• Non ci sono risultati.

Analysis of genetic structure of Ranunculus baudotii in a Mediterranean wetland. Implications for selection of seeds and seedlings for conservation

N/A
N/A
Protected

Academic year: 2021

Condividi "Analysis of genetic structure of Ranunculus baudotii in a Mediterranean wetland. Implications for selection of seeds and seedlings for conservation"

Copied!
7
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Aquatic

Botany

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a q u a b o t

Analysis

of

genetic

structure

of

Ranunculus

baudotii

in

a

Mediterranean

wetland.

Implications

for

selection

of

seeds

and

seedlings

for

conservation

A.

Coppi

a,∗

,

L.

Lastrucci

a

,

A.

Carta

b

,

B.

Foggi

a

aDepartmentofBiology,UniversityofFlorence,Italy

bDepartmentofBiology,UniversityofPisa,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12January2015

Receivedinrevisedform2June2015

Accepted6June2015

Availableonline17June2015

Keywords: Seedbank Restorationgenetics ISSRanalysis Mediterraneanisland Naturalpond

Ranunculuspeltatussubsp.baudotii

a

b

s

t

r

a

c

t

Seedcollectionandstorageofwildspeciesinex-situseedbanksshouldbecontinuedasanintegratedtool fortheconservationofplantsintheirhabitats.Althoughseed-bankfacilitiesarewidelyusedtoday,their seedsamplesoftensufferlowgeneticdiversity.Consequently,reintroducedseedsandplantmaterial maynothavetheresiliencetocopewithfutureenvironmentalstresssoleadingtocompletewastageof seeds.Moleculartechniquesallowthebenefitofquantificationofthegeneticdiversityofaseedcollection incomparisonwiththatofthenaturalpopulation.Inthisstudywefocusonex-situseedbanksamples andlivingcollectionsofRanunculuspeltatussubsp.baudotii.Wecomparetheirgeneticdiversityand structurewiththatofthenaturalpopulationbeforeandafterundertakingarestorationprojectona naturalpondintheTuscanArchipelagoNationalPark.ISSRanalyses,carriedoutonatotaloffivesampling groups,showsarelativelyhighlevelofgeneticdiversityfortheex-situcultivatedgroups.Theanalysis ofmolecularvariance,inagreementwithclusteringobtainedintheneighbour-joiningdendrogramand withthepatternfromclusteranalysis,suggestsdividingthesamplesanalysedintotwogroups:one formedbyindividualssampledbeforethepondrestorationandtheotherformedbythesubsequent pondpopulation.Theresultshighlighttheimportanceofplanningmixedpropagationlineswhichcan beobtainedthroughtheuseofarangeofgerminationconditionstoexploitanovelsourceofgenetic variabilitywhichmayotherwiseremainhiddenwithintheseedcollection.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Biodiversitydeclineisofprimaryconcernthroughouttheworld andits conservationpresentsacritical challengetothenatural sciences(Barnoskyetal.,2011).Thebestplacetoconserve bio-diversity is in the wild, through maintenance or restoration of habitats.Such interventions aresometimessufficient for plants torecoverwithoutthereintroductionofpropagules(Bunceetal., 2013).However,thespontaneousrecoveryofrare-plant popula-tionsmaynotoccurundertheseconditions,assomespeciesare severelydispersal-limited(Clarketal.,2007),and/orhave tran-sientseedbanks(Thompsonetal.,1997)and/orareunabletocope forlongwiththenaturaldynamicsinthehabitat(Stockwelland Ashley,2004).Thus,restorationplansgenerallyincludeanumber ofstrategiesthatcanbestbeconsideredinthecontextof contem-poraryevolution(Stockwelletal.,2006).

∗ Correspondingauthor.Fax:+39055282358.

E-mailaddress:andrea.coppi@unifi.it(A.Coppi).

Restorationisrecognisedasacomplexandhigh-riskactivity whichshouldincludeplantpropagationandcultivationaswellas habitatmanagement.Priortoanyrestorationactivity,theorigin, variabilityandrelatednessofthesourcematerialsshouldbe con-sideredcarefullytoavoidsignificantdisadvantagesandafurther lossofbiodiversity(FensterandDudash,1994).However,itisnot alwaysthecasethatthedesiredplantmaterialsareavailableinthe wild.Thus,thecollectionofseedsofwildspecies,andtheir main-tenanceinex-situseedbanks,shouldbeincludedasanintegrated toolalongwithinhabitatplantconservation.Seedbanksare facili-tieswithahightechnologicalcontent(RaoandRiley,1994),which shouldtakeresponsibilityforthewholelineofseedmanagement allthewaythroughtothereintroductionstep(HayandProbert, 2013).

Toconserveseedsamplesabletobeusedmanyyearsintothe future,muchefforthasbeenmadetomaximisethetoleranceof des-iccationandtopredictseedstoragebehaviour(Merrittetal.,2014). Thishasimportantimplicationsforthesuccessfulmanagementof seedconservationcollectionsthat,alongwiththeextensive liter-atureonthedormancy-breakingandgerminationrequirementsof http://dx.doi.org/10.1016/j.aquabot.2015.06.002

(2)

26 A.Coppietal./AquaticBotany126(2015)25–31

wildspecies,shouldleadtothedevelopmentofeffective propaga-tionprotocolsforecologicalrestorationandspeciesreintroduction (MerrittandDixon,2011).However,seed-banksamplesoften suf-ferlowgeneticdiversity(BediniandCarta,2010;Godefroidetal., 2011)Consequently,introducedseedsandotherplantmaterials maynothavesufficientresiliencetocopewithfuture environmen-talstressessopossiblyleadingtoatotalwastageofseeds(Merritt andDixon,2011).

Theidentificationofsourcematerialtoensuregenetic similar-ityoftheintroduced,tothelocalpopulations,maybeacquiredby conductinganecogeographicsurvey(Guarinoetal.,2011). How-ever,geographical distanceisnotalwaysthebestindicatorof a population’sgeneticsimilarity(AllendorfandLuikart,2007).Inthis context,ageneticmolecularapproachcanprovidetheopportunity toidentifythesourceofplantmaterialandalsotounderstandthe effectivelevelofgeneticdiversityofseedcollectionsinrespectto thenaturalpopulation(Lauterbachetal.,2012).Furthermore,this approachshouldbeappliedatallstagesofplantregenerationfrom seeds,measuringthegeneticvariationoflivingcollectionsobtained throughdifferentlaboratorygerminationconditionsand/or prop-agationmethods,andeventuallyprovidinganassessmentofthe likelysuccessofthewholerestorationprotocol(Alonsoetal.,2014). Inthisstudy,werefertoarestorationexperienceundertakenin anaturalpondintheTuscanArchipelagoNationalParkinvolving habitatmanagement(Foggietal.,2011,2014)andthe constitu-tionofseedbankcollectionsandthecultivationoflivingplantsin theBotanicGardensofFlorenceandPisa(Cartaetal.,2012).We focusontheseex-situsamples,bycomparingtheirgenetic diver-sityandstructureswiththoseofthenatural populationsbefore andafter restoration.Therestoration of thepondwasurgently requiredsincetheinvasionbytallhelophytes(suchasTypha lat-ifoliaL.,TyphaangustifoliaL.and Phragmitesaustralis(Cav.)Trin exSteud.)hadsubstantiallydestroyedthisfresh-waterecosystem andthreatened,atthelocalscale,species suchasMyriophyllum alterniflorumDc.andRanunculuspeltatusSchranksubsp.baudotii (Godron)MeikleexC.D.K.Cook(Ranunculaceae;hereinafterR. bau-dotii)(Foggietal.,2011,2014).

Restoration activities which included removal of these tall, expansivehelophytes(seeFoggietal.,2014fordetails),could per-hapshavenegativelyaffectedthesoilseedbank.

Tounderstand theimpact of pond restoration onthe natu-ralpopulationofR.baudotii, itsgeneticstructurewasestimated onthebasis ofInterSimple Sequence Repeatsmarkers (ISSRs). ThismethodisaPCR-basedfingerprintingtechniquethatinvolves amplificationofaDNAsegmentbetweentwoinversely-oriented and closely-spaced microsatellite repeat regions (Reddy et al., 2002).Thismethodiswidelyused inplantpopulationgenetics duetothereliabilityandreproducibilityoftheresults (Rakoczy-TrojanowskaandBolibok2004).Inparticular,themethodhasbeen usedtoassessgeneticvariationandpopulationdifferentiationina numberofendangeredplantspeciesfromarangeoflocationsand climates(Luoetal.,2007).

Thus,ourgoalistoelucidatethefollowingtwoquestions: 1.Aretheregeneticdifferencesordivergencesbetweensamplings

attwotemporalstages:beforeandafteroftheimplementation ofrestorationactivitiesofthepond?

2.Canamoleculargeneticapproachbeeffectivelyusedto evalu-atewhetherselectedlaboratorygerminationconditionscould beresponsibleforgeneticdifferencesamongpropagationlines? Withtheseinformations,therelatednessforreintroductionor reinforcementof theex-situ propagated plantmaterial and the practical implication a wheneverecological restoration are dis-cussed.

2. Materialsandmethods

2.1. Plantmaterialsandsamplingprotocol

The plants usedin this studywere sampledby theauthors fromthenaturalpopulationofR.baudotiilocatedintheStagnone pondsituatedonCapraiaIsland(TuscanArchipelago,north-central MediterraneanSea;Fig.1)atanaltitudeof330ma.s.l.Thecurrent populationofR.baudotiioccupiesanareaofca.0.4ha.Since1991 thispopulationhasundergoneadrasticreductioninsizereaching aminimumofca.0.03hain2009.

R.baudotiiis ahydrophytebelongingtotheRanunculus sub-gen.Batrachium.Itisdistributedmainlyinbrackishwatersnear thewesternandsoutherncoastsofEuropeandoftheBalticregion, and,locally,inland inwesternand centralEurope(Cook,1993). Thisspeciescan beannualorperennial(Cook,1966), it is self-compatibleandmainlyself-pollinated(Dahlgren,1995).Vegetative propagationcanalsoplayanimportantroleinpopulation mainte-nance/growthassexualreproduction(Dahlgren,1995).R.baudotii establishescommunitiesconsideredof interesttowards conser-vation according to the Habitats Directive 92/43/CEE. Because thespeciesformsclumpsbyvegetativepropagation,inorderto avoidthesamplingof“ramets”ratherthan“genets”,werandomly selected10–15plantsgrowingatleast10mapartfromoneanother. Thesampleswerecollectedin2010(St1;pre-restoration)and2014 (St2;post-restoration).Asecondcollection(Ta)wasalsosampled in2014,whichrepresentedanephemeralpopulationlivinginan artificialreservoirabout1.5kmawayfromStagnonepond(Fig.1). Toestablishex-situcollectionsforconservationpurposes,the originalmaterialfromStagnonewascollectedin2009. Approx-imately20 plantswerecollectedand cultivatedin theFlorence BotanicalGardenandseedsampleswerestoredinthePisaSeed Bank(Cartaetal.,2009,2012).

Inadditiontothesenaturalpopulations,samplesfor genetic analysiswere alsocollectedfrom theex-situ collections in line withthefollowingscheme(Fig.2):plantscultivatedinFlorence weresampledin2010,representingthesecondgenerationofthe wildpopulationsampled in2009 (Fi);seedlings obtainedfrom laboratory-germinatedseedscollectedinthewildweresampled in2009andusedtoestablishalivingcollectioninthePisaBotanic Garden(Pi1);theseedlingsconstitutingPi1wereobtainedby ger-minatingseedsatboththenear-optimaltemperature(10◦C;PiTA) andatasupra-optimaltemperature(20◦C;PiH)asindicatedby Cartaetal.(2012);seedlingsobtainedfromgerminatedseeds pro-ducedin2010byPi1werealsosampled(Pi2).ForPi2,seedswere germinatedinthelaboratoryonlyatthenear-optimaltemperature (10◦C).

Thegroupsofsamplesanalysedandbelongingtothesevarious categories(reportedinTable1)arehereafterdefinedasSampling Groups(SG).

2.2. IsolationofgenomicDNA

GenomicDNA wasextracted fromsilica-geldried leaftissue usingtheCTABprotocol(Mengonietal.,2006).Thequantityand qualityofDNAwasestimatedspectrophotometricallyusinga Bio-Photometer(Eppendorf).

2.3. ISSRprofilingandanalysis

Twoofthesixprimerspreliminarilyscreened,yieldedclearand reproduciblebandingpatterns.Totestreproducibilityasubsetof sampleswasselectedatrandomfromthewholedataset.Primer sequences,sizerangeandnumberofpolymorphicsitesdetectedin theentiredatasetarereportedinTable2.

(3)

Fig.1. Thestudyareasamplingsites.Stagnonepondandtheartificialreservoirareshownwithblackdots.

Fig.2. Samplingdesignflowchart.Greyboxesindicateactivitiesinthewild,whiteboxesindicateactivitiesinthelaboratoryorbotanicalgardens.Thesamplinggroupcode

(4)

28 A.Coppietal./AquaticBotany126(2015)25–31

Table1

Listofexaminedaccessionandyearofsampling.Thefollowingparametersareshown:percentagesofpolymorphicsites(Ps%).Numberofrarebands(Nrf).Numberofprivate

bands(Npf).Averagegenediversityoverloci(geneticdiversity),meanpopulationheterozygosity(Hs)andtotalvariation(Ht).

SGcode Yearofsamplingandlocation Pol.(%) Nrf Npf Geneticdiversity

Pi1 2009;Pisa 85.4 23 2 0.33

Pi2 2010;Pisa 52.1 13 0 0.24

St1 2010;Stagnone 66.7 18 0 0.26

Fi 2010;Florence 72.9 20 1 0.29

St2 2014;Stagnone 82.6 9 2 0.18

Ta 2014;Reservoirforrainwater 22.9 7 0 0.12

Hs 0.24

Ht 0.34

Table2

Primersequences,sizerangeandnumberofpolymorphicsitesdetectedbyeach primerinthewholedataset.

Primer Primer sequence Size range(bp) Polymorphic sites(no.) ISSR1 (GT)7-YR 500–3000 23 CA6 (CA)6.RG 250–2200 25

PCRwerecarriedoutintotalvolumesof20␮lcontaining:10ng

ofDNA, 2␮l of reactionbuffer(Dynazyme II,Finnzyme, Espoo,

Finland),1.5mMMgCl2,200␮Mdeoxynucleosidetriphosphates,

2␮lof10mMPrimerand1.4UofTaqDNAPolymerase(Dynazyme

II,Finnzyme,Espoo,Finland).Thermocyclingwascarriedoutafter

aninitialdenaturingphaseof5minat94◦Cfollowedby35cycles

eachof40sat94◦C,45sat43◦Cand90sat72◦C.Afinalcycle

wassetfor45sat94◦C,45sat42◦Candafinalextensionstepof

5minat72◦C.Amplificationproductswereseparatedon2%(W/v)

agarosegelelectrophoresiscontaining1␮gml−1ofethidium

bro-mide.Electrophoresiswascarriedoutataconstant75Wfor2h.The

resultingbandswerevisualisedbyaUVtransilluminatorand

ana-lysedbyImageJsoftwarevs.1.43f(ImageProcessingandAnalysis

inJava,http://rsbweb.nih.gov/ij/index.html). 2.4. Dataanalysis

Allamplifiedbandsweretreatedasdominantmarkersandall ISSRprofilesobtainedweretranslatedina 1-0binarymatrix.A matrixofgeneticsimilaritybetweenplantswascomputedusing Jaccard’scoefficientofsimilarity.Thistakesintoaccountband shar-ingbetweenindividualsandiscommonlyusedfortheanalysisof dominantmarkers(Loweetal.,2004)suchasAFLPorISSR.

Thepercentage ofpolymorphic lociin thedatasetwasfirst determined.Thenumberofrarebands(Nrf),presentinlessthan 20individualsinthewholedataset,andofprivatebands(Npf), namelythoseuniquetoonesamplinggroupwascalculated fol-lowingStehliketal.(2001).Anintrapopulationmeasureofgenetic diversitywasthencomputedasthe“averagegenediversityover loci”(Nei,1987).ThemeangeneticdiversitybetweenSG(Hs)and thetotalgeneticdiversity(Ht)werealsocomputed.Allanalyses attheintra-SGlevelwerecarriedoutusingtheprogramArlequin 2.000(Schneideretal.,2000).

Theproportion of genetic variation explained by the differ-encesamongSGwasestimatedbymeansoftheSlatkin’slinearised FST’smatrix(Slatkin,1995P-valueinAppendix1ofSupplementary information).

The Slatkin’s matrix generated by Arlequin 2.000 software (Schneideretal.,2000)wasusedtogenerateaneighbour-joining dendrogram(Saitouand Nei, 1987)using thesoftware Mega 6 (Tamuraetal.,2013).

The binarymatrix obtainedfrom the ISSR profilewas used toimprove a bayesian phylogram by MrBayes. The best fitting modelsofbinary matrixwere“Binary Model”withcoding bias option“noabsencesites”assuggested fromMrBayes3.1 manual

(RonquistandHuelsenbeck,2003).Theanalyseswereperformed usingfourincrementallyheated Markovchains(onecold,three heated)simultaneouslystarted fromrandom trees, andrun for onemillioncyclessamplingatreeeverytengenerations.The sta-tionaryphasewasreachedwhentheaveragestandarddeviation ofsplitfrequenciesreached0.01. Treesthatprecededthe stabi-lizationofthelikelihoodvalue(theburn-in)werediscarded,and theremainingtreeswereusedtocalculateamajority-rule consen-susphylogram.ThetreewereshowedwithindicationofBayesian PosteriorProbabilities(PP)valuesfortheinternaltreenodes.

Analysisofmolecularvariance(AMOVA;Excoffieretal.,1992)as implementedinArlequin2.000(Schneideretal.,2000)wascarried outtoinvestigategeneticstructureatdifferenthierarchicallevels: withinSGandbetweenSG.TheAMOVAwascomputedthreetimes separatelyforeachofthreehypotheticalclustersofSGformations. Thestatisticalsupportfortheanalysiswastested through1023 permutations.

3. Results

ISSRanalysiswascarriedoutonatotalof57samples.Thetwo selectedprimercombinationsproducedatotalof48analysableloci (100%polymorphic).WithineachSG,thepercentageof polymor-phiclocirangedfrom22.9%(Ta)to85.4%(Pi1).Thenumberofrare andprivatefragmentsisreportedinTable1.Thethreesampling groupsPi1,St1andFishowedahighernumberofrarefragments (23,18and20,respectively)whereas,thesecondgenerationfrom Pisa(Pi2),St2andTashowedareducednumberofrarefragments. PrivatefragmentswereobservedonlyfortwosamplesofPi1,one sampleforFiandtwosamplesforSt2.Averagegenediversityover locirangedfrom0.12(Ta)to0.33(Pi1);totalgeneticdiversity(Ht) was0.34,whereasaveragegenediversitywithinSG(Hs)was0.24 (Table1).Otherwise,thegeneticdiversityofthecurrentpopulation inthepond(St2)waslower(0.18).ForPi1thegeneticdiversities ofsamplesgerminatedatnear-optimaltemperature(10◦C,PiTA) andatsupra-optimaltemperature(20◦C,PiTH)were0.40and0.18, respectively.

3.1. InterSGdiversityandclusteranalysis

The neighbour-joining dendrogram of R. baudotiiaccessions basedonSlatkin’slinearisedpairwiseFSTmatrixsuggeststhe exis-tenceoftwoclusters,namelyAandB(Fig.3a).ClusterAconsistsof Pi1accessionsandasubclusterincludingSt2andTa.ClusterB com-prisesthesecondgenerationofPisa(Pi2)andasubclusterformed bythenaturalpopulationof2010fromStagnone(St1)andFi.A sec-onddendrogramisshownwherethetwosubsamplesPiHandPiT areseparatedinthetwoclustersBandArespectively(Fig.3b).The levelofgeneticsimilarityobtainedfromISSRprofilecomparison wasusedtocreateaBayesianphylogram(Fig.4).Bayesiananalysis partiallyconfirmsthepatternsreportedbytheneighbour-joining dendrogramandonlythesamplesfromSt2andTa(bothsampled

(5)

Fig.3.(a)Neighbour-JoiningdendrogramofsamplinggroupsbasedononSlatkin’s

linearisedpairwiseFSTmatrixand(b)Neighbour-Joiningdendrogramwherethe

samplesconstitutingPi1weresubdividedinPiTAandPiH.Thescalebarindicates

Slatkin’slinearisedFSTvalueofgeneticdistance.Thetwomainclustersareindicated.

SeeTable1andFig.2forthecodesfortheaccessionsexaminedandtheirpositions

inthesamplingdesign.

in2014)formedaweaklyseparatedcluster(0.54PP)withrespect totherestofdataset.

3.2. GeneticvariationamongSG

AMOVAanalysis(Table3)revealedthatthegreatest portion ofgeneticvariationwasduetowithin-SGdifferences(71.99%of variance) rather than toamong-SGdifferences (28.01% of vari-ance). Totalamong-SG differentiation (FST) was0.280 (p-value <0.001).AmongallhypotheticalgroupingsofSGtested,onlytree showedhighly-significantresults(see Table3).Thegroups that explainedthehighestpercentageofvariation(22.07%)consisted oftwogroups,thefirstwithSGsampledin2014(St2andTa)and thesecondconstitutedbyPiH,PiTA,Pi2,St1andFi.

4. Discussion

4.1. Populationgeneticdiversityinthenaturalenvironment Stagnonepondhostsasmall,isolatedpopulationofR.baudotii whichissufferingseverecontractionduetohabitatchange.The alteringconditionslikelyaffectedthereproductivebiologyofthis speciesthat,similarlytootherRanunculusspeciesofthesubgen. Batrachiumisprobablyabletoadoptamixedbreedingsystemi.e. inbreedingoroutbreeding(Dahlgren,1995).

As suggested by Nybom (2004), species with self or mixed breedingsystemsshouldshowmeanvaluesofwithin-population geneticdiversityof0.12and0.18,respectively.Thepopulationof R.baudotiiexaminedhereexhibitsamoderatelyhighermeanlevel ofgeneticdiversity(Hs=0.24)suggestingasignificantpopulation recruitmentfromcross-pollinatedseeds.Whilstthemeanvalueis moderatelyhigher,thegeneticdiversityattheintra-SGlevelforTa, islowerthantheNybomvalue(seeTable1)whichsuggestsgenetic driftand,mostprobably,afoundereffectfortheephemeral popu-lationgrowingintheartificialreservoir.Thisphenomenonoccurs reasonablyoftenwithinthegroupofsubgen.Batrachiumduetothe capacityofitsachenestobedispersedbybirds(Dahlgren,1995).

Afirstevaluationofthevegetationresponseaftertherestoration hasshownaself-recoveryoftheformeraquaticvegetation(Foggi etal.,2014).ThepopulationofR.baudotii(St2)hasrecolonisedthe Stagnonepondwithoutanyreintroductionand/orreinforcement activity.Theabilityofthis speciestoformasoilseedbank has

Fig.4. Bayesian50%majority-ruleconsensustreefromtheISSRbinarymatrix,

withposteriorprobabilityvalues(PP)shownnearstatisticallysupportednodes.See

Table1andFig.2forthecodesoftheaccessionsanalysedandtheirpositionsinthe

(6)

30 A.Coppietal./AquaticBotany126(2015)25–31

Table3

ResultsofAnalysisofmolecularvariance(AMOVA)performedtotestthedifferentiationamong7samplinggroupsandthepartitionamongthreehypotheticalgroup

formations.Thetableshows:degreesoffreedom(df),sumofsquareddeviations,variancecomponentestimates,percentagesoftotalvariancecontributedbyeachcomponent,

andtheprobabilityofobtainingamoreextremecomponentestimatebychancealone(p).P-valueswereestimatedwith1023permutations.

Sourceofvariation df Sumofsquares Variancecomponent Percentageofvariation P-value

Withinsamplinggroups 51 312.45 6.13 71.99 <0.001

Amongsamplinggroups 5 141.38 2.38 28.01 <0.001

Total 56 453.83 8.51

StructureofhypoteticalgroupingsofSG

(PiH;St1;Fi;Pi2)–(PiTA;St2;Ta) 1 47.31 0.90 10.14 <0.001

(PiH;PiTA;St1;Fi)–(Pi2)-(St2;Ta) 2 98.40 1.82 20.20 <0.001

(PiH;PiTA;Pi2;St1;Fi)–(St2;Ta) 1 64.67 2.13 22.07 <0.001

beenlargelyreportedforothergeographicalareas(Grillasetal.,

1993).However,sincethetop10–20cmofsoilwasremoved dur-ingtherestorationwork(Foggietal.,2014),wesuggestthatthe reappearanceofR.baudotiiinthepondwasderivedfromaresilient seedbankofthesoil,probablynotcompletelydamagedduringthe restorationoreven encouragedbya mixingofthesubstrateby theearthmovingmachinery.Thishypothesisfindsfurthersupport inevidencefromtheanalysesofgeneticdiversityofSGcollected before(Pi1,Pi2,St1andFi)andaftertherestoration(ST2).Indeed, theSGcollectedin2009(Pi1)and2010(Pi2,St1andFi),showa meanvalueforgeneticdiversity(0.28)slightlyhigherinthanthat observedforSt2(sampledin2014;averagegenediversity:0.18). Futuremonitoringwilllikelydeterminewhethertheformerlevel ofgeneticdiversitywillbere-established.

4.2. Geneticdiversityanddifferentiationamongnatural populationsandex-situplantmaterial

Theanalysisof molecularvariance (AMOVA) shows thatthe largepercentage of variance wasdue to within-SG differences ratherthantointer-SGdifferences(72%and28%,respectively).It isclearthatgeneticdifferentiationofSGwithrespecttothe com-plexofgermplasmanalysed,isnegligiblebutnotentirelyabsent. AmongallthehypotheticalgroupingsofSGtestedtoexplainthe observedproportionofmolecularvariation,threeyieldedhighly significantresults(seeTable3).Theonethatexplainedthehighest percentageofvariationconsistedoftwogroups,thefirstformed byPiTA-PiH-St1-FiandthesecondwiththetwoSGof2014(St2 andTa).Thisresultisinagreementwiththeclusteringobtained intheneighbour-joiningdendrogramandwiththepatternfrom Bayesiananalysisdescribedabove(Figs.3and4)suggestingthat theSGshouldbeanalysedastwoseparategroups:thefirst con-stitutedbythesamplescollectedduringthepre-restorationperiod andthesecondbytheSGof2014(St2andTa).Theseresultssupport thehypothesisthatSt2andTaareundergoinggeneticdrift.These SGlikelyoriginatedintheimpoverishedsoilseedbanksubjected toa“bottle-neck”forSt2and/ora“foundereffect”eventforTa.

The ex-situ cultivated populations showed relatively high geneticdiversityandthusshouldbeassessedashighly-valuable material,fromaconservationpointofview.Interestingly,the pop-ulationcultivatedinFlorenceexhibitedarelativelyhighlevelof geneticdiversityafterthefirstgenerationandinPisathispattern wasmaintainedthroughthesecondgenerationalso,suggesting that a mid-term cultivation should not lead to severe genetic inbreedingprocesses.Indeed,itcanbenotedthatinthewild(and alsoundercultivatedconditions)R.baudotiibehavesasanannual hydrophytethatregenerateseachyearthroughthegerminationof seeds(A.Carta,unpublisheddata).

Amongthepropagatedlinesobtainedinthelaboratorythrough seedgermination,PiTAshowedthehighestgeneticdiversityvalue, whilethePiH lineshowedone ofthelowest although exhibit-inggenotypesapparentlynotpresent inthecurrentpopulation (see Figs. 3 and 4).This result suggests that the two different

germinationtemperaturesusedmayhavebeenresponsiblefora genotype-selectionprocess.Thatistosay,attemperaturesreported asoptimalforgerminationforthisspecies(Cartaetal.,2012)many seedsgerminated and thus the wholerange of genotypes was expressed(PiTA)whereasatthesupra-optimaltemperature, ger-minationwasstronglysuppressedsoonlyafewseedsgerminated andamorelimitedrangeofgenotypeswasexpressed(PiH).By con-sideringthegeneticvariabilityexpressedbyPiTAwealsoconfirm thatourex-situseedcollectiondoesnotsufferlowgeneticdiversity. However,tomaximisetheexpressionofthisdiversitywhenin-situ speciesrecoveryisplanned,theoptimumgerminationconditions shouldbeused.

4.3. Insightintopopulationconservation

TheresultscorroboratetheusefulnessofISSRmarkersin set-tingprioritiesandplanningoptimalactionsfortheconservation ofendangeredplantspeciesorpopulationsinthreatenedbiotopes (Thompson,2005;Lopesetal.,2014).

The monitoring of the pond after the restoration shows widespreadrecolonisationof R.baudotii.However,ifthe diver-sity level will not be re-established autonomously, it may be appropriatetore-introduceindividualsduringsubsequentyears. Twostrategiescanbeconsideredforreinforcementsinthissite. A breeding-oriented perspective suggests reinforcement of the impoverishedpopulationbyintroducingplantsfromothersitesto enrichthegeneticbasisofthepopulation.Thisstrategymayreduce theriskofgeneticdriftand,ultimately,mayhelpoffsetthe nega-tiveeffectsofhabitatchange(Coppietal.,2010).Ontheotherhand, fromaconservationperspective,thereintroductionwouldbe bet-terundertakenusingthelocalseedsourcesintheex-situseedbank whicharemorelikelytoexhibitincreasedfitnessovernon-local genotypes(Xiaoetal.,2006).Sincetheoriginalmaterialisavailable, ourdatawouldsuggestthatthesecondoptionshouldbepreferred. Inaddition,wealsosuggesttoincreasethegeneticdiversityby mixingpropagationlinesobtainedusingarange ofgermination conditionsbasedonthehypothesis,heredemonstrated,thatthis shouldincreasethegeneticvariabilityofthisspecies.

Ex-situmanagementinevitablyimpliesselectionpressures dif-ferentfromthenaturalconditions(Lauterbachetal.,2012).

Ingeneral,itispreferabletoreintroduceplantsinthewildusing seedlings(Godefroidetal.,2011).Inthecontextofourstudy,there is evidencethat increasedgeneticdiversity canbeobtainedby selectingarangeofgerminationconditions.Thus,whenecological restorationsareplanned,werecommendtoconsiderethepossible negativeeffectsofgerminating seedsunderlaboratory environ-mentswhichmayselectadifferentrangeofgenotypesthanthose expressedunderanaturalenvironment.Sinceitmaynotalways bepossibletohavegeneticdata,anadditionalrecommendation forex-situhandlingistoundertakebothcultivationand propaga-tioninanear-naturalenvironment (VolisandBlecher,2010).In linewiththeviewofSmithetal.(2011),ourresultshighlightthe importanceofconsideringex-situconservationasa

(7)

complemen-taryapproachtoin-situconservation,additionallysupportedbythe geneticmonitoring.

Acknowledgements

TheresearchwasfundedbytheTuscanArchipelagoNational Park.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.aquabot.2015.06. 002

References

Allendorf,F.W.,Luikart,G.,2007.ConservationandtheGeneticofPopulations.

BlackwellPublishing.

Alonso,M.A.,Guillò,A.,Pérez-Botella,J.,Crespo,M.B.,Juan,A.,2014.Genetic

assessmentofpopulationrestorationsofthecriticallyendangeredSilene hifacensisintheIberianPeninsula.J.Nat.Conserv.22,532–538.

Barnosky,A.D.,Matzke,N.,Tomiya,S.,Wogan,G.O.U.,Swartz,B.,Quental,T.B.,

Marshall,C.,McGuire,J.L.,Lindsey,E.L.,Maguire,K.C.,Mersey,B.,Ferrer,E.A.,

2011.Hastheearth’ssixthmassextinctionalreadyarrived?Nature471,51–57.

Bedini,G.,Carta,A.,2010.CriteriaforassessingItalianexsitucollectionsof

threatenedplants.KewBull.65,649–654.

Bunce,R.G.H.,Bogers,M.M.B.,Evans,D.,Halada,L.,Jongman,R.H.G.,Mucher,C.A.,

Bauch,B.,deBlust,G.,Parr,T.W.,Olsvig-Whittaker,L.,2013.Thesignificanceof

habitatsasindicatorsofbiodiversityandtheirlinkstospecies.Ecol.Indic.33, 19–25.

Carta,A.,Puggioni,G.,Bedini,G.,2009.Ranunculuspeltatussubsp.baudotiiC.D.K.

Cook(Ranunculaceae)dell’isoladiCapraia(Arcipelagotoscano):coltivazionee conservazioneexsituall’OrtoBotanicodiPisa.[Ranunculuspeltatussubsp. baudotiiC.D.K.Cook(Ranunculaceae)fromCapraiaIsland(Tuscan Archipelago):exsitucultivationandconservationattheBotanicGardenof Pisa.].AttiSoc.Tosc.Sci.Nat.,Mem.,SerieB116,27–32.

Carta,A.,Bedini,G.,Foggi,B.,Probert,R.J.,2012.Laboratorygerminationandseed

bankstorageofRanunculuspeltatussubsp.baudotiiseedsfromtheTuscan Archipelago.SeedSci.Technol.40,11–20.

Clark,C.J.,Poulsen,J.R.,Levey,D.J.,Osenberg,C.W.,2007.Areplantpopulations

seedlimited?Acritiqueandmeta-analysisofseedadditionexperiments.Am. Nat.170,128–142.

Cook,C.D.K.,1966.AmonographicstudyofRanunculussubgenusBatrachium(DC.)

A.Gray.Mitt.Bot.Staatssamml.München6,47–237.

Cook,C.D.K.,1993.Ranunculussubgen.Batrachium.In:Tutin,T.G.,Burges,N.A.,

Chater,A.O.,Edmondson,J.R.,Heywod,V.H.,Moore,D.M.,Valentine,D.H., Walters,S.M.,Webb,D.A.(Eds.),FloraEuropaea,Vol.I,2nded.Cambridge UniversityPress,Cambridge,U.K,pp.285–286.

Coppi,A.,Cecchi,L.,Selvi,F.,Raffaelli,M.,2010.Thefrankincensetree(B.sacra,

Burseraceae)fromOman:ITSandISSRanalysesofgeneticdiversityand implicationsforconservation.Genet.Resour.CropEvol.57,1041–1052.

Dahlgren,G.,1995.DifferentiationpatternsinRanunculussubgenusBatrachium

(Ranunculaceae).Pl.Syst.Evol.9(Suppl),305–317.

Excoffier,L.,Smouse,P.E.,Quattro,M.,1992.Analysisofmolecularvariance

inferredfrommetricdistancesamongDNAHaplotypes:applicationtohuman mitochondrialDNArestrictiondata.Genetics131,479–491.

Fenster,C.B.,Dudash,M.R.,1994.Geneticconsiderationsforplantpopulation

restorationandconservation.In:Fenster,C.B.,Dudash,M.R.(Eds.),Restoration ofEndangeredSpecies.CambridgeUniversityPress,Cambridge,U.K,pp.34–62.

Foggi,B.,Lastrucci,L.,Viciani,D.,Brunialti,G.,Benesperi,R.,2011.Long-term

monitoringofaninvasionprocess:thecaseofanisolatedsmallwetlandona MediterraneanIsland.Biologia(Bratisl.)66,638–644.

Foggi,B.,Benesperi,R.,Viciani,D.,Giunti,M.,Lastrucci,L.,2014.Long-term

monitoringofaninvasionprocess:thecaseofanisolatedsmallwetlandona MediterraneanIsland,secondstage:towardacompleterestoration.Biologia (Bratisl.)69,977–985.

Godefroid,S.,Riviere,S.,Waldren,S.,Boretos,N.,Eastwood,R.,Vanderborght,T.,

2011.TowhatextentarethreatenedEuropeanplantspeciesconservedinseed

banks.Biol.Conserv.144,1494–1498.

Grillas,P.,García-Murillo,P.,Geertz-Hansen,O.,Marbá,N.,Montes,C.,Tan-Ham,L.,

Grossman,A.,1993.SubmergedmacrophyteseedbankinaMediterranean

temporarymarsh:abundanceandrelationshipswithestablishedvegetation. Oecologia94,1–6.

In:Guarino,L.,RamanathaRao,V.,Goldberg,E.(Eds.),2011.Bioversity

International,Rome.

Hay,F.R.,Probert,R.J.,2013.Advancesinseedconservationofwildplantspecies:a

reviewofrecentresearch.Conserv.Physiol.1,http://dx.doi.org/10.1093/

conphys/cot030

ImageJ,ImageProcessingandAnalysisinJava.WayneRasband.NationalInstitutes

ofHealth,USA.2013http://rsbweb.nih.gov/ij/index.html

Lauterbach,D.,Burkart,M.,Gemeinholzer,B.,2012.Rapidgeneticdifferentiation

betweenexsituandtheirinsitusourcepopulations:anexampleofthe endangeredSileneotites(Caryophyllaceae).Bot.J.Lin.Soc.168,64–75.

Lopes,M.S.,Mendonc¸a,D.,Bettencourt,S.X.,Borba,A.R.,Melo,C.,Baptista,C.,da

CâmaraMachado,A.,2014.GeneticdiversityofanAzoreanendemicand

endangeredplantspeciesinferredfrominter-simplesequencerepeatmarkers.

AoBPLANTS6,plu34,http://dx.doi.org/10.1093/aobpla/plu034

Lowe,A.,Harris,S.,Ashton,P.,2004.Ecologicalgenetics.In:Design,Analysis,and

Application.Blackwell,Oxford,U.K.

Luo,X.,Zhuang,X.,Yang,Y.,2007.GeneticdiversityofCamelliachangiiYe

(Theaceae)usingISSRmarkers.BJ.Trop.Subtrop.Bot.15(2),93–100.

Mengoni,A.,Selvi,F.,Cusimano,N.,Galardi,F.,Gonnelli,C.,2006.Geneticdiversity

inferredfromAFLPfingerprintinginpopulationsofOnosmaechioides (Boraginaceae)fromserpentineandcalcareoussoils.PlantBiosyst.140, 211–219.

Merritt,D.J.,Martyn,A.J.,Ainsley,P.,Young,R.E.,Seed,L.U.,Thorpe,M.,Hay,F.,

Commander,L.E.,Shackelford,N.,Offord,C.A.,Dixon,K.W.,Probert,R.J.,2014.A

continental-scalestudyofseedlifespaninexperimentalstorageexamining seed,plant,andenvironmentaltraitsassociatedwithlongevity.Biodiversa. conserv.23,1081–1104.

Merritt,D.J.,Dixon,K.W.,2011.Restorationseedbanks–amatterofscale.Science

332,424–425.

Nei,M.,1987.MolecularEvolutionaryGenetics.ColumbiaUniversityPress,New

York.

Nybom,H.,2004.ComparisonofdifferentnuclearDNAmarkersforestimating

intraspecificgeneticdiversityinplants.Mol.Ecol.13,1143–1155.

Rakoczy-Trojanowska,M.,Bolibok,H.,2004.Characteristicsandcomparisonof

threeclassesofmicrosatellite-basedmarkersandtheirapplicationinplants. Cell.Mol.Biol.Lett.9,221–238.

RamanathaRao,V.,Riley,K.W.,1994.Theuseofbiotechnologyforconservation

andutilisationofplantgeneticresources.FAO/IBPGR.PlantGenet.Resour. Newslett.97,3–20.

Reddy,M.P.,Sarla,N.,Siddiq,E.A.,2002.Intersimplesequencerepeat(ISSR)

polymorphismanditsapplicationinplantbreeding.Euphytica128,9–17.

Ronquist,F.,Huelsenbeck,J.P.,2003.MRBAYES3:Bayesianphylogeneticinference

undermixedmodels.Bioinformatics19,1572–1574.

Saitou,N.,Nei,M.,1987.Theneighbour-joiningmethod:anewmethodfor

reconstructingphylogenetictrees.Mol.Biol.Evol.4,406–425.

Schneider,S.,Rosselli,D.,Excoffier,L.,2000.Arlequin:asoftwareforpopulation

geneticsdataanalysis.In:Version2.000.UniversityofGeneva,Geneva.

Slatkin,M.,1995.Ameasureofpopulationsubdivisionbasedonmicrosatellite

allelefrequencies.Genetics139,457–462.

Smith,P.,Dickie,J.,Linington,S.,Probert,R.,Way,M.,2011.Makingthecasefor

plantdiversity.SeedSci.Res.21,1–4.

Stehlik,I.,Schneller,J.J.,Bachmann,K.,2001.Resistanceoremigration:responseof

thehighalpineplantEritrichiumnanum(L.)Gaudintotheiceagewithinthe CentralAlps.Mol.Ecol.10,357–370.

Stockwell,C.A.,Ashley,M.V.,2004.Rapidadaptationandconservation.Conserv.

Biol.18,272–273.

Stockwell,C.A.,Kinnison,M.T.,Hendry,A.P.,2006.Evolutionaryrestoration

ecology.In:Falk,D.A.,Palmer,M.A.,Zedler,J.B.(Eds.),Foundationsof RestorationEcology.IslandPress,pp.113–138.

Tamura,K.,Stecher,G.,Peterson,D.,Filipski,A.,Kumar,S.,2013.MEGA6:molecular

evolutionarygeneticsanalysisversion6.0.Mol.Biol.Evol.30,2725–2729.

Thompson,K.,Bakker,J.,Bekker,R.,1997.TheSoilSeedBankofNorthWestEurope:

Methodology,DensityandLongevity.CambridgeUniversityPress,Cambridge.

Thompson,J.D.,2005.PlantEvolutionintheMediterranean.OxfordUniversity

Press,Oxford.

Volis,S.,Blecher,M.,2010.Quasiinsitu:abridgebetweenexsituandinsitu

conservationofplants.Biodiv.Conserv.19(9),2441–2454.

Xiao,M.,Li,Q.Wang,L.Guo,L.Li,J.Tang,L.Chen,2006.ISSRanalysisofthegenetic

diversityoftheendangeredspeciesSinopodophyllumhexandrum(Royle)Ying fromWesternSichuanProvince,China.J.Integr.PlantBiol.48,1140–1146.

Riferimenti

Documenti correlati

Leggerezza: un container può essere eseguito su una vasta gamma di dispositivi, anche se non dotati di grosse risorse (come ad esem- pio RaspberryPi), in quanto nel container

[60] 2006 C57BL/10 mouse brain ME7, 22L and RML- Chandler BMAP library cDNA array 104 and 146 DPI Protein folding and degradation, endosome/lysosome functions, immune

 Evaluate consumer perception on the animal welfare topic and determine the best method to distinguish animal-friendly meat in the market by comparing results of the European

SCALING ACROSS THE CQT OF THE ISING RING To fix the ideas, we now demonstrate how a DFSS behavior emerges along a sudden quench of the simplest paradigmatic quantum many-body

The definition of a correct mesh resolution and modelling approach for the Large Eddy Simulation (LES) of the flow around a rectangular cylinder is recognized to be a rather

Tutti i trattati internazionali, dunque, compresi quelli sui diritti umani, e quindi anche la stessa Cedu 33 , fino alla riforma costituzionale del 2001 hanno storicamente

L’adolescente ha la sensazione, non così marcata come nel caso delle correlazioni precedenti, che l’adulto che manifesta una certa preoccupazione per lui nell’ambito scolastico possa

Poichè le trasfusioni post-operatorie sono associate ad aumento dell’incidenza di infezioni e della mortalità in pazienti sottoposti ad intervento di cardiochirurgia, nello studio si