• Non ci sono risultati.

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 15 (4), 663–73

N/A
N/A
Protected

Academic year: 2021

Condividi "Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 15 (4), 663–73"

Copied!
8
0
0

Testo completo

(1)

[1] Abe, E., Yamamoto, M., Taguchi, Y., Lecka-Czernik, B., O’Brien, C. A., Eco- nomides, A. N., Stahl, N., Jilka, R. L., & Manolagas, S. C. (2000). Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: antagonism by noggin. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 15 (4), 663–73.

[2] Abramoff, M. D., Magelhaes, P. J., & Ram, S. J. (2004). Image Processing with ImageJ. Biophotonics International, 11 (7), 36–42.

[3] Acampora, D., Avantaggiato, V., Tuorto, F., Briata, P., Corte, G., & Simeone, a. (1998). Visceral endoderm-restricted translation of Otx1 mediates recove- ry of Otx2 requirements for specification of anterior neural plate and normal gastrulation. Development (Cambridge, England), 125 (24), 5091–104.

[4] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990).

Basic local alignment search tool. Journal of molecular biology , 215 (3), 403–10.

[5] Anderson, S. a., Eisenstat, D. D., Shi, L., & Rubenstein, J. L. (1997). Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science (New York, N.Y.), 278 (5337), 474–6.

[6] Bachiller, D., Klingensmith, J., Kemp, C., Belo, J. A., Anderson, R. M., May, S. R., McMahon, J. A., McMahon, A. P., Harland, R. M., Rossant, J., & De Robertis, E. M. (2000). The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature, 403 (6770), 658–61.

[7] Bosse, a., Z¨ulch, a., Becker, M. B., Torres, M., G´omez-Skarmeta, J. L., Modo- lell, J., & Gruss, P. (1997). Identification of the vertebrate Iroquois homeobox gene family with overlapping expression during early development of the nervous system. Mechanisms of development, 69 (1-2), 169–81.

[8] Bradley, A., Evans, M., Kaufman, M. H., & Robertson, E. (1984). Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 309 (5965), 255–6.

[9] Briscoe, J., Pierani, A., Jessell, T. M., & Ericson, J. (2000). A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell, 101 (4), 435–45.

(2)

[10] Bulfone, A., Smiga, S. M., Shimamura, K., Peterson, A., Puelles, L., & Ruben- stein, J. L. (1995). T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron, 15 (1), 63–78.

[11] Burdon, T., Chambers, I., Stracey, C., Niwa, H., & Smith, A. (1999). Signaling mechanisms regulating self-renewal and differentiation of pluripotent embryonic stem cells. Cells, tissues, organs, 165 (3-4), 131–43.

[12] Capecchi, M. R. (1989). Altering the genome by homologous recombination.

Science (New York, N.Y.), 244 (4910), 1288–92.

[13] Caviness, V. S., & Takahashi, T. (1995). Proliferative events in the cerebral ventricular zone. Brain & development, 17 (3), 159–63.

[14] Chambers, S. M., Fasano, C., Papapetrou, E. P., Tomishima, M., Sadelain, M.,

& Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature, 27 (3), 275–280.

[15] Chatzi, C., Brade, T., & Duester, G. (2011). Retinoic Acid Functions as a Key GABAergic Differentiation Signal in the Basal Ganglia. PLoS Biology , 9 (4), e1000609.

[16] Chen, F., & Capecchi, M. R. (1997). Targeted mutations in hoxa-9 and hoxb-9 reveal synergistic interactions. Developmental biology , 181 (2), 186–96.

[17] Chiba, S., Kurokawa, M. S., Yoshikawa, H., Ikeda, R., Takeno, M., Tadokoro, M., Sekino, H., Hashimoto, T., & Suzuki, N. (2005). Noggin and basic FGF were implicated in forebrain fate and caudal fate, respectively, of the neural tube- like structures emerging in mouse ES cell culture. Experimental brain research.

Experimentelle Hirnforschung. Exp´erimentation c´er´ebrale, 163 (1), 86–99.

[18] DeCamp, D. L., Thompson, T. M., de Sauvage, F. J., & Lerner, M. R. (2000).

Smoothened activates Galphai-mediated signaling in frog melanophores. The Journal of biological chemistry , 275 (34), 26322–7.

[19] Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., Kawada, M., Yonemura, S., Matsumura, M., Wataya, T., Nishiyama, A., Muguruma, K., & Sasai, Y. (2008).

Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell stem cell, 3 (5), 519–32.

[20] Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 95 (25), 14863–8.

[21] Eyal-Giladi, H. (1954). Dynamic aspects of neural induction in amphibia. Archives de biologie, 65 (2), 179–259.

[22] Furuta, Y., Piston, D. W., & Hogan, B. L. (1997). Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development (Cambridge, England), 124 (11), 2203–12.

[23] Gaspard, N., Bouschet, T., Herpoel, A., Naeije, G., van den Ameele, J., &

Vanderhaeghen, P. (2009). Generation of cortical neurons from mouse embryonic stem cells. Nature protocols, 4 (10), 1454–63.

(3)

[24] Gaspard, N., & Vanderhaeghen, P. (2010). Mechanisms of neural specification from embryonic stem cells. Current opinion in neurobiology , 20 (1), 37–43.

[25] Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J. Y. H., & Zhang, J. (2004). Biocon- ductor: open software development for computational biology and bioinformatics.

Genome biology , 5 (10), R80.

[26] Godsave, S. F., & Slack, J. M. (1989). Clonal analysis of mesoderm induction in Xenopus laevis. Developmental biology , 134 (2), 486–90.

[27] G¨otz, M., & Barde, Y.-A. (2005). Radial glial cells defined and major in- termediates between embryonic stem cells and CNS neurons. Neuron, 46 (3), 369–72.

[28] G¨otz, M., & Huttner, W. B. (2005). The cell biology of neurogenesis. Nature reviews. Molecular cell biology , 6 (10), 777–88.

[29] Gratsch, T. E., & O’Shea, K. S. (2002). Noggin and chordin have distinct activities in promoting lineage commitment of mouse embryonic stem (ES) cells.

Developmental Biology , 245 (1), 83–94.

[30] Groppe, J., Greenwald, J., Wiater, E., Rodriguez-Leon, J., Economides, A. N., Kwiatkowski, W., Baban, K., Affolter, M., Vale, W. W., Izpisua Belmonte, J. C.,

& Choe, S. (2003). Structural basis of BMP signaling inhibition by Noggin, a novel twelve-membered cystine knot protein. The Journal of bone and joint surgery. American volume, 85-A Suppl, 52–8.

[31] Guan, K., Chang, H., Rolletschek, A., & Wobus, A. M. (2001). Embryonic stem cell-derived neurogenesis. Retinoic acid induction and lineage selection of neuronal cells. Cell and tissue research, 305 (2), 171–6.

[32] Hendrickx, M., Van, X. H., & Leyns, L. (2009). Anterior-posterior patterning of neural differentiated embryonic stem cells by canonical Wnts, Fgfs, Bmp4 and their respective antagonists. Development, growth & differentiation, 51 (8), 687–98.

[33] Hevner, R. F., Shi, L., Justice, N., Hsueh, Y., Sheng, M., Smiga, S., Bulfone, a., Goffinet, a. M., Campagnoni, a. T., & Rubenstein, J. L. (2001). Tbr1 regulates differentiation of the preplate and layer 6. Neuron, 29 (2), 353–66.

[34] Hollnagel, A., Oehlmann, V., Heymer, J., R¨uther, U., & Nordheim, a. (1999).

Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. The Journal of biological chemistry , 274 (28), 19838–45.

[35] Kinney, J. W., Davis, C. N., Tabarean, I., Conti, B., Bartfai, T., & Behrens, M. M. (2006). A specific role for NR2A-containing NMDA receptors in the main- tenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons.

The Journal of neuroscience : the official journal of the Society for Neuroscience, 26 (5), 1604–15.

(4)

[36] Lamb, T. M., Knecht, A. K., Smith, W. C., Stachel, S. E., Economides, A. N., Stahl, N., Yancopolous, G. D., & Harland, R. M. (1993). Neural induction by the secreted polypeptide noggin. Science (New York, N.Y.), 262 (5134), 713–8.

[37] Lan, L., Vitobello, A., Bertacchi, M., Cremisi, F., Vignali, R., Andreazzoli, M., Demontis, G. C., Barsacchi, G., & Casarosa, S. (2009). Noggin elicits retinal fate in Xenopus animal cap embryonic stem cells. Stem cells (Dayton, Ohio), 27 (9), 2146–52.

[38] Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M., & McKay, R. D. (2000).

Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nature biotechnology , 18 (6), 675–9.

[39] Levine, A. J., & Brivanlou, A. H. (2007). Proposal of a model of mammalian neural induction. Developmental biology , 308 (2), 247–56.

[40] Li, C., & Lee, C. (1993). Minimum cross entropy thresholding. Pattern Recognition, 26 (4), 617–625.

[41] Li, X.-J., Zhang, X., Johnson, M. A., Wang, Z.-B., Lavaute, T., & Zhang, S.-C.

(2009). Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development (Cambridge, England), 136 (23), 4055–63.

[42] McConnell, S. K. (1995). Constructing the cerebral cortex: neurogenesis and fate determination. Neuron, 15 (4), 761–8.

[43] McConnell, S. K., & Kaznowski, C. E. (1991). Cell cycle dependence of laminar determination in developing neocortex. Science (New York, N.Y.), 254 (5029), 282–5.

[44] McMahon, J. A., Takada, S., Zimmerman, L. B., Fan, C.-M., Harland, R. M.,

& McMahon, A. P. (1998). Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes &

Development, 12 (10), 1438–1452.

[45] McNeish, J., Roach, M., Hambor, J., Mather, R. J., Weibley, L., Lazzaro, J., Gazard, J., Schwarz, J., Volkmann, R., Machacek, D., Stice, S., Zawadzke, L., O’Donnell, C., & Hurst, R. (2010). High-throughput screening in embryonic stem cell-derived neurons identifies potentiators of AMPA-type glutamate receptors.

The Journal of biological chemistry , 285 (22), 17209 –17217.

[46] Moustakas, A., Souchelnytskyi, S., & Heldin, C. H. (2001). Smad regulation in TGF-beta signal transduction. Journal of cell science, 114 (Pt 24), 4359–69.

[47] Nadri, S., Soleimani, M., Hosseni, R. H., Massumi, M., Atashi, A., & Izadpanah, R. (2007). An efficient method for isolation of murine bone marrow mesenchymal stem cells. The International journal of developmental biology , 51 (8), 723–9.

[48] Nieuwkoop, P. D. (1952). Activation and organization of the central nervous system in amphibians. Part II. Differentiation and organization. Journal of Experimental Zoology , 120 (1), 33–81.

(5)

[49] Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct- 3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature genetics, 24 (4), 372–6.

[50] Nordg˚a rd, O., Kvalø y, J. T., Farmen, R. K., & Heikkil¨a, R. (2006). Error propagation in relative real-time reverse transcription polymerase chain reaction quantification models: the balance between accuracy and precision. Analytical biochemistry , 356 (2), 182–93.

[51] Oliver, G., Mailhos, A., Wehr, R., Copeland, N. G., Jenkins, N. A., & Gruss, P. (1995). Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development (Cambridge, England), 121 (12), 4045–55.

[52] Parr, B. a., Shea, M. J., Vassileva, G., & McMahon, a. P. (1993). Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development (Cambridge, England), 119 (1), 247–61.

[53] Pera, E. M., & Kessel, M. (1997). Patterning of the chick forebrain anlage by the prechordal plate. Development (Cambridge, England), 124 (20), 4153–62.

[54] Piccolo, S., Sasai, Y., Lu, B., & De Robertis, E. M. (1996). Dorsoventral pat- terning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell, 86 (4), 589–98.

[55] Qin, B. Y., Lam, S. S., Correia, J. J., & Lin, K. (2002). Smad3 allostery links TGF-beta receptor kinase activation to transcriptional control. Genes &

development, 16 (15), 1950–63.

[56] Ragsdale, C. W., & Grove, E. A. (2001). Patterning the mammalian cerebral cortex. Current opinion in neurobiology , 11 (1), 50–8.

[57] Rakic, P. (1971). Guidance of neurons migrating to the fetal monkey neocortex.

Brain research, 33 (2), 471–6.

[58] Rakic, P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. The Journal of comparative neurology , 145 (1), 61–83.

[59] Ralph, P., & Nakoinz, I. (1977). Antibody-dependent killing of erythrocyte and tumor targets by macrophage-related cell lines: enhancement by PPD and LPS.

Journal of immunology (Baltimore, Md. : 1950), 119 (3), 950–54.

[60] Ramfrez-Solis, R., Zheng, H., Whiting, J., Krumlauf, R., & Bradley, A. (1993).

Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell, 73 (2), 279–294.

[61] Raschke, W. C., Baird, S., Ralph, P., & Nakoinz, I. (1978). Functional macrophage cell lines transformed by Abelson leukemia virus. Cell, 15 (1), 261–7.

[62] Regad, T., Roth, M., Bredenkamp, N., Illing, N., & Papalopulu, N. (2007). The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKI and FGF. Nature cell biology , 9 (5), 531–40.

(6)

[63] Rozen, S., & Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods in molecular biology (Clifton, N.J.), 132 , 365–86.

[64] Sakakibara, S., Nakamura, Y., Satoh, H., & Okano, H. (2001). Rna-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. The Journal of neuroscience : the official journal of the Society for Neuroscience, 21 (20), 8091–107.

[65] Saldanha, A. J. (2004). Java Treeview–extensible visualization of microarray data.

Bioinformatics (Oxford, England), 20 (17), 3246–8.

[66] Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., & Brivanlou, A. H. (2004).

Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature medicine, 10 (1), 55–63.

[67] Sauer, F. C. (1935). Mitosis in the neural tube. The Journal of Comparative Neurology , 62 (2), 377–405.

[68] Shimozaki, K., Nakashima, K., Niwa, H., & Taga, T. (2003). Involvement of Oct3/4 in the enhancement of neuronal differentiation of ES cells in neurogenesis- inducing cultures. Development (Cambridge, England), 130 (11), 2505–12.

[69] Simeone, A., Acampora, D., Arcioni, L., Andrews, P. W., Boncinelli, E., & Ma- vilio, F. (1990). Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature, 346 (6286), 763–6.

[70] Simeone, A., Gulisano, M., Acampora, D., Stornaiuolo, A., Rambaldi, M., &

Boncinelli, E. (1992). Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. The EMBO journal, 11 (7), 2541–50.

[71] Smith, A. G., Nichols, J., Robertson, M., & Rathjen, P. D. (1992). Differentiation inhibiting activity (DIA/LIF) and mouse development. Developmental biology , 151 (2), 339–51.

[72] Smith, W. C., & Harland, R. M. (1992). Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell, 70 (5), 829–40.

[73] Smith, W. C., Knecht, A. K., Wu, M., & Harland, R. M. (1993). Secreted noggin protein mimics the Spemann organizer in dorsalizing Xenopus mesoderm. Nature, 361 (6412), 547–9.

[74] Smukler, S. R., Runciman, S. B., Xu, S., & van der Kooy, D. (2006). Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. The Journal of cell biology , 172 (1), 79–90.

[75] Spemann, H., & Mangold, H. (2001). Induction of embryonic primordia by im- plantation of organizers from a different species. 1923. The International journal of developmental biology , 45 (1), 13–38.

(7)

[76] Stewart, C. L., & Cullinan, E. B. (1997). Preimplantation development of the mammalian embryo and its regulation by growth factors. Developmental genetics, 21 (1), 91–101.

[77] Stoykova, A., & Gruss, P. (1994). Roles of Pax-genes in developing and adult brain as suggested by expression patterns. The Journal of neuroscience : the official journal of the Society for Neuroscience, 14 (3 Pt 2), 1395–412.

[78] Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., &

Mesirov, J. P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102 (43), 15545–50.

[79] Taipale, J., Chen, J. K., Cooper, M. K., Wang, B., Mann, R. K., Milenkovic, L., Scott, M. P., & Beachy, P. A. (2000). Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature, 406 (6799), 1005–9.

[80] Tropepe, V., Hitoshi, S., Sirard, C., Mak, T. W., Rossant, J., Toronto, T., Biophysics, M., & Genetics, M. (2001). Direct Neural Fate Specification from Embryonic Stem Cells: A Primitive Mammalian Neural Stem Cell Stage Acquired through a Default Mechanism. Neuron, 30 , 65–78.

[81] Viczian, A. S., Solessio, E. C., Lyou, Y., & Zuber, M. E. (2009). Generation of functional eyes from pluripotent cells. PLoS biology , 7 (8), e1000174.

[82] Watanabe, K., Kamiya, D., Nishiyama, A., Katayama, T., Nozaki, S., Kawasaki, H., Watanabe, Y., Mizuseki, K., & Sasai, Y. (2005). Directed differentiation of telencephalic precursors from embryonic stem cells. Nature neuroscience, 8 (3), 288–96.

[83] Wataya, T., Ando, S., Muguruma, K., Ikeda, H., Watanabe, K., Eiraku, M., Kawada, M., Takahashi, J., Hashimoto, N., & Sasai, Y. (2008). Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation.

Proceedings of the National Academy of Sciences of the United States of America, 105 (33), 11796–801.

[84] Wilson, P. A., & Hemmati-Brivanlou, A. (1995). Induction of epidermis and inhibition of neural fate by Bmp-4. Nature, 376 (6538), 331–3.

[85] Wilson, S. W., & Houart, C. (2004). Early steps in the development of the forebrain. Developmental cell, 6 (2), 167–81.

[86] Wrana, J. L., Attisano, L., Wieser, R., Ventura, F., & Massagu´e, J. (1994).

Mechanism of activation of the TGF-beta receptor. Nature, 370 (6488), 341–7.

[87] Wurst, W., Auerbach, A. B., & Joyner, A. L. (1994). Multiple developmental de- fects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development (Cambridge, England), 120 (7), 2065–75.

[88] Xuan, S., Baptista, C. A., Balas, G., Tao, W., Soares, V. C., & Lai, E. (1995).

Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron, 14 (6), 1141–52.

(8)

[89] Ying, Q. L., Nichols, J., Chambers, I., & Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 115 (3), 281–92.

[90] Yue, B., Lu, B., Dai, K. R., Zhang, X. L., Yu, C. F., Lou, J. R., & Tang, T. T.

(2005). BMP2 gene therapy on the repair of bone defects of aged rats. Calcified tissue international, 77 (6), 395–403.

[91] Zhang, S. C., Wernig, M., Duncan, I. D., Br¨ustle, O., & Thomson, J. A. (2001).

In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature biotechnology , 19 (12), 1129–33.

[92] Zimmerman, L. B., De Jes´us-Escobar, J. M., & Harland, R. M. (1996). The Spe- mann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell, 86 (4), 599–606.

Riferimenti

Documenti correlati

2) sono basati sull’apprendimento non supervi- sionato di livelli gerarchici multipli di carat- teristiche (e di rappresentazioni) dei dati. La nostra bio- logia ha più strati:

Unità di Psicologia Clinica e Psicoanalisi Applicata Università degli Studi di Napoli “Federico II”.. Via Pansini, 5 –

Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the

To investigate the in vitro effect of a pulsed electromagnetic field (PEMF) on the efficacy of antibacterial agent (Ga) in the treatment of coated orthopaedic implants infection,

Finally, we can observe that in the first four benchmark years nearly all the more central companies in the Italian corporate network served principally or exclusively the

Protecting cultural heritage from water-soil interaction related threats is a current issue and the prediction of the effects of slope displacements on buildings is very

La provvidenza economica, che spetta per un massimo di 90 giorni nel corso dell’anno solare 61 per le giornate intere di sospensione (non spetta per le ipotesi di riduzione

derived ionized gas mass, kinetic power, and radiation thrust are extremely high, and suggest widespread feedback on the host galaxies of very luminous quasars, at cosmic?.