• Non ci sono risultati.

Directional cohesive elements for blade cutting simulations of layered shells

N/A
N/A
Protected

Academic year: 2021

Condividi "Directional cohesive elements for blade cutting simulations of layered shells"

Copied!
1
0
0

Testo completo

(1)

1

Directional cohesive elements for blade cutting

simulations of layered shells

F. Confalonieri, A. Ghisi, J. Mirzapour, U. Perego

Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy Tel: (39)0223994214

{federica.confalonieri, aldo.ghisi, jamil.mirzapour, umberto.perego}@polimi.it The blade cutting of thin layered shell involves three small geometrical scales, the scale of layer thicknesses, the scale of blade radius of curvature, the scale of fracture and delamination process zones, which need be resolved when a numerical simulation is carried out by means of a finite element discretization.

Large deformations, material nonlinearity, contact, crack propagation and delamination make the problem highly nonlinear, so that an explicit dynamics approach based on the use of solid-shell elements is adopted to avoid convergence problems. A selective mass scaling technique [1,2] is developed to overcome the critical time step limitation, dictated by the layers thickness.

The prescribed blade trajectory drives crack propagation, so that it is possible to adjust the mesh with element edges along the expected crack path. To model crack propagation accounting for the interaction between the sharp blade and the cohesive process zone, special “directional cohesive elements” [3] are placed between separating element edges.

Crack propagation and delamination can be characterized by very small process zone sizes, depending on the type of material and on the layer thickness. Discretizations that are coarse with respect to these lengths may give rise to spurious oscillations and accuracy loss. Techniques for the mitigation of these problems are investigated.

Numerical applications to engineering problems are used to assess the effectiveness of the proposed simulation approach.

References

[1] G. Cocchetti, M. Pagani, and U. Perego. Selective mass scaling for distorted solid-shell elements in explicit dynamics: optimal scaling factor and stable time step estimate.

International Journal for Numerical Methods in Engineering, 101(9):700–731, 2015.

[2] F. Confalonieri, A. Ghisi, and U. Perego. 8-node solid-shell elements selective mass scaling for explicit dynamic analysis of layered thin-walled structures. Computational

Mechanics, 56(4):585–599, 2015.

[3] M. Pagani and U. Perego. Explicit dynamics simulation of blade cutting of thin elastoplastic shells using a “directional” cohesive elements in solid-shell finite element models. Computer Methods in Applied Mechanics and Engineering, 285:515 – 541, 2015.

Riferimenti

Documenti correlati

In particular, it found that stabilization of soil within the weak layer is inappropriate, since it practically provides no increase in the stability of the soil foundation, and

5 - the industrial sector has developed organizational and management models to incorporate data, maintain - and possibly improve over time - its economic,

[r]

La diagnosi differenziale deve essere posta nell’ambito dei diversi difetti enzimatici del ciclo dell’urea in ogni epoca di vita (Fig. 2).. Nel periodo neonatale, le

Previous ab initio calculations (Dalhus & Go¨rbitz, 2004) have indicated that the hydrogen-bonding energy of an ld–ld layer is higher than that of an l1–d1 layer, and that

The EGL is a se- condary actively proliferating zone made up of cell precursors which originate from the germinal trigone following tangential subpial displacement (Altman and

A non-invasive approach (eDNA metabarcoding) for monitoring amphibian biodiversity in diverse water bodies was tested for 12 amphibian species present in Trentino in the MAB