• Non ci sono risultati.

The process of pair formation mediated by substrate-borne vibrations in a small insect

N/A
N/A
Protected

Academic year: 2021

Condividi "The process of pair formation mediated by substrate-borne vibrations in a small insect"

Copied!
11
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Behavioural

Processes

j ou rn a l h o m epa ge : w w w . e l s e v i e r . c o m / l o c a t e / b e h a v p r o c

The

process

of

pair

formation

mediated

by

substrate-borne

vibrations

in

a

small

insect

Jernej

Polajnar

a,∗

,

Anna

Eriksson

a,b

,

Marco

Valerio

Rossi

Stacconi

a

,

Andrea

Lucchi

b

,

Gianfranco

Anfora

a

,

Meta

Virant-Doberlet

c

,

Valerio

Mazzoni

a

aResearchandInnovationCentre,FondazioneEdmundMach,ViaE.Mach1,SanMicheleall’Adige,Italy bDepartmentofAgriculture,FoodandEnvironment,UniversityofPisa,ViadelBorghetto80,Pisa,Italy cDepartmentofEntomology,NationalInstituteofBiology,Veˇcnapot111,Ljubljana,Slovenia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received9April2014

Receivedinrevisedform15July2014 Accepted27July2014

Availableonline4August2014

Keywords: Scaphoideustitanus Matingbehaviour Identification Localization Courtship Vibrationalcommunication

a

b

s

t

r

a

c

t

Theabilitytoidentifyandlocateconspecificsdependsonreliabletransferofinformationbetweenemitter andreceiver.Foramajorityofplant-dwellinginsectscommunicatingwithsubstrate-bornevibrations, localizationofapotentialpartnermaybeadifficulttaskduetotheirsmallbodysizeandcomplex trans-missionpropertiesofplants.Inthepresentstudy,weusedtheleafhopperScaphoideustitanusasamodel toinvestigateduettingandmatesearchingassociatedwithpairformation.Studyingtheseinsectsona naturalsubstrate,weshowedthatthespatio-temporalstructureofavibrationalduetandtheperceived intensityofpartner’ssignalsinfluencethematingbehaviour.Identification,localizationandcourtship stageswereeachcharacterizedbyaspecificduetstructure.Inparticular,theduetstructurediffered insynchronizationbetweenmaleandfemalepulses,whichenablesidentificationofthepartner,while theswitchbetweenbehaviouralstageswasassociatedwiththemale-perceivedintensityofvibrational signals.Thissuggeststhatmalesobtaintheinformationabouttheirdistancefromthefemaleand opti-mizetheirstrategyaccordingly.Morebroadly,ourresultsshowthatevenininsectssmallerthan1cm, vibrationalsignalsprovidereliableinformationneededtofindamatingpartner.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Substrate-bornevibrational signalling is an ancient

commu-nication channel that is widely used by both invertebrates

(Virant-Doberletand ˇCokl,2004;CocroftandRodriguez,2005)and

vertebrates(Hill,2008).Ininsectsalone,itisusedbyanestimated

195,000species(CocroftandRodriguez,2005),oftenexclusively,

buthassofarreceivedmuchlessattentionthanairbornesound

communication.

The first step of mating sequences in sexually reproducing

insectsispairformationthatisachievedbyidentificationand

local-izationofapotentialpartnerinthehabitat(Alexanderetal.,1997).

Species-specificvibrationalsignalsusedinsexualcommunication

enableidentificationoftheemitterandprovidedirectional

infor-mation(e.g.Virant-Doberletetal.,2006;Hill,2008;Legendreetal.,

2012;DeGrootetal.,2012).Insomeinsectsthatrelyon

vibra-tionalcommunication,thesearchingforamatingpartnerhasbeen

describedas“trialanderror”(e.g.Gillham,1992)whileinothers,

∗ Correspondingauthor.Tel.:+390461615509. E-mailaddress:jernej.polajnar@fmach.it(J.Polajnar).

individualstravelledashorterpaththantheywouldduringpure

randomsearch(StewartandSandberg,2006;Legendreetal.,2012),

suggestingthattheyextracteddirectionalinformationfromsignals

themselves.

Plants are the most common signalling substrate for

invertebrates (Barth, 1998; ˇCokl and Virant-Doberlet, 2003;

CocroftandRodriguez,2005);however,theyarecomplex

struc-tures and due to signal degradation and frequency filtering

duringtransmission(Michelsenetal.,1982;Barth,1998;Magal

et al., 2000; Cocroft et al., 2006), signals may be distorted in

thefrequencyand timedomains(Michelsenetal.,1982;Miklas

etal.,2001).Differencesinamplitudeandtimeofarrivalofthe

vibrational signal to spatially separated vibration receptors in

legsarethemostobviousdirectionalcuesthatinsects mayuse

(Virant-Doberletetal.,2006).Ininsects,mostvibrationreceptors

arelocatedinthelegs(Coklˇ etal.,2006)andthereforethesize(i.e.

maximallegspan)oftheinsectisanessentialfactorforcreating

timeoramplitudedifferenceslargeenoughtobedirectlyusedin

orientation(Virant-Doberletetal.,2006).Amplitudedifferencesat

distancesasshortas2cmarelargeenoughtobedetectedinthe

nervoussystemofinsects (Stritihetal.,2000; ˇCokletal.,2006).

Ontheotherhand,theintensitygradientonplants maynotbe

http://dx.doi.org/10.1016/j.beproc.2014.07.013

(2)

areliablecueduetoamplitudeoscillationsofvibrationalsignals

during transmission (Michelsen et al., 1982; ˇCokl et al., 2007;

Polajnar et al., 2012) and the role of amplitude in orientation

behaviour is still under debate (Virant-Doberlet et al., 2006;

Mazzonietal., 2014).Furthermore,themajority ofinsects that

relyonvibrationalcommunicationaresmallerthan1cm.Inthis

case,derivingdirectionalcuesbydirectly comparingamplitude

ortimedifferencesbetweensensoryinputsmaynotbepossible

(Virant-Doberlet et al., 2006).Some small insects may instead

beable toextract directional information fromthe mechanical

responseof thewholebody (Cocroft etal.,2000),but solutions

havebeeninsufficientlystudied.

Inthepresentwork,wedescribepairformation and

search-inginasmallplant-dwellinginsectforwhichobtainingdirectional

information may be difficult. We used the Nearcticleafhopper

ScaphoideustitanusBall(Hemiptera:Cicadellidae),which

commu-nicateswithsubstrate-bornesignals(Mazzonietal.,2009a),asa

modelspecies.Thebodylengthofthisleafhopperisaround5mm,

withalegspanthatisprobablytoosmalltoenableorientationby

directcomparisonofsensoryinputs(Virant-Doberletetal.,2006).

Likeotherleafhoppers,S.titanusdoesnotrelyonchemicalsignals

(Claridge,1985;Mazzonietal.,2009a),whichallowedustofocus

onvibrationalcuesalone.

InS.titanus,themaleissearchingforthefemale,andmating

sequenceis alwaysinitiatedbythemaleemitting acalling

sig-nal(MCS)towhichthestationary femalesrespondwithpulses

emittedingapsbetweenthemalepulses(Mazzonietal.,2009a).

Asuccessfulcopulationisprecededbya male–femalecourtship

duet (CrD),which can bedisrupted by a rival male emitting a

disturbancenoise (DN)and takingover theduet. Duetting

sys-temsarecommoninarthropodcommunication(Claridge,1985;

Bailey,2003;Virant-Doberletand ˇCokl,2004),ofteninvolving

com-plexinteractionswheresignallingismodifiedbytheperceptionof

thepartner’sreply(DeGrootetal.,2012;Mazzonietal.,2009a;

Rodríguezetal.,2012).Insuchasystem,repliesbythe

station-ary individual(usuallythe female) provideinformation needed

for localization by the searching partner, but alsoby potential

eavesdroppingcompetitors(Bailey,2003).Therefore,amaleshould

optimizetheprocessofgatheringthenecessaryinformationfrom

thefemalesignalsinordertoreduceboththeenergeticcostsand

competition.Toachievethis,amaleshouldperform(1)accurate

identificationand (2) rapid localization, and shouldonly begin

withmore complexand demandingcourtship after thesetasks

have been accomplished. The same general principle hasbeen

recognizedin numerousotheranimals before(Alexander etal.,

1997),buttheapparentmonomodalityofsexualcommunication

inleafhoppersandtheabilitytoaccuratelymeasuresignalsusing

laservibrometryallowustoidentifythecuesthatguidebehaviour

inthesestagesandtriggertransitionsbetweenthem.

Understand-ingthisprocessmaythenshedlightontheproblemofextracting

informationfromvibrationalsignalsbysmallinsects.

Inthepresentwork,wethereforetestedthefollowing

assump-tion:duringpairformation,sexualbehaviourprogressesthrough

differentstages thatare characterizedand triggeredbyspecific

vibrationalcues,favouringreliabilityofrecognitionandspeedof

localizationbeforetheonsetofthemostcomplexadvertisingstage

ofcourtship.TheprocessisfacilitatedbytheabilityofS.titanus

malestouseinformation in femalesignals tomake directional

decisionsanddetectfemaleproximitydespitetheirsmallbodysize.

2. Materialandmethods

2.1. Insects

Rearingof S.titanus fromeggto adultfollowedthemethod

describedinErikssonetal.(2011).Allexperimentsweredonewith

virginandsexuallymaturemalesandfemalesatleast8daysafter

theiremergence(Mazzonietal.,2009a).Eachleafhopperwastested

onlyonce.

2.2. Experimentalsetup

Weusedgrapevinecuttingswithtwodifferentgeometriesas

substrate.Ineachcasethebottomofthestemwasputinaglassvial

filledwithwatertopreventwitheringandthevialwasplacedonan

anti-vibrationtable(Astels.a.s.,Ivrea,Italy).Inonecasethecutting

hadtwoleaves(surface6cm×10cm)withpetiolesseparatedby

a10-cmlongstemsection(Fig.1A),whileintheotherthecutting

hadthreeleaveswithpetiolesseparatedby5-cmlongstemsections

(Fig.1B).Forthepurposeofanalysis,thecuttingsweredividedinto

sections,eachwithameasuringpointinthemiddle.Forcuttings

withtwoleaves,thosewere:(1)basalleaf,(2)basalpetiole,(3)

stembetweenthetwoleaves,(4)apicalpetioleand(5)apicalleaf

(Fig.1A).Forcuttingswiththreeleaves,thesectionlabellingwas

equivalent,butfollowedthepositionofmaleandfemale(Fig.1B).

Thecuttingswerereplacedwithequivalentlyshapedfreshonesas

theywilted.

To prevent the insects from escaping, the setup was

con-tainedwithina clearPlexiglasscylinder(50cm×30cm).Mating

behaviourwasobservedfor20minoruntilthemalereachedthe

female,whichevercamefirst.Theexperimentswereperformedat

23±1◦Cbetween5pmand9pmlocaltimetoobtainhighest

sex-ualactivityfromS.titanus(Mazzonietal.,2009a),exceptintests

1.2and1.4wherethetemperaturewas28±1◦C.

Movementwasrecorded witha CanonMV1 miniDVcamera

(50FPS).Vibrationalsignalswererecordedwithalaservibrometer

(OmetronVQ-500-D-V)anddigitizedwith48kHzsamplerateand

16-bitresolution,thenstoreddirectlyontoaharddrivethrough

aLANXIdataacquisitiondevice(BrüelandKjærSound&

Vibra-tionA/S,Nærum,Denmark).Thelaserbeamwasfocusedonasmall

pieceofareflectivetapegluedtoeachmeasuringpoint.

2.3. Dataanalysisandterminology

Spectralandtemporalparametersoftherecordedsignalswere

analyzed withPulse 14.0 (Brüel and Kjær) after applying Fast

FourierTransform(FFT)withwindowlengthof400samplesand

66.7%overlap.Theequipmentwascalibrated,whichenableddirect

measurementsoftheactualsubstratevelocity.

Theterminologyusedfordescriptionofvibrationalsignalsin

S.titanus followsMazzoniet al.(2009a).Vibrationalsignalsnot

previouslydescribedwerelabelledaccordingtotheirbehavioural

context.

2.4. Test1.Signalparametersinvolvedinpairformation

2.4.1. Test1.1.Male–femalesynchronyinthecourseofmating

behaviour

PairformationwasstudiedusingamaleandafemaleofS.titanus

(N=20pairs),eachplacedonadifferentleafofthesamegrapevine

cuttingwithtwoleaves.Vibrationalsignalswereregisteredfrom

themeasuringpointonthelaminaofthebasalleafwiththemale

(Fig.1A,point1).

Toanalyzethesynchronyofmale–femalepulseswithin

vibra-tionalduets,wemeasuredpulserepetitiontime(=period)inmale

signalinpresenceandabsenceoffemalereply(i.e.femalepulse),

andfemalepulselatency(theintervalbetweenonsetsofthemale

and the femalepulse). Each of these parameters wasanalyzed

throughout the whole male–female communication sequence,

fromthestarting positionwhen amale wasona differentleaf

thanafemale,throughthemale’ssearchingphasetohisarrival

(3)

Fig.1.Experimentalsetupofthetwotests.InTest1(A),thelaserwaspointedtowardsareflectivetapeonthemaleleaflamina(ML,point1).Theotherpointsareasfollows: (2)maleleafpetiole,(3)stem,(4)femaleleafpetiole,and(5)femaleleaflamina.InTest2.2(B),8measuringpointsweredistributedalongthegrapevinecutting:6onthe leavesand2onthestem.Theleavesweremarkedasmaleleaf(ML),femaleleaf(FL)oremptyleaf(EL)accordingtotherespectivepositionsofmaleandfemaleineachtrial. Intheexampleshown,themalewasplacedonthelowerleaf,andthefemaleontheupperone.Thenumbersthereforerepresentthefollowing:(1)maleleaflamina,(2), maleleafpetiole,(3)stemfarfromthefemaleleaf,(4)emptyleafpetiole,(5)emptyleaflamina,(6)stemnearthefemaleleaf,(7)femaleleafpetiole,and(8)femaleleaf lamina.

theperiod,wecalculatedmaleresponsephase(MRP)andfemale

latencyphase(FLP)(Greenfield,1994).TheMRPwasequivalentto:

(((TT)/T)×360◦),whereTandTweretheaveragepulseperiod

inmalesignalinabsenceandinpresenceoffemalepulse,

respec-tively.TheFLPwasequivalentto:((femalepulselatency/T)×360◦).

Thevalueofresponsephasedelaywas:˛=MRP/FLP.˛=1indicated

adelayofanentirepulseperiod.Aonetailpairedt-testwasused

tocomparethedifferencebetweenTandT inordertoevaluate

whetherperiodincreasedduringeachbehaviouralstage.To

deter-minewhetherfemalepulselatencyand˛valuesdifferedamong

thebehaviouralstages,weperformedtheKruskal–Wallistest

fol-lowedbytheSteel-Dwasspairwisemultiplecomparisontest,using

statisticssoftwareKyPlot5.0(KyensLabInc.,Tokyo,Japan).

2.4.2. Test1.2.Iscourtshipinitiatedbythemaleorbythefemale?

Test1.1clearlyrevealedachangeofmalesignallingbehaviour

during the approach to a stationary female (see Section 3),

detectablebytheemissionofaharmonic“buzz”thatsignifies

pro-gressionfromthelocation duettothecourtshipduet (Mazzoni

etal.,2009a).

Suchabehaviouralswitchinamalemaybeelicitedbya

signifi-cantchangeinperceptionofthefemaleresponse;however,thefirst

questioniswhetherthechangeoffemalesignalsispassive,i.e.acue

createdbytransmissionpropertiesofthesubstratealone,oractive.

Thelatterwouldimplythatthestaticfemalereactstocuesabout

distanceinmalesignalsandmakesachangeinsomeparameter

ofherreplythatwaspreviouslyoverlookedincreatingthesignal

classificationdescribedinMazzonietal.(2009a).Toanswerthis

question,werecordedfemalesignalsatthesourceandcheckedif

thefemaleemitsaconstantsignalthroughoutthewholemale

mat-ingapproachorifthereisaneffectivevariationofanyparameter

inthefemaleresponsethatcouldelicitthemaletoprogressfrom

theLocationtotheCourtshipsignal.

WerecordedmatingbehaviourofS.titanuspairs(N=18)ona

grapevinecuttingwithtwoleaves(Fig.1A),thefemalebeingalways

placedontheapicalleaf.Malepositions duringeachtrialwere

noted,andthevibratoryemissionswererecordedfromthecentre

oftheapicalleafinclosevicinity(<5cm)tothefemale(Fig.1A,

point5).Upto12femalereplieswereanalyzedpermalelocation

pertrial(totaln=202),andallthemeasurementsfromeachplant

sectionwerepooled.Thenumberofanalyzedpulseswaslimited

topreventgivinglargerweighttotrialswheremalesearchtook

longer.SectionswerethencomparedusingtheKruskal–Wallistest

followedbytheSteel-Dwasspairwisemultiplecomparisontest.

2.4.3. Test1.3Courtshipbehaviourtrigger

Test1.2showedthatthefemalepulsesremainrelatively

con-stantthroughoutthepre-copulativephaseofthematingbehaviour

(seeSection3).Thisletusformulateafurtherhypothesisthatmales

switchfromlocationtocourtshipbehaviouraccordingtoacuein

thefemalereply,relatedtotheirownperceptionofpassivesignal

changesthatindicateproximityofthefemale.Wepredictedthat

iftheswitchinbehaviournormallyoccursatacertaindistance(or

relativepositionontheplant,i.e.occurrenceonthesameleaf)from

thefemale,weshoulddetectasignificantdifferenceinany

param-eter’svaluebetweenthemeasuringpointwherethechangefirst

occurredandallmeasuringpointsfurtheraway.

Totestthishypothesis,amaleandafemale(N=30)wereputon

separateleavesofthegrapevinecuttingwiththreeleaves(Fig.1B).

Themaleandthefemalewererandomlyplacedoneitherofthe

basal,middleorapicalleaf,thusobtainingsixdifferent

combina-tions,andleaveswerelabelled“femaleleaf”,“emptyleaf”and“male

leaf”accordingly;therefore,maleshadtodistinguishnotonlythe

leafwiththefemalefromtheirstarting position,butalsofrom

another,emptyleaf.

Priortothestartofeachtrial,weusedaminishaker(Type4810;

BrüelandKjærSound&VibrationA/S,Nærum,Denmark)tovibrate

theplantwithplaybackofpre-recordedMCSinordertoinitiate

matingbehaviour.Thefemalerepliedtotheplaybackand, asa

resultofsuchduet,themalerespondedwithrivalry(DNsignal).

Theplaybackwasthenstoppedtoallowthemaletoestablishaduet

withthefemale.Locationofthemaleduringeachphaseofmating

behaviourwasdeterminedfromvideorecordingstosynchronize

(4)

F re q ue ncy [H z]

A

m

pl

it

ude [

m

m

/s

]

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 0 0 .0 05 0. 01 0. 015 0. 02 0. 025

Fig.2.Frequencyspectrumofa“typical”femalesignalwithfrequencyrangesusedforanalysis(delimitedbygreylines).Thelowestrange0–40Hzcompriseslow-frequency externalnoise,andwasexcludedfromanalysis.

Since females remainstationary(Mazzoniet al.,2009a), the

amplitudeoftheirvibrationalsignals,measuredasvibrational

sub-stratevelocity(␮m/s)anditsspectralcomponents(Hz,frequency

ranges), couldbemeasureddirectly at8 measuringpoints

dis-tributedonthegrapevinecuttingbymovingthelaserbeamduring

malesearch(Fig.1B).Thegoalwastorecordthesignalsatallthe

measuringpointsduringeachtrial,sowedidnotnecessarilyfollow

themale’smovementwiththelaserbeam.

Wecalculated signalamplitudebyaveragingallthespectral

componentswithintherange40–250Hz where themajorityof

acoustic energy was concentrated (21 frequency bins at given

FFTsettings;Fig.2).Thismeasure,whileabsolute,shouldstillbe

regardedasaproxyforthe“true”amplitudebecauseitisnotyet

certainwhichpropertyofabroad-bandsignaltheanimals

actu-allyrespondto.Additionally, we tested whetheranyparticular

frequencycomponentofasignal,includinglow-amplitudeones,

mightalso contributetodetection,by splittingthesignal’s

fre-quencyspectrumto10rangeswithonedominantorsubdominant

spectralpeakeach,rangingupto1kHz(Fig.2).Peakvelocityvalue

withineach ofthosefrequencyrangeswasaveragedfromthree

femalepulsespermeasuringpointpertrial.Totestforstatistical

differencesofthefemalepulseamplitudesandfrequencyranges

betweenthemeasuringpoints,weperformedtheKruskal–Wallis

testfollowedbytheSteel-Dwassmultiplecomparisontest.Finally,

withthehelpofthevideos,wetooknoteofthepositiononthe

plant(Fig.1B)wheretheswitchofmalebehaviourfromlocation

tocourtshipoccurred.Thus,weassociatedthespectralanalysisof

thefemalepulseateachmeasuringpointwiththeoccurrenceof

behaviouralswitchesontheplant.

2.4.4. Test1.4.Confirmationofcourtshipbehaviourtriggerwith

playback

TofurtherconfirmtheresultsofTest1.3,weperformedan

addi-tionalplaybacktest.Weusedplaybacktoreducevariabilitycaused

bythemale–femaleinteraction,whichenabledustostudy

trans-missionalone.

ThecuttingforthistestwasthesameasforTest1.2(Fig.1A).

Again,thefemalewasalwaysplacedontheapicalleaf.A

represen-tativemalecallingsignal(withintherangeofvariabilitydescribed

inMazzonietal.,2009a)wasplayedbacktofemales(N=16)using

astaticloudspeakerplacedparalleltotheemptybasalleaf,atthe

distanceof3cm. Theamplitudeofresultingvibrationsnearthe

femalewasadjustedbeforehandtoalevelnaturallyexperienced

byfemaleswhenlisteningtoamalesignallingfromadifferentleaf,

asdeterminedfromrecordingsmadeinTest1.2.Aloudspeakerwas

usedforstimulationinordernottoinfluencesignaltransmission

nearthepointofexcitation.Eachfemale’sresponseswererecorded

byalaservibrometeratalltherecordingpoints.

Weexaminedresponselatencyandtwospectralparameters:

peakamplitude,andfrequencyofthedominantspectralpeakin

eachsignal’sfrequencyspectrum.Onlyrelativepeakamplitudein

dBwasconsideredbecausetheabsolutevalueswereofless

impor-tanceforthepurposeofthistest.Valueswerecomparedbetween

plantsectionswiththeKruskal–Wallistestfollowedbythe

Steel-Dwasspairwisemultiplecomparisontest.

2.5. Test2.DirectionalityinS.titanus

Totestthehypothesisthatmalesmake directionaldecisions

onthebasisoffemalereply,videorecordingstakenfromTest1.1

werealsoanalyzedandthemale’sdirectionalchoicesannotated.

Threeparameters were evaluated.First, we annotated whether

themale started towalktowards thefemale(1), if yes,it was

recordedasarightdecision,ifnot,asawrongdecision.Whenmales

reversedthedirection(2),itwasannotatedasawrongdecisionif

itturnedawayfromthefemaleandrightifturnedtowardsher.

Whenmalesreachedafork betweenstem andleaftherightor

wrongdecisionsatthebranchingpoint(3)werealsoannotated.

Toevaluateifmaleswereabletomakedirectionaldecisionsother

thanbychance,thenumbersofrightandwrongdecisionswere

compared inaone-tailedt-testfordependentsamplesforeach

(5)

Fig.3.FlowchartwiththebehaviouralstepsofmaleScaphoideustitanuswhen searchingforafemaleonagrapevineplant.MCS,malecallingsignal;DN, disturb-ancenoise;IdD,identificationduet;LoD,localizationduet;CrD,courtshipduet;♀ rep,femalereply;Rec,recognition;♀leaf,arrivalatthefemaleleaf;Rdir,right decision;Inv,inversionofdirection.

3. Results

3.1. Test1.PairformationinS.titanus

3.1.1. Test1.1.Male–femalesynchronyinthecourseofmating

behaviour

ThemainstepsofthematingbehaviourofS.titanusare

summa-rizedinFig.3.AsdescribedpreviouslyinMazzonietal.(2009a),in

alltrials(N=20)malesinitiatedvibrationalcommunicationwith

emissionofamalecallingsignal(MCS).Whenfemaleswerenot

responding(N=4),maleseitherremainedstationaryorexhibited

“call-fly”behaviour.Whenfemalesresponded(N=16),mostmales

(N=13)emittedpulsetrainswithanirregularrhythmandwith

anincreasedpulseperiod(Table1).Thecalculatedmaleresponse

phasedelay(˛)was0.85(Table1),whichindicatesthatfemale

responseresetstheemissionofmalepulseforalmostacomplete

pulseperiod.Such delayedexchangeof maleandfemalepulses

wastermedidentificationduet(IdD,Fig.4A)and wasobserved

onlywhenamaleandafemalewereplacedonseparateleaves.

DuringIdD, maleswalkedrandomlyontheleaf.Seven females

alsoemittedshortpulsetrains(m±SD=3.03±1.28pulses,

dura-tion=0.89±0.61s,n=31)inreplytothemalesignal.Asaresult,

maleseitherwalkedrandomlyand calledagain,oremitted

dis-turbancesignals(DN)(Mazzonietal.,2009a).

FollowingIdD,males(N=13)movedtowardsthepetioleand

walkedtostemandtowardstheleafhostingthefemale.In this

stagefemalereplyhadasmallbutsignificanteffectonthepulse

periodinmalesignal(˛=0.23)(Table1).Thisphaseofmale–female

vibrationalinteractionwasnamedlocalizationduet(LoD;Fig.4B)

Fig.4. Oscillogramof(A)identificationduet(IdD),(B)localizationduet(LoD)and(C) courtshipduet(CrD).Recordingsweremadewiththelaseronthelowerleafhosting themale.(A)Malecallingsignal(MCS)thatprogressesintoanidentificationduet (IdD),(B)twosections(S1andS2)formingthelocalizationduetwithnoisecaused bythemalewalkingfollowingtheduet.(C)S1andS2ofamalecourtshipphrase thattogetherwithfemalepulsesconstituteCrD.Asterisks(*)indicatefemalepulses; opencircles()malepulses;filledcircles(䊉)theS2singlemalepulseofsection two;hashes(#)malepulseoftypetwo(Mazzonietal.,2009a).Themalepulseperiod isTandT,inabsenceorpresenceofthefemalereply,respectively.

and wasrecorded fromthebeginning of thedirectionalsearch

untilreachingthefemaleleaf.LoDwascomposedoftwosections

repeatedcontinuously. In section 1,males werestationary and

emittedshortseries ofpulses. Insection 2,maleswalkedfor a

fewcentimetresbeforestoppingandoftenemittedasinglestrong

pulse.Femalesweresometimesobservedtoemitmultiplepulse

trains(n=6)(3.6±1.39pulses, duration=1.09±0.62s)afterthe

lastmale pulse.Themale behaviouralresponsetothemultiple

femaletrainswaseitheradirectionalsearchfollowedbyanother

(6)

Table1

˛(maleresponsephasedelay)valuesfromScaphoideustitanusidentification,localization(section1)andcourtshipduet(section1andsection2).

n N T/T(s) Flatency(s) ˛ Identificationduet 10 7 0.43±0.02/0.68±0.04 *** (t=22.4,df=9) 0.30±0.03 (25.5)b 0.85±0.17 (34.7)b

Localizationduet(section1) 10 7 0.44±0.01/0.50±0.07 ** (t=3.61,df=9) 0.29±0.01 (24.6)b 0.23±0.27 (12.7)a CrDduet(section1) 10 7 0.42±0.04/0.50±0.05 *** (t=6.4,df=9) 0.23±0.01 (9.1)a 0.37±0.22 (19.7)a CrDduet(section2) 10 7 0.62±0.06/0.69±0.08 *** (t=6.9,df=9) 0.29±0.01 (22.8)ab 0.26±0.11 (14.9)a

MRP:maleresponsephase;FLP:femalelatencyphase;T,T:averagepulseperiodinmalesignalinabsenceandinpresenceoffemalepulse,respectively;IdD:identification duet;LoD:locationduet;CrD:courtshipduet.Meanvalues±SDofT,T,femalelatency˛obtainedfromMRPandFLPofIdDandLoDrecordedfrommalesandfemaleson differentleavesaswellasfromCrD(S1andS2)ofmalesandfemalesonthesameleaf.Thenumberofinsectpairstestedforeachsignal(n)andthenumberofanalyzedsignals perpair(N)areshown.DifferentlettersinthesamecolumnindicatesignificantdifferenceafterKruskal–Wallistest(rankmeanisgiveninbrackets;Flatency:X2=13.0,

df=3,P<0.01;˛:X2=21.5,df=3,P<0.001),followedbySteel-Dwasspairwisecomparisontest. **P<0.01afteronetailedpairedt-test.

***P<0.001afteronetailedpairedt-test.

communicationwithanIdD(N=4),however,inthelattercases,the

re-identificationwaslimitedtoexchangeofafewpulsesbetween

maleandfemale–characterizedby˛valuecloseto1–that

imme-diatelyprogressedintoaLoD.ThedurationsofIdDandLoDwere

similar(Table2).

Whenthemalearrivedattheleafhostingthefemale,courtship

duet(CrD)wasestablished(N=13)(Fig.4C).During CrD,males

emittedpulsesataregularrhythmandfemalereplyhadagaina

smalleffectonthepulseperiodinthemalesignal.Thephasedelays

duringtwosectionsoftheCrD weresimilartoonedetermined

forLoDandsignificantlylowerthaninIdD(Kruskal–Wallistest:

X2=13.0,df=3,P<0.01)(Table1).Thefemalepulselatencywas

constantthroughoutallstages ofmale–female vibrational

inter-action, withvalues significantlylower only in section1 of CrD

(Kruskal–Wallis:X2=21.5,df=3,P<0.001).

3.1.2. Test1.2.Iscourtshipinitiatedbythemaleorbythefemale?

Measurements from the apical leaf revealed no consistent

changesinfemalereplyduringthecourseofthemaleapproach.

Outoftheinitial18pairstested,N=18setsofmeasurementswere

obtainedwiththemale callingfromthebasal leaf(initialmale

position),N=6fromthebasalpetiole,N=10fromthestem,N=12

fromtheapical petiole,and N=10 fromthe apicalleaf.Allthe

malesswitchedtoCrDafterreachingtheapicalleaflamina,atthe

distanceoflessthan10cmfromthefemale.Asignificant

differ-enceinthedominantfrequencyoffemalesignalswasmeasured

onlywhenmaleswerecallingfromthebasalpetioleandthe

api-calleaf(Kruskal–Wallis:X2=13.9, df=4,P=0.0078).Conversely,

femaledominantpeak amplitudewassignificantlyhigherwhen

maleswerecalling fromtheapical petiolethanfrom thebasal

leaf(Kruskal–Wallis:X2=14.0,df=4,P=0.007).Femaleresponse

latencydecreasedfrom210±23ms(maleonthebasalleaf,n=80)

to182±19ms(maleonthestem,n=22),thenremainedstable,

with184±26ms(n=37)whenthemalereachedtheapicalleaf

(Kruskal–Wallis: X2=44.2, df=4, P<0.001), however, the

Steel-Dwasstestonlyshowedsignificantdifferencebetweenthebasal

leafandthethreesectionsclosesttothefemale,i.e.stem,apical

petiole,andapicalleaf(Steel-Dwass,P<0.001).

3.1.3. Test1.3.Courtshipbehaviourtrigger

Becausefemaleresponselatencychangedonlyafterthestartof

CrDinTest1.1andbecausewedidnotmeasureanychangesin

femalereplyconsistentwithbehaviourinTest1.2,wefocusedon

spectralparametersandamplitudeoffemalesignalsasperceived

bythemale.

Mostenergyofthefemalesignalwasconcentratedinthe

cho-senfrequencyrange40–250Hz.Amplitude(expressedasaverage

velocity of spectral bins withinthis range) of thefemale reply

perceivedbythemalealongthegrapevinecuttingissummarized

inFig.5.Therewasnostatisticaldifferenceinmeasuredamplitude

offemalesignalsbetweenmalelamina,malepetiole,empty

lam-ina,emptypetioleandstem,whereastheamplitudeleveloffemale

pulsewassignificantlyincreasedwhenperceivedatthefemaleleaf

petioleandfemaleleaflamina(Kruskal–Wallistest:X2=400,df=6,

P<0.001;Fig.5,Table3).Twenty-fiveoutof27 courtshipduets

startedonthesectionoftheplantclosesttothefemale,most

com-monlyonthepetiole.Intheothertwocasesthecourtshipduet

startedonthestem,butitwasalwaysnearthefemaleleafpetiole.

Nodifferenceindominantfrequencywasfoundbetween

sec-tions (Kruskal–Wallis test: X2=9.72, df=6, P=0.137; Table 3).

Whenpeakfrequencieswithinindividualfrequencyranges(Fig.2)

ofthefemalereplywerecompared,uptothreerecordingpoints

differed significantly from the rest (Kruskal–Wallis test: df=6,

P<0.05;Table3),nevertheless,differenceswereneverrelatedto

Table2

DescriptivestatisticsondurationofScaphoideustitanusidentificationandlocalizationduets. Duration(s)

IdD(singletrain) LoD(section1) Identification(wholestage) Localization(wholestage)

Mean±SD 11.46±7.86 3.74±1.56 106.36±70.98 83.45±108.97

Max 32.96 6.92 236.96 393.11

Min 1.96 1.28 21.15 4.14

N 16 15 15 16

Mean±SD,maxandminvaluesofdurationareshownbothforsingletrainsandwholelengthofidentificationduet(IdD)andlocalizationduet(LoD,section1).Nindicates thenumberofinsectpairsanalyzed.

(7)

ma le petiole n = 7 2 ma le le af n = 6 9 em pty lea f n = 7 5 em pty pe tio le n = 7 5 s te m n = 7 8 fe ma le p etio le n = 7 8 fe ma le le af n = 6 7 ap ic a l pe tiole n = 4 5 ap ic a l lea f n = 4 5

thre e -le a f se tup (Te st 1 .3 ) tw o-le af s e tup (Te st 1 .4 ) 0 0.1 0.2 0 .3 0 .4 0.5 A ve ra g e v e lo c ity [ m m /s ] d *** NS c b a a a a ***

Fig.5.Box-plotsofaveragespectralvelocityvaluesintherange40–250Hz,measuredfromfemalesignalsonbothkindsofexperimentalsubstrates.Differentlettersfor valuesinthethree-leafsetup(Fig.1B,Test2.2)indicatestatisticalsignificanceafterKruskal–WallistestfollowedbySteel-Dwassmultiplecomparisontest.Sectionwhere theswitchfrommalelocalizationtocourtshipbehaviouroccurredismarkedwithgrey(seealsoFig.4).Valuesthatcorrespondtothebehaviouralswitchmatchthevalues obtainedonatwo-leafsetup(Fig.1A,Test2.1),alsocorrespondingtothebehaviouralswitch,butatadifferentsection(Mann–WhitneytestwithBonferronicorrection,see textfordetails).

Table3

Spectralpropertiesoffemalerepliesasperceivedbythemaleatdifferentsectionsonthecutting(Fig.1B).

Malepetiole Maleleaf(lamina) Emptypetiole Emptyleaf(lamina) Stem Femalepetiole Femaleleaf(lamina)

Dominantfrequency(Hz) 105±49 106±44 95±42 102±42 107±57 109±52 122±52

Avg.velocitywithin40–250Hz(␮m/s) 3.5±2.5 3.7±3.9 3.3±2.9 3.0±2.5 5.6±4.3 9.6±7.6 17.1±11.7 Peakfrequencieswithinspectralranges(Hz)(Fig.5)

40–100Hz 71±20 75±20 68±19 73±19 69±21 73±20 80±23 110–150Hz 137±15 133±14 140±16 139±14 134±16 138±17 134±14 160–200Hz 184±14 190±17 182±15 182±15 183±14 177±10 181±11 210–250Hz 229±14 235±16 228±13 236±15 233±14 232±14 236±16 260–300Hz 283±15 282±15 288±15 286±15 282±15 284±16 283±15 310–350Hz 336±16 333±14 335±16 334±17 336±15 334±15 330±13 360–400Hz 387±16 388±17 387±17 387±16 387±15 388±16 385±17 410–550Hz 488±50 473±54 466±49 451±43 468±49 475±57 459±48 560–700Hz 614±41 632±41 627±46 638±40 619±41 615±43 610±36 710–1000Hz 815±86 805±83 814±79 824±81 824±88 776±76 804±81 Peakvelocitieswithinspectralranges(␮m/s)(Fig.5)

40–100Hz 8.8±8.6 9.2±9.4 8.7±8.5 7.2±6.0 16.2±15.9 23.9±18.1 33.3±20.5 110–150Hz 7.6±11.0 6.2±4.9 6.2±6.5 6.7±7.0 10.5±9.0 19.2±17.0 35.3±32.9 160–200Hz 5.1±7.5 4.0±2.9 4.3±4.0 3.2±3.5 7.5±7.5 12.7±11.8 27.4±30.5 210–250Hz 2.9±5.1 2.0±2.2 1.5±1.6 1.4±1.9 3.4±4.2 4.2±4.0 11.1±12.5 260–300Hz 1.5±2.1 1.0±1.1 0.9±0.8 1.0±1.1 1.6±1.5 2.4±2.8 6.8±7.1 310–350Hz 0.6±0.6 0.7±0.9 0.6±0.6 0.5±0.7 1.0±1.3 1.4±1.3 4.6±4.8 360–400Hz 0.5±0.4 0.4±0.3 0.4±0.4 0.5±0.9 0.9±1.7 1.1±1.2 3.0±4.4 410–550Hz 0.4±0.5 0.7±0.8 0.4±0.6 0.4±0.7 0.9±1.7 1.0±0.9 2.1±2.6 560–700Hz 0.3±0.3 0.5±0.6 0.3±0.4 0.2±0.3 0.5±0.7 0.7±0.8 1.2±1.7 710–1000Hz 0.2±0.2 0.3±0.3 0.2±0.4 0.2±0.2 0.4±0.6 0.4±0.5 0.6±0.9 n 72 69 75 75 78 78 70

(8)

thedistancefromthefemale.Ontheamplitudeaxis,peak

ampli-tudewithin thefollowing individual frequency rangeschanged

consistentlywiththedistancefromthefemale(i.e.significant

dif-ferencebetweenthefemalepetioleandthestemsectionclosest

to the female leaf, sections further away with lower

ampli-tude): 110–150Hz, 160–200Hz, 310–350Hz, 360–400Hz, and

410–550Hz(Kruskal–Wallistest:df=6,P<0.05;Table3).

3.1.4. Test1.4.Confirmationofcourtshipbehaviourtriggerwith

playback

Measurementsoffemalerepliesrecordedfromdifferentpoints

ontheplantrevealedchangescausedbytransmissionalongthe

substrate.Thestimuluselicitedrepliesbyeachfemale(N=16),so

weanalyzedallthefemalesignals(exceptthefemalepulsetrains)

fromalltherecordingpointsineachtrial(totaln=643).The

base-linelatencyvalue,asmeasuredontheapicalleafclosesttothe

female(216±38ms,n=147),didnotincreasesignificantlyuntilthe

basalleafat232±37ms,n=147(Steel-Dwass,P<0.001;Fig.6A).A

small,butstatisticallysignificant,differenceoccurredonlybetween

theapicalpetioleand thestem (Steel-Dwass,P<0.05).Relative

amplitudeofthedominantpeakdecreasedconsistently,withallthe

differencesbetweenpointssignificant(Kruskal–Wallis,X2=325.4,

df=4,P<0.001;Fig.6B),exceptbetweenthestemandthebasal

petiole,andbetweenthebasal petioleandthebasalleaf

(Steel-Dwass,P=NS).Dominantfrequencydifferedsignificantlybetween

recordingpoints(Kruskal–Wallis,X2=99.6,df=4,P<0.001),butno

consistentchangesrelatedtothedistancefromtheemitterwas

observed: frequenciesat basal petiole,apicalpetioleandapical

leafwerenotstatisticallydifferent,butallwerehigherthanthe

frequencyatthebasalleaf,whichwasinturnhigherthanthe

fre-quencyatthestem(Steel-Dwass,P<0.01;Fig.6C).

Tovalidatetheaveragesubstratevelocityatwhichtheswitch

inbehaviourwasobservedinTest1.3,wecombinedbehavioural

datafromTest1.2andrecordingsfromTest1.4,bothobtainedon

acuttingwithtwoleaves(Fig.1A).Forthispurpose, the

ampli-tudewasexpressedastheaveragevelocityinthefrequencyrange

40–250Hz,thesameasinTest1.3,andcomparedbetweentests

usingtheMann–WhitneytestwithBonferronicorrection.Average

velocityincreasedfrom0.049±0.037(n=45)atfemalepetioleto

0.124±0.101(n=45)atfemaleleaflamina(Mann–Whitneytest,

W=321,P<0.001)(Fig.5).Averagevelocityatthefemaleleaf

lam-inaon thecuttingwith two leaveswas notdifferent fromthe

averagevelocityatthefemalepetioleonthecuttingwiththree

leaves(Mann–Whitneytest,W=1416,P=0.08),whileitwas

sig-nificantlyhigherthanatthestemonthecuttingwiththreeleaves

(Mann–Whitneytest,W=781,P<0.001)(Fig.5).Measured

differ-encesbetweenplantsectionsforotheranalyzedparametersdid

notcorrespondtothebehaviouralswitchinTest1.2.

3.2. Test2.Malesareabletomakedirectionaldecisions

Thenumberofrightorwrongdirectionaldecisionsmadeby

malesmovingtowardsafemaleafterafemaleresponseisshown

inFig.7.Significantlymoredecisionsweretowardsthefemale

(t-test:t=12.72,df=27,P<0.001)andwhenreversingthedirection,

significantlymoremalesmadeacorrectratherthanwrong

direc-tionaldecision(t-test:t=4.72,df=27,P<0.001).Ontheotherhand,

nodifferencebetweencorrectandwrongdirectionaldecisionswas

observedatbranchingpoints(t-test:t=1.43, df=27,P=0.32).A

male thatturned inthewrong directionmade onaveragetwo

(1.8±1.4)additionalmovesinthisdirectionbeforeturningaround.

4. Discussion

PairformationinS.titanusstartswithidentificationofthe

mat-ingpartnerandcontinueswitha localizationstageuntila final

courtshipstagebeforecopulation.Ingeneral,signalsshouldfirst

informthereceiveraboutthesender’sidentity(who?),thenthe

quality(what?)andthelocation(where?)(Pollack,2000).

4.1. Male–femalesynchrony

OurresultsindicatethatthefirstactofpairformationinS.titanus

ismaleidentificationofaconspecificfemalethroughastrict

syn-chronizationwithhisownpulses.Femalereplyhastoarrivewithin

aspecifictime window,likeinseveralotherleafhopperspecies

(Nuhardiyatiand Bailey,2005;Derlinket al.,2014),and should

notoverlapwiththenextmalepulse,becauseoverlappingwould

bemistakenbybothpartnersforadisruptivesignalemittedbya

rivalmale(Mazzonietal.,2009b);however,whileitwas

previ-ouslythoughtthatfemalepulsesareemittedonlyin-betweenthe

malepulses(Mazzonietal.,2009a),wealsofoundinthepresent

studythatfemalepulsesmaybeemittedaspulsetrains,mostoften

afterthelastmalepulse.Suchmultiplerepliesoccurredwhenthe

malewasidentifyingorlocatingthefemalefromdistantplantparts,

whichmayrepresentfemaleadaptationforincreasing

detectabil-ityand/ortraceability(i.e.serialredundancy).Malecallingsong

pulsesareemittedwithregularrhythm,indicatingthattheyare

generatedbyanendogenousoscillator.Femalesdonotreplytoall

malepulses(Mazzonietal.,2009a),suggestingthattheylistenout

foreachmalepulseandreply(ornot)toit.

Resettingofthemaleendogenousoscillatorbythecentral

ner-voussystemiscomparabletosignalinteractionsamongchorusing

males(Greenfield,1994,2005);however,S.titanusmalesdonot

formchoruses,engaginginsteadinrivalbehaviourifacompeting

maleisdetectedinthevicinity(Mazzonietal.,2009b).Thechange

inrhythmcouldinthiscasehelpthemaletodistinguishthefemale

signalfromconspecificmaleemissionsinthefirststageofmating

behaviour,whenrecognitionhasnotyetbeenachieved.Without

achangeinrhythm,twomalesemittingMCSoutofphasemight

mistakeeachotherforaconspecificfemale,whileifareply

trigg-ersprolongationofthepulseperiod,overlappingwillnecessarily

ensue.

4.2. DirectionalityinS.titanus

Theeffectoffemalereplyonmalepulseperiodatlaterstages

wassmall,suggestingthatmaterecognitionisthemainfunctionof

pulseperiodresettinginthecallingphase.Thisobservation

indi-catesacomplexandsituation-dependentneuronalcontrolofsignal

productioninmales.Afteridentificationhasbeenachieved,

accu-racyofrecognitionbecamesecondaryandspeedwasthekey,with

maleLoDsignalsthreetimesshorterthanIdDonaverage.

Asnotedbeforeinthisandotherspeciesofsmallplant-dwelling

insects(Mazzonietal.,2009a,2010;Legendreetal.,2012),males

interrupt walkingboutswithcalls afterwhich directional

deci-sions are made.Although plants constitutecomplex structures

withbranchingpoints,leavesandstems,ofwoodyandgreen

tis-sues, males of S. titanus were ableto make correct directional

decisionswhenwalkingtowardsastationaryfemale,seemingly

basedonacontinuousprocessofevaluatingtheperceived

infor-mation.Accordingtoourresults,S.titanusmalesareabletoextract

directionalinformationfromfemalereplyduringthesearch,since

significantlymoremaleswalkedtowardsthefemales;however,

malesmademanymistakesatbranchingpoints.Malesofthelarger

stinkbugNezaraviridula(Heteroptera:Pentatomidae)(size1cm),

whichcanorientreliablyatbranchingpoints,stopandstretchtheir

legsbetweenbranches,thusextendingthelegspan(Coklˇ etal.,

1999).WeneverobservedsuchbehaviourinS.titanus.Instead,we

showedthatmalesareabletocorrectthedirectionaftertheyhad

madeawrongdecision,despitetheirshortlegspan.The

(9)

0 0 .1 0 .2 0 .3 0 .4 Lat enc y [ s ] b a sa l (m a le ) le a f n = 1 4 8 b a sa l (m a le ) p e tio le n = 1 2 6

a p ica l (fem a le ) p e tio le n = 1 3 5 a p ica l (fem a le ) le a f n = 1 4 8 ste m n = 8 6 0 1 0 R e la ti v e peak am pl it ude [ d B ] 2 0 3 0 4 0 5 0 6 0 7 0 0 1 0 0 2 0 0 3 0 0 4 0 0 D o mi nant f re q uenc y [ H z] A B C c a b a b a b c c b a b a d c a c b c b a sa l (m a le ) le a f n = 1 4 8 b a sa l (m a le ) p e tio le n = 1 2 6

a p ica l (fem a le ) p e tio le n = 1 3 5 a p ica l (fem a le ) le a f n = 1 4 8 ste m n = 8 6 b a sa l (m a le ) le a f n = 1 4 8 b a sa l (m a le ) p e tio le n = 1 2 6

a p ica l (fem a le ) p e tio le n = 1 3 5

a p ica l (fem a le ) le a f n = 1 4 8 ste m

n = 8 6

Fig.6.Changesinfemaleresponsecausedbytransmissionalongthesubstrate.(A)Latency,(B)relativeamplitudeofthedominantspectralpeakindBand(C)frequencyof thedominantspectralpeak.DifferentlettersindicatestatisticalsignificancesafterKruskal–WallistestfollowedbySteel-Dwassmultiplecomparisontest.Sectionwherethe switchfrommalelocalizationtocourtshipbehaviouroccurredismarkedwithgrey.

twomovesawayfromthefemalebeforereversingtheirdirection.

Thisindicatesaperceptionofadirectionalcueeveninthe

orien-tationofsuchsmallinsects, perhapsbycomparingtherelevant

parameterofthefemaleresponsebetweenconsecutivelocations

wheretheystoptosignal.Decisionsbyamaleweremadeashe

walkedaftereveryidentifiedfemaleresponse,whileinabsenceof

femalereply,heremainedstationary.Suchasearchtacticwould

requireshort-term memoryfor comparison of signals between

neighbouringlocations,butnotthecapacityfordirect stereoor

multi-channel comparison, bearing more resemblanceto

trian-gulatingsearchbehaviourofsomebeetlesandstoneflieson2-D

surfaces(AbbottandStewart,1993;Goulsonetal.,1994)thanto

directorientationofthemorecloselyrelatedPentatomidbugs(Coklˇ

etal.,1999).

IntheleafhopperGraminellanigrifrons,searchingisfacilitated

(10)

Fig.7.Totalnumber(m±SD)ofright(towardsfemale)andwrongdirectionaldecisionsmadebymalesafterreceivingfemaleresponsealongagrapevinecutting(left). Directionaldecisionsatbranchingpoints(middle).Thenumberofmalesmakingarightorwrongdecisionafterchangingdirection(right).Asterisks(***)indicatestatistical significancesafterone-tailpairedt-test(P<0.001).

perchingonthetopoftheplant,enableslocalizationevenwithout

theneedtoextractexactdirectionalinformationfromvibrational

signals(HuntandNault,1991).Weobservednosuchpreferencein

S.titanus.Directionaldecisionsatpetiole-stemcrossingsappeared

randomandmalesfoundfemalesperchedonleavesbelowtheir

startinglocationwithoutdifficulty,furtherconfirmingthat

vibra-tionalsignalsaloneprovidetheinformationaboutbothidentity

andlocationinthisspecies.

4.3. Courtshipbehaviourtrigger

Thechange in behaviouras males progressedfrom

identifi-cation tolocalization and ultimately tocourtship suggests that

amale isaware ofwhetherthefemaleisin closeproximityor

not. Accordingtoourresults, female responseis all-or-nothing

andsignalchangesduetotransmissionthroughtheplantactas

atriggerformalecourtshipbehaviour.Significantlyhigherfemale

signalamplitudewasdetectedonor nearthefemaleleaf

com-paredtoothersectionsof theplant.We demonstratedthatthe

switchtocourtshipbehaviouroccurredwhentheaveragesubstrate

velocityoffemalesignals,asmeasuredfromcalibratedfrequency

spectraofindividualsignals,increasedtoapproximately10␮m/s.

Behaviouralswitchcorrespondedtotheamplitudethreshold,while

exact geometrywasnot important.Thisis supportedby

previ-ousresultswhenpairswereplacedonthesameleafatthestart

(Mazzoni etal., 2009a).In sucha situation,malesdidnot

per-formneitherIdDnorLoD,andMCSimmediatelyprogressedinto

acourtship duet.It couldbebeneficialtorestraintheemission

ofcourtshipsignals,whichareenrichedwithadditionalelements

(twopulsetypesandthebuzz,Mazzonietal., 2009a)and thus

likelymoreenergeticallydemanding,tothestagewhenafemaleis

alreadynearby.ThecomplexityoftheCrDcontrastswiththe

rela-tivesimplicityoftheLoD,whichisformedbyonlyonetypeofpulse

andisshorterindurationthanbothIdDandCRS.

In thepresent study, noneof themales expressed“call-fly”

behaviouraftertheduetwasestablished,whichmaybeduetothe

smallsizeoftheexperimentalsubstrate.The“call-fly”behaviour

isusuallyassociatedwithastrategytoincreasesignallingspace

(Gwynne,1987;HuntandNault,1991)andtheamplitudeinour

experimentswasprobablyhighenoughforthemalestoperforma

morelocalizedsearchbywalking,unlikeinthecaseofinter-plant

communication(Erikssonetal.,2011).

Previousworksuggestedthatfrequency-dependentattenuation

mayprovidemorereliableinformationaboutdistancethantotal

amplitude(Barthet al.,1988).We foundseveralindividual

fre-quencycomponentswhosepeakamplitudechangereflectedthe

changeintheaveragevelocityofthewholerange40–250Hz.For

thisreason,theymighthavearoleasaproximitycue,perhaps

com-plementingthechangeinamplitudeofthewholesignal,whichis

themostlikelytriggertoswitchlocalizationstageintocourtship;

however,whilewefoundsignificantchangesonthefrequencyaxis,

nopatternconsistentwithbehaviourordistancefromtheemitter

wasobvious,neitherinthedominantfrequency,northe

frequen-ciesofindividualsubdominantpeaks.Initiallywealsoconsidered

femaleresponselatencyasapotentiallyrelevantparameter,but

while latency increase wasconsistent withdistance, we found

noabruptsignificantchangeinthisparameterbetweensections

wheretheswitchinbehaviouroccurred,sowedidnotconsiderit

further.Hence,amplitudeistheparameterwebelievethemales

use,asopposedtoresponselatencyandfrequencystructureofa

femalereply.

Polajnar et al. (2012) previously demonstrated that due to

resonance,amplitudeisanunreliablecuefor assessingdistance

fromtheemitterinspeciesthatusealmostpure-tonesignals.In

broad-bandsignals,ontheotherhand,amplitudeoscillations

aver-ageoutbetweenfrequencycomponentsandleadtomonotonous

attenuationwithdistance,asalsoobservedinthepresentstudy.

Unpredictablepropagationofpure-tonesignalsbecauseof

reso-nancemaytherefore bean additionalreasonwhytheemission

of aharmonic “buzz”asanelementof male vibrationalsignals

(Mazzonietal.,2009a)isrestrictedtothefinalstage,emittedwhen

themaleisalreadyclosetothefemale.Anotherconfoundingfactor

iseccentricityofstemmotionwhereperceivedsignalamplitude

mightdependontheanglerelativetotheemitter(McNettetal.,

2006),butthisisonlynoticeableveryclosetoanemitterstanding

onapetiole.

While visualor chemical cuesmayalsobe involved in

(11)

lesslikely possibilities.Our videorecordingsshowthat females

werenotvisible fromthepetioleof thefemaleleaf(i.e. where

most courtship duets started). Until now there has been no

evidencethatchemicalcommunicationplaysarolein

reproduc-tivebehaviour of leafhoppers (Claridge, 1985), and adults rely

exclusivelyonsubstrate-bornevibrationsforintraspecific

commu-nication(Virant-Doberletand ˇCokl,2004;Mazzonietal.,2009a).

TheantennaeofS.titanusadultsinparticularhaveareduced

num-berofolfactorysensillae(StacconiandRomani,2012)andonlythe

nymphshavebeenshowntouseolfactionforrecognitionofthe

hostplant(Mazzonietal.,2009c).

Tosummarize,pairformationinleafhoppersisadynamic

pro-cesswhere the identification stage seems to be optimized for

reliability and the localization stage for speed, while energetic

demandsmayberationalizedbystartingthecostliestandmost

complexadvertisingstageonlyafterthefirsttwotaskshavebeen

accomplished.Secondly,leafhoppermalesareabletointerpret

rel-evantinformationcontainedinfemalesignals’perceivedamplitude

andtemporalsynchronywithmales’ownsignals,therefore

utiliz-ingnotonlyfemalereplyperse,butalsotransmissionproperties

ofthesubstratetoguidetheirbehaviour.

It is theauthors’belief thatbehaviour in ourchosen model

speciesmay,becauseofitssimplicity,providefurtherinsightsin

theinsectmatingprocess,eitherthroughobservationorthrough

manipulationofsignals(seealsoMazzonietal.,2009b;Eriksson

etal., 2012).Buildingupon thesebasicinsights, similarly

opti-mizedstrategiesformaterecognitionandlocalizationshouldalso

besearchedforinotherspeciesofanimals.

Acknowledgments

WethankElisabettaLeonardelli,MatteoGraiffandLuca

Nico-lettiforrearingofinsects,andDr.GiovannaFlaimforimproving

the English. This work was supported by the European Union

SeventhFramework Programme(grant agreementno.265865),

AutonomousProvinceof Trento(Accordo di Programma 2010),

Slovenian Research Agency (P1-0255, J1-2181), Pisa University

(FondidiAteneo)andCBC-EuropeLtd.,Milano,Italy.

References

Abbott,J.C.,Stewart,K.W.,1993.Malesearchbehaviorofthestonefly,Pteronarcella badia(Hagen)(Plecoptera:Pteronarcyidae),inrelationtodrumming.J.Insect Behav.6(4),467–481.

Alexander,R.D.,Marshall,D.C.,Cooley,J.R.,1997.Evolutionaryperspectivesoninsect mating.In:Choe,J.C.,Crespi,B.J.(Eds.),TheEvolutionofMatingSystemsin InsectsandArachnids.CambridgeUniversityPress,Cambridge(UK),pp.4–31.

Bailey,W.J.,2003.Insectduets:underlyingmechanismsandtheirevolution.Physiol. Entomol.28,157–174.

Barth,F.G.,Bleckmann,H.,Bohnenberger,J.,Seyfarth,E.-A.,1988.Spidersofthe genusCupienniusSimon1891(Araneae,Ctenidae).II.Onthevibratory environ-mentofawanderingspider.Oecologia77,194–201.

Barth,F.G.,1998.Thevibrationalsenseofspiders.In:Hoy,R.R.,Popper,A.N.,Fay, R.R.(Eds.),ComparativeHearing:Insects.Springer,NewYork,pp.228–278.

Claridge,M.F.,1985.AcousticsignalsintheHomoptera:behaviour,taxonomy,and evolution.Annu.Rev.Entomol.30,297–317.

Cocroft,R.B.,Tieu,T.D.,Hoy,R.R.,Miles,R.N.,2000.Directionalityinthemechanical responsetosubstratevibrationinthetreehopper(Hemiptera:Membracidae: Umboniacrassicornis).J.Comp.Physiol.186,695–705.

Cocroft,R.B.,Rodriguez,R.L.,2005.Thebehaviouralecologyofinsectvibrational communication.Bioscience55,323–334.

Cocroft,R.B.,Shugart,H.J.,Konrad,K.T.,Tibbs,K.,2006.Variationinplant sub-stratesanditsconsequencesforinsectvibrationalcommunication.Ethology 112,779–789.

ˇ

Cokl,A.,Virant-Doberlet,M.,McDowel,A.,1999.Vibrationaldirectionalityinthe southerngreenstinkbugNezaraviridula(L.)ismediatedbyfemalesong.Anim. Behav.58,1277–1283.

ˇ

Cokl,A.,Virant-Doberlet,M.,2003.Communicationwithsubstrate-bornesignalsin smallplant-dwellinginsects.Annu.Rev.Entomol.48,29–50.

ˇ

Cokl,A.,Virant-Doberlet,M.,Zorovi ´c,M.,2006.Senseorgansinvolvedinvibratory communicationofbugs.In:Drosopoulos,S.,Claridge,M.F.(Eds.),InsectSounds andCommunication.Taylor&Francis,BocaRaton,pp.71–80.

ˇ

Cokl,A.,Zorovi ´c,M.,Millar,J.G.,2007.Vibrationalcommunicationalongplantsby thestinkbugsNezaraviridulaandMurgantiahistrionica.Behav.Process.75,40– 54.

De Groot, M., ˇCokl, A., Virant-Doberlet, M., 2012. Search behaviour of two hemipteranspeciesusing vibrationalcommunication. Cent.Eur. J. Biol.6, 756–769.

Derlink,M.,Pavlovˇciˇc,P.,Stewart,A.J.A.,Virant-Doberlet,M.,2014.Materecognition induettingspecies:theroleofmaleandfemalevibrationalsignals.Anim.Behav. 90,181–193.

Eriksson,A.,Anfora,G.,Lucchi,A.,Virant-Doberlet,M.,Mazzoni,V.,2011.Inter-plant vibrationalcommunicationinaleafhopperinsect.PLoSONE6(5),e19692.

Eriksson,A.,Anfora,G.,Lucchi,A.,Lanzo,F.,Virant-Doberlet,M.,Mazzoni,V.,2012.

Exploitationofinsectvibrationalsignalsrevealsanewmethodofpest manage-ment.PLoSONE7(3),e32954.

Gillham,M.C.,1992.Variationinacousticsignalswithinandamongleafhoppers speciesofthegenusAlebra(Homoptera,Cicadellidae).Biol.J.Linn.Soc.45,1–15.

Goulson,D.,Birch,M.C.,Wyatt,T.D.,1994.Matelocationinthedeathwatchbeetle, XestobiumrufovillosumDeGeer(Anobiidae):orientationtosubstratevibrations. Anim.Behav.47,899–907.

Greenfield,M.D.,1994.Synchronousandalternatingchorusesininsectsand anu-rans:commonmechanismsanddiversefunctions.Am.Zool.34,605–615.

Greenfield,M.D.,2005.Mechanismsandevolutionofcommunalsexualdisplaysin arthropodsandanurans.Adv.Stud.Behav.35,1–62.

Gwynne,D.T.,1987.Sex-biasedpredationandtheriskymate-locatingbehaviourof maletick-tockcicadas(Homoptera,Cicadidae).Anim.Behav.35,571–576.

Hill,P.S.M.,2008.VibrationalCommunicationinAnimals.HarvardUniversityPress, Cambridge,MA.

Hunt,R.E.,Nault,L.R.,1991.Rolesofinterplantmovement,acoustic communica-tion,andphototaxisinmate-locationbehaviouroftheleafhopperGraminella nigrifrons.Behav.Ecol.Sociobiol.28,315–320.

Legendre, F., Marting, P.R., Cocroft, R., 2012. Competitive masking of vibra-tional signals during mate searching in a treehopper. Anim. Behav. 83, 361–368.

Magal,C.,Schöller,M.,Tautz,J.,Casas,J.,2000.Theroleofleafstructureinvibration propagation.J.Acoust.Soc.Am.108,2412–2418.

Mazzoni,V.,Preˇsern,J.,Lucchi,A.,Virant-Doberlet,M.,2009a.Reproductivestrategy oftheNearcticleafhopperScaphoideustitanusBall(Hemiptera:Cicadellidae). Bull.Entomol.Res.99,401–413.

Mazzoni,V.,Lucchi,A., ˇCokl,A.,Preˇsern,J.,Virant-Doberlet,M.,2009b.Disruption ofthereproductivebehaviourofScaphoideustitanusbyplaybackofvibrational signals.Entomol.Exp.Appl.133,174–185.

Mazzoni,V.,Ioriatti,C.,Trona,F.,Lucchi,A.,DeCristofaro,A.,Anfora,G.,2009c.Study ontheroleofolfactioninhostplantdetectionofScaphoideustitanus(Hemiptera: Cicadellidae)nymphs.J.Econ.Entomol.102,974–980.

Mazzoni,V.,Lucchi,A.,Ioriatti,C.,Virant-Doberlet,M.,Anfora,G.,2010.Mating behaviourofHyalesthesobsoletus(Hemiptera:Cixiidae).Ann.Entomol.Soc.Am. 103(5),813–822.

Mazzoni,V.,Eriksson,A.,Anfora,G.,Lucchi,A.,Virant-Doberlet,M.,2014.Active spaceandroleofamplitudeinplant-bornevibrationalcommunication. In: Cocroft,R.B.,Gogala,M.,Hill,P.S.M.,Wessel,A.(Eds.),StudyingVibrational Com-munication.Berlin,Springer,http://dx.doi.org/10.1007/978-3-662-43607-38. McNett,G.D.,Miles,R.N.,Homentcovschi,D.,Cocroft,R.B.,2006.Amethodfor

two-dimensionalcharacterizationofanimalvibrationalsignalstransmittedalong plantstems.J.Comp.Physiol.A192,1245–1251.

Michelsen,A.,Fink,F.,Gogala,M.,Traue,D.,1982.Plantsastransmissionchannelfor insectvibrationalsongs.Behav.Ecol.Sociobiol.11,269–281.

Miklas,N.,Stritih,N., ˇCokl,A.,Virant-Doberlet,M.,Renou,M.,2001.Theinfluenceof substrateonmaleresponsivenesstothefemalecallingsonginNezaraviridula. J.Insect.Behav.14,313–332.

Nuhardiyati,M.,Bailey,W.,2005.Callingandduettingbehaviourinthe leafhop-perBalcluthaincisa(Hemiptera:Cicadellidae:Deltocephalinae):opportunityfor femalechoice?J.Insect.Behav.18(2),259–280.

Polajnar,J.,Svenˇsek,D., ˇCokl,A.,2012.Resonanceinherbaceousplantstemsasa factorinvibrationalcommunicationofPentatomidbugs(Heteroptera: Pentato-midae).J.R.Soc.Interface9,1898–1907.

Pollack,G.,2000.Who,what,where?Recognitionandlocalizationofacousticsignals byinsects.Curr.Opin.Neurobiol.10,763–767.

Rodríguez, R.L., Haen, C.,Cocroft, R.B., Fowler-Finn, K.D., 2012. Males adjust signalingeffortbasedonfemalemate-preferencecues.Behav.Ecol.23(6), 1218–1225.

Stacconi,M.V.,Romani,R.,2012.AntennalsensorystructuresinScaphoideustitanus Ball(Hemiptera,Cicadellidae).Microsc.Res.Tech.75,458–466.

Stewart,K.W.,Sandberg,J.B.,2006.Vibrationalcommunicationandmatesearching behaviourinstoneflies.In:Drosopoulos,S.,Claridge,M.F.(Eds.),InsectSounds andCommunication.Taylor&Francis,BocaRaton,pp.179–186.

Stritih,N.,Virant-Doberlet,M., ˇCokl,A.,2000.GreenstinkbugNezaraviriduladetects differencesinamplitudebetweencourtshipsongvibrationsatstemand petio-lus.Eur.J.Physiol.Suppl.439,R190–R192.

Virant-Doberlet,M., ˇCokl,A.,2004.Vibrationalcommunicationininsects.Neotrop. Entomol.33,121–134.

Virant-Doberlet,M., ˇCokl,A.,Zorovi ´c,M.,2006.Useofsubstratevibrationsfor orientation:frombehaviourtophysiology.In:Drosopoulos,S.,Claridge,M.F. (Eds.), Insect Sounds and Communication. Taylor & Francis, Boca Raton, pp.81–97.

Riferimenti

Documenti correlati

3 shows the maximum values obtained from the time history of the acceleration of horizontal components P-01x of vibrations caused by passages of the Pendolino and

Ensuite, nous avons analysé la situation par chaque État (tous les 215 Pays du monde), en mettant l'accent sur la présence de plans spécifiques pour la création et la

More specifically, for the ISO 9241 standard, “a product’s usability is the degree to which it can be used by specified users to reach specified goals with effectiveness,

In terms of outcome, we found that only 50% of patients treated with DEC alone achieved a parasitological cure. This drug showed a cure rate of 73% in a work by Saito et al[ 19 ],

Two regions of Romania and Italy have been considered as case studies in order to promote good practices and actions for sustainable municipal solid waste management.. Specific

Hidden collections in museums and heritage repositories (meaning pieces stored and not accessible to public) actually represent an attractive investment target. In 2011 the “Corte dei

Environmental impact assessment; infrastructure investments; landscape-scale development planning; multilateral development bank; natural capital; road development

However, our work in grapevine (Chapter 5) revealed a putative role for VvMLO6, a gene that is also non-responsive to PM inoculation, therefore, the possibility of a role