• Non ci sono risultati.

TiO2/graphene-like photocatalysts for selective oxidation of 3-pyridine-methanol to vitamin B3 under UV/solar simulated radiation in aqueous solution at room conditions: The effect of morphology on catalyst performances.

N/A
N/A
Protected

Academic year: 2021

Condividi "TiO2/graphene-like photocatalysts for selective oxidation of 3-pyridine-methanol to vitamin B3 under UV/solar simulated radiation in aqueous solution at room conditions: The effect of morphology on catalyst performances."

Copied!
9
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Applied

Catalysis

A:

General

j o ur na l h o me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t a

TiO

2

/graphene-like

photocatalysts

for

selective

oxidation

of

3-pyridine-methanol

to

vitamin

B3

under

UV/solar

simulated

radiation

in

aqueous

solution

at

room

conditions:

The

effect

of

morphology

on

catalyst

performances

Michela

Alfè

a

,

Danilo

Spasiano

b,∗

,

Valentina

Gargiulo

a

,

Giuseppe

Vitiello

b,c

,

Roberto

Di

Capua

d

,

Raffaele

Marotta

b

aIstitutodiRicerchesullaCombustione,ConsiglioNazionaledelleRicerche(IRC)-CNR,p.leV.Tecchio,80,80125Napoli,Italy

bDipartimentodiIngegneriaChimica,deiMaterialiedellaProduzioneIndustriale,UniversitàdiNapoli“FedericoII”,p.leV.Tecchio,80,80125Napoli,Italy cCSGI,ConsorzioInteruniversitarioperloSviluppodeiSistemiaGrandeInterfase,Italy

dDipartimentodiFisica,UniversitàdiNapoli“FedericoII”,andSPIN-CNRUOS,viaCintia,80126Napoli,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received23May2014

Receivedinrevisedform26August2014 Accepted2September2014

Availableonline16September2014

Keywords: Graphene-like TiO2-composites

Selectivephotocatalyticoxidation VitaminB3

a

b

s

t

r

a

c

t

Graphene-likelayers,synthesized throughatwo-step oxidation/reductionwettreatmentof ahigh

surfacecarbonblack,havebeenusedtopreparecompositeswithTiO2nanoparticlesbyliquidphase

depo-sition,followedbycalcinationat200◦C.ThephotocatalyticactivityoftheTiO2/graphene-likecomposites

hasbeentestedfortheselectiveconversionof3-pyridinemethanolto3-pyridinecarboxyaldehydeand

nicotinicacid(vitaminB3),underde-aeratedandUV/solarsimulatedconditions,inthepresenceofcupric

ions.Twodifferentcompositemorphologieshavebeenexploredandadependenceofthe

photocat-alyticactivityhasbeenassessed.Anenhancedphotocatalyticactivity,withrespecttotheneatTiO2,has

beenobservedandattributedtothebroadervarietyofstablefree-radicalspeciesgenerated,atagiven

photo-catalystmorphology,withinthedelocalized␲-electronsystems.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Atthepresenttime,thereisagreatinteresttocarry outthe

productionof finechemicals,underverymild conditions,using

renewableenergy sources,suchasthesolarradiation,and

eco-friendly solvents, such as water [1,2]. To this aim the use of

TiO2-basedphotocatalystsappearstobeadvantageousasTiO2is

easilyavailable,stabletophotocorrosion,cheap,andnontoxic

sub-stance[3–7].

WhenmolecularoxygenacceptstheTiO2photo-generated

elec-tronsinaqueoussolution,itleadstotheformationofHOradicals,

whichplayhighlynegativeroleintheseprocessessincethey

un-selectivelyoxidizeorganicsubstrates:

TiO2(e−cb)+O2→O•−2 ...→HO•

Ontheotherhand,when metalions,suchasCu(II)ions,are

used in de-aerated conditions as electron acceptor instead of

∗ Correspondingauthor.Tel.:+390817682253;fax:+390815936936. E-mailaddress:[email protected](D.Spasiano).

oxygen,theHOradicalproductionisstronglylimitedandthe

pro-cessselectivityincreases[8,9].Inparticular,whenCu(II)ionsaccept

thephoto-generatedconductionbandelectrons,theyarereduced

firsttoCu(I)andthentoCu(0),whichprecipitate.Moreover,since

thezero-valentcoppercouldbesimplyre-oxidizedtoCu(II),atthe

endofprocess,withanairflowblownintothesolutionindark

con-ditions,itispossibletoconsideralsoCu(II)ionsasco-catalysts[10].

However,evenifthepresenceofoxygenisavoidedthroughinert

gasinletduringthephotocatalyticprocess,theformationofHO

radicalsisnottotallyquenched,justresultingfromthereactionof

watermoleculesorsurfaceadsorbedhydroxylgroupswithpositive

holes[11]:

TiO2(h+vb)+H2O(ads)→TiO2+HO◦+H+

TiO2(h+vb)+H2O−(ads)→TiO2+HO◦

Theproducedhydroxylradicals,attacktheorganicsubstrates

anddesiredproducts,thusloweringtheselectivityoftheprocesses

[8,10].Moreover,oneofthemainproblemsassociatedwiththeuse

http://dx.doi.org/10.1016/j.apcata.2014.09.002

(2)

ofTiO2asaphotocatalystisthefastrecombinationreactionofthe

electron–holepair:

TiO2(h+vb)+TiO2(e−cb)→heat

For this reason, many researchers are pointing their

atten-tiontothesynthesisofdifferentTiO2-basedcatalystscontaining

inorganicand organic compounds,such asmetal oxides, noble

metals,grapheneandcoppersulphide[11–13],thatdecreasethe

electron–hole recombination. For example, it has been proven

thattheelectronacceptingandtransportpropertiesofgraphene

providea convenientwaytodirecttheflowofphoto-generated

chargecarriers,whichthusincreasesthelifetimeofelectron–hole

pairsgeneratedbyTiO2uponlightirradiation[14,15].

DirectTiO2growthongraphiteoxide(GO)sheetsfollowedby

reductionofGOtographene[16–20]hasbeenproposedaspossible

strategytoproducecompositesthatcombinetheelectron

accept-ingfeaturesofgrapheneandtheTiO2photocatalyticactivity.The

useofthehydrophilicGOasintermediatesteptoobtaingraphene

isaconvenientapproachadoptedtoovercomethegraphene

aggre-gationdrivenbystrongvanderWaalsforceswhenusedinwater

andinpolarorganicsolvents[14,21].

Inthepresentinvestigation,directTiO2growthonwater-stable

conductivegraphene-like(GL)layerstoproduceTiO2-based

com-positephotocatalyticmaterialshasbeenproposed.TheGLlayers,

prepared in the present investigation, have a good stability in

aqueoussolutionsand,undergotoself-assemblinginflatblocks

ifdriedonaflatsurfacethankstotheinstaurationofhydrophobic

interactionsbetweenthegrapheniclayers.Thisbehavior,typically

observedinreducedgraphiteoxide[16],allowedtoinvestigate

dif-ferentmorphologicalarrangementofTiO2/GLcompositeswiththe

aimofstudyingtherelationshipbetweenmorphologyand

pho-tocatalyticactivityfor acleanerchemicalproductionof vitamin

B3.

Thephotocatalyticactivitiesofthecompositesweretestedby

meansof theselective oxidation of 3-pyridine methanol to

3-pyridinecarboxyaldehydeandnicotinicacid,underde-aeratedand

UV/solarsimulatedconditions,inpresenceofcupricionsin

aque-oussolutionatambienttemperature.Nicotinicacid(alsoknownas

niacin,vitaminPPorB3)isanimportantvitamininBgroupand

itisconsideredasoneofthe80essentialhumannutrients,largely

usedforthepreventionandtreatmentofpellagradisease[23].

2. Experimental

2.1. Materials

Cupricionswereintroducedinthesystemascupricsulphate

pentahydrate, (CuSO4·5H2O, ACS grade). 3-Pyridine methanol

(3-PMA), 3-pyridine carboxyaldehyde (3-PCA), nicotinic acid

(NA),coppersulphate,acetonitrile,ammoniumacetate,hydrazine

monohydrate (50wt.%), thionin acetate (THA) salt (powder),

ammoniumhexafluorotitanate((NH4)2TiF6),boricacid,nitricacid

(67wt.%),andperchloricacid,werepurchasedfromSigma–Aldrich

(ACSgrade)andusedasreceived.Carbonblack(CB)typeN110,

pro-ducedwiththefurnaceprocess,wasobtainedbySidRichardson

CarbonCo.

2.2. PreparationofneatTiO2

NeatTiO2(inanataseform)waspreparedaccordingtothe

pro-cedurereportedbyJiangetal.[16].2.5gof(NH4)2TiF6and2.35g

ofH3BO3weredissolvedin125mLofdistilledwater,sealedand

stirredfor2hat60◦C.Aftercooling,thewhitesolidwas

recov-eredthroughfiltration(Anodisc,poresize0.2␮m),washedwith

distilledwater,vacuumdriedfor1handthencalcinedat200◦Cfor

1h.

2.3. GLlayerssynthesis

GLlayersin water suspensionwereobtainedthrougha two

stepsoxidation/reductionmethod[24]startingfromahighsurface

carbonblack(CB).Briefly,500mgofCBpowder(15–20nmprimary

particlesdiameter,specificBETarea139m2/g)wasoxidizedwith

10mLofnitricacid(67wt.%)at100◦Cunderstirringfor90h.The

oxidizedcarbonnanoparticleswererecoveredbycentrifugation

andwasheduntilacidtracesweresuccessfullyremoved.

Follow-ingtheoxidationstep,thenanoparticles(20mg)weredispersedin

20mLdistilledwaterandtreatedwith450␮Lofhydrazinehydrate

(50%)at100◦Cunderrefluxfor24h.

Attheendofthereactiontheexcessofhydrazinewas

neutral-izedwithnitricacid(4M)andtheresultingblacksolidrecovered

bycentrifugation(3000rpm,30min).Thesolidwaswashedwith

distilledwater,recoveredbycentrifugationthreetimesinorder

to remove traces of unreacted reagents and acid and named

GL.ThepHof theGLwater suspensionwas3.70. ThedriedGL

resultedtobeinsolubleinwaterandinthemostcommonorganic

solvents,bothpolarandapolar(water,ethanol,N-methyl

pirrolidi-none,dichloromethane,heptane,dimethylformamide(DMF)[23]).

Itwasdemonstratedbytransmissionelectronmicroscopy(HRTEM)

andatomicforcemicroscopy(AFM)thatthewater-insolubleGL

undergotoself-assemblinginthin filmonsurfacesafterdrying

[24].Theself-assembledfilmismadebypliantsheetsthateasily

conformtoanyfeatureofthatsurface.Theformationofflatfilmis

associatedwiththedecreaseinthepolarfunctionalitiesinGL

lay-ersasaconsequenceofthereductionstepandsubsequentintimate

self-assemblinginteractionbetweentherestoredgraphiticlayers,

aspreviouslyobservedforthereducedgraphiteoxide[22].

TwostrategieswereadoptedtoproducetheTiO2-based

com-posites,differingfromthemorphologyoftheGLlayers:(1)freshly

preparedGLlayersinwatersuspension(GLW)werereadilyused;

(2)GLlayers(10mg/mL)wereallowedtodryatroomtemperature

onaflatsurface(glasssurface).Theresultedself-assembled

prod-uctwasscrapedfromtheglasssurfaceobtainingflatplateletsof

assembledGLlayers(GLplatelets,GLP).

2.4. SynthesisofTiO2/GLWandTiO2/GLPcomposites

Twocompositeswereprepared bydirectly growingTiO2 on

GLWandGLP.TiO2/GLWandTiO2/GLPcompositeswereprepared

adapting the strategy reported by Jiang et al. for the

prepara-tiongrapheneoxide/TiO2composites[16]:2.5gof(NH4)2TiF6and

2.35gofH3BO3weredissolvedin125mLoftheGL(orGLP)

aque-oussuspension(75mg/L)andstirredfor2hat60◦C.Aftercooling

agreysolidwasrecoveredbyfiltration(Anodisc,poresize0.2␮m),

washedwithdistilledwater,vacuumdriedfor1handthencalcined

at200◦Cfor1h.TheexpectedGLlayerspercentageis5wt.%

Thisapproachaimstodeveloptwocompositeswithdifferent

morphology,asillustratedinFig.1.InthecaseofTiO2/GLW,the

GLandtheTiO2precursorsarewellmixedinthereactivemixture

allowingagooddispersionofGLintoTiO2.InthecaseofTiO2/GLP,

theGLlayersareassembledinflatblocksofferingaflatsurfacefor

thegrowingofTiO2crystal.

2.5. Characterizationprocedure

Thethermalstabilityofthepreparedsampleswasevaluatedby

usingthermogravimetricanalysis(TGA)performedona

Perkin-ElmerPyris 1 Thermogravimetric Analyzer. The materialswere

heatedinanoxidativeenvironment(air,30mLmin−1)from50◦C

(3)

Fig.1. RepresentationofthehypothesizedmorphologiesofTiO2/GLWandTiO2/GLP

composites.

The Brunauer–Emmet–Teller (BET) specific surface areas of

the samples were measured by N2 adsorption at 77K using a

QuantachromeAutosorb1-C.Thesampleswereoutgassedunder

vacuumat110◦Cbeforetheanalysis.Adsorption/desorptiondata

wereprocessedin accordance withtheBarrett–Joyner–Halenda

(BJH)model.

X-raydiffraction(XRD)analysiswascarriedoutusingaPhilips

PW1710diffractometeroperatingbetween5and802withaCu

K␣radiation.Adiffractionexperimentwasrunonstandardglass

slideforthebackgroundcorrection.

The determination of surface acidic functionalities was

per-formedaccordingtothefluorimetrictestreportedbyVisentinetal.

[25].Thecarbonaceousmaterial(0.01mg)wastreatedwith1.5mL

ofasolutionofTHAinethanol(4.3×10−6M)for30minunder

con-tinuousstirringatroomtemperature.Thesuspensionwasfiltered

ona20nmfilterunit(Anotop25,Whatman)andthefluorescence

emissionwasmeasuredwithaPerkin-ElmerLS50B

spectrofluo-rimeter(scanspeed100nm/min,emissionrecordedintherange

between570and700nmuponexcitationat594nm).

ScanningElectronMicroscopy(SEM)wasperformedonaFEI

InspectTMS50ScanningElectronMicroscope.Analysiswasrealized

onapowdersamplepreviouslydriedandsputtercoatedwithathin

layerofgoldtoavoidcharging.

Electron Paramagnetic Resonance (EPR) Spectroscopy was

carried out by means of X-band (9GHz) Bruker Elexys E-500

spectrometer(Bruker,Rheinstetten,Germany), equippedwitha

super-highsensitivityprobehead.Solidsamplesweretransferred

to flame-sealedglass capillaries which, in turn,were coaxially

insertedinastandard4mmquartzsampletube.Measurements

wereperformedatroomtemperature.Theinstrumentalsettings

were as follows: sweepwidth, 100G; resolution, 1024 points;

modulationfrequency,100kHz;modulationamplitude,1.0G.The

amplitudeofthefieldmodulationwaspreventivelycheckedtobe

lowenoughtoavoiddetectablesignalovermodulation.

Prelimi-narily,EPRspectraweremeasuredwitha microwavepowerof

∼0.6mWtoavoidmicrowavesaturationofresonanceabsorption

curve.Severalscans,typically 16,wereaccumulatedtoimprove

thesignal-to-noiseratio.Successively,forpowersaturation

experi-ments,themicrowavepowerwasgraduallyincrementedfrom0.02

to160mW.Theg-factorvaluewasevaluatedbymeansaninternal

standard(TEMPOLethanolsolution)[26]whichwasinsertedinthe

quartzsampletubeco-axiallywiththecapillarycontainingtheGL

inwatersuspensionorcompositesamples.Freeradical

concen-trationinthesamplewasestimatedbyusingaTEMPOLethanol

solutionasreference,whoseconcentrationwasdeterminedbyUV

spectroscopy[27].TheareaundertheEPRabsorptioncurveswas

estimatedbydoubleintegrationoftheirfirstderivatives.

Non-contactAtomicForceMicroscopy(NC-AFM)wasemployed

to characterize the GL building-blocks. NC-AFM morphological

characterizationwascarriedoutbymeansofanXE100Park

instru-mentoperatinginnon-contactmode(amplitudemodulation,

sili-connitridecantileverfromNanosensor)atroomtemperatureand

inambientconditions.SamplesforNC-AFMimagingwereprepared

by drop-casting a very low-concentrated GL water-suspension

(0.1␮g/mL)ontofreshlycleavedmicasubstrates(gradeV-1,

Elec-tronMicroscopySciences),whichwerethenallowedtodryinair.

2.6. Photocatalyticreactorequipmentandanalyticalprocedure

The photocatalyticruns wereperformed, in duplicate,in an

annularbatchglassreactor(V0.280L,externaldiameter6.5cm,

height40cmandopticalpath1.1cm),equippedwithamercury

vaporhighpressurelamp(nominalpower125W,HeliosItalquartz)

mainlyemittingat305,313and366nm(manufacturerdata).The

photon flowsof thelamp at305, 313 and366nm,determined

throughactinometricanalysis,were4.85×10−5,8.34×10−5and

2.71×10−4E/min,respectively.Thereactorwasthermostatedat

25◦Cbyusingathermostatbath(JulaboED-13)andstirred

mag-netically.Theapparatusdevicehasbeenreportedelsewhere[28].

Before turning on the lamp, the aqueous solution,

con-taining the organic substrate ([3-PMA]o=1.5mM), cupric

salts ([CuSO4]o=1.5mM) and a proper load of catalyst

(TiO2=570␮g/mL, TiO2 composites=600␮g/mL) was purged

withanitrogenstreamfor30minatdark(flowrate=0.3L/min).

Thedifferentcatalystloadhasbeenchosentoaccounttheeffective

TiO2contentinTiO2composites.(30␮g/mLbeingtheGLamount,

5%of600␮g/mL).

The photocatalytic runswere carried out underinert

atmo-spheretopreventtheinletof oxygenand theexternalwallsof

thereactorwerecovered withanaluminum foiltopreventthe

dispersionofthelightemittedbythelamp.

ThepHwasadjustedatthedesiredvalue(pH3.0)with

perchlo-ricacid(pH-meterOrion420A+byThermo).

The samples, taken from the reactor at different reaction

times, were filtered on regenerated cellulose filters (0.45␮m,

Teknokroma)andanalyzedbyhighperformanceliquid

chromatog-raphy(HPLC)usinganAgilent1100instrumentequippedwitha

diodearrayUV–vislamp(265nm)andaSynergy4uMAX-RP80A

column(flowrate1.0mL/min,30◦C).Theadoptedgradient

elu-tionwas95%ofbuffersolution(ammoniumacetate20mM)and

5%ofacetonitrilefor5min,riseto75%ofbuffersolutionand25%of

acetonitrilein10min.Theconcentrationofdissolvedcopper,was

measuredbymeansofacolorimetricmethodwithananalyticalkit

(basedonoxalicacidbis-cyclohexylidenehydrazide,cuprizone®)

purchasedfromMacherey-Nagel.AUV–visspectrometer(Unicam)

was used tomeasure the dissolvedcopper at a wavelength of

585nm.Adetectionlimitof0.1mg/Lwasfoundduringthis

inves-tigation.

3. Resultsanddiscussion

3.1. GLWandGLPcharacterization

GL layers in water suspension (GLW) consist of small flat

nanoparticles decorated at the edge with oxygen-containing

groups (mainly carboxylic/carbonylic and hydrazones) with

graphenicbasalplaneuntouched[23].Thecarboxylicfunctional

groups, residual from the reduction treatmentof strongly

oxi-dizedCB,havebeenquantifiedbyasensitiveandfastfluorimetric

method [25]. The amountof acidgroups was estimated to be

9.4×10−8molCOOH/mg.Thepresenceofresidualcarboxylic

func-tionalgroupsallowsagoodstabilityanddispersionofGLsample

inaqueoussolution.

WhenGLlayersinwatersuspensionwereallowedtodryon

a flatsurface,theyunderwenttoself-assemblingforminga flat

filmwhoseheightdependsupontheconcentrationofthestarting

solution. NC-AFM morphological characterization of ultrathin

films(<20nm)obtainedfromGLdryinghasbeenreported

(4)

Fig.2. AFMcharacterization:(a)NC-AFMtopographicimage,4␮m×4␮m,showingthepresenceofGLnanoparticlesonamicasubstrate;(b)NC-AFMtopographicimage, 1.5␮m×1.5␮m,zoomedonsomerepresentativenanoparticles,reportingtheanalyzedprofilespositions;(c)heightprofilesonGLnanoparticles,takenalongthelines highlightedinpanel(b).

estimation.Here,theobservationoftheGLlayers,which areat

thebasisof theGLPformation,is reported.Thefreshly cleaved

micausedassubstrateguaranteesanatomicallyflatunderlying

surface, which is needed for the correct observation and size

measurementsof particlesona nanometerscale. Inaddition, a

very low-concentrated water-suspension (0.1␮g/mL) was used

fordrop-castingontomicasubstrate.Suchalowvaluewaschosen

inordertopreventtheformationofaggregatesonthesubstrate,

allowinginsteadtheachievementofratherindividualGLlayers.

Theconcentrationofwatersuspension,however,washighenough

toallowthepresenceofacertainnumberofnanoparticlesperunit

areaofthesubstrate,sothattobeeasilydetectableinthescanning

areaofthemicroscope.

Fig.2showsthepresenceofnanoparticlesdepositedonthemica

flatsurface.Adetailedcharacterizationofsuchparticlesrevealsa

sizedistribution,whichcanbeascribedtodifferentaggregation

amountsofelementaryconstituents.Selectedheightprofiles

cross-ingtheparticlesdemonstratefirstofall,theflatnessofthesubstrate

(themeasuredroughness,oftheorderof1Angstrom,is

undistin-guishablefromthenoiseleveloftheinstrument,andanywaywell

belowtheheightoftheparticlesunderstudy),anditssuitabilityfor

areliablecharacterizationofthenanoparticles.Fromsuchprofiles

weobservedverticalsizesrangingfromabout1nmorlesstofew

nanometers;thelargerlateraldimensions,afewtensof

nanome-ters(about50nm),confirmsthatatthechosenconcentrationof

watersuspensionsomeaggregationsarestilloccurring.

Whena concentrated GL water suspension (10mg/mL) was

allowedtodryonaflatsurface,acarbonaceousfilmisformed.The

productionofflatblocksabout1–2␮mthick(Fig.3)wasachieved

byscrapingthecarbonaceousfilm.Theseflatblocks,herenamed

GLplatelets(GLP),offeralargersurfaceforTiO2growing.

During the hydrolysis of (NH4)2TiF6, used as TiO2

precur-sor,titaniumhydroxide complex ionsweregradually produced

and furtherformTiO2 nanoparticles[16].The residual

oxygen-containinggroupsontheGLWandGLPsurface, notpresenton

therawCBsurfaceandintroducedaftertheoxidation-reduction

treatment,caninteractwithtitaniumhydroxidecomplexionsand

thegrowingTiO2 nanoparticlesthroughhydrogenbonds.These

interactions favor thenucleationofTiO2 nanoparticlesonGLW

andGLPsurface.

3.2. TiO2andcompositescharacterization

3.2.1. XRDanalysis

The X-ray diffraction patterns of the prepared samples are

reportedinthe20–802range(Fig.4).Thediffractionpatternof

neatTiO2confirmsthatthesampleispresentintheanataseform

(JCPDS21-1272).TheXRDpathofbothcompositesshowedthatthe

productionofTiO2intheanataseformisnotinfluencedbythe

addi-tionofGLlayers.Nevertheless,lowintensitysignalsattributedto

rutilecontamination(as2=27.5,(110)diffractionpeak)inTiO2

-GLWXRDpatternwerealsodetected.Therewerenoobservable

peaksoftheGLlayersinboththecompositesamples,possiblydue

bothtotherelativelylowcontentofcarbonaceousmaterialinthe

compositesandtotheirlowintensity,comparedtotheprevailing

TiO2 pattern.Thepeakat2=25.2(101diffractionpeak)forthe

TiO2/GLPsampleishigherwithrespecttotheneatTiO2,whereas

theTiO2/GLWexhibitsalowerintensitypeak.Thisresultindicates

a highercrystallinity ofTiO2/GLP. It canbespeculatedthatthe

presenceofwelldispersedGLlayersintotheTiO2/GLWcomposite

interfereswiththeTiO2crystallizationprocesswhereasGLPoffers

aflatsurfaceadvantageousforTiO2growingandcrystallization.

3.2.2. SEManalysis

ThemorphologyoftheTiO2/GLWandTiO2/GLPcompositeswas

observedwithSEM(Fig.5).NeatTiO2isalsoreportedfor

compar-ison.Thedimensionsofthecompositesrangeinthemicrometer

scale:thegranulometricanalysisperformedonthesamplesshows

thattheparticlesizedistributionislowerthan20␮mwhichallows

aneasyseparationofthecompositesbyfiltration.NeatTiO2anatase

exhibitsrathersphericalprimaryparticleswhichaggregate

form-inglargerparticles.Themorphologyofthecompositesissimilar

tothatexhibitedbyneatTiO2 andnosignificantdifferencesare

(5)

Fig.3.SEMimagesofGLP.

Fig.4. XRDpatternsofTiO2/GLWandTiO2/GLPcompositesandneatTiO2.

Table1

EPRspectralparametersforTiO2/GLW,TiO2/GLPandneatGLPpowders.

GLP TiO2/GLP TiO2/GLW

g-factor 2.0040±0.0004 2.0035±0.0004 2.0037±0.0004

B(G) 3.3±0.2 2.9±0.2 1.6±0.2

Spin×g−1 1.4×1014 8.5×1013 4.9×1014

3.2.3. BETanalysis

N2 adsorption/desorption measurements with BET method werecarried outto determinethe surfaceareaof thesamples. TiO2/GLPcompositehadasurfaceareaof106.9m2/g,higherthan thevaluesmeasuredfortheneatTiO2 and GLPthat are85and 76m2/g, respectively. The increase of the surface area is not deduciblebyaweightedaverageofthetwoneatcomponents(GLP and TiO2)indicating theoccurrence ofnon-additiveeffects due totheincorporationoftheGLPcomponent.Ahighersurfacearea wasexhibitedbyTiO2/GLW(138m2/g)andwasinterpretedasa consequenceofamoredefectiveandirregularsurfaceduetothe interferenceofGLintheTiO2crystallizationprocess(Figs.2and3).

3.2.4. TGAanalysis

Fig. 6 shows theTGA curves in oxidative environment (air)

for theTiO2/GLWand TiO2/GLP composites.NeatGLP wasalso

reported for comparison. The GLP sample exhibits two weight

losses,thefirstonebetween150and500◦C(∼40%oftotalweight

loss) due totheprogressive decomposition ofresidual

oxygen-containinggroups(carbonylic/carboxylic),andthesecondoneat

550◦CduetothebulkoxidationofGLP.Interestingly,thecurvefor

theTiO2/GLWcompositedoesnotexhibittheclearstepsofmass

lossatabout550◦CasTiO2/GLPsuggestingthattheGLlayersare

well-mixedwithinthecompositeandstabilizedbythedeposited

TiO2throughtheinteractionbetweenoxygen-containinggroups

ontheGLandTiO2particles.AccordingtotheTGAcurves,inboth

compositestheweightcontentofGLlayerswasroughlyevaluated

tobe3–4wt.%,slightlylowerthantheexpectedpercentage(5wt.%).

3.2.5. EPRanalysis

EPRmeasurementsonTiO2/GLWandTiO2/GLPcompositeswere

performedbyfollowinganexperimentalprocedurerecentlyused

inthecharacterizationofmelanins[29–31].AnalysisofthisEPR

signalprovidessignificantinformationonthenatureofthe

para-magneticcentersand onthesupramolecularpropertiesofsolid

materials.Inthisstudy,weundertookanEPRcharacterizationof

powderedsamplessynthesizedaspreviouslydescribed.NeatTiO2

andGLPwereusedasreferences.AllEPRspectraarereportedin

Fig.7,whereasthespectralparameterscalculatedfromthemare

summarizedinTable1.

ByobservingFig.7,nosignalwasdetectedforneatTiO2

(spec-trumA),indicatingnooxygenvacancyorTi3+inthispowderwhich

isconsistentwithapreviousreportthatindicatesnoEPRsignalfor

pureTiO2[32].InFig.7,thespectraB,CandDrepresentthespectra

ofneatGLP,TiO2/GLPandTiO2/GLWrespectively.Theypresenta

similarlineshape:asingle,roughlysymmetricsignalatagvalue

of∼2.0035–2.0040,(Table1),typicalofcarbon-centeredradicals.

Itisinagreementwiththeliterature[33,34]andcorrespondsto

thesampleswithahighcontentofcarbonwhichhavemore

para-magneticcenters.Inparticular,Nakamuraetal.attributedtheEPR

signalatthispositiontoanoxygenvacancy[35],whereasnoother

detectablesignal,suchasTi3+orO2−,appearsinourtests.Sincethe

signalsofthetwocomposites(Fig.7,spectraCandD)presentthe

samelineshapeobservedfortheGLP(Fig.7,spectrumB),the

emer-genceoftheoxygenvacancyinthehybridTiO2samplesisdirectly

dependentonthepresenceofGLlayersinthecompositesynthesis,

(6)

Fig.5.SEMimagesforTiO2/GLWandTiO2/GLPcompositesandneatTiO2.

However,adeeperanalysisofthespectraofcompositesshows

thattheTiO2/GLPspectrumisevidentlybroaderthantheTiO2/GLW

one.Thedifferenceinlineshapeswascorroboratedbythe

quanti-tativedeterminationofthesignalamplitude(B).TheBvalue

determinedfromthespectrumofTiO2/GLPissignificantlylower

thanthosederivedfromthespectrumofTiO2/GLPwhichis

com-parabletoGLPspectrum(Table1).Toascertainphysicalreasonsfor

thisexperimentalevidence,theEPRspectraofthesamesamples

were acquired setting a higher microwave power. An

inspec-tion of the normalized power saturation profiles, reported in

Fig.8,showsthat,asthemicrowavepowerisincreased,thespin

densityincreases.Also, thepowersaturationcurveof TiO2/GLP

(andsimilarlyofpureGLP)doesnotgotoaplateau,incontrast

tothatobservedinthecaseofTiO2/GLW.Thecomparativelylow

Bvalueand thepowersaturationprofile ofTiO2/GLW would

suggestarelativelyhomogeneousfree-radicalspeciesdistribution

thatisspatiallyconfinedwithinrestrictedregionofthecatalyst

supramolecularstructure, in contrast tothe broader variety of

free-radicalspeciesthatcouldbegeneratedwithinthedelocalized

Fig.6. TGAcurvesofTiO2/GLWandTiO2/GLPcompositesandGLP.

␲-electronsystemsoftheTiO2/GLP.Thereduced“mobility”offree

radicals,generatedunderirradiation,isinterpretedasan

interrup-tionoftheelectron“mobility”withinthegraphene-like,dispersed

overtheTiO2 matrix butnotgroupedin plateletasin thecase

of TiO2/GLP [34]. Thisproperty, added tothe presenceof

oxy-genvacancies,probablycontributestoimprovethephotocatalytic

activityofthecatalyst,asalsosuggestedinliterature[33].

Differ-entstudieshaveproposedthatthedefectsinthematerialstructure

haveasignificanteffectontheelectronicstatesoftheentireflakeof

graphene.Thesedefectscanincreasetheelectronsmobilitywhich

isdirectlycorrelatedtothematerialconductivity[36].Finally,a

Fig.7.EPRspectraofneatTiO2(A),neatGLP(B),TiO2/GLP(C)andTiO2/GLW(D)

(7)

Fig.8.InfluenceofmicrowavepoweronamplitudesoffreeradicalsofGLP(), TiO2/GLP(䊉)andTiO2/GLW()composites.

quantitativeanalysisofthespectraintensitiesshowsthatall

sam-plespresentasimilarhighspindensity(Table1).

3.3. Compositesphotocatalyticactivity

Compositesweretestedtochecktheirphotocatalyticactivityfor

thepartialoxidationof3-pyridinemethanol(3-PMA)to3-pyridine

carboxyaldehyde(3-PCA)andnicotinicacid(NA)underilluminated

anddeaeratedconditionsinthepresenceofcupricions,usedas

photoelectronscavengers.

Thenormalizedconcentrationprofilesfor3-PMAanddissolved

copper, andthereactionyieldsfor3-PCAand NA,under

differ-entexperimentaladoptedconditions,arereportedinFigs.9a–d

respectively.

Thehomogenoussystem,intheonlypresenceofCuSO4(empty

triangles),showsalowreactivityprobablyascribedtoa

photocat-alyticactivityoftheCu(II)/3-PMAcomplexes.Theadditionofthe

soleGLorGLPtotheaqueoussolution,containingcupricionsand

3-PMA,doesnotimprovethesystemreactivitywithrespectthe

previousone(emptysquaresanddiamonds).

Amarkedincreaseof3-PMAandCu(II)consumption,and3-PCA

andNAproductionrateswasachievedinpresenceofcupricions

withneatTiO2catalystataloadof570␮g/mL(fullsquares).

Fig.9. Selectivephoto-oxidationof3-PMAatdifferentexperimentalconditionsunderdeaeratedconditions:(a)3-PMAconsumption;(b)Cu(II)photoreduction;(c)3-PCA yield;(d)NAyield.[3-PMA]o=1.5mM,[CuSO4]o=1.5mM;pH3.0;T=25◦C.InpresenceofTiO2/GLP,load600ppm(䊉);neatTiO2,load570ppm();TiO2/GLW,load600ppm

(8)

Table2

Photocatalyticselectiveoxidationof3-PMAinpresenceofCuSO4anddifferentsolidsamples(neatTiO2,neatGL,neatGLPandcompositecatalysts)forareactiontimeof5h.

Conversion(X),yield(Y),selectivity(S).

Run Catalyst X(3-PMA)(%) Y(3-PCA)(%) S(3-PCA)(%) Y(NA)(%) S(NA)(%) Carbonmass

balance(%)

1 OnlyCuSO4 17.3 13.4 77.4 2.23 12.8 98.0

2 CuSO4andneatGL 12.4 9.14 73.7 1.63 13.1 98.2

3 CuSO4andneatGLP 8.44 4.08 48.3 1.21 14.3 96.3

4 CuSO4andneatTiO2 50.2 30.7 61.1 14.3 28.5 94.6

5 CuSO4andTiO2/GLW 35.8 24.1 67.3 7.28 20.3 94.4

6 CuSO4andTiO2/GLP 63.3 39.5 62.4 21.9 34.6 97.9

[3-PMA]o=1.5mM,[CuSO4]o=1.5mM;pH3.0;T=25◦C.

Thecomposites, present in thereactingsystem ata load of 600␮g/mLtoaccounttheeffectiveTiO2 content(95wt.%),show verydifferentcatalyticactivitiesdependingonthemorphologyof GLlayers(GLWorGLP)addedtothesystem.

WhenTiO2/GLWwasusedascatalyst(fulldiamonds),the reac-tivityisevenlowerthanthatinwhichneatTiO2ispresent.Onthe otherhand,thephotocatalyticoxidationratesof3-PMA,thecupric ionsreductionratesandtheyieldsto3-PCAandNAwererather increasedinthepresenceofTiO2/GLP(fullparticles)atthesame adoptedexperimentalconditions.

Thecollectedresultsindicatedthat,undertheadopted exper-imental conditions, the production of NA for photocatalytic oxidationof3-PMA,proceedsthroughthefollowingsteps: 1)photogenerationofholesandelectrons

TiO2basedcatalyst−→TiOhv 2basedcatalyst(e−cb,h+vb)

2)formationof3-PCA,asprimarychemicalintermediate,by reac-tionofholeswith3-PMA

TiO2basedcatalyst(2h+vb)+3-PMA→TiO2basedcatalyst +3-PCA

3)conversionof3-PCAtoNA

TiO2basedcatalyst(2h+vb)+3-PCA→TiO2basedcatalyst+NA 4)photoreductionofcupricionstocopperzero-valent

TiO2basedcatalyst(2e−cb)+Cu(II)→TiO2basedcatalyst+Cu(0)

Asummaryoftheconversiondegreesfor3-PMAand selectivi-tiesandyieldsto3-PCAandNA,alongwiththecarbonmassbalance, after5hofreactiontime,isreportedinTable2.First,thepresence

ofGLlayersinwatersuspensionorGLPonly(runs2and3)does

notprovideanyimprovementcomparedtothehomogeneous

sys-tem(run1).Onthecontrary,theadditionofneatTiO2only(run

4)involvesanincreaseof theconversiondegreeupto50% and

yieldsto3-PCAandNAupto31%and14%.Whereastheoverall

selectivity(87.3%)andthecarbonmassbalance(94.4%)arealmost

thesame,theuseofTiO2/GLWasphoto-catalyst(run5)involvesa

reductionoftheconversiondegree(35.8%)andyield(24%and7.3)

ifcomparedtotheuseofneatTiO2.

Onthecontrary,theuseofTiO2/GLPasphoto-catalyst(run6)

resultsinimprovedofthe3-PMAconversiondegree(63.3%)and

yield(39.5%for3-PCAand22%forNA).Moreover,highervalues

fortheglobalselectivity(97%)andthemasscarbonbalance(98%)

areachieved.TheTiO2/GLPcatalyst,comparedtoneatTiO2 and

TiO2/GLWcatalyst,promotestheselectiveoxidationof3-PMAto

3-PCAandof3-PCAtoNA.

IthasbeenreportedthatthephotocatalyticactivityofTiO2is

stronglyaffectedbyseveralparameterssuchasthephasestructure,

crystalsize,specificsurfaceareaandcrystallinity[37,38].Inorder

toachievebetterphotocatalyticperformances,agoodcrystallinity

isoftenrequiredtoreducetheformationofelectrontraps,which

mightaffectthephotocatalyticefficiency[39].Moreover,acatalyst

withalargespecificsurfaceareamaybealsodesirablesincethe

contactbetweenthe activesitesand thereactingsubstances is

enhanced.

The lower photocatalytic activity of TiO2/GLW sample was

driven by its lower crystallinity degree than TiO2/GLP one, in

spiteofitsslightlylargerspecificsurfacearea(138m2/g).Inthe

caseofTiO2/GLP,theimprovedphoto-catalystperformancesare

mainlyascribedbothtothehighercrystallinitydegreeandtothe

presence the broader variety of “long-live” free-radical species

photo-generatedwithinthedelocalizedGLP␲-electronsystems,as

indicatedbyEPRanalyses.Moreoverthelowerfree-radicaldensity,

evidencedinTiO2/GLP,canaccountforthedecreaseofthe

occur-renceofoxidationmechanismsofHOradicaltypethat,producing

hydroxylatedundesiredby-products,inevitablywouldlowerthe

selectivityofthesystemandyieldstodesiredproducts(3-PCAand

NA).

4. Conclusion

WaterstableGLlayers, producedthrough a two-step

oxida-tion/reductionwettreatmentofcarbonblack,havebeenusedin

twodifferentforms (inwater suspensionandassembled inflat

blocks) to prepare composites with TiO2 nanoparticles by

liq-uidphasedeposition(TiO2/GLWandTiO2/GLP,respectively).The

adoptedexperimentalapproachallowedtoexploretheeffectof

morphologyoncatalystperformancestowardselectiveconversion

of3-pyridinemethanolto3-pyridinecarboxyaldehydeand

nico-tinicacid(vitaminB3),underde-aeratedandUV/solarsimulated

conditions, in presence of cupric ions. An enhanced

photocat-alyticactivityofTiO2/GLP,withrespecttotheneatTiO2,hasbeen

observedandattributedbothtothebroadervarietyoffree-radical

speciesstabilizedwithinthedelocalized␲-electronsystemsofthe

TiO2/GLP,asindicatedbyEPRanalysesandtoareductionofthe

hydroxylradicalsformation.InthecaseofTiO2/GLW,thepresence

ofwelldispersedGLlayersduringTiO2nucleationseemsto

inter-ferewiththeTiO2crystallizationprocessloweringthecomposite

photocatalyticactivity,inspiteofitshighersurfacearea.Moreover,

beneficialeffects drivenbythepresenceofhighlyp-conjugated

systemsarenotobservedduetothespatiallyconfinedfree-radical

speciesinTiO2/GLW.

Acknowledgments

AuthorsthankMr.LucianoCorteseforSEMimagingandXRD

analysisandDr.PaolaGiudicianniforBETanalyses.Theworkwas

partiallyfinancedbyAccordoCNR-MSE“Utilizzopulitodei

(9)

References

[1]C.Walling,R.W.R.Humphreys,J.Org.Chem.46(1981)1260–1263.

[2]C.Parmeggiani,F.Cardona,GreenChem.14(2012)547–564.

[3]M.Addamo,V.Augugliaro,M.Bellardita,A.DiPaola,V.Loddo,G.Palmisano,L. Palmisano,S.Yurdakal,Catal.Lett.126(2008)58–62.

[4]V.Augugliaro,T.Caronna,V.Loddo,G.Marcì,G.Palmisano,L.Palmisano,S. Yurdakal,Chem.Eur.J.14(2008)4640–4646.

[5]S.Yurdakal,G.Palmisano,V.Loddo,V.Augugliaro,L.Palmisano,J.Am.Chem. Soc.130(2008)1568–1569.

[6]G.Palmisano,E.Garcıa-Lopez,G.Marcì,V.Loddo,S.Yurdakal,V.Augugliaro,L. Palmisano,Chem.Commun.46(2010)7074–7089.

[7]S.Yurdakal,V.Loddo,G.Palmisano,V.Augugliaro,H.Berber,L.Palmisano,Ind. Eng.Chem.Res.49(2010)6699–6708.

[8]R.Marotta,I.DiSomma,D.Spasiano,R.Andreozzi,V.Caprio,Chem.Eng.J.172 (2011)243–249.

[9]R.Marotta,I.DiSomma,D.Spasiano,R.Andreozzi,V.Caprio,J.Chem.Technol. Biotechnol.88(2013)864–872.

[10]D.Spasiano,L.P.P.Rodriguez,J.C.Olleros,S.Malato,R.Marotta,R.Andreozzi, Appl.Catal.B:Environ.136–137(2013)56–63.

[11]W.T.Chen,V.Jovic,D.Sun-Waterhouse,H.Idriss,G.I.N.Waterhouse,Int.J. HydrogenEnergy38(2013)15036–15048.

[12]K.Maeda,J.Photochem.Photobiol.C:Photochem.Rev.12(2011)237–268.

[13]Q.Wang,N.An,Y.Bai,H.Hang,J.Li,X.Lu,Y.Liu,F.Wang,Z.Li,Z.Lei,Int.J. HydrogenEnergy38(2013)10739–10745.

[14]X.An,J.C.Yu,RSCAdv.1(2011)1426–1434.

[15]S.Bai,X.Shen,RSCAdv.2(2012)64–98.

[16]G.Jiang,Z.Lin,C.Chen,L.Zhu,Q.Chang,N.Wang,W.Wei,H.Tang,Carbon49 (2011)2693–2701.

[17]K.Zhou,Y.Zhu,X.Yang,X.Jiang,C.Li,NewJ.Chem.35(2011)353–359.

[18]D.Wang,D.Choi,J.Li,Z.Yang,Z.Nie,R.Kou,ACSNano3(2009)907–914.

[19]Y.Liang,H.Wang,H.S.Casalongue,Z.Chen,H.Dai,NanoRes.3(2010)701–705.

[20]J.Liu,H.Bai,Y.Wang,Z.Liu,X.Zhang,D.D.Sun,Adv.Funct.Mater.20(2010) 4175-4181.

[21]S.Stankovich,R.D.Piner,X.Chen,N.Wu,S.T.Nguyen,R.S.Ruoff,J.Mater.Chem. 16(2006)155–158.

[22]S.Stankovich,D.A.Dikin,R.D.Piner,K.A.Kohlhaas,A.Kleinhammens,Y.Jia,Y. Wu,S.T.Nguyen,R.S.Ruoff,Carbon45(2007)1558–1565.

[23]R.Chuck,Appl.Catal.A:Gen.280(2005)75–82.

[24]M.Alfè,V.Gargiulo,R.DiCapua,F.Chiarella,J.N.Rouzaud,A.Vergara,A.Ciajolo, ACSAppl.Mater.Interfaces4(2012)4491–4498.

[25]S.Visentin,N.Barbero,S.Musso,V.Mussi,C.Biale,R.Ploeger,G.Viscardi,Chem. Commun.46(2010)1443–1445.

[26]M.F.Ottaviani,J.Phys.Chem.91(1987)779–784.

[27]N.D. Yordanov, K. Ranguelova, Spectrochim. Acta Part A 56 (2000) 373–378.

[28]R.Andreozzi,V.Caprio,A.Insola,R.Marotta,WaterRes.34(2000)463-472. [29]L.Panzella,G.Gentile,G.D’Errico,N.F.DellaVecchia,M.E.Errico,A.Napolitano,

C.Carfagna,M.d’Ischia,Angew.Chem.Int.Ed.52(2013)12684–12687.

[30]A.Pezzella,L.Capelli,A.Costantini,G.Luciani,F.Tescione,B.Silvestri,G.Vitiello, F.Branda,Mater.Sci.Eng.C33(2013)347–355.

[31]E.Cesareo,L.Korkina,G.D’Errico,G.Vitiello,M.S.Aguzzi,F.Passarelli,J.Z. Pedersen,A.Facchiano,PlosOne7(2012)e48849.

[32]F.Zuo,L.Wang,T.Wu,Z.Zhang,D.Borchardt,P.Feng,J.Am.Chem.Soc.132 (2010)11856–11867.

[33]E.A.Konstantinova,A.I.Kokorin,S.Sakthivel,H.Kisch,K.Lips,Chim.Int.J.Chem. 61(2007)810–814.

[34]M.Long, Y. Qin, C. Chen,X. Guo, B. Tan, J. Phys. Chem. C 117 (2013) 16734–16741.

[35]I.Nakamura,N.Negishi,S.Kutsuna,T.Ihara,S.Sugihara,K.Takeuchi,J.Mol. Catal.A:Chem.161(2000)205–212.

[36]L. ´Ciri ´c,A.Sienkiewicz,R.Gaál,J.Ja ´cimovi ´c,C.Vâju,A.Magrez,L.Forrò,Phys. Rev.B86(2012)195139.

[37]E.B.Li,X.Z.Li,M.F.Hou,K.W.Cheah,W.C.H.Choy,Appl.Catal.A285(2005) 181–189.

[38]J.Yu,J.C.Yu,M.K.P.Leung,W.Ho,B.Cheng,X.Zhao,J.Zhao,J.Catal.217(2003) 69–78.

Riferimenti

Documenti correlati

What this paper contributes to our knowledge The results of the static and dynamic tests performed indicated that the Dimar and Deas devices showed the best performance in terms

spetto diagnostico di ernia vescica- le viene posto sulla base dei sinto- mi clinici e della palpazione di una tumefazione fluttuante della parete addominale pelvica ventrale..

Mazzamuto, L’allegato E e l’infausto mito della giurisdizione unica tra ideologia ed effettività della tutela nei confronti della pubblica amministrazione, Intervento al

As part of our approach, we can also create graph- ical descriptions of the overall positioning of an actor, by operationalising and expanding McGee’s notion of ideograph into a

In particular we evaluated the effect of SI stress on hippocampal neuroactive steroid levels and the gene expression of different GABA A R subunits and related function in

13 Esistono in senso stretto due generi di “Urfehde”, la cosiddetta “Streiturfehde”, il giuramento di pace che termina una faida iniziata o solo dichiarata; e la

The Reconstructed Genomes and SGBs Increase the Diversity and Mappability of the Human Microbiome We identified 3,796 SGBs (i.e., 77.0% of the total) covering unex- plored

Curtoni et al.: Rapid Identification of Microorganisms from Positive Blood Culture… Rapid Identification of Microorganisms from Positive Blood Culture by MALDI- TOF MS After