P. Saxena,37T. Schoerner-Sadenius,37

M. Schröder,37C. Seitz,37S. Spannagel,37A. D. R. Vargas Trevino,37R. Walsh,37C. Wissing,37M. Aldaya Martin,38 V. Blobel,38M. Centis Vignali,38 A. R. Draeger,38J. Erfle,38 E. Garutti,38K. Goebel,38M. Görner,38J. Haller,38

M. Hoffmann,38 R. S. Höing,38A. Junkes,38H. Kirschenmann,38 R. Klanner,38R. Kogler,38J. Lange,38T. Lapsien,38 T. Lenz,38I. Marchesini,38J. Ott,38T. Peiffer,38A. Perieanu,38N. Pietsch,38J. Poehlsen,38T. Poehlsen,38D. Rathjens,38

C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Seidel,38V. Sola,38H. Stadie,38G. Steinbrück,38 D. Troendle,38E. Usai,38L. Vanelderen,38 A. Vanhoefer,38C. Barth,39C. Baus,39 J. Berger,39C. Böser,39E. Butz,39

T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39F. Frensch,39M. Giffels,39A. Gilbert,39 F. Hartmann,39,c T. Hauth,39,c U. Husemann,39I. Katkov,39,fA. Kornmayer,39,cE. Kuznetsova,39P. Lobelle Pardo,39

M. U. Mozer,39T. Müller,39Th. Müller,39A. Nürnberg,39G. Quast,39K. Rabbertz,39S. Röcker,39H. J. Simonis,39 F. M. Stober,39R. Ulrich,39J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39R. Wolf,39G. Anagnostou,40G. Daskalakis,40

T. Geralis,40V. A. Giakoumopoulou,40A. Kyriakis,40D. Loukas,40A. Markou,40C. Markou,40A. Psallidas,40 I. Topsis-Giotis,40A. Agapitos,41S. Kesisoglou,41A. Panagiotou,41N. Saoulidou,41E. Stiliaris,41X. Aslanoglou,42

(8)

I. Evangelou,42G. Flouris,42C. Foudas,42P. Kokkas,42 N. Manthos,42I. Papadopoulos,42E. Paradas,42J. Strologas,42

G. Bencze,43C. Hajdu,43P. Hidas,43D. Horvath,43,q F. Sikler,43V. Veszpremi,43G. Vesztergombi,43,r A. J. Zsigmond,43 N. Beni,44S. Czellar,44J. Karancsi,44,sJ. Molnar,44J. Palinkas,44Z. Szillasi,44A. Makovec,45P. Raics,45Z. L. Trocsanyi,45

B. Ujvari,45S. K. Swain,46S. B. Beri,47V. Bhatnagar,47R. Gupta,47U. Bhawandeep,47A. K. Kalsi,47M. Kaur,47R. Kumar,47 M. Mittal,47N. Nishu,47J. B. Singh,47Ashok Kumar,48Arun Kumar,48S. Ahuja,48A. Bhardwaj,48B. C. Choudhary,48 A. Kumar,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48V. Sharma,48S. Banerjee,49S. Bhattacharya,49K. Chatterjee,49

S. Dutta,49B. Gomber,49 Sa. Jain,49 Sh. Jain,49R. Khurana,49A. Modak,49 S. Mukherjee,49D. Roy,49S. Sarkar,49 M. Sharan,49A. Abdulsalam,50D. Dutta,50 S. Kailas,50V. Kumar,50A. K. Mohanty,50,c L. M. Pant,50P. Shukla,50 A. Topkar,50T. Aziz,51S. Banerjee,51S. Bhowmik,51,tR. M. Chatterjee,51R. K. Dewanjee,51S. Dugad,51 S. Ganguly,51

S. Ghosh,51M. Guchait,51A. Gurtu,51,u G. Kole,51S. Kumar,51M. Maity,51,tG. Majumder,51K. Mazumdar,51 G. B. Mohanty,51B. Parida,51K. Sudhakar,51N. Wickramage,51,vH. Bakhshiansohi,52H. Behnamian,52S. M. Etesami,52,w

A. Fahim,52,xR. Goldouzian,52M. Khakzad,52M. Mohammadi Najafabadi,52M. Naseri,52S. Paktinat Mehdiabadi,52 F. Rezaei Hosseinabadi,52B. Safarzadeh,52,y M. Zeinali,52M. Felcini,53 M. Grunewald,53M. Abbrescia,54a,54b C. Calabria,54a,54bS. S. Chhibra,54a,54bA. Colaleo,54aD. Creanza,54a,54cN. De Filippis,54a,54cM. De Palma,54a,54bL. Fiore,54a

G. Iaselli,54a,54c G. Maggi,54a,54cM. Maggi,54a S. My,54a,54c S. Nuzzo,54a,54bA. Pompili,54a,54bG. Pugliese,54a,54c R. Radogna,54a,54b,cG. Selvaggi,54a,54bA. Sharma,54aL. Silvestris,54a,cR. Venditti,54a,54bG. Abbiendi,55aA. C. Benvenuti,55a

D. Bonacorsi,55a,55bS. Braibant-Giacomelli,55a,55bL. Brigliadori,55a,55b R. Campanini,55a,55bP. Capiluppi,55a,55b A. Castro,55a,55bF. R. Cavallo,55aG. Codispoti,55a,55bM. Cuffiani,55a,55bG. M. Dallavalle,55aF. Fabbri,55aA. Fanfani,55a,55b

D. Fasanella,55a,55b P. Giacomelli,55a C. Grandi,55a L. Guiducci,55a,55bS. Marcellini,55aG. Masetti,55a A. Montanari,55a F. L. Navarria,55a,55bA. Perrotta,55aF. Primavera,55a,55bA. M. Rossi,55a,55bT. Rovelli,55a,55bG. P. Siroli,55a,55bN. Tosi,55a,55b

R. Travaglini,55a,55bS. Albergo,56a,56bG. Cappello,56aM. Chiorboli,56a,56bS. Costa,56a,56bF. Giordano,56a,cR. Potenza,56a,56b A. Tricomi,56a,56b C. Tuve,56a,56bG. Barbagli,57a V. Ciulli,57a,57b C. Civinini,57a R. D’Alessandro,57a,57b E. Focardi,57a,57b

E. Gallo,57aS. Gonzi,57a,57bV. Gori,57a,57b,cP. Lenzi,57a,57bM. Meschini,57aS. Paoletti,57aG. Sguazzoni,57aA. Tropiano,57a,57b L. Benussi,58 S. Bianco,58F. Fabbri,58D. Piccolo,58R. Ferretti,59a,59b F. Ferro,59a M. Lo Vetere,59a,59bE. Robutti,59a

S. Tosi,59a,59bM. E. Dinardo,60a,60b S. Fiorendi,60a,60b S. Gennai,60a,c R. Gerosa,60a,60b,c A. Ghezzi,60a,60b P. Govoni,60a,60b M. T. Lucchini,60a,60b,c S. Malvezzi,60a R. A. Manzoni,60a,60bA. Martelli,60a,60bB. Marzocchi,60a,60b,c D. Menasce,60a L. Moroni,60aM. Paganoni,60a,60bD. Pedrini,60aS. Ragazzi,60a,60bN. Redaelli,60aT. Tabarelli de Fatis,60a,60bS. Buontempo,61a

N. Cavallo,61a,61cS. Di Guida,61a,61d,c F. Fabozzi,61a,61c A. O. M. Iorio,61a,61b L. Lista,61a S. Meola,61a,61d,c M. Merola,61a P. Paolucci,61a,c P. Azzi,62aN. Bacchetta,62a M. Bellato,62a D. Bisello,62a,62bR. Carlin,62a,62bP. Checchia,62a M. Dall’Osso,62a,62bT. Dorigo,62a M. Galanti,62a,62bF. Gasparini,62a,62bU. Gasparini,62a,62b P. Giubilato,62a,62b A. Gozzelino,62a K. Kanishchev,62a,62c S. Lacaprara,62aM. Margoni,62a,62b A. T. Meneguzzo,62a,62b J. Pazzini,62a,62b M. Pegoraro,62a N. Pozzobon,62a,62bP. Ronchese,62a,62bF. Simonetto,62a,62bE. Torassa,62a M. Tosi,62a,62bP. Zotto,62a,62b

A. Zucchetta,62a,62bG. Zumerle,62a,62b M. Gabusi,63a,63bS. P. Ratti,63a,63bV. Re,63a C. Riccardi,63a,63b P. Salvini,63a P. Vitulo,63a,63bM. Biasini,64a,64bG. M. Bilei,64aD. Ciangottini,64a,64b,cL. Fanò,64a,64bP. Lariccia,64a,64bG. Mantovani,64a,64b

M. Menichelli,64a A. Saha,64a A. Santocchia,64a,64b A. Spiezia,64a,64b,c K. Androsov,65a,z P. Azzurri,65a G. Bagliesi,65a J. Bernardini,65aT. Boccali,65aG. Broccolo,65a,65c R. Castaldi,65a M. A. Ciocci,65a,z R. Dell’Orso,65a S. Donato,65a,65c,c

F. Fiori,65a,65c L. Foà,65a,65cA. Giassi,65a M. T. Grippo,65a,z F. Ligabue,65a,65cT. Lomtadze,65a L. Martini,65a,65b

A. Messineo,65a,65b C. S. Moon,65a,aa F. Palla,65a,cA. Rizzi,65a,65bA. Savoy-Navarro,65a,bb A. T. Serban,65a P. Spagnolo,65a P. Squillacioti,65a,zR. Tenchini,65aG. Tonelli,65a,65bA. Venturi,65a P. G. Verdini,65a C. Vernieri,65a,65c,c L. Barone,66a,66b

F. Cavallari,66a G. D’imperio,66a,66b D. Del Re,66a,66bM. Diemoz,66a C. Jorda,66a E. Longo,66a,66bF. Margaroli,66a,66b P. Meridiani,66aF. Micheli,66a,66b,cS. Nourbakhsh,66a,66bG. Organtini,66a,66bR. Paramatti,66aS. Rahatlou,66a,66bC. Rovelli,66a

F. Santanastasio,66a,66bL. Soffi,66a,66b,cP. Traczyk,66a,66b,c N. Amapane,67a,67b R. Arcidiacono,67a,67cS. Argiro,67a,67b M. Arneodo,67a,67c R. Bellan,67a,67b C. Biino,67a N. Cartiglia,67a S. Casasso,67a,67b,c M. Costa,67a,67bA. Degano,67a,67b

N. Demaria,67a L. Finco,67a,67b,c C. Mariotti,67aS. Maselli,67a E. Migliore,67a,67bV. Monaco,67a,67b M. Musich,67a M. M. Obertino,67a,67c,c G. Ortona,67a,67bL. Pacher,67a,67bN. Pastrone,67a M. Pelliccioni,67aG. L. Pinna Angioni,67a,67b

A. Potenza,67a,67bA. Romero,67a,67b M. Ruspa,67a,67c R. Sacchi,67a,67bA. Solano,67a,67bA. Staiano,67a U. Tamponi,67a S. Belforte,68a V. Candelise,68a,68b,c M. Casarsa,68a F. Cossutti,68a G. Della Ricca,68a,68bB. Gobbo,68a C. La Licata,68a,68b M. Marone,68a,68bA. Schizzi,68a,68bT. Umer,68a,68bA. Zanetti,68aS. Chang,69A. Kropivnitskaya,69S. K. Nam,69D. H. Kim,70 G. N. Kim,70M. S. Kim,70D. J. Kong,70S. Lee,70Y. D. Oh,70H. Park,70A. Sakharov,70D. C. Son,70T. J. Kim,71J. Y. Kim,72

(9)

S. Song,72S. Choi,73D. Gyun,73B. Hong,73M. Jo,73H. Kim,73Y. Kim,73B. Lee,73K. S. Lee,73S. K. Park,73Y. Roh,73

M. Choi,74J. H. Kim,74I. C. Park,74G. Ryu,74M. S. Ryu,74Y. Choi,75Y. K. Choi,75J. Goh,75D. Kim,75E. Kwon,75J. Lee,75 H. Seo,75 I. Yu,75A. Juodagalvis,76J. R. Komaragiri,77M. A. B. Md Ali,77E. Casimiro Linares,78H. Castilla-Valdez,78

E. De La Cruz-Burelo,78 I. Heredia-de La Cruz,78,cc A. Hernandez-Almada,78R. Lopez-Fernandez,78 A. Sanchez-Hernandez,78S. Carrillo Moreno,79F. Vazquez Valencia,79I. Pedraza,80H. A. Salazar Ibarguen,80 A. Morelos Pineda,81D. Krofcheck,82P. H. Butler,83S. Reucroft,83A. Ahmad,84M. Ahmad,84Q. Hassan,84H. R. Hoorani,84

W. A. Khan,84 T. Khurshid,84 M. Shoaib,84H. Bialkowska,85 M. Bluj,85B. Boimska,85T. Frueboes,85M. Górski,85 M. Kazana,85K. Nawrocki,85K. Romanowska-Rybinska,85M. Szleper,85P. Zalewski,85G. Brona,86K. Bunkowski,86 M. Cwiok,86W. Dominik,86K. Doroba,86A. Kalinowski,86M. Konecki,86J. Krolikowski,86M. Misiura,86M. Olszewski,86

W. Wolszczak,86P. Bargassa,87C. Beirão Da Cruz E Silva,87P. Faccioli,87P. G. Ferreira Parracho,87M. Gallinaro,87 L. Lloret Iglesias,87F. Nguyen,87J. Rodrigues Antunes,87J. Seixas,87J. Varela,87P. Vischia,87S. Afanasiev,88P. Bunin,88

M. Gavrilenko,88I. Golutvin,88I. Gorbunov,88A. Kamenev,88V. Karjavin,88 V. Konoplyanikov,88A. Lanev,88 A. Malakhov,88V. Matveev,88,ddP. Moisenz,88V. Palichik,88V. Perelygin,88S. Shmatov,88N. Skatchkov,88V. Smirnov,88

A. Zarubin,88V. Golovtsov,89Y. Ivanov,89 V. Kim,89,eeP. Levchenko,89V. Murzin,89V. Oreshkin,89I. Smirnov,89 V. Sulimov,89L. Uvarov,89S. Vavilov,89A. Vorobyev,89An. Vorobyev,89Yu. Andreev,90A. Dermenev,90S. Gninenko,90

N. Golubev,90M. Kirsanov,90N. Krasnikov,90A. Pashenkov,90 D. Tlisov,90A. Toropin,90V. Epshteyn,91V. Gavrilov,91

N. Lychkovskaya,91V. Popov,91I. Pozdnyakov,91G. Safronov,91S. Semenov,91A. Spiridonov,91V. Stolin,91E. Vlasov,91 A. Zhokin,91V. Andreev,92M. Azarkin,92I. Dremin,92M. Kirakosyan,92A. Leonidov,92G. Mesyats,92S. V. Rusakov,92

A. Vinogradov,92 A. Belyaev,93E. Boos,93V. Bunichev,93M. Dubinin,93,ff L. Dudko,93A. Ershov,93 A. Gribushin,93 V. Klyukhin,93O. Kodolova,93I. Lokhtin,93S. Obraztsov,93V. Savrin,93A. Snigirev,93 I. Azhgirey,94I. Bayshev,94

S. Bitioukov,94V. Kachanov,94A. Kalinin,94D. Konstantinov,94V. Krychkine,94V. Petrov,94R. Ryutin,94 A. Sobol,94 L. Tourtchanovitch,94S. Troshin,94N. Tyurin,94A. Uzunian,94A. Volkov,94P. Adzic,95,ggM. Ekmedzic,95J. Milosevic,95

V. Rekovic,95J. Alcaraz Maestre,96C. Battilana,96E. Calvo,96M. Cerrada,96M. Chamizo Llatas,96N. Colino,96 B. De La Cruz,96A. Delgado Peris,96D. Domínguez Vázquez,96A. Escalante Del Valle,96C. Fernandez Bedoya,96

J. P. Fernández Ramos,96J. Flix,96M. C. Fouz,96P. Garcia-Abia,96 O. Gonzalez Lopez,96 S. Goy Lopez,96 J. M. Hernandez,96M. I. Josa,96 E. Navarro De Martino,96A. Pérez-Calero Yzquierdo,96J. Puerta Pelayo,96 A. Quintario Olmeda,96I. Redondo,96L. Romero,96M. S. Soares,96C. Albajar,97J. F. de Trocóniz,97M. Missiroli,97

D. Moran,97H. Brun,98J. Cuevas,98J. Fernandez Menendez,98 S. Folgueras,98I. Gonzalez Caballero,98 J. A. Brochero Cifuentes,99I. J. Cabrillo,99A. Calderon,99J. Duarte Campderros,99M. Fernandez,99 G. Gomez,99 A. Graziano,99 A. Lopez Virto,99J. Marco,99R. Marco,99 C. Martinez Rivero,99F. Matorras,99F. J. Munoz Sanchez,99

J. Piedra Gomez,99T. Rodrigo,99A. Y. Rodríguez-Marrero,99A. Ruiz-Jimeno,99L. Scodellaro,99I. Vila,99 R. Vilar Cortabitarte,99D. Abbaneo,100 E. Auffray,100 G. Auzinger,100M. Bachtis,100 P. Baillon,100 A. H. Ball,100 D. Barney,100 A. Benaglia,100J. Bendavid,100L. Benhabib,100J. F. Benitez,100C. Bernet,100,h P. Bloch,100A. Bocci,100

A. Bonato,100 O. Bondu,100 C. Botta,100H. Breuker,100 T. Camporesi,100G. Cerminara,100S. Colafranceschi,100,hh M. D’Alfonso,100D. d’Enterria,100A. Dabrowski,100A. David,100F. De Guio,100 A. De Roeck,100 S. De Visscher,100 E. Di Marco,100M. Dobson,100M. Dordevic,100N. Dupont-Sagorin,100A. Elliott-Peisert,100J. Eugster,100G. Franzoni,100 W. Funk,100D. Gigi,100K. Gill,100D. Giordano,100M. Girone,100F. Glege,100R. Guida,100S. Gundacker,100M. Guthoff,100

J. Hammer,100M. Hansen,100 P. Harris,100J. Hegeman,100 V. Innocente,100 P. Janot,100K. Kousouris,100K. Krajczar,100 P. Lecoq,100C. Lourenço,100N. Magini,100L. Malgeri,100 M. Mannelli,100 J. Marrouche,100 L. Masetti,100 F. Meijers,100

S. Mersi,100E. Meschi,100F. Moortgat,100S. Morovic,100M. Mulders,100P. Musella,100L. Orsini,100L. Pape,100E. Perez,100 L. Perrozzi,100A. Petrilli,100G. Petrucciani,100A. Pfeiffer,100M. Pierini,100M. Pimiä,100D. Piparo,100M. Plagge,100

A. Racz,100 G. Rolandi,100,ii M. Rovere,100H. Sakulin,100C. Schäfer,100C. Schwick,100A. Sharma,100 P. Siegrist,100 P. Silva,100 M. Simon,100P. Sphicas,100,jj D. Spiga,100 J. Steggemann,100 B. Stieger,100M. Stoye,100Y. Takahashi,100

D. Treille,100 A. Tsirou,100 G. I. Veres,100,rN. Wardle,100H. K. Wöhri,100H. Wollny,100W. D. Zeuner,100W. Bertl,101 K. Deiters,101 W. Erdmann,101R. Horisberger,101 Q. Ingram,101 H. C. Kaestli,101D. Kotlinski,101U. Langenegger,101

D. Renker,101 T. Rohe,101 F. Bachmair,102L. Bäni,102L. Bianchini,102 M. A. Buchmann,102 B. Casal,102 N. Chanon,102 G. Dissertori,102M. Dittmar,102M. Donegà,102 M. Dünser,102 P. Eller,102C. Grab,102 D. Hits,102 J. Hoss,102 W. Lustermann,102 B. Mangano,102A. C. Marini,102 P. Martinez Ruiz del Arbol,102 M. Masciovecchio,102 D. Meister,102 N. Mohr,102C. Nägeli,102,kkF. Nessi-Tedaldi,102 F. Pandolfi,102 F. Pauss,102M. Peruzzi,102 M. Quittnat,102L. Rebane,102

(10)

M. Rossini,102A. Starodumov,102,ll M. Takahashi,102 K. Theofilatos,102R. Wallny,102H. A. Weber,102C. Amsler,103,mm

M. F. Canelli,103 V. Chiochia,103A. De Cosa,103A. Hinzmann,103T. Hreus,103 B. Kilminster,103 C. Lange,103 B. Millan Mejias,103J. Ngadiuba,103D. Pinna,103P. Robmann,103F. J. Ronga,103S. Taroni,103M. Verzetti,103Y. Yang,103

M. Cardaci,104 K. H. Chen,104C. Ferro,104C. M. Kuo,104W. Lin,104Y. J. Lu,104 R. Volpe,104S. S. Yu,104P. Chang,105 Y. H. Chang,105 Y. W. Chang,105Y. Chao,105 K. F. Chen,105P. H. Chen,105 C. Dietz,105 U. Grundler,105W.-S. Hou,105 K. Y. Kao,105Y. F. Liu,105R.-S. Lu,105D. Majumder,105E. Petrakou,105Y. M. Tzeng,105R. Wilken,105B. Asavapibhop,106

G. Singh,106N. Srimanobhas,106 N. Suwonjandee,106A. Adiguzel,107M. N. Bakirci,107,nnS. Cerci,107,oo C. Dozen,107 I. Dumanoglu,107E. Eskut,107S. Girgis,107G. Gokbulut,107E. Gurpinar,107I. Hos,107E. E. Kangal,107A. Kayis Topaksu,107

G. Onengut,107,pp K. Ozdemir,107S. Ozturk,107,nn A. Polatoz,107 D. Sunar Cerci,107,oo B. Tali,107,oo H. Topakli,107,nn M. Vergili,107I. V. Akin,108B. Bilin,108S. Bilmis,108H. Gamsizkan,108,qqB. Isildak,108,rrG. Karapinar,108,ssK. Ocalan,108,tt S. Sekmen,108U. E. Surat,108M. Yalvac,108M. Zeyrek,108E. A. Albayrak,109,uuE. Gülmez,109M. Kaya,109,vvO. Kaya,109,ww T. Yetkin,109,xxK. Cankocak,110F. I. Vardarlı,110L. Levchuk,111P. Sorokin,111J. J. Brooke,112E. Clement,112D. Cussans,112

H. Flacher,112J. Goldstein,112 M. Grimes,112G. P. Heath,112 H. F. Heath,112J. Jacob,112 L. Kreczko,112C. Lucas,112 Z. Meng,112D. M. Newbold,112,yyS. Paramesvaran,112A. Poll,112T. Sakuma,112S. Senkin,112V. J. Smith,112T. Williams,112

K. W. Bell,113 A. Belyaev,113,zz C. Brew,113 R. M. Brown,113D. J. A. Cockerill,113J. A. Coughlan,113K. Harder,113 S. Harper,113E. Olaiya,113D. Petyt,113C. H. Shepherd-Themistocleous,113A. Thea,113I. R. Tomalin,113W. J. Womersley,113

S. D. Worm,113M. Baber,114R. Bainbridge,114O. Buchmuller,114D. Burton,114D. Colling,114N. Cripps,114P. Dauncey,114 G. Davies,114M. Della Negra,114P. Dunne,114W. Ferguson,114J. Fulcher,114D. Futyan,114G. Hall,114G. Iles,114M. Jarvis,114

G. Karapostoli,114M. Kenzie,114 R. Lane,114R. Lucas,114,yy L. Lyons,114 A.-M. Magnan,114 S. Malik,114 B. Mathias,114 J. Nash,114A. Nikitenko,114,ll J. Pela,114 M. Pesaresi,114K. Petridis,114 D. M. Raymond,114 S. Rogerson,114A. Rose,114

C. Seez,114P. Sharp,114,aA. Tapper,114M. Vazquez Acosta,114T. Virdee,114S. C. Zenz,114J. E. Cole,115 P. R. Hobson,115 A. Khan,115P. Kyberd,115 D. Leggat,115 D. Leslie,115 I. D. Reid,115P. Symonds,115 L. Teodorescu,115 M. Turner,115

J. Dittmann,116K. Hatakeyama,116A. Kasmi,116 H. Liu,116 T. Scarborough,116O. Charaf,117 S. I. Cooper,117 C. Henderson,117P. Rumerio,117A. Avetisyan,118T. Bose,118C. Fantasia,118P. Lawson,118C. Richardson,118J. Rohlf,118

J. St. John,118L. Sulak,118J. Alimena,119E. Berry,119S. Bhattacharya,119G. Christopher,119D. Cutts,119Z. Demiragli,119 N. Dhingra,119A. Ferapontov,119A. Garabedian,119U. Heintz,119G. Kukartsev,119E. Laird,119G. Landsberg,119M. Luk,119

M. Narain,119M. Segala,119T. Sinthuprasith,119T. Speer,119J. Swanson,119 R. Breedon,120 G. Breto,120 M. Calderon De La Barca Sanchez,120 S. Chauhan,120M. Chertok,120J. Conway,120R. Conway,120 P. T. Cox,120

R. Erbacher,120M. Gardner,120 W. Ko,120R. Lander,120T. Miceli,120 M. Mulhearn,120D. Pellett,120 J. Pilot,120 F. Ricci-Tam,120 M. Searle,120S. Shalhout,120J. Smith,120M. Squires,120 D. Stolp,120 M. Tripathi,120 S. Wilbur,120 R. Yohay,120 R. Cousins,121 P. Everaerts,121 C. Farrell,121J. Hauser,121 M. Ignatenko,121 G. Rakness,121 E. Takasugi,121

V. Valuev,121 M. Weber,121K. Burt,122R. Clare,122J. Ellison,122J. W. Gary,122 G. Hanson,122J. Heilman,122 M. Ivova Rikova,122 P. Jandir,122E. Kennedy,122 F. Lacroix,122O. R. Long,122A. Luthra,122 M. Malberti,122 M. Olmedo Negrete,122 A. Shrinivas,122 S. Sumowidagdo,122S. Wimpenny,122 J. G. Branson,123G. B. Cerati,123 S. Cittolin,123R. T. D’Agnolo,123A. Holzner,123R. Kelley,123D. Klein,123D. Kovalskyi,123J. Letts,123I. Macneill,123

D. Olivito,123 S. Padhi,123 C. Palmer,123M. Pieri,123M. Sani,123 V. Sharma,123S. Simon,123E. Sudano,123 Y. Tu,123 A. Vartak,123C. Welke,123F. Würthwein,123 A. Yagil,123 D. Barge,124 J. Bradmiller-Feld,124 C. Campagnari,124

T. Danielson,124A. Dishaw,124 V. Dutta,124 K. Flowers,124 M. Franco Sevilla,124 P. Geffert,124 C. George,124 F. Golf,124 L. Gouskos,124J. Incandela,124 C. Justus,124N. Mccoll,124J. Richman,124 D. Stuart,124 W. To,124C. West,124J. Yoo,124

A. Apresyan,125 A. Bornheim,125J. Bunn,125Y. Chen,125 J. Duarte,125 A. Mott,125H. B. Newman,125 C. Pena,125 C. Rogan,125M. Spiropulu,125V. Timciuc,125 J. R. Vlimant,125R. Wilkinson,125S. Xie,125R. Y. Zhu,125 V. Azzolini,126

A. Calamba,126 B. Carlson,126T. Ferguson,126Y. Iiyama,126 M. Paulini,126J. Russ,126 H. Vogel,126I. Vorobiev,126 J. P. Cumalat,127W. T. Ford,127A. Gaz,127M. Krohn,127E. Luiggi Lopez,127U. Nauenberg,127J. G. Smith,127K. Stenson,127

K. A. Ulmer,127 S. R. Wagner,127J. Alexander,128A. Chatterjee,128J. Chaves,128 J. Chu,128 S. Dittmer,128N. Eggert,128 N. Mirman,128G. Nicolas Kaufman,128J. R. Patterson,128A. Ryd,128E. Salvati,128L. Skinnari,128W. Sun,128W. D. Teo,128

J. Thom,128J. Thompson,128J. Tucker,128 Y. Weng,128L. Winstrom,128P. Wittich,128D. Winn,129 S. Abdullin,130 M. Albrow,130 J. Anderson,130G. Apollinari,130L. A. T. Bauerdick,130A. Beretvas,130J. Berryhill,130P. C. Bhat,130 G. Bolla,130 K. Burkett,130J. N. Butler,130H. W. K. Cheung,130 F. Chlebana,130 S. Cihangir,130V. D. Elvira,130I. Fisk,130

(11)

D. Hare,130R. M. Harris,130J. Hirschauer,130B. Hooberman,130S. Jindariani,130M. Johnson,130U. Joshi,130K. Kaadze,130

B. Klima,130B. Kreis,130S. Kwan,130,aJ. Linacre,130D. Lincoln,130R. Lipton,130T. Liu,130R. Lopes De Sá,130J. Lykken,130 K. Maeshima,130 J. M. Marraffino,130V. I. Martinez Outschoorn,130 S. Maruyama,130 D. Mason,130P. McBride,130

P. Merkel,130K. Mishra,130 S. Mrenna,130Y. Musienko,130,dd S. Nahn,130 C. Newman-Holmes,130 V. O’Dell,130 O. Prokofyev,130 E. Sexton-Kennedy,130S. Sharma,130A. Soha,130 W. J. Spalding,130 L. Spiegel,130 L. Taylor,130 S. Tkaczyk,130N. V. Tran,130L. Uplegger,130E. W. Vaandering,130R. Vidal,130A. Whitbeck,130J. Whitmore,130F. Yang,130

D. Acosta,131P. Avery,131P. Bortignon,131D. Bourilkov,131 M. Carver,131D. Curry,131S. Das,131M. De Gruttola,131 G. P. Di Giovanni,131R. D. Field,131M. Fisher,131I. K. Furic,131J. Hugon,131J. Konigsberg,131A. Korytov,131T. Kypreos,131

J. F. Low,131K. Matchev,131H. Mei,131 P. Milenovic,131,aaaG. Mitselmakher,131 L. Muniz,131A. Rinkevicius,131 L. Shchutska,131M. Snowball,131D. Sperka,131J. Yelton,131M. Zakaria,131S. Hewamanage,132S. Linn,132P. Markowitz,132 G. Martinez,132J. L. Rodriguez,132T. Adams,133A. Askew,133J. Bochenek,133B. Diamond,133J. Haas,133S. Hagopian,133

V. Hagopian,133K. F. Johnson,133H. Prosper,133V. Veeraraghavan,133 M. Weinberg,133M. M. Baarmand,134 M. Hohlmann,134H. Kalakhety,134 F. Yumiceva,134 M. R. Adams,135L. Apanasevich,135 D. Berry,135R. R. Betts,135

I. Bucinskaite,135R. Cavanaugh,135 O. Evdokimov,135 L. Gauthier,135 C. E. Gerber,135D. J. Hofman,135 P. Kurt,135 D. H. Moon,135C. O’Brien,135 I. D. Sandoval Gonzalez,135 C. Silkworth,135P. Turner,135N. Varelas,135B. Bilki,136,bbb W. Clarida,136K. Dilsiz,136F. Duru,136 M. Haytmyradov,136J.-P. Merlo,136H. Mermerkaya,136,cccA. Mestvirishvili,136

A. Moeller,136J. Nachtman,136 H. Ogul,136Y. Onel,136 F. Ozok,136,uuA. Penzo,136 R. Rahmat,136S. Sen,136P. Tan,136 E. Tiras,136 J. Wetzel,136K. Yi,136B. A. Barnett,137 B. Blumenfeld,137S. Bolognesi,137D. Fehling,137A. V. Gritsan,137

P. Maksimovic,137C. Martin,137M. Swartz,137P. Baringer,138A. Bean,138G. Benelli,138 C. Bruner,138R. P. Kenny III,138 M. Malek,138M. Murray,138 D. Noonan,138 S. Sanders,138J. Sekaric,138 R. Stringer,138 Q. Wang,138 J. S. Wood,138

I. Chakaberia,139A. Ivanov,139S. Khalil,139M. Makouski,139Y. Maravin,139L. K. Saini,139S. Shrestha,139N. Skhirtladze,139 I. Svintradze,139 J. Gronberg,140D. Lange,140F. Rebassoo,140D. Wright,140 A. Baden,141 A. Belloni,141 B. Calvert,141

S. C. Eno,141 J. A. Gomez,141N. J. Hadley,141R. G. Kellogg,141 T. Kolberg,141Y. Lu,141 M. Marionneau,141 A. C. Mignerey,141K. Pedro,141A. Skuja,141 M. B. Tonjes,141 S. C. Tonwar,141A. Apyan,142R. Barbieri,142G. Bauer,142

W. Busza,142I. A. Cali,142M. Chan,142L. Di Matteo,142G. Gomez Ceballos,142M. Goncharov,142D. Gulhan,142M. Klute,142 Y. S. Lai,142 Y.-J. Lee,142A. Levin,142P. D. Luckey,142T. Ma,142C. Paus,142D. Ralph,142C. Roland,142 G. Roland,142 G. S. F. Stephans,142F. Stöckli,142K. Sumorok,142D. Velicanu,142J. Veverka,142B. Wyslouch,142M. Yang,142M. Zanetti,142

V. Zhukova,142B. Dahmes,143 A. Gude,143 S. C. Kao,143 K. Klapoetke,143Y. Kubota,143J. Mans,143 N. Pastika,143 R. Rusack,143A. Singovsky,143N. Tambe,143J. Turkewitz,143J. G. Acosta,144S. Oliveros,144E. Avdeeva,145K. Bloom,145

S. Bose,145D. R. Claes,145A. Dominguez,145R. Gonzalez Suarez,145J. Keller,145 D. Knowlton,145I. Kravchenko,145 J. Lazo-Flores,145S. Malik,145F. Meier,145 F. Ratnikov,145 G. R. Snow,145 M. Zvada,145J. Dolen,146A. Godshalk,146 I. Iashvili,146A. Kharchilava,146 A. Kumar,146 S. Rappoccio,146G. Alverson,147E. Barberis,147 D. Baumgartel,147 M. Chasco,147J. Haley,147A. Massironi,147 D. M. Morse,147D. Nash,147 T. Orimoto,147 D. Trocino,147R.-J. Wang,147

D. Wood,147 J. Zhang,147 K. A. Hahn,148A. Kubik,148N. Mucia,148N. Odell,148 B. Pollack,148 A. Pozdnyakov,148 M. Schmitt,148S. Stoynev,148K. Sung,148M. Velasco,148S. Won,148A. Brinkerhoff,149K. M. Chan,149A. Drozdetskiy,149 M. Hildreth,149C. Jessop,149D. J. Karmgard,149N. Kellams,149K. Lannon,149S. Lynch,149N. Marinelli,149T. Pearson,149

M. Planer,149 R. Ruchti,149 N. Valls,149 M. Wayne,149 M. Wolf,149A. Woodard,149L. Antonelli,150J. Brinson,150

B. Bylsma,150L. S. Durkin,150S. Flowers,150A. Hart,150C. Hill,150R. Hughes,150K. Kotov,150T. Y. Ling,150W. Luo,150 D. Puigh,150 M. Rodenburg,150 G. Smith,150B. L. Winer,150 H. Wolfe,150 H. W. Wulsin,150 O. Driga,151P. Elmer,151

J. Hardenbrook,151 P. Hebda,151A. Hunt,151 S. A. Koay,151 P. Lujan,151D. Marlow,151T. Medvedeva,151M. Mooney,151 J. Olsen,151 P. Piroué,151X. Quan,151H. Saka,151 D. Stickland,151,c C. Tully,151J. S. Werner,151 A. Zuranski,151

E. Brownson,152H. Mendez,152J. E. Ramirez Vargas,152V. E. Barnes,153D. Benedetti,153D. Bortoletto,153M. De Mattia,153 L. Gutay,153Z. Hu,153 M. K. Jha,153 M. Jones,153K. Jung,153 M. Kress,153N. Leonardo,153 D. Lopes Pegna,153

V. Maroussov,153 D. H. Miller,153N. Neumeister,153B. C. Radburn-Smith,153X. Shi,153I. Shipsey,153D. Silvers,153 A. Svyatkovskiy,153F. Wang,153W. Xie,153L. Xu,153H. D. Yoo,153J. Zablocki,153Y. Zheng,153N. Parashar,154J. Stupak,154

A. Adair,155 B. Akgun,155 K. M. Ecklund,155 F. J. M. Geurts,155 W. Li,155 B. Michlin,155B. P. Padley,155 R. Redjimi,155 J. Roberts,155J. Zabel,155B. Betchart,156A. Bodek,156R. Covarelli,156 P. de Barbaro,156R. Demina,156 Y. Eshaq,156 T. Ferbel,156A. Garcia-Bellido,156 P. Goldenzweig,156 J. Han,156 A. Harel,156A. Khukhunaishvili,156S. Korjenevski,156

(12)

S. Arora,158A. Barker,158J. P. Chou,158C. Contreras-Campana,158E. Contreras-Campana,158D. Duggan,158D. Ferencek,158

Y. Gershtein,158R. Gray,158E. Halkiadakis,158D. Hidas,158S. Kaplan,158A. Lath,158S. Panwalkar,158M. Park,158R. Patel,158 S. Salur,158 S. Schnetzer,158 S. Somalwar,158 R. Stone,158 S. Thomas,158 P. Thomassen,158M. Walker,158K. Rose,159

S. Spanier,159A. York,159 O. Bouhali,160,dddA. Castaneda Hernandez,160R. Eusebi,160 W. Flanagan,160J. Gilmore,160 T. Kamon,160,eeeV. Khotilovich,160V. Krutelyov,160R. Montalvo,160I. Osipenkov,160Y. Pakhotin,160A. Perloff,160J. Roe,160

A. Rose,160 A. Safonov,160 I. Suarez,160 A. Tatarinov,160N. Akchurin,161C. Cowden,161J. Damgov,161C. Dragoiu,161 P. R. Dudero,161J. Faulkner,161K. Kovitanggoon,161S. Kunori,161S. W. Lee,161T. Libeiro,161I. Volobouev,161E. Appelt,162

A. G. Delannoy,162S. Greene,162 A. Gurrola,162W. Johns,162C. Maguire,162Y. Mao,162A. Melo,162M. Sharma,162 P. Sheldon,162 B. Snook,162S. Tuo,162J. Velkovska,162M. W. Arenton,163S. Boutle,163B. Cox,163B. Francis,163 J. Goodell,163 R. Hirosky,163A. Ledovskoy,163 H. Li,163 C. Lin,163 C. Neu,163J. Wood,163C. Clarke,164 R. Harr,164 P. E. Karchin,164C. Kottachchi Kankanamge Don,164 P. Lamichhane,164J. Sturdy,164D. A. Belknap,165 D. Carlsmith,165 M. Cepeda,165S. Dasu,165L. Dodd,165S. Duric,165E. Friis,165R. Hall-Wilton,165M. Herndon,165A. Hervé,165P. Klabbers,165

A. Lanaro,165 C. Lazaridis,165 A. Levine,165 R. Loveless,165A. Mohapatra,165 I. Ojalvo,165 T. Perry,165 G. A. Pierro,165 G. Polese,165 I. Ross,165T. Sarangi,165 A. Savin,165W. H. Smith,165D. Taylor,165P. Verwilligen,165

C. Vuosalo,165and N. Woods165 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut für Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Université Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Université Catholique de Louvain, Louvain-la-Neuve, Belgium 9Université de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

12aUniversidade Estadual Paulista, São Paulo, Brazil 12bUniversidade Federal do ABC, São Paulo, Brazil 13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia 19University of Split, Faculty of Science, Split, Croatia

20Institute Rudjer Boskovic, Zagreb, Croatia 21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics,

Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France 32Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

(13)

36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany 37Deutsches Elektronen-Synchrotron, Hamburg, Germany

38University of Hamburg, Hamburg, Germany 39Institut für Experimentelle Kernphysik, Karlsruhe, Germany

40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 41University of Athens, Athens, Greece

42University of Ioánnina, Ioánnina, Greece 43Wigner Research Centre for Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary

46National Institute of Science Education and Research, Bhubaneswar, India 47Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49Saha Institute of Nuclear Physics, Kolkata, India 50Bhabha Atomic Research Centre, Mumbai, India 51Tata Institute of Fundamental Research, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53University College Dublin, Dublin, Ireland 54aINFN Sezione di Bari, Bari, Italy

54bUniversità di Bari, Bari, Italy 54cPolitecnico di Bari, Bari, Italy 55aINFN Sezione di Bologna, Bologna, Italy

55bUniversità di Bologna, Bologna, Italy 56aINFN Sezione di Catania, Catania, Italy

56bUniversità di Catania, Catania, Italy 56cCSFNSM, Catania, Italy 57aINFN Sezione di Firenze, Firenze, Italy

57bUniversità di Firenze, Firenze, Italy

58INFN Laboratori Nazionali di Frascati, Frascati, Italy 59aINFN Sezione di Genova, Genova, Italy

59bUniversità di Genova, Genova, Italy 60aINFN Sezione di Milano-Bicocca, Milano, Italy

60bUniversità di Milano-Bicocca, Milano, Italy 61aINFN Sezione di Napoli, Napoli, Italy 61bUniversità di Napoli ’Federico II’, Napoli, Italy 61cUniversità della Basilicata (Potenza), Napoli, Italy 61dUniversità Guglielmo Marconi (Roma), Napoli, Italy

62aINFN Sezione di Padova, Padova, Italy 62bUniversità di Padova, Padova, Italy 62cUniversità di Trento (Trento), Padova, Italy

63aINFN Sezione di Pavia, Pavia, Italy 63bUniversità di Pavia, Pavia, Italy 64aINFN Sezione di Perugia, Perugia, Italy

64bUniversità di Perugia, Perugia, Italy 65aINFN Sezione di Pisa, Pisa, Italy

65bUniversità di Pisa, Pisa, Italy 65cScuola Normale Superiore di Pisa, Pisa, Italy

66aINFN Sezione di Roma, Roma, Italy 66bUniversità di Roma, Roma, Italy 67aINFN Sezione di Torino, Torino, Italy

67bUniversità di Torino, Torino, Italy

67cUniversità del Piemonte Orientale (Novara), Torino, Italy 68aINFN Sezione di Trieste, Trieste, Italy

68bUniversità di Trieste, Trieste, Italy 69Kangwon National University, Chunchon, Korea

70Kyungpook National University, Daegu, Korea 71Chonbuk National University, Jeonju, Korea

72Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 73Korea University, Seoul, Korea

(14)

75Sungkyunkwan University, Suwon, Korea 76Vilnius University, Vilnius, Lithuania

77National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia 78Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

79Universidad Iberoamericana, Mexico City, Mexico 80Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 81Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

82University of Auckland, Auckland, New Zealand 83University of Canterbury, Christchurch, New Zealand

84National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 85National Centre for Nuclear Research, Swierk, Poland

86Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 87Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

88Joint Institute for Nuclear Research, Dubna, Russia

89Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 90Institute for Nuclear Research, Moscow, Russia

91Institute for Theoretical and Experimental Physics, Moscow, Russia 92P.N. Lebedev Physical Institute, Moscow, Russia

93Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 94State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 95University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

96Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 97Universidad Autónoma de Madrid, Madrid, Spain

98Universidad de Oviedo, Oviedo, Spain

99Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 100CERN, European Organization for Nuclear Research, Geneva, Switzerland

101Paul Scherrer Institut, Villigen, Switzerland

102Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 103Universität Zürich, Zurich, Switzerland

104National Central University, Chung-Li, Taiwan 105National Taiwan University (NTU), Taipei, Taiwan

106Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand 107Cukurova University, Adana, Turkey

108Middle East Technical University, Physics Department, Ankara, Turkey 109Bogazici University, Istanbul, Turkey

110Istanbul Technical University, Istanbul, Turkey

111National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 112University of Bristol, Bristol, United Kingdom

113Rutherford Appleton Laboratory, Didcot, United Kingdom 114Imperial College, London, United Kingdom 115Brunel University, Uxbridge, United Kingdom

116Baylor University, Waco, USA 117The University of Alabama, Tuscaloosa, USA

118Boston University, Boston, USA 119Brown University, Providence, USA 120University of California, Davis, Davis, USA

121University of California, Los Angeles, USA 122University of California, Riverside, Riverside, USA 123University of California, San Diego, La Jolla, USA 124University of California, Santa Barbara, Santa Barbara, USA

125California Institute of Technology, Pasadena, USA 126Carnegie Mellon University, Pittsburgh, USA 127University of Colorado at Boulder, Boulder, USA

128Cornell University, Ithaca, USA 129Fairfield University, Fairfield, USA

130Fermi National Accelerator Laboratory, Batavia, USA 131University of Florida, Gainesville, USA 132Florida International University, Miami, USA

133Florida State University, Tallahassee, USA 134Florida Institute of Technology, Melbourne, USA

Figura

FIG. 1. Representative Feynman diagrams for the electroweak and QCD induced same-sign W-boson pair production.* Full author list given at the end of the article.
FIG. 2 (color online). The distributions of m jj (top) and leading
FIG. 3 (color online). The m ll distributions (top) after full
FIG. 4 (color online). Expected and observed 95% C.L. upper limits on the cross section times branching fraction, σ H !! BðH !! → W ! W ! Þ

Riferimenti

Documenti correlati

Nella ricerca etnografica sono state coinvolte alcune delle ospiti e beneficiarie 29 che hanno deciso di partecipare alla ricerca, le volon- tarie 30 e gli operatori, pur prendendo

Benché non direttamente allievo, tutta- via legato a Rogers anche tramite «Casa- bella» che più volte lo pubblica, Polesello riconosce quanto il suo pensiero debba al Maestro

Modalità e strumenti per l’inizio del progetto Anastasia Kozlova?. How design can contribute to children’s

Il mio incontro con Crimp, il cui esito propongo in forma di intervista, ha se- gnato la mia ricerca di ricostruzione del dibattito critico avvenuto sulle pagine della

While acknowledging that some exceptions in the convergence process emerged in terms of the mean values of the parameters, the authors emphasized the strong link between

La prima si lega all’analisi dei bisogni formativi degli insegnanti della rete scolastica partecipante (bisogni espressi e manifestati sia in fase di primo con- tatto con

Significant results are reported also with respect to the perceived maternal care received by subjects during infancy and reported through self-report questionnaires

Anche altrove la memoria del Pluto è, per lo più, limitata alla ripresa di singole espressioni: è il caso della già citata epistola 104 al fratello, dove, a proposito di un