• Non ci sono risultati.

Measurement of the B0 production cross section in pp collisions at √s=7TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the B0 production cross section in pp collisions at √s=7TeV"

Copied!
15
0
0

Testo completo

(1)

Measurement of the B

0

Production Cross Section in pp Collisions at

p

ffiffiffi

s

¼ 7 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 14 April 2011; published 20 June 2011) Measurements of the differential production cross sections d=dpB

T and d=dyB for B0 mesons

produced in pp collisions atpffiffiffis¼ 7 TeV are presented. The data set used was collected by the CMS experiment at the LHC and corresponds to an integrated luminosity of 40 pb1. The production cross section is measured from B0 meson decays reconstructed in the exclusive final state J=c K0S,

with the subsequent decays J=c ! þand K0

S! þ. The total cross section for pBT> 5 GeV and

jyBj < 2:2 is measured to be 33:2  2:5  3:5 b, where the first uncertainty is statistical and the second

is systematic.

DOI:10.1103/PhysRevLett.106.252001 PACS numbers: 13.85.Rm, 12.38.Bx, 14.40.Nd

Cross sections for heavy quark production in hard scat-tering interactions have been studied at p p colliders at center-of-mass energies from 630 GeV [1] to 1.96 TeV [2–4] and in p-nucleus collisions with beam energies from 800 to 920 GeV [5]. The expected cross sections can be calculated in perturbative quantum chromodynamics. The comparison between data and predictions provides a critical test of next-to-leading order (NLO) calculations [6]. Considerable progress has been achieved in under-standing heavy quark production at Tevatron energies, largely resolving earlier discrepancies [7], but substantial theoretical uncertainties remain due to the dependence on the renormalization and factorization scales. Measure-ments of b-hadron production at 7 TeV provided by the Large Hadron Collider (LHC) [8–10] represent a test at a new center-of-mass energy of theoretical approaches that aim to describe heavy flavor production [11,12].

This Letter presents the first measurement of the B0 cross section in pp collisions at pffiffiffis¼ 7 TeV. Events with B0 mesons reconstructed from their decays to the final state J=cKS0, with J=c ! þ and KS0 ! þ, are used to measure d=dpB

T, d=dyB, and the integrated cross section for transverse momentum pB

T> 5 GeV and rapidity jyBj < 2:2, where y is defined as12 lnEþpL

EpL, E is the particle energy, and pLis the particle momentum along the counterclockwise beam direction. As the B0 and B0 are indistinguishable in this analysis, both mesons are referred to as B0 for the purposes of recon-struction and the final results are divided by two to obtain an average.

The data sample collected by the Compact Muon Solenoid (CMS) detector at the LHC corresponds to an

integrated luminosity of 39:6  1:6 pb1 and represents the entire 2010 data set. A detailed description of the detector may be found elsewhere [13]. The main detector components used in this analysis are the silicon tracker and the muon systems.

The silicon tracker measures charged particles within the pseudorapidity rangejj < 2:5, where  ¼  ln tanð2Þ and  is the polar angle of the track relative to the counter-clockwise beam direction. It consists of 1440 silicon pixel and 15 148 silicon strip detector modules and is located in the 3.8 T field of the superconducting solenoid. It provides an impact parameter resolution of 15 m and a pT resolution of about 1.5% for particles with transverse momenta up to 100 GeV. Muons are measured in the pseudorapidity range jj < 2:4, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive plate chambers.

Events are selected by a trigger requiring two muons without any explicit requirement on the muon momentum. The muon candidates are fully reconstructed offline, combining information from the silicon tracker and muon detectors, and are required to be within the following kinematic acceptance region: pT > 3:3 GeV for jj < 1:3; total momentum p> 2:9 GeV for 1:3 < jj < 2:2; and pT > 0:8 GeV for 2:2 < jj < 2:4. Opposite-sign muon pairs are fit to a common vertex to form J=c candidates, which are required to be within 150 MeV of the world-average J=c mass [14].

The KS0 candidates are formed by fitting oppositely charged tracks reconstructed with the CMS tracking algorithm [15] to a common vertex. Each track is required to have at least 6 hits in the silicon tracker, a normalized 2< 5, and a transverse impact parameter with respect to the luminous region greater than 0.5 times its uncertainty. The reconstructed K0Sdecay vertex must have a normalized 2< 7 and a transverse separation from the luminous region at least 5 times larger than the uncertainty on the separation. The þ invariant mass mKS0 is required to satisfy 478 < mKS0< 518 MeV, and the reconstructed

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of

the Creative Commons Attribution 3.0 License. Further

distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

mass distribution is found to be in good agreement with the world-average value [14].

The B0 candidates are formed by combining a J=c candidate with a KS0candidate. A kinematic fit is performed with the two muons and the KS0 candidate, in which the invariant masses of the J=c and K0S candidates are con-strained to their world-average values [14]. The B0vertex fit confidence level is required to be greater than 1% and the reconstructed B0 mass mB must satisfy 4:9 < mB< 5:7 GeV. When more than one candidate in a single event passes all the selection criteria, only the candidate with the highest B0 vertex fit confidence level is retained, which results in the correct choice 99% of the time in simulated events containing a true signal candidate. A total of 23 174 B0 candidates pass all selection criteria.

The efficiency of the B0reconstruction is computed with a combination of techniques using the data and large samples of fully simulated signal events generated by PYTHIA6.422 [16], decayed byEVTGEN[17], and simulated by GEANT4 [18]. The trigger and muon-reconstruction efficiencies are obtained from a large sample of inclusive J=c ! þdecays in data using a technique similar to that described in Ref. [19], where one muon is identified with stringent quality requirements, and the second muon is identified using information either exclusively from the tracker (to measure the trigger and muon-identification efficiencies), or from the muon system (to measure the silicon tracking efficiency). Since the dimuon efficiencies are calculated as the product of the measured single muon efficiencies, a correction (1%–6%), obtained from the simulation, is applied to take into account efficiency correlations between the two muons. The probabilities for the muons to lie within the kinematic acceptance region and for the B0 and KS0 candidates to pass the selection requirements are determined from the simulated events. To minimize the effect of thePYTHIAmodeling of the pBT and jyBj distributions on the efficiency calculation, the simu-lated events are reweighted to match the kinematic distributions observed in the data. The efficiencies for hadron-track reconstruction [20], KS0 reconstruction [21], and for fulfilling the vertex quality requirement are found to be consistent between data and simulation within the available precision (up to 5%).

The proper decay length of each selected B0candidate is calculated as ct ¼ ðmB=pBTÞLxy, where the transverse de-cay length Lxy is the vector ~s pointing from the primary vertex [15] to the B0 vertex projected onto the B0 trans-verse momentum vector: Lxy¼ ð~s  ~pBTÞ=j ~pBTj.

Backgrounds are dominated by prompt and nonprompt J=c production, with nonprompt contributions from sources peaking and nonpeaking in mB, as shown in Fig.1. In particular, misreconstructed b-hadron decays to final states with a J=c, such as B ! J=cKð892Þ, produce a broadly peaking structure in the region mB< 5:2 GeV. A study of the dimuon invariant mass distribution confirms

that the contamination from events containing a misidenti-fied J=c is negligible after all selection criteria have been applied.

The signal yields in each pB

T andjyBj bin are obtained using an unbinned extended maximum-likelihood fit to mB and ct. The likelihood for event j is obtained by summing the product of yield niand probability densityPifor each of the signal and background hypotheses i. Four individual components are considered: signal events, prompt J=c events, nonprompt b ! J=c events that peak in mB (peak-ing), and nonprompt b ! J=c events that do not peak in mB(nonpeaking). The extended likelihood function is the product of likelihoods for all events:

L ¼ expX4 i¼1 ni Y j X4 i¼1 niPiðmB; ~iÞPiðct; ~iÞ  : (1) The probability density functions (PDFs), Pi, with shape parameters ~i for mB and ~i for ct, are evaluated

(GeV) B m 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Candidates / ( 0.025 GeV ) 0 200 400 600 800 1000 1200 (GeV) B m 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Candidates / ( 0.025 GeV ) 0 200 400 600 800 1000 1200 CMS data Ψ Prompt J/ + peaking B + non-peaking B + signal (a) = 7 TeV s CMS -1 L = 40 pb ct (cm) -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Candidates / ( 0.0045 cm ) -1 10 1 10 2 10 3 10 ct (cm) -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Candidates / ( 0.0045 cm ) -1 10 1 10 2 10 3 10 = 7 TeV s CMS -1 L = 40 pb CMS data Ψ Prompt J/ + peaking B + non-peaking B + signal (b)

FIG. 1 (color online). Projections of the fit results in (a) mB

and (b) ct for pB

T> 5 GeV and jyBj < 2:2. The curves in each

plot are as follows: the sum of all contributions (blue solid line); the prompt J=c (green dotted); the sum of the prompt J=c and peaking background (red dashed), and the sum of all back-grounds (purple dot-dashed).

(3)

separately for each of the i fit components. The yields ni are determined by maximizingL with respect to the yields and a subset of the PDF parameters.

The PDF shapes are described below with the parame-ters obtained from data when possible. The mBPDFs are as follows: the sum of two Gaussian functions for the signal; exponential functions for the prompt and nonpeaking back-grounds; and a sum of three Gaussian functions for the peaking background. The resolution on mB for correctly reconstructed signal events from simulation is approxi-mately 20 MeV. The ct PDFs are as follows: a single exponential function convolved with the resolution func-tion to describe the signal and peaking background com-ponents, where the lifetimes are allowed to be different; the sum of two exponential functions convolved with the resolution function for the nonpeaking component; and the pure resolution function for the prompt J=c component. The resolution function, a sum of two Gaussian functions, is common for signal and background and is measured in data to have an average resolution of 71 m.

The fit proceeds in several steps such that all background shapes are obtained directly from data, except for the peaking component which is taken from simulation, as are the signal mB shapes. This technique relies on the assumption that in the region 5:4 < mB< 5:7 GeV (side-band) there are only two contributions: prompt J=c and nonpeaking background. To obtain the effective lifetime distribution of the nonpeaking background, the mBand ct distributions in the mB sideband region are fit simulta-neously for events in the inclusive B0 sample defined by pBT> 5 GeV and jyBj < 2:2. In the second step, the signal B0lifetime in the inclusive sample is determined by fitting ct and mBsimultaneously in the full mBrange. The result, c ¼ 479  22 m (statistical uncertainty only), is in agreement with the world-average value, 457 3 m [14]. With the effective lifetimes for signal and nonprompt background fixed, the signal and background yields are fit

in each bin of pB

T andjyBj, together with the parameters describing the ct resolution and the shapes of the prompt and nonpeaking components in mB.

The accuracy and robustness of the fit strategy were demonstrated by performing a large set of pseudoexperi-ments, with each one corresponding to the yields observed in data, where signal and background events were gener-ated randomly from the PDFs in each bin. No significant biases were observed on the yields, and the statistical precision of the test was taken as the systematic uncertainty due to potential biases in the fit method. The fit uncertain-ties were also observed to be estimated properly.

The fitted signal yields in each bin of pB

T andjyBj are summarized in TableI. Figure1shows the fit projections for mBand ct from the inclusive sample with pBT > 5 GeV and jyBj < 2:2. The total number of signal events is 809  39, where the uncertainty is statistical only.

The differential cross section is calculated in bins of pBT as dðpp ! B0XÞ dpB T ¼ nsig 2BLpB T ; (2)

and similarly for jyBj, where n

sig is the fitted number of signal events in the given bin, is the efficiency for a B0 meson to pass all the selection criteria, L is the integrated luminosity, pBT is the bin size, andB is the product of branching fractions BðB0 ! J=cKS0Þ ¼ ð4:36  0:16Þ  104, BðJ=c ! þÞ ¼ ð5:93  0:06Þ  102, and BðK0

S! þÞ ¼ 0:6920  0:0005 [14]. The additional factor of 2 in the denominator accounts for our choice of quoting the cross section for B0production only, while nsig includes both B0 and B0. The efficiencies are calculated separately for each bin, always considering only mesons produced withjyBj < 2:2 (pB

T> 5 GeV) for pBT(jyBj) bins, and take into account bin-to-bin migrations ( < 1%) due to the resolution on the measured pB

T andjyBj.

TABLE I. Signal yield nsig, efficiency , and measured differential cross sections d=dpBTand d=dyB, compared to theMC@NLO

[22] and PYTHIA [16] predictions. The uncertainties in the measured cross sections are statistical and systematic, respectively, excluding the common luminosity (4%) and branching fraction (3.8%) uncertainties. The uncertainties on the signal yields are statistical only, while those on the efficiencies are systematic.

pB

T (GeV) nsig (%) d=dpBT (b/GeV) MC@NLO PYTHIA

5–10 240  23 0:65  0:05 5:20  0:50  0:59 3.66 7.42 10–13 169  17 3:32  0:28 1:196  0:121  0:117 1.13 2.14 13–17 193  16 6:37  0:51 0:535  0:045  0:051 0.49 0.83 17–24 138  13 9:60  0:76 0:145  0:014  0:014 0.15 0.24 24–40 70  9 11:40  1:04 0:027  0:003  0:003 0.025 0.035 jyBj n

sig (%) d=dyB(b) MC@NLO PYTHIA

0.0–0.5 145  14 1:34  0:10 7:63  0:74  0:76 6.21 12.41

0.5–1.0 141  15 1:38  0:10 7:20  0:75  0:71 6.14 12.01

1.0–1.4 167  17 1:93  0:15 7:61  0:77  0:83 5.81 11.24

1.4–1.8 229  21 2:51  0:21 8:06  0:74  0:89 5.38 10.36

(4)

The cross section is affected by systematic uncertainties on the signal yield and efficiencies, which are uncorrelated bin-to-bin and can affect the shapes of the distributions, and by uncertainties on the branching fractions and lumi-nosity, which are common to all bins and only affect the overall normalization. The uncertainty on the signal yield arises from potential fit biases and imperfect knowledge of the PDF parameters (4%–7%), and from effects of final-state radiation and mismeasured track momenta on the signal shape in mB (1%). Uncertainties on the efficiencies arise from the trigger (2%–3%), muon identification (1%), muon tracking (1%), K0S (5%) and B0 (3%) candidate selection requirements, acceptance (2%–3%), dimuon cor-relations (1%–5%) and pB

TandjyBj mismeasurement (1%). The first five efficiency uncertainties are determined di-rectly from data, while the last three are determined by simulation. The largest uncertainties on the efficiency arise from the K0S reconstruction, which is dominated by the displaced hadronic track efficiency and is measured by comparing the reconstructed K0S lifetime with the known value, and the dimuon correlation uncertainty, which is taken as 100% of the correction applied to account for the correlations. The difference between the kinematically reweighted and unreweighted results (3%–5%) is taken as an additional systematic uncertainty. The bin-to-bin sys-tematic uncertainty is computed as the sum in quadrature of the individual uncertainties, and is summarized in TableI. In addition, there are normalization uncertainties of 4% from the luminosity measurement and of 3.8% from the branching fractions [14].

The differential cross sections as functions of pBT and jyBj are shown in Fig.2and TableI. They are compared to the predictions ofMC@NLO[22] using a b-quark mass mb of 4.75 GeV, renormalization and factorization scales  ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi m2bþ p2T q

, and the CTEQ6M parton distribution functions [23]. The uncertainty on the predicted cross section is calculated by independently varying the renor-malization and factorization scales by factors of two, mbby 0:25 GeV, and by using the CTEQ6.6 parton distribution functions. For reference, the prediction ofPYTHIA [16] is also included, using a b-quark mass of 4.80 GeV, CTEQ6L1 parton distribution functions [23], and the Z2 tune [24] to simulate the underlying event. The measured pT spectrum falls slightly faster than predicted byMC@NLO, while the y spectrum is measured to be flatter than thePYTHIA predic-tion and in agreement with theMC@NLOprediction within uncertainties. The integrated cross section for pB

T> 5 GeV andjyBj < 2:2 is calculated as the sum over all p

T bins, without an upper limit for the highest pT bin, to be 33:2  2:5  3:5 b, where the first uncertainty is statis-tical and the second is systematic. The result is compatible with the prediction fromMC@NLO(25:2þ9:66:2b) and below the prediction fromPYTHIA(49:1 b).

In summary, the first measurements of the differential cross sections d=dpBT and d=dyB for B0 mesons

produced in pp collisions at pffiffiffis¼ 7 TeV have been pre-sented using the decay B0 ! J=cKS0. The measurements cover a range in pBT from 5 GeV to more than 30 GeV, and the rapidity rangejyBj < 2:2. The total cross section in this kinematic region lies between the central values of the MC@NLO and PYTHIA predictions, with a rapidity distribution that is flatter than PYTHIA. It is also in agree-ment within uncertainties with the measured Bþ cross section [9].

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administra-tive staff at CERN and other CMS institutes, and acknowl-edge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and

|y| 0 B 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 b)µ >5 GeV) ( B T X; p 0 B/dy(ppσ d 0 2 4 6 8 10 12 14 16 18 CMS data

Pythia 6 (MSEL = 1, CTEQ6L1, Z2) = 4.75 GeV)

b

MC@NLO (CTEQ6M, m

MC@NLO total uncertainty

= 7 TeV s CMS -1 L = 40 pb (b)

Branching fraction (3.8%) and Luminosity (4%) uncertainties not shown [GeV] T p 0 B 5 10 15 20 25 30 35 40 b/GeV)µ |<2.2) ( B X; |y 0 B(pp T /dpσ d -2 10 -1 10 1 10 CMS data

Pythia 6 (MSEL = 1, CTEQ6L1, Z2) = 4.75 GeV)

b

MC@NLO (CTEQ6M, m

MC@NLO total uncertainty

= 7 TeV s CMS -1 L = 40 pb (a)

Branching fraction (3.8%) and Luminosity (4%) uncertainties not shown

FIG. 2 (color online). Measured differential cross sections (a) d=dpB

T and (b) d=dyB compared to the theoretical

pre-dictions. The inner error bars correspond to the statistical un-certainties and the outer error bars represents the uncorrelated systematic uncertainties added in quadrature to the statistical uncertainties. Overall uncertainties of 4% for the luminosity and 3.8% for the branching fractions are not shown. The solid and dashed (blue) lines are the MC@NLO prediction and its uncertainty, respectively. The dotted (red) line is the PYTHIA

(5)

NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U.K.); DOE and NSF (U.S.).

[1] C. Albajar et al. (UA1 Collaboration),Phys. Lett. B 213,

405 (1988).

[2] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 75,

1451 (1995).

[3] A. Abulencia et al. (CDF Collaboration),Phys. Rev. D 75,

012010 (2007).

[4] S. Abachi et al. (D0 Collaboration),Phys. Rev. Lett. 74,

3548 (1995).

[5] Y. M. Zaitsev (HERA-B Collaboration), Phys. At. Nucl.

72, 675 (2009).

[6] P. Nason, S. Dawson, and R. K. Ellis,Nucl. Phys. B303,

607 (1988).

[7] M. Cacciari et al.,J. High Energy Phys. 07 (2004) 033.

[8] CMS Collaboration (CMS Collaboration),J. High Energy

Phys. 03 (2011) 090.

[9] CMS Collaboration (CMS Collaboration),Phys. Rev. Lett.

106, 112001 (2011).

[10] R. Aaij et al. (LHCb Collaboration),Phys. Lett. B 694,

209 (2010).

[11] M. Cacciari, M. Greco, and P. Nason, J. High Energy

Phys. 05 (1998) 007.

[12] B. A. Kniehl et al.,Phys. Rev. D 77, 014011 (2008). [13] S. Chatrchyan et al. (CMS Collaboration), JINST 3,

S08004 (2008).

[14] K. Nakamura et al. (Particle Data Group),J. Phys. G 37,

075021 (2010).

[15] CMS Collaboration (CMS Collaboration),Eur. Phys. J. C

70, 1165 (2010).

[16] T. Sjo¨strand, S. Mrenna, and P. Skands,J. High Energy

Phys. 05 (2006) 026.

[17] D. J. Lange,Nucl. Instrum. Methods Phys. Res., Sect. A

462, 152 (2001).

[18] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.

Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[19] CMS Collaboration,Eur. Phys. J. C 71, 1575 (2011). [20] CMS Collaboration, CMS Physics Analysis Summary

Report No. CMS-PAS-TRK-10-002, 2010.

[21] CMS Collaboration, J. High Energy Phys. 05 (2011)

064.

[22] S. Frixione, P. Nason, and B. R. Webber,J. High Energy

Phys. 08 (2003) 007.

[23] J. Pumplin et al.,J. High Energy Phys. 07 (2002) 012. [24] R. Field, in Proceedings of the Hadron Collider Physics

Symposium 2010, econf C1008233 (2010).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2 C. Fabjan,2M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bS. Ha¨nsel,2M. Hoch,2N. Ho¨rmann,2J. Hrubec,2 M. Jeitler,2G. Kasieczka,2W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2H. Rohringer,2

R. Scho¨fbeck,2J. Strauss,2F. Teischinger,2P. Wagner,2W. Waltenberger,2G. Walzel,2E. Widl,2C.-E. Wulz,2 V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3L. Benucci,4E. A. De Wolf,4X. Janssen,4T. Maes,4 L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4H. Van Haevermaet,4P. Van Mechelen,4 N. Van Remortel,4F. Blekman,5S. Blyweert,5J. D’Hondt,5O. Devroede,5R. Gonzalez Suarez,5A. Kalogeropoulos,5 J. Maes,5M. Maes,5W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5O. Charaf,6B. Clerbaux,6 G. De Lentdecker,6V. Dero,6A. P. R. Gay,6G. H. Hammad,6T. Hreus,6P. E. Marage,6L. Thomas,6C. Vander Velde,6

P. Vanlaer,6V. Adler,7A. Cimmino,7S. Costantini,7M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7 J. Mccartin,7D. Ryckbosch,7F. Thyssen,7M. Tytgat,7L. Vanelderen,7P. Verwilligen,7S. Walsh,7N. Zaganidis,7

S. Basegmez,8G. Bruno,8J. Caudron,8L. Ceard,8E. Cortina Gil,8J. De Favereau De Jeneret,8C. Delaere,8,b D. Favart,8A. Giammanco,8G. Gre´goire,8J. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8S. Ovyn,8D. Pagano,8 A. Pin,8K. Piotrzkowski,8N. Schul,8N. Beliy,9T. Caebergs,9E. Daubie,9G. A. Alves,10D. De Jesus Damiao,10 M. E. Pol,10M. H. G. Souza,10W. Carvalho,11E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11

L. Mundim,11H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11A. Santoro,11S. M. Silva Do Amaral,11 A. Sznajder,11F. Torres Da Silva De Araujo,11F. A. Dias,12T. R. Fernandez Perez Tomei,12E. M. Gregores,12,c C. Lagana,12F. Marinho,12P. G. Mercadante,12,cS. F. Novaes,12Sandra S. Padula,12N. Darmenov,13,bL. Dimitrov,13

V. Genchev,13,bP. Iaydjiev,13,bS. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13V. Tcholakov,13 R. Trayanov,13I. Vankov,13A. Dimitrov,14R. Hadjiiska,14A. Karadzhinova,14V. Kozhuharov,14L. Litov,14 M. Mateev,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15

X. Meng,15J. Tao,15J. Wang,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15Z. Zhang,15 Y. Ban,16S. Guo,16Y. Guo,16W. Li,16Y. Mao,16S. J. Qian,16H. Teng,16L. Zhang,16B. Zhu,16W. Zou,16

(6)

A. Cabrera,17B. Gomez Moreno,17A. A. Ocampo Rios,17A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18 D. Lelas,18K. Lelas,18R. Plestina,18,dD. Polic,18I. Puljak,18Z. Antunovic,19M. Dzelalija,19V. Brigljevic,20

S. Duric,20K. Kadija,20S. Morovic,20A. Attikis,21M. Galanti,21J. Mousa,21C. Nicolaou,21F. Ptochos,21 P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,eS. Khalil,23,fM. A. Mahmoud,23,gA. Hektor,24 M. Kadastik,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24V. Azzolini,25P. Eerola,25G. Fedi,25S. Czellar,26 J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26 S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26 L. Wendland,26K. Banzuzi,27A. Korpela,27T. Tuuva,27D. Sillou,28M. Besancon,29S. Choudhury,29M. Dejardin,29

D. Denegri,29B. Fabbro,29J. L. Faure,29F. Ferri,29S. Ganjour,29F. X. Gentit,29A. Givernaud,29P. Gras,29 G. Hamel de Monchenault,29P. Jarry,29E. Locci,29J. Malcles,29M. Marionneau,29L. Millischer,29J. Rander,29

A. Rosowsky,29I. Shreyber,29M. Titov,29P. Verrecchia,29S. Baffioni,30F. Beaudette,30L. Benhabib,30 L. Bianchini,30M. Bluj,30,hC. Broutin,30P. Busson,30C. Charlot,30T. Dahms,30L. Dobrzynski,30S. Elgammal,30

R. Granier de Cassagnac,30M. Haguenauer,30P. Mine´,30C. Mironov,30C. Ochando,30P. Paganini,30D. Sabes,30 R. Salerno,30Y. Sirois,30C. Thiebaux,30B. Wyslouch,30,iA. Zabi,30J.-L. Agram,31,jJ. Andrea,31D. Bloch,31 D. Bodin,31J.-M. Brom,31M. Cardaci,31E. C. Chabert,31C. Collard,31E. Conte,31,jF. Drouhin,31,jC. Ferro,31 J.-C. Fontaine,31,jD. Gele´,31U. Goerlach,31S. Greder,31P. Juillot,31M. Karim,31,jA.-C. Le Bihan,31Y. Mikami,31

P. Van Hove,31F. Fassi,32D. Mercier,32C. Baty,33S. Beauceron,33N. Beaupere,33M. Bedjidian,33O. Bondu,33 G. Boudoul,33D. Boumediene,33H. Brun,33R. Chierici,33D. Contardo,33P. Depasse,33H. El Mamouni,33J. Fay,33 S. Gascon,33B. Ille,33T. Kurca,33T. Le Grand,33M. Lethuillier,33L. Mirabito,33S. Perries,33V. Sordini,33S. Tosi,33

Y. Tschudi,33P. Verdier,33D. Lomidze,34G. Anagnostou,35M. Edelhoff,35L. Feld,35N. Heracleous,35 O. Hindrichs,35R. Jussen,35K. Klein,35J. Merz,35N. Mohr,35A. Ostapchuk,35A. Perieanu,35F. Raupach,35

J. Sammet,35S. Schael,35D. Sprenger,35H. Weber,35M. Weber,35B. Wittmer,35M. Ata,36W. Bender,36 E. Dietz-Laursonn,36M. Erdmann,36J. Frangenheim,36T. Hebbeker,36A. Hinzmann,36K. Hoepfner,36 T. Klimkovich,36D. Klingebiel,36P. Kreuzer,36D. Lanske,36,aC. Magass,36M. Merschmeyer,36A. Meyer,36

P. Papacz,36H. Pieta,36H. Reithler,36S. A. Schmitz,36L. Sonnenschein,36J. Steggemann,36D. Teyssier,36 M. Tonutti,36M. Bontenackels,37M. Davids,37M. Duda,37G. Flu¨gge,37H. Geenen,37M. Giffels,37W. Haj Ahmad,37

D. Heydhausen,37T. Kress,37Y. Kuessel,37A. Linn,37A. Nowack,37L. Perchalla,37O. Pooth,37J. Rennefeld,37 P. Sauerland,37A. Stahl,37M. Thomas,37D. Tornier,37M. H. Zoeller,37M. Aldaya Martin,38W. Behrenhoff,38 U. Behrens,38M. Bergholz,38,kK. Borras,38A. Cakir,38A. Campbell,38E. Castro,38D. Dammann,38G. Eckerlin,38

D. Eckstein,38A. Flossdorf,38G. Flucke,38A. Geiser,38J. Hauk,38H. Jung,38,bM. Kasemann,38I. Katkov,38,l P. Katsas,38C. Kleinwort,38H. Kluge,38A. Knutsson,38M. Kra¨mer,38D. Kru¨cker,38E. Kuznetsova,38W. Lange,38

W. Lohmann,38,kR. Mankel,38M. Marienfeld,38I.-A. Melzer-Pellmann,38A. B. Meyer,38J. Mnich,38 A. Mussgiller,38J. Olzem,38D. Pitzl,38A. Raspereza,38A. Raval,38M. Rosin,38R. Schmidt,38,k T. Schoerner-Sadenius,38N. Sen,38A. Spiridonov,38M. Stein,38J. Tomaszewska,38R. Walsh,38C. Wissing,38

C. Autermann,39V. Blobel,39S. Bobrovskyi,39J. Draeger,39H. Enderle,39U. Gebbert,39K. Kaschube,39 G. Kaussen,39R. Klanner,39J. Lange,39B. Mura,39S. Naumann-Emme,39F. Nowak,39N. Pietsch,39C. Sander,39 H. Schettler,39P. Schleper,39M. Schro¨der,39T. Schum,39J. Schwandt,39H. Stadie,39G. Steinbru¨ck,39J. Thomsen,39

C. Barth,40J. Bauer,40V. Buege,40T. Chwalek,40W. De Boer,40A. Dierlamm,40G. Dirkes,40M. Feindt,40 J. Gruschke,40C. Hackstein,40F. Hartmann,40M. Heinrich,40H. Held,40K. H. Hoffmann,40S. Honc,40 J. R. Komaragiri,40T. Kuhr,40D. Martschei,40S. Mueller,40Th. Mu¨ller,40M. Niegel,40O. Oberst,40A. Oehler,40 J. Ott,40T. Peiffer,40D. Piparo,40G. Quast,40K. Rabbertz,40F. Ratnikov,40N. Ratnikova,40M. Renz,40C. Saout,40

A. Scheurer,40P. Schieferdecker,40F.-P. Schilling,40M. Schmanau,40G. Schott,40H. J. Simonis,40F. M. Stober,40 D. Troendle,40J. Wagner-Kuhr,40T. Weiler,40M. Zeise,40V. Zhukov,40,lE. B. Ziebarth,40G. Daskalakis,41 T. Geralis,41K. Karafasoulis,41S. Kesisoglou,41A. Kyriakis,41D. Loukas,41I. Manolakos,41A. Markou,41 C. Markou,41C. Mavrommatis,41E. Ntomari,41E. Petrakou,41L. Gouskos,42T. J. Mertzimekis,42A. Panagiotou,42 E. Stiliaris,42I. Evangelou,43C. Foudas,43P. Kokkas,43N. Manthos,43I. Papadopoulos,43V. Patras,43F. A. Triantis,43 A. Aranyi,44G. Bencze,44L. Boldizsar,44C. Hajdu,44,bP. Hidas,44D. Horvath,44,mA. Kapusi,44K. Krajczar,44,n F. Sikler,44,bG. I. Veres,44,nG. Vesztergombi,44,nN. Beni,45J. Molnar,45J. Palinkas,45Z. Szillasi,45V. Veszpremi,45

P. Raics,46Z. L. Trocsanyi,46B. Ujvari,46S. Bansal,47S. B. Beri,47V. Bhatnagar,47N. Dhingra,47R. Gupta,47 M. Jindal,47M. Kaur,47J. M. Kohli,47M. Z. Mehta,47N. Nishu,47L. K. Saini,47A. Sharma,47A. P. Singh,47 J. B. Singh,47S. P. Singh,47S. Ahuja,48S. Bhattacharya,48B. C. Choudhary,48P. Gupta,48S. Jain,48S. Jain,48

(7)

A. Kumar,48K. Ranjan,48R. K. Shivpuri,48R. K. Choudhury,49D. Dutta,49S. Kailas,49V. Kumar,49 A. K. Mohanty,49,bL. M. Pant,49P. Shukla,49T. Aziz,50M. Guchait,50,oA. Gurtu,50M. Maity,50,pD. Majumder,50

G. Majumder,50K. Mazumdar,50G. B. Mohanty,50A. Saha,50K. Sudhakar,50N. Wickramage,50S. Banerjee,51 S. Dugad,51N. K. Mondal,51H. Arfaei,52H. Bakhshiansohi,52,qS. M. Etesami,52A. Fahim,52,qM. Hashemi,52

A. Jafari,52,qM. Khakzad,52A. Mohammadi,52,rM. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52 B. Safarzadeh,52M. Zeinali,52,sM. Abbrescia,53a,53bL. Barbone,53a,53bC. Calabria,53a,53bA. Colaleo,53a D. Creanza,53a,53cN. De Filippis,53a,53c,bM. De Palma,53a,53bL. Fiore,53aG. Iaselli,53a,53cL. Lusito,53a,53b G. Maggi,53a,53cM. Maggi,53aN. Manna,53a,53bB. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53bN. Pacifico,53a,53b

G. A. Pierro,53aA. Pompili,53a,53bG. Pugliese,53a,53cF. Romano,53a,53cG. Roselli,53a,53bG. Selvaggi,53a,53b L. Silvestris,53aR. Trentadue,53aS. Tupputi,53a,53bG. Zito,53aG. Abbiendi,54aA. C. Benvenuti,54aD. Bonacorsi,54a

S. Braibant-Giacomelli,54a,54bL. Brigliadori,54aP. Capiluppi,54a,54bA. Castro,54a,54bF. R. Cavallo,54a M. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54bD. Fasanella,54aP. Giacomelli,54a M. Giunta,54aS. Marcellini,54aG. Masetti,54aM. Meneghelli,54a,54bA. Montanari,54aF. L. Navarria,54a,54b

F. Odorici,54aA. Perrotta,54aF. Primavera,54aA. M. Rossi,54a,54bT. Rovelli,54a,54bG. Siroli,54a,54b R. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55bM. Chiorboli,55a,55b,bS. Costa,55a,55bA. Tricomi,55a,55b C. Tuve,55aG. Barbagli,56aV. Ciulli,56a,56bC. Civinini,56aR. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56b

E. Gallo,56aS. Gonzi,56a,56bP. Lenzi,56a,56bM. Meschini,56aS. Paoletti,56aG. Sguazzoni,56aA. Tropiano,56a,b L. Benussi,57S. Bianco,57S. Colafranceschi,57,tF. Fabbri,57D. Piccolo,57P. Fabbricatore,58R. Musenich,58 A. Benaglia,59a,59bF. De Guio,59a,59b,bL. Di Matteo,59a,59bA. Ghezzi,59a,59bM. Malberti,59a,59bS. Malvezzi,59a

A. Martelli,59a,59bA. Massironi,59a,59bD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59a S. Ragazzi,59a,59bN. Redaelli,59aS. Sala,59aT. Tabarelli de Fatis,59a,59bV. Tancini,59a,59bS. Buontempo,60a C. A. Carrillo Montoya,60a,bN. Cavallo,60a,uA. De Cosa,60a,60bF. Fabozzi,60a,uA. O. M. Iorio,60a,bL. Lista,60a

M. Merola,60a,60bP. Paolucci,60aP. Azzi,61aN. Bacchetta,61aP. Bellan,61a,61bD. Bisello,61a,61bA. Branca,61a R. Carlin,61a,61bP. Checchia,61aM. De Mattia,61a,61bT. Dorigo,61aU. Dosselli,61aF. Fanzago,61aF. Gasparini,61a,61b

U. Gasparini,61a,61bS. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61bM. Mazzucato,61a

A. T. Meneguzzo,61a,61bM. Nespolo,61a,bL. Perrozzi,61a,bN. Pozzobon,61a,61bP. Ronchese,61a,61bF. Simonetto,61a,61b E. Torassa,61aM. Tosi,61a,61bS. Vanini,61a,61bP. Zotto,61a,61bG. Zumerle,61a,61bP. Baesso,62a,62bU. Berzano,62a S. P. Ratti,62a,62bC. Riccardi,62a,62bP. Torre,62a,62bP. Vitulo,62a,62bC. Viviani,62a,62bM. Biasini,63a,63bG. M. Bilei,63a

B. Caponeri,63a,63bL. Fano`,63a,63bP. Lariccia,63a,63bA. Lucaroni,63a,63b,bG. Mantovani,63a,63bM. Menichelli,63a A. Nappi,63a,63bF. Romeo,63a,63bA. Santocchia,63a,63bS. Taroni,63a,63b,bM. Valdata,63a,63bP. Azzurri,64a,64c G. Bagliesi,64aJ. Bernardini,64a,64bT. Boccali,64a,bG. Broccolo,64a,64cR. Castaldi,64aR. T. D’Agnolo,64a,64c R. Dell’Orso,64aF. Fiori,64a,64bL. Foa`,64a,64cA. Giassi,64aA. Kraan,64aF. Ligabue,64a,64cT. Lomtadze,64a L. Martini,64a,vA. Messineo,64a,64bF. Palla,64aG. Segneri,64aA. T. Serban,64aP. Spagnolo,64aR. Tenchini,64a

G. Tonelli,64a,64b,bA. Venturi,64a,bP. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65aD. Del Re,65a,65b E. Di Marco,65a,65bM. Diemoz,65aD. Franci,65a,65bM. Grassi,65a,bE. Longo,65a,65bS. Nourbakhsh,65a G. Organtini,65a,65bF. Pandolfi,65a,65b,bR. Paramatti,65aS. Rahatlou,65a,65bN. Amapane,66a,66bR. Arcidiacono,66a,66c S. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66aC. Botta,66a,66b,bN. Cartiglia,66aR. Castello,66a,66bM. Costa,66a,66b N. Demaria,66aA. Graziano,66a,66b,bC. Mariotti,66aM. Marone,66a,66bS. Maselli,66aE. Migliore,66a,66bG. Mila,66a,66b V. Monaco,66a,66bM. Musich,66a,66bM. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66a,66bA. Romero,66a,66b M. Ruspa,66a,66cR. Sacchi,66a,66bV. Sola,66a,66bA. Solano,66a,66bA. Staiano,66aA. Vilela Pereira,66aS. Belforte,67a F. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67aD. Montanino,67a,67bA. Penzo,67aS. G. Heo,68S. K. Nam,68

S. Chang,69J. Chung,69D. H. Kim,69G. N. Kim,69J. E. Kim,69D. J. Kong,69H. Park,69S. R. Ro,69D. Son,69 D. C. Son,69T. Son,69Zero Kim,70J. Y. Kim,70S. Song,70S. Choi,71B. Hong,71M. S. Jeong,71M. Jo,71H. Kim,71

J. H. Kim,71T. J. Kim,71K. S. Lee,71D. H. Moon,71S. K. Park,71H. B. Rhee,71E. Seo,71S. Shin,71K. S. Sim,71 M. Choi,72S. Kang,72H. Kim,72C. Park,72I. C. Park,72S. Park,72G. Ryu,72Y. Choi,73Y. K. Choi,73J. Goh,73

M. S. Kim,73E. Kwon,73J. Lee,73S. Lee,73H. Seo,73I. Yu,73M. J. Bilinskas,74I. Grigelionis,74M. Janulis,74 D. Martisiute,74P. Petrov,74T. Sabonis,74H. Castilla-Valdez,75E. De La Cruz-Burelo,75R. Lopez-Fernandez,75

R. Magan˜a Villalba,75A. Sa´nchez-Herna´ndez,75L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76 F. Vazquez Valencia,76H. A. Salazar Ibarguen,77E. Casimiro Linares,78A. Morelos Pineda,78M. A. Reyes-Santos,78 D. Krofcheck,79J. Tam,79P. H. Butler,80R. Doesburg,80H. Silverwood,80M. Ahmad,81I. Ahmed,81M. I. Asghar,81 H. R. Hoorani,81W. A. Khan,81T. Khurshid,81S. Qazi,81M. Cwiok,82W. Dominik,82K. Doroba,82A. Kalinowski,82

(8)

M. Konecki,82J. Krolikowski,82T. Frueboes,83R. Gokieli,83M. Go´rski,83M. Kazana,83K. Nawrocki,83 K. Romanowska-Rybinska,83M. Szleper,83G. Wrochna,83P. Zalewski,83N. Almeida,84P. Bargassa,84A. David,84

P. Faccioli,84P. G. Ferreira Parracho,84M. Gallinaro,84P. Musella,84A. Nayak,84P. Q. Ribeiro,84J. Seixas,84 J. Varela,84S. Afanasiev,85I. Belotelov,85P. Bunin,85I. Golutvin,85A. Kamenev,85V. Karjavin,85G. Kozlov,85 A. Lanev,85P. Moisenz,85V. Palichik,85V. Perelygin,85S. Shmatov,85V. Smirnov,85A. Volodko,85A. Zarubin,85

V. Golovtsov,86Y. Ivanov,86V. Kim,86P. Levchenko,86V. Murzin,86V. Oreshkin,86I. Smirnov,86V. Sulimov,86 L. Uvarov,86S. Vavilov,86A. Vorobyev,86A. Vorobyev,86Yu. Andreev,87A. Dermenev,87S. Gninenko,87 N. Golubev,87M. Kirsanov,87N. Krasnikov,87V. Matveev,87A. Pashenkov,87A. Toropin,87S. Troitsky,87 V. Epshteyn,88V. Gavrilov,88V. Kaftanov,88,aM. Kossov,88,bA. Krokhotin,88N. Lychkovskaya,88V. Popov,88

G. Safronov,88S. Semenov,88V. Stolin,88E. Vlasov,88A. Zhokin,88E. Boos,89M. Dubinin,89,wL. Dudko,89 A. Ershov,89A. Gribushin,89O. Kodolova,89I. Lokhtin,89A. Markina,89S. Obraztsov,89M. Perfilov,89 S. Petrushanko,89L. Sarycheva,89V. Savrin,89A. Snigirev,89V. Andreev,90M. Azarkin,90I. Dremin,90 M. Kirakosyan,90A. Leonidov,90S. V. Rusakov,90A. Vinogradov,90I. Azhgirey,91S. Bitioukov,91V. Grishin,91,b

V. Kachanov,91D. Konstantinov,91A. Korablev,91V. Krychkine,91V. Petrov,91R. Ryutin,91S. Slabospitsky,91 A. Sobol,91L. Tourtchanovitch,91S. Troshin,91N. Tyurin,91A. Uzunian,91A. Volkov,91P. Adzic,92,x M. Djordjevic,92D. Krpic,92,xJ. Milosevic,92M. Aguilar-Benitez,93J. Alcaraz Maestre,93P. Arce,93C. Battilana,93

E. Calvo,93M. Cepeda,93M. Cerrada,93M. Chamizo Llatas,93N. Colino,93B. De La Cruz,93A. Delgado Peris,93 C. Diez Pardos,93D. Domı´nguez Va´zquez,93C. Fernandez Bedoya,93J. P. Ferna´ndez Ramos,93A. Ferrando,93 J. Flix,93M. C. Fouz,93P. Garcia-Abia,93O. Gonzalez Lopez,93S. Goy Lopez,93J. M. Hernandez,93M. I. Josa,93

G. Merino,93J. Puerta Pelayo,93I. Redondo,93L. Romero,93J. Santaolalla,93M. S. Soares,93C. Willmott,93 C. Albajar,94G. Codispoti,94J. F. de Troco´niz,94J. Cuevas,95J. Fernandez Menendez,95S. Folgueras,95 I. Gonzalez Caballero,95L. Lloret Iglesias,95J. M. Vizan Garcia,95J. A. Brochero Cifuentes,96I. J. Cabrillo,96

A. Calderon,96S. H. Chuang,96J. Duarte Campderros,96M. Felcini,96,yM. Fernandez,96G. Gomez,96 J. Gonzalez Sanchez,96C. Jorda,96P. Lobelle Pardo,96A. Lopez Virto,96J. Marco,96R. Marco,96

C. Martinez Rivero,96F. Matorras,96F. J. Munoz Sanchez,96J. Piedra Gomez,96,zT. Rodrigo,96 A. Y. Rodrı´guez-Marrero,96A. Ruiz-Jimeno,96L. Scodellaro,96M. Sobron Sanudo,96I. Vila,96 R. Vilar Cortabitarte,96D. Abbaneo,97E. Auffray,97G. Auzinger,97P. Baillon,97A. H. Ball,97D. Barney,97 A. J. Bell,97,aaD. Benedetti,97C. Bernet,97,dW. Bialas,97P. Bloch,97A. Bocci,97S. Bolognesi,97M. Bona,97 H. Breuker,97G. Brona,97K. Bunkowski,97T. Camporesi,97G. Cerminara,97J. A. Coarasa Perez,97B. Cure´,97 D. D’Enterria,97A. De Roeck,97S. Di Guida,97A. Elliott-Peisert,97B. Frisch,97W. Funk,97A. Gaddi,97S. Gennai,97

G. Georgiou,97H. Gerwig,97D. Gigi,97K. Gill,97D. Giordano,97F. Glege,97R. Gomez-Reino Garrido,97 M. Gouzevitch,97P. Govoni,97S. Gowdy,97L. Guiducci,97M. Hansen,97C. Hartl,97J. Harvey,97J. Hegeman,97 B. Hegner,97H. F. Hoffmann,97A. Honma,97V. Innocente,97P. Janot,97K. Kaadze,97E. Karavakis,97P. Lecoq,97

C. Lourenc¸o,97T. Ma¨ki,97L. Malgeri,97M. Mannelli,97L. Masetti,97A. Maurisset,97F. Meijers,97S. Mersi,97 E. Meschi,97R. Moser,97M. U. Mozer,97M. Mulders,97E. Nesvold,97,bM. Nguyen,97T. Orimoto,97L. Orsini,97 E. Perez,97A. Petrilli,97A. Pfeiffer,97M. Pierini,97M. Pimia¨,97G. Polese,97A. Racz,97J. Rodrigues Antunes,97 G. Rolandi,97,bbT. Rommerskirchen,97C. Rovelli,97,ccM. Rovere,97H. Sakulin,97C. Scha¨fer,97C. Schwick,97 I. Segoni,97A. Sharma,97P. Siegrist,97M. Simon,97P. Sphicas,97,ddM. Spiropulu,97,wM. Stoye,97P. Tropea,97

A. Tsirou,97P. Vichoudis,97M. Voutilainen,97W. D. Zeuner,97W. Bertl,98K. Deiters,98W. Erdmann,98 K. Gabathuler,98R. Horisberger,98Q. Ingram,98H. C. Kaestli,98S. Ko¨nig,98D. Kotlinski,98U. Langenegger,98 F. Meier,98D. Renker,98T. Rohe,98J. Sibille,98,eeA. Starodumov,98,ffP. Bortignon,99L. Caminada,99,ggN. Chanon,99

Z. Chen,99S. Cittolin,99G. Dissertori,99M. Dittmar,99J. Eugster,99K. Freudenreich,99C. Grab,99A. Herve´,99 W. Hintz,99P. Lecomte,99W. Lustermann,99C. Marchica,99,ggP. Martinez Ruiz del Arbol,99P. Meridiani,99 P. Milenovic,99,hhF. Moortgat,99C. Na¨geli,99,ggP. Nef,99F. Nessi-Tedaldi,99L. Pape,99F. Pauss,99T. Punz,99 A. Rizzi,99F. J. Ronga,99M. Rossini,99L. Sala,99A. K. Sanchez,99M.-C. Sawley,99B. Stieger,99L. Tauscher,99,a

A. Thea,99K. Theofilatos,99D. Treille,99C. Urscheler,99R. Wallny,99M. Weber,99L. Wehrli,99J. Weng,99 E. Aguilo´,100C. Amsler,100V. Chiochia,100S. De Visscher,100C. Favaro,100M. Ivova Rikova,100B. Millan Mejias,100

P. Otiougova,100C. Regenfus,100P. Robmann,100A. Schmidt,100H. Snoek,100Y. H. Chang,101K. H. Chen,101 S. Dutta,101C. M. Kuo,101S. W. Li,101W. Lin,101Z. K. Liu,101Y. J. Lu,101D. Mekterovic,101R. Volpe,101J. H. Wu,101

S. S. Yu,101P. Bartalini,102P. Chang,102Y. H. Chang,102Y. W. Chang,102Y. Chao,102K. F. Chen,102W.-S. Hou,102 Y. Hsiung,102K. Y. Kao,102Y. J. Lei,102R.-S. Lu,102J. G. Shiu,102Y. M. Tzeng,102M. Wang,102A. Adiguzel,103

(9)

M. N. Bakirci,103,iiS. Cerci,103,jjC. Dozen,103I. Dumanoglu,103E. Eskut,103S. Girgis,103G. Gokbulut,103 Y. Guler,103E. Gurpinar,103I. Hos,103E. E. Kangal,103T. Karaman,103A. Kayis Topaksu,103A. Nart,103 G. Onengut,103K. Ozdemir,103S. Ozturk,103A. Polatoz,103K. Sogut,103,kkD. Sunar Cerci,103,jjB. Tali,103 H. Topakli,103,iiD. Uzun,103L. N. Vergili,103M. Vergili,103C. Zorbilmez,103I. V. Akin,104T. Aliev,104S. Bilmis,104

M. Deniz,104H. Gamsizkan,104A. M. Guler,104K. Ocalan,104A. Ozpineci,104M. Serin,104R. Sever,104 U. E. Surat,104E. Yildirim,104M. Zeyrek,104M. Deliomeroglu,105D. Demir,105,llE. Gu¨lmez,105B. Isildak,105 M. Kaya,105,mmO. Kaya,105,mmS. Ozkorucuklu,105,nnN. Sonmez,105,ooL. Levchuk,106F. Bostock,107J. J. Brooke,107

T. L. Cheng,107E. Clement,107D. Cussans,107R. Frazier,107J. Goldstein,107M. Grimes,107M. Hansen,107 D. Hartley,107G. P. Heath,107H. F. Heath,107J. Jackson,107L. Kreczko,107S. Metson,107D. M. Newbold,107,pp K. Nirunpong,107A. Poll,107S. Senkin,107V. J. Smith,107S. Ward,107L. Basso,108,qqK. W. Bell,108A. Belyaev,108,qq

C. Brew,108R. M. Brown,108B. Camanzi,108D. J. A. Cockerill,108J. A. Coughlan,108K. Harder,108S. Harper,108 B. W. Kennedy,108E. Olaiya,108D. Petyt,108B. C. Radburn-Smith,108C. H. Shepherd-Themistocleous,108 I. R. Tomalin,108W. J. Womersley,108S. D. Worm,108R. Bainbridge,109G. Ball,109J. Ballin,109R. Beuselinck,109

O. Buchmuller,109D. Colling,109N. Cripps,109M. Cutajar,109G. Davies,109M. Della Negra,109W. Ferguson,109 J. Fulcher,109D. Futyan,109A. Gilbert,109A. Guneratne Bryer,109G. Hall,109Z. Hatherell,109J. Hays,109G. Iles,109 M. Jarvis,109G. Karapostoli,109L. Lyons,109B. C. MacEvoy,109A.-M. Magnan,109J. Marrouche,109B. Mathias,109

R. Nandi,109J. Nash,109A. Nikitenko,109,ffA. Papageorgiou,109M. Pesaresi,109K. Petridis,109M. Pioppi,109,rr D. M. Raymond,109S. Rogerson,109N. Rompotis,109A. Rose,109M. J. Ryan,109C. Seez,109P. Sharp,109 A. Sparrow,109A. Tapper,109S. Tourneur,109M. Vazquez Acosta,109T. Virdee,109S. Wakefield,109N. Wardle,109

D. Wardrope,109T. Whyntie,109M. Barrett,110M. Chadwick,110J. E. Cole,110P. R. Hobson,110A. Khan,110 P. Kyberd,110D. Leslie,110W. Martin,110I. D. Reid,110L. Teodorescu,110K. Hatakeyama,111T. Bose,112 E. Carrera Jarrin,112C. Fantasia,112A. Heister,112J. St. John,112P. Lawson,112D. Lazic,112J. Rohlf,112D. Sperka,112

L. Sulak,112A. Avetisyan,113S. Bhattacharya,113J. P. Chou,113D. Cutts,113A. Ferapontov,113U. Heintz,113 S. Jabeen,113G. Kukartsev,113G. Landsberg,113M. Narain,113D. Nguyen,113M. Segala,113T. Sinthuprasith,113 T. Speer,113K. V. Tsang,113R. Breedon,114M. Calderon De La Barca Sanchez,114S. Chauhan,114M. Chertok,114 J. Conway,114P. T. Cox,114J. Dolen,114R. Erbacher,114E. Friis,114W. Ko,114A. Kopecky,114R. Lander,114H. Liu,114

S. Maruyama,114T. Miceli,114M. Nikolic,114D. Pellett,114J. Robles,114S. Salur,114T. Schwarz,114M. Searle,114 J. Smith,114M. Squires,114M. Tripathi,114R. Vasquez Sierra,114C. Veelken,114V. Andreev,115K. Arisaka,115 D. Cline,115R. Cousins,115A. Deisher,115J. Duris,115S. Erhan,115C. Farrell,115J. Hauser,115M. Ignatenko,115

C. Jarvis,115C. Plager,115G. Rakness,115P. Schlein,115,aJ. Tucker,115V. Valuev,115J. Babb,116A. Chandra,116 R. Clare,116J. Ellison,116J. W. Gary,116F. Giordano,116G. Hanson,116G. Y. Jeng,116S. C. Kao,116F. Liu,116

H. Liu,116O. R. Long,116A. Luthra,116H. Nguyen,116B. C. Shen,116,aR. Stringer,116J. Sturdy,116 S. Sumowidagdo,116R. Wilken,116S. Wimpenny,116W. Andrews,117J. G. Branson,117G. B. Cerati,117

E. Dusinberre,117D. Evans,117F. Golf,117A. Holzner,117R. Kelley,117M. Lebourgeois,117J. Letts,117 B. Mangano,117S. Padhi,117C. Palmer,117G. Petrucciani,117H. Pi,117M. Pieri,117R. Ranieri,117M. Sani,117 V. Sharma,117S. Simon,117Y. Tu,117A. Vartak,117S. Wasserbaech,117,ssF. Wu¨rthwein,117A. Yagil,117J. Yoo,117

D. Barge,118R. Bellan,118C. Campagnari,118M. D’Alfonso,118T. Danielson,118K. Flowers,118P. Geffert,118 J. Incandela,118C. Justus,118P. Kalavase,118S. A. Koay,118D. Kovalskyi,118V. Krutelyov,118S. Lowette,118 N. Mccoll,118V. Pavlunin,118F. Rebassoo,118J. Ribnik,118J. Richman,118R. Rossin,118D. Stuart,118W. To,118 J. R. Vlimant,118A. Apresyan,119A. Bornheim,119J. Bunn,119Y. Chen,119M. Gataullin,119Y. Ma,119A. Mott,119 H. B. Newman,119C. Rogan,119K. Shin,119V. Timciuc,119P. Traczyk,119J. Veverka,119R. Wilkinson,119Y. Yang,119

R. Y. Zhu,119B. Akgun,120R. Carroll,120T. Ferguson,120Y. Iiyama,120D. W. Jang,120S. Y. Jun,120Y. F. Liu,120 M. Paulini,120J. Russ,120H. Vogel,120I. Vorobiev,120J. P. Cumalat,121M. E. Dinardo,121B. R. Drell,121 C. J. Edelmaier,121W. T. Ford,121A. Gaz,121B. Heyburn,121E. Luiggi Lopez,121U. Nauenberg,121J. G. Smith,121

K. Stenson,121K. A. Ulmer,121S. R. Wagner,121S. L. Zang,121L. Agostino,122J. Alexander,122D. Cassel,122 A. Chatterjee,122S. Das,122N. Eggert,122L. K. Gibbons,122B. Heltsley,122W. Hopkins,122A. Khukhunaishvili,122 B. Kreis,122G. Nicolas Kaufman,122J. R. Patterson,122D. Puigh,122A. Ryd,122E. Salvati,122X. Shi,122W. Sun,122 W. D. Teo,122J. Thom,122J. Thompson,122J. Vaughan,122Y. Weng,122L. Winstrom,122P. Wittich,122A. Biselli,123

G. Cirino,123D. Winn,123S. Abdullin,124M. Albrow,124J. Anderson,124G. Apollinari,124M. Atac,124 J. A. Bakken,124S. Banerjee,124L. A. T. Bauerdick,124A. Beretvas,124J. Berryhill,124P. C. Bhat,124I. Bloch,124 F. Borcherding,124K. Burkett,124J. N. Butler,124V. Chetluru,124H. W. K. Cheung,124F. Chlebana,124S. Cihangir,124

(10)

W. Cooper,124D. P. Eartly,124V. D. Elvira,124S. Esen,124I. Fisk,124J. Freeman,124Y. Gao,124E. Gottschalk,124 D. Green,124K. Gunthoti,124O. Gutsche,124J. Hanlon,124R. M. Harris,124J. Hirschauer,124B. Hooberman,124 H. Jensen,124M. Johnson,124U. Joshi,124R. Khatiwada,124B. Klima,124K. Kousouris,124S. Kunori,124S. Kwan,124 C. Leonidopoulos,124P. Limon,124D. Lincoln,124R. Lipton,124J. Lykken,124K. Maeshima,124J. M. Marraffino,124 D. Mason,124P. McBride,124T. Miao,124K. Mishra,124S. Mrenna,124Y. Musienko,124,ttC. Newman-Holmes,124

V. O’Dell,124R. Pordes,124O. Prokofyev,124N. Saoulidou,124E. Sexton-Kennedy,124S. Sharma,124A. Soha,124 W. J. Spalding,124L. Spiegel,124P. Tan,124L. Taylor,124S. Tkaczyk,124L. Uplegger,124E. W. Vaandering,124

R. Vidal,124J. Whitmore,124W. Wu,124F. Yang,124F. Yumiceva,124J. C. Yun,124D. Acosta,125P. Avery,125 D. Bourilkov,125M. Chen,125M. De Gruttola,125G. P. Di Giovanni,125D. Dobur,125A. Drozdetskiy,125 R. D. Field,125M. Fisher,125Y. Fu,125I. K. Furic,125J. Gartner,125B. Kim,125J. Konigsberg,125A. Korytov,125

A. Kropivnitskaya,125T. Kypreos,125K. Matchev,125G. Mitselmakher,125L. Muniz,125Y. Pakhotin,125 C. Prescott,125R. Remington,125M. Schmitt,125B. Scurlock,125P. Sellers,125N. Skhirtladze,125M. Snowball,125 D. Wang,125J. Yelton,125M. Zakaria,125C. Ceron,126V. Gaultney,126L. Kramer,126L. M. Lebolo,126S. Linn,126 P. Markowitz,126G. Martinez,126D. Mesa,126J. L. Rodriguez,126T. Adams,127A. Askew,127D. Bandurin,127

J. Bochenek,127J. Chen,127B. Diamond,127S. V. Gleyzer,127J. Haas,127S. Hagopian,127V. Hagopian,127 M. Jenkins,127K. F. Johnson,127H. Prosper,127L. Quertenmont,127S. Sekmen,127V. Veeraraghavan,127

M. M. Baarmand,128B. Dorney,128S. Guragain,128M. Hohlmann,128H. Kalakhety,128R. Ralich,128 I. Vodopiyanov,128M. R. Adams,129I. M. Anghel,129L. Apanasevich,129Y. Bai,129V. E. Bazterra,129R. R. Betts,129

J. Callner,129R. Cavanaugh,129C. Dragoiu,129L. Gauthier,129C. E. Gerber,129D. J. Hofman,129S. Khalatyan,129 G. J. Kunde,129F. Lacroix,129M. Malek,129C. O’Brien,129C. Silvestre,129A. Smoron,129D. Strom,129N. Varelas,129 U. Akgun,130E. A. Albayrak,130B. Bilki,130W. Clarida,130F. Duru,130C. K. Lae,130E. McCliment,130J.-P. Merlo,130

H. Mermerkaya,130,uuA. Mestvirishvili,130A. Moeller,130J. Nachtman,130C. R. Newsom,130E. Norbeck,130 J. Olson,130Y. Onel,130F. Ozok,130S. Sen,130J. Wetzel,130T. Yetkin,130K. Yi,130B. A. Barnett,131B. Blumenfeld,131 A. Bonato,131C. Eskew,131D. Fehling,131G. Giurgiu,131A. V. Gritsan,131Z. J. Guo,131G. Hu,131P. Maksimovic,131

S. Rappoccio,131M. Swartz,131N. V. Tran,131A. Whitbeck,131P. Baringer,132A. Bean,132G. Benelli,132 O. Grachov,132R. P. Kenny Iii,132M. Murray,132D. Noonan,132S. Sanders,132J. S. Wood,132V. Zhukova,132

A. f. Barfuss,133T. Bolton,133I. Chakaberia,133A. Ivanov,133S. Khalil,133M. Makouski,133Y. Maravin,133 S. Shrestha,133I. Svintradze,133Z. Wan,133J. Gronberg,134D. Lange,134D. Wright,134A. Baden,135 M. Boutemeur,135S. C. Eno,135D. Ferencek,135J. A. Gomez,135N. J. Hadley,135R. G. Kellogg,135M. Kirn,135

Y. Lu,135A. C. Mignerey,135K. Rossato,135P. Rumerio,135F. Santanastasio,135A. Skuja,135J. Temple,135 M. B. Tonjes,135S. C. Tonwar,135E. Twedt,135B. Alver,136G. Bauer,136J. Bendavid,136W. Busza,136E. Butz,136

I. A. Cali,136M. Chan,136V. Dutta,136P. Everaerts,136G. Gomez Ceballos,136M. Goncharov,136K. A. Hahn,136 P. Harris,136Y. Kim,136M. Klute,136Y.-J. Lee,136W. Li,136C. Loizides,136P. D. Luckey,136T. Ma,136S. Nahn,136

C. Paus,136D. Ralph,136C. Roland,136G. Roland,136M. Rudolph,136G. S. F. Stephans,136F. Sto¨ckli,136 K. Sumorok,136K. Sung,136E. A. Wenger,136S. Xie,136M. Yang,136Y. Yilmaz,136A. S. Yoon,136M. Zanetti,136

P. Cole,137S. I. Cooper,137P. Cushman,137B. Dahmes,137A. De Benedetti,137P. R. Dudero,137G. Franzoni,137 J. Haupt,137K. Klapoetke,137Y. Kubota,137J. Mans,137V. Rekovic,137R. Rusack,137M. Sasseville,137 A. Singovsky,137L. M. Cremaldi,138R. Godang,138R. Kroeger,138L. Perera,138R. Rahmat,138D. A. Sanders,138

D. Summers,138K. Bloom,139S. Bose,139J. Butt,139D. R. Claes,139A. Dominguez,139M. Eads,139J. Keller,139 T. Kelly,139I. Kravchenko,139J. Lazo-Flores,139H. Malbouisson,139S. Malik,139G. R. Snow,139U. Baur,140

A. Godshalk,140I. Iashvili,140S. Jain,140A. Kharchilava,140A. Kumar,140S. P. Shipkowski,140K. Smith,140 G. Alverson,141E. Barberis,141D. Baumgartel,141O. Boeriu,141M. Chasco,141S. Reucroft,141J. Swain,141 D. Trocino,141D. Wood,141J. Zhang,141A. Anastassov,142A. Kubik,142N. Odell,142R. A. Ofierzynski,142 B. Pollack,142A. Pozdnyakov,142M. Schmitt,142S. Stoynev,142M. Velasco,142S. Won,142L. Antonelli,143 D. Berry,143M. Hildreth,143C. Jessop,143D. J. Karmgard,143J. Kolb,143T. Kolberg,143K. Lannon,143W. Luo,143

S. Lynch,143N. Marinelli,143D. M. Morse,143T. Pearson,143R. Ruchti,143J. Slaunwhite,143N. Valls,143 M. Wayne,143J. Ziegler,143B. Bylsma,144L. S. Durkin,144J. Gu,144C. Hill,144P. Killewald,144K. Kotov,144 T. Y. Ling,144M. Rodenburg,144G. Williams,144N. Adam,145E. Berry,145P. Elmer,145D. Gerbaudo,145V. Halyo,145 P. Hebda,145A. Hunt,145J. Jones,145E. Laird,145D. Lopes Pegna,145D. Marlow,145T. Medvedeva,145M. Mooney,145

J. Olsen,145P. Piroue´,145X. Quan,145H. Saka,145D. Stickland,145C. Tully,145J. S. Werner,145A. Zuranski,145 J. G. Acosta,146X. T. Huang,146A. Lopez,146H. Mendez,146S. Oliveros,146J. E. Ramirez Vargas,146

(11)

A. Zatserklyaniy,146E. Alagoz,147V. E. Barnes,147G. Bolla,147L. Borrello,147D. Bortoletto,147A. Everett,147 A. F. Garfinkel,147L. Gutay,147Z. Hu,147M. Jones,147O. Koybasi,147M. Kress,147A. T. Laasanen,147 N. Leonardo,147C. Liu,147V. Maroussov,147P. Merkel,147D. H. Miller,147N. Neumeister,147I. Shipsey,147

D. Silvers,147A. Svyatkovskiy,147H. D. Yoo,147J. Zablocki,147Y. Zheng,147P. Jindal,148N. Parashar,148 C. Boulahouache,149V. Cuplov,149K. M. Ecklund,149F. J. M. Geurts,149B. P. Padley,149R. Redjimi,149J. Roberts,149 J. Zabel,149B. Betchart,150A. Bodek,150Y. S. Chung,150R. Covarelli,150P. de Barbaro,150R. Demina,150Y. Eshaq,150

H. Flacher,150A. Garcia-Bellido,150P. Goldenzweig,150Y. Gotra,150J. Han,150A. Harel,150D. C. Miner,150 D. Orbaker,150G. Petrillo,150D. Vishnevskiy,150M. Zielinski,150A. Bhatti,151R. Ciesielski,151L. Demortier,151

K. Goulianos,151G. Lungu,151S. Malik,151C. Mesropian,151M. Yan,151O. Atramentov,152A. Barker,152 D. Duggan,152Y. Gershtein,152R. Gray,152E. Halkiadakis,152D. Hidas,152D. Hits,152A. Lath,152S. Panwalkar,152 R. Patel,152A. Richards,152K. Rose,152S. Schnetzer,152S. Somalwar,152R. Stone,152S. Thomas,152G. Cerizza,153

M. Hollingsworth,153S. Spanier,153Z. C. Yang,153A. York,153J. Asaadi,154R. Eusebi,154J. Gilmore,154 A. Gurrola,154T. Kamon,154V. Khotilovich,154R. Montalvo,154C. N. Nguyen,154I. Osipenkov,154J. Pivarski,154

A. Safonov,154S. Sengupta,154A. Tatarinov,154D. Toback,154M. Weinberger,154N. Akchurin,155C. Bardak,155 J. Damgov,155C. Jeong,155K. Kovitanggoon,155S. W. Lee,155Y. Roh,155A. Sill,155I. Volobouev,155R. Wigmans,155

E. Yazgan,155E. Appelt,156E. Brownson,156D. Engh,156C. Florez,156W. Gabella,156M. Issah,156W. Johns,156 P. Kurt,156C. Maguire,156A. Melo,156P. Sheldon,156B. Snook,156S. Tuo,156J. Velkovska,156M. W. Arenton,157

M. Balazs,157S. Boutle,157B. Cox,157B. Francis,157R. Hirosky,157A. Ledovskoy,157C. Lin,157C. Neu,157 R. Yohay,157S. Gollapinni,158R. Harr,158P. E. Karchin,158P. Lamichhane,158M. Mattson,158C. Milste`ne,158

A. Sakharov,158M. Anderson,159M. Bachtis,159J. N. Bellinger,159D. Carlsmith,159S. Dasu,159J. Efron,159 K. Flood,159L. Gray,159K. S. Grogg,159M. Grothe,159R. Hall-Wilton,159M. Herndon,159P. Klabbers,159 J. Klukas,159A. Lanaro,159C. Lazaridis,159J. Leonard,159R. Loveless,159A. Mohapatra,159F. Palmonari,159

D. Reeder,159I. Ross,159A. Savin,159W. H. Smith,159J. Swanson,159and M. Weinberg159 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9

Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology,, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

25Department of Physics, University of Helsinki, Helsinki, Finland 26Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland

28Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France 29DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

(12)

30Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

31Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

32Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 33Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

34Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 35RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

36RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 37

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

38Deutsches Elektronen-Synchrotron, Hamburg, Germany 39University of Hamburg, Hamburg, Germany 40Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 41Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece

42University of Athens, Athens, Greece 43University of Ioa´nnina, Ioa´nnina, Greece

44KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 45Institute of Nuclear Research ATOMKI, Debrecen, Hungary

46University of Debrecen, Debrecen, Hungary 47Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49Bhabha Atomic Research Centre, Mumbai, India 50Tata Institute of Fundamental Research–EHEP, Mumbai, India 51Tata Institute of Fundamental Research–HECR, Mumbai, India 52Institute for Research and Fundamental Sciences (IPM), Tehran, Iran

53a

INFN Sezione di Bari, Bari, Italy

53bUniversita` di Bari, Bari, Italy 53cPolitecnico di Bari, Bari, Italy 54aINFN Sezione di Bologna, Bologna, Italy

54bUniversita` di Bologna, Bologna, Italy 55aINFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

56bUniversita` di Firenze, Firenze, Italy

57INFN Laboratori Nazionali di Frascati, Frascati, Italy 58INFN Sezione di Genova, Genova, Italy 59aINFN Sezione di Milano-Biccoca, Milano, Italy

59bUniversita` di Milano-Bicocca, Milano, Italy 60aINFN Sezione di Napoli, Napoli, Italy 60bUniversita` di Napoli ‘‘Federico II,’’ Napoli, Italy

61aINFN Sezione di Padova, Padova, Italy 61bUniversita` di Padova, Padova, Italy 61cUniversita` di Trento (Trento), Padova, Italy

62aINFN Sezione di Pavia, Pavia, Italy 62bUniversita` di Pavia, Pavia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy 64aINFN Sezione di Pisa, Pisa, Italy

64b

Universita` di Pisa, Pisa, Italy

64cScuola Normale Superiore di Pisa, Pisa, Italy 65aINFN Sezione di Roma, Roma, Italy 65bUniversita` di Roma ‘‘La Sapienza,’’ Roma, Italy

66aINFN Sezione di Torino, Torino, Italy 66bUniversita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67bUniversita` di Trieste, Trieste, Italy 68

Kangwon National University, Chunchon, Korea

69Kyungpook National University, Daegu, Korea

70Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71Korea University, Seoul, Korea

(13)

73Sungkyunkwan University, Suwon, Korea 74Vilnius University, Vilnius, Lithuania

75Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 76Universidad Iberoamericana, Mexico City, Mexico

77Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 78Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

79University of Auckland, Auckland, New Zealand 80University of Canterbury, Christchurch, New Zealand 81

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

82Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 83Soltan Institute for Nuclear Studies, Warsaw, Poland

84Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 85Joint Institute for Nuclear Research, Dubna, Russia

86Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 87Institute for Nuclear Research, Moscow, Russia

88Institute for Theoretical and Experimental Physics, Moscow, Russia 89Moscow State University, Moscow, Russia

90P.N. Lebedev Physical Institute, Moscow, Russia

91State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 92University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

93Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 94Universidad Auto´noma de Madrid, Madrid, Spain

95Universidad de Oviedo, Oviedo, Spain

96Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 97

CERN, European Organization for Nuclear Research, Geneva, Switzerland

98Paul Scherrer Institut, Villigen, Switzerland

99Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 100Universita¨t Zu¨rich, Zurich, Switzerland

101National Central University, Chung-Li, Taiwan 102National Taiwan University (NTU), Taipei, Taiwan

103Cukurova University, Adana, Turkey

104Middle East Technical University, Physics Department, Ankara, Turkey 105Bogazici University, Istanbul, Turkey

106National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 107University of Bristol, Bristol, United Kingdom

108Rutherford Appleton Laboratory, Didcot, United Kingdom 109Imperial College, London, United Kingdom 110Brunel University, Uxbridge, United Kingdom

111Baylor University, Waco, Texas 76706, USA 112Boston University, Boston, Massachusetts 02215, USA 113Brown University, Providence, Rhode Island 02912, USA 114University of California, Davis, Davis, California 95616, USA 115University of California, Los Angeles, Los Angeles, California 90095, USA

116University of California, Riverside, Riverside, California 92521, USA 117University of California, San Diego, La Jolla, California 92093, USA 118University of California, Santa Barbara, Santa Barbara, California 93106, USA

119California Institute of Technology, Pasadena, California 91125, USA 120

Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

121University of Colorado at Boulder, Boulder, Colorado 80309, USA 122Cornell University, Ithaca, New York 14853-5001, USA 123Fairfield University, Fairfield, Connecticut 06824, USA

124Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA 125University of Florida, Gainesville, Florida 32611-8440, USA 126Florida International University, Miami, Florida 33199, USA 127Florida State University, Tallahassee, Florida 32306-4350, USA 128Florida Institute of Technology, Melbourne, Florida 32901, USA 129

University of Illinois at Chicago (UIC), Chicago, Illinois 60607-7059, USA

130The University of Iowa, Iowa City, Iowa 52242-1479, USA 131Johns Hopkins University, Baltimore, Maryland 21218, USA

132The University of Kansas, Lawrence, Kansas 66045, USA 133Kansas State University, Manhattan, Kansas 66506, USA

(14)

134Lawrence Livermore National Laboratory, Livermore, California 94720, USA 135University of Maryland, College Park, Maryland 20742, USA 136Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

137University of Minnesota, Minneapolis, Minnesota 55455, USA 138University of Mississippi, University, Mississippi 38677, USA 139University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0111, USA 140State University of New York at Buffalo, Buffalo, New York 14260-1500, USA

141Northeastern University, Boston, Massachusetts 02115, USA 142

Northwestern University, Evanston, Illinois 60208-3112, USA

143University of Notre Dame, Notre Dame, Indiana 46556, USA 144The Ohio State University, Columbus, Ohio 43210, USA 145Princeton University, Princeton, New Jersey 08544-0708, USA

146University of Puerto Rico, Mayaguez, Puerto Rico 00680 147Purdue University, West Lafayette, Indiana 47907-1396, USA

148Purdue University Calumet, Hammond, Indiana 46323, USA 149Rice University, Houston, Texas 77251-1892, USA 150University of Rochester, Rochester, New York 14627-0171, USA 151The Rockefeller University, New York, New York 10021-6399, USA

152Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854-8019, USA 153University of Tennessee, Knoxville, Tennessee 37996-1200, USA

154Texas A&M University, College Station, Texas 77843-4242, USA 155Texas Tech University, Lubbock, Texas 79409-1051, USA

156Vanderbilt University, Nashville, Tennessee 37235, USA 157University of Virginia, Charlottesville, Virginia 22901, USA

158

Wayne State University, Detroit, Michigan 48202, USA

159University of Wisconsin, Madison, Wisconsin 53706, USA

aDeceased.

bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. cAlso at Universidade Federal do ABC, Santo Andre, Brazil.

dAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. e

Also at Suez Canal University, Suez, Egypt. fAlso at British University, Cairo, Egypt. gAlso at Fayoum University, El-Fayoum, Egypt.

hAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland.

iAlso at Massachusetts Institute of Technology, Cambridge, MA, USA. jAlso at Universite´ de Haute-Alsace, Mulhouse, France.

kAlso at Brandenburg University of Technology, Cottbus, Germany. lAlso at Moscow State University, Moscow, Russia.

mAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. nAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

oAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India. pAlso at University of Visva-Bharati, Santiniketan, India.

qAlso at Sharif University of Technology, Tehran, Iran. rAlso at Shiraz University, Shiraz, Iran.

sAlso at Isfahan University of Technology, Isfahan, Iran. t

Also at Facolta` Ingegneria Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. uAlso at Universita` della Basilicata, Potenza, Italy.

vAlso at Universita` degli studi di Siena, Siena, Italy.

wAlso at California Institute of Technology, Pasadena, CA, USA. xAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia. yAlso at University of California, Los Angeles, Los Angeles, CA, USA. zAlso at University of Florida, Gainesville, FL, USA.

aaAlso at Universite´ de Gene`ve, Geneva, Switzerland. bbAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

ccAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza’’, Roma, Italy. ddAlso at University of Athens, Athens, Greece.

(15)

ffAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. ggAlso at Paul Scherrer Institut, Villigen, Switzerland.

hhAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. iiAlso at Gaziosmanpasa University, Tokat, Turkey.

jjAlso at Adiyaman University, Adiyaman, Turkey. kkAlso at Mersin University, Mersin, Turkey.

llAlso at Izmir Institute of Technology, Izmir, Turkey. mmAlso at Kafkas University, Kars, Turkey.

nnAlso at Suleyman Demirel University, Isparta, Turkey. ooAlso at Ege University, Izmir, Turkey.

ppAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.

qqAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. rrAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

ssAlso at Utah Valley University, Orem, UT, USA. tt

Also at Institute for Nuclear Research, Moscow, Russia. uuAlso at Erzincan University, Erzincan, Turkey.

Figura

TABLE I. Signal yield n sig , efficiency , and measured differential cross sections d=dp B T and d=dy B , compared to the MC@NLO
FIG. 2 (color online). Measured differential cross sections (a) d=dp B

Riferimenti

Documenti correlati

Forse serve immaginare un futuro dell’insegnamento che sia mi- sto, o per meglio dire blended, sviluppando un modello di scuola ed università nel quale si mantenga la possibilità

Onchocerca lupi paramyosin (Ol-para, 2,643 bp cDNA) was herein isolated and characterised in adults, both males and females, and microfilariae.. The predicted Ol- PARA protein (i.e.

In 2012, during a conference in Rome about Late Antique plates deco- rated with engravings, I presented a paper about the potentially very useful contribute that the

In both cases, an accurate reflection is needed: archaic texts often present palaeographic characters, writing techniques and linguistic issues that are completely different from

Per esempio, venivano ammessi alla ricollocazione solo i richiedenti appartenenti a nazionalità per le quali la percentuale di decisioni di riconoscimento della

To identify the miRNA targetome, the 560 DE mRNAs and the 6 DE miRNAs were selected for gene target analysis, using an integrated approach of validated and predicted interaction

The ALICE Collaboration acknowledges the following funding agencies for their support in building and run- ning the ALICE detector: State Committee of Science, World Fed- eration

The clotting time was evaluated manually, and the anticoagulant activity at each cell concentration was calculated as the ratio between the clotting time of patient plasma and