ContentslistsavailableatScienceDirect
Applied
Catalysis
A:
General
j o ur na l h o me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t a
TiO
2
/graphene-like
photocatalysts
for
selective
oxidation
of
3-pyridine-methanol
to
vitamin
B3
under
UV/solar
simulated
radiation
in
aqueous
solution
at
room
conditions:
The
effect
of
morphology
on
catalyst
performances
Michela
Alfè
a,
Danilo
Spasiano
b,∗,
Valentina
Gargiulo
a,
Giuseppe
Vitiello
b,c,
Roberto
Di
Capua
d,
Raffaele
Marotta
baIstitutodiRicerchesullaCombustione,ConsiglioNazionaledelleRicerche(IRC)-CNR,p.leV.Tecchio,80,80125Napoli,Italy
bDipartimentodiIngegneriaChimica,deiMaterialiedellaProduzioneIndustriale,UniversitàdiNapoli“FedericoII”,p.leV.Tecchio,80,80125Napoli,Italy cCSGI,ConsorzioInteruniversitarioperloSviluppodeiSistemiaGrandeInterfase,Italy
dDipartimentodiFisica,UniversitàdiNapoli“FedericoII”,andSPIN-CNRUOS,viaCintia,80126Napoli,Italy
a
r
t
i
c
l
e
i
n
f
o
Articlehistory: Received23May2014
Receivedinrevisedform26August2014 Accepted2September2014
Availableonline16September2014
Keywords: Graphene-like TiO2-composites
Selectivephotocatalyticoxidation VitaminB3
a
b
s
t
r
a
c
t
Graphene-likelayers,synthesized throughatwo-step oxidation/reductionwettreatmentof ahigh
surfacecarbonblack,havebeenusedtopreparecompositeswithTiO2nanoparticlesbyliquidphase
depo-sition,followedbycalcinationat200◦C.ThephotocatalyticactivityoftheTiO2/graphene-likecomposites
hasbeentestedfortheselectiveconversionof3-pyridinemethanolto3-pyridinecarboxyaldehydeand
nicotinicacid(vitaminB3),underde-aeratedandUV/solarsimulatedconditions,inthepresenceofcupric
ions.Twodifferentcompositemorphologieshavebeenexploredandadependenceofthe
photocat-alyticactivityhasbeenassessed.Anenhancedphotocatalyticactivity,withrespecttotheneatTiO2,has
beenobservedandattributedtothebroadervarietyofstablefree-radicalspeciesgenerated,atagiven
photo-catalystmorphology,withinthedelocalized-electronsystems.
©2014ElsevierB.V.Allrightsreserved.
1. Introduction
Atthepresenttime,thereisagreatinteresttocarry outthe
productionof finechemicals,underverymild conditions,using
renewableenergy sources,suchasthesolarradiation,and
eco-friendly solvents, such as water [1,2]. To this aim the use of
TiO2-basedphotocatalystsappearstobeadvantageousasTiO2is
easilyavailable,stabletophotocorrosion,cheap,andnontoxic
sub-stance[3–7].
WhenmolecularoxygenacceptstheTiO2photo-generated
elec-tronsinaqueoussolution,itleadstotheformationofHOradicals,
whichplayhighlynegativeroleintheseprocessessincethey
un-selectivelyoxidizeorganicsubstrates:
TiO2(e−cb)+O2→O•−2 ...→HO•
Ontheotherhand,when metalions,suchasCu(II)ions,are
used in de-aerated conditions as electron acceptor instead of
∗ Correspondingauthor.Tel.:+390817682253;fax:+390815936936. E-mailaddress:[email protected](D.Spasiano).
oxygen,theHOradicalproductionisstronglylimitedandthe
pro-cessselectivityincreases[8,9].Inparticular,whenCu(II)ionsaccept
thephoto-generatedconductionbandelectrons,theyarereduced
firsttoCu(I)andthentoCu(0),whichprecipitate.Moreover,since
thezero-valentcoppercouldbesimplyre-oxidizedtoCu(II),atthe
endofprocess,withanairflowblownintothesolutionindark
con-ditions,itispossibletoconsideralsoCu(II)ionsasco-catalysts[10].
However,evenifthepresenceofoxygenisavoidedthroughinert
gasinletduringthephotocatalyticprocess,theformationofHO
radicalsisnottotallyquenched,justresultingfromthereactionof
watermoleculesorsurfaceadsorbedhydroxylgroupswithpositive
holes[11]:
TiO2(h+vb)+H2O(ads)→TiO2+HO◦+H+
TiO2(h+vb)+H2O−(ads)→TiO2+HO◦
Theproducedhydroxylradicals,attacktheorganicsubstrates
anddesiredproducts,thusloweringtheselectivityoftheprocesses
[8,10].Moreover,oneofthemainproblemsassociatedwiththeuse
http://dx.doi.org/10.1016/j.apcata.2014.09.002
ofTiO2asaphotocatalystisthefastrecombinationreactionofthe
electron–holepair:
TiO2(h+vb)+TiO2(e−cb)→heat
For this reason, many researchers are pointing their
atten-tiontothesynthesisofdifferentTiO2-basedcatalystscontaining
inorganicand organic compounds,such asmetal oxides, noble
metals,grapheneandcoppersulphide[11–13],thatdecreasethe
electron–hole recombination. For example, it has been proven
thattheelectronacceptingandtransportpropertiesofgraphene
providea convenientwaytodirecttheflowofphoto-generated
chargecarriers,whichthusincreasesthelifetimeofelectron–hole
pairsgeneratedbyTiO2uponlightirradiation[14,15].
DirectTiO2growthongraphiteoxide(GO)sheetsfollowedby
reductionofGOtographene[16–20]hasbeenproposedaspossible
strategytoproducecompositesthatcombinetheelectron
accept-ingfeaturesofgrapheneandtheTiO2photocatalyticactivity.The
useofthehydrophilicGOasintermediatesteptoobtaingraphene
isaconvenientapproachadoptedtoovercomethegraphene
aggre-gationdrivenbystrongvanderWaalsforceswhenusedinwater
andinpolarorganicsolvents[14,21].
Inthepresentinvestigation,directTiO2growthonwater-stable
conductivegraphene-like(GL)layerstoproduceTiO2-based
com-positephotocatalyticmaterialshasbeenproposed.TheGLlayers,
prepared in the present investigation, have a good stability in
aqueoussolutionsand,undergotoself-assemblinginflatblocks
ifdriedonaflatsurfacethankstotheinstaurationofhydrophobic
interactionsbetweenthegrapheniclayers.Thisbehavior,typically
observedinreducedgraphiteoxide[16],allowedtoinvestigate
dif-ferentmorphologicalarrangementofTiO2/GLcompositeswiththe
aimofstudyingtherelationshipbetweenmorphologyand
pho-tocatalyticactivityfor acleanerchemicalproductionof vitamin
B3.
Thephotocatalyticactivitiesofthecompositesweretestedby
meansof theselective oxidation of 3-pyridine methanol to
3-pyridinecarboxyaldehydeandnicotinicacid,underde-aeratedand
UV/solarsimulatedconditions,inpresenceofcupricionsin
aque-oussolutionatambienttemperature.Nicotinicacid(alsoknownas
niacin,vitaminPPorB3)isanimportantvitamininBgroupand
itisconsideredasoneofthe80essentialhumannutrients,largely
usedforthepreventionandtreatmentofpellagradisease[23].
2. Experimental
2.1. Materials
Cupricionswereintroducedinthesystemascupricsulphate
pentahydrate, (CuSO4·5H2O, ACS grade). 3-Pyridine methanol
(3-PMA), 3-pyridine carboxyaldehyde (3-PCA), nicotinic acid
(NA),coppersulphate,acetonitrile,ammoniumacetate,hydrazine
monohydrate (50wt.%), thionin acetate (THA) salt (powder),
ammoniumhexafluorotitanate((NH4)2TiF6),boricacid,nitricacid
(67wt.%),andperchloricacid,werepurchasedfromSigma–Aldrich
(ACSgrade)andusedasreceived.Carbonblack(CB)typeN110,
pro-ducedwiththefurnaceprocess,wasobtainedbySidRichardson
CarbonCo.
2.2. PreparationofneatTiO2
NeatTiO2(inanataseform)waspreparedaccordingtothe
pro-cedurereportedbyJiangetal.[16].2.5gof(NH4)2TiF6and2.35g
ofH3BO3weredissolvedin125mLofdistilledwater,sealedand
stirredfor2hat60◦C.Aftercooling,thewhitesolidwas
recov-eredthroughfiltration(Anodisc,poresize0.2m),washedwith
distilledwater,vacuumdriedfor1handthencalcinedat200◦Cfor
1h.
2.3. GLlayerssynthesis
GLlayersin water suspensionwereobtainedthrougha two
stepsoxidation/reductionmethod[24]startingfromahighsurface
carbonblack(CB).Briefly,500mgofCBpowder(15–20nmprimary
particlesdiameter,specificBETarea139m2/g)wasoxidizedwith
10mLofnitricacid(67wt.%)at100◦Cunderstirringfor90h.The
oxidizedcarbonnanoparticleswererecoveredbycentrifugation
andwasheduntilacidtracesweresuccessfullyremoved.
Follow-ingtheoxidationstep,thenanoparticles(20mg)weredispersedin
20mLdistilledwaterandtreatedwith450Lofhydrazinehydrate
(50%)at100◦Cunderrefluxfor24h.
Attheendofthereactiontheexcessofhydrazinewas
neutral-izedwithnitricacid(4M)andtheresultingblacksolidrecovered
bycentrifugation(3000rpm,30min).Thesolidwaswashedwith
distilledwater,recoveredbycentrifugationthreetimesinorder
to remove traces of unreacted reagents and acid and named
GL.ThepHof theGLwater suspensionwas3.70. ThedriedGL
resultedtobeinsolubleinwaterandinthemostcommonorganic
solvents,bothpolarandapolar(water,ethanol,N-methyl
pirrolidi-none,dichloromethane,heptane,dimethylformamide(DMF)[23]).
Itwasdemonstratedbytransmissionelectronmicroscopy(HRTEM)
andatomicforcemicroscopy(AFM)thatthewater-insolubleGL
undergotoself-assemblinginthin filmonsurfacesafterdrying
[24].Theself-assembledfilmismadebypliantsheetsthateasily
conformtoanyfeatureofthatsurface.Theformationofflatfilmis
associatedwiththedecreaseinthepolarfunctionalitiesinGL
lay-ersasaconsequenceofthereductionstepandsubsequentintimate
self-assemblinginteractionbetweentherestoredgraphiticlayers,
aspreviouslyobservedforthereducedgraphiteoxide[22].
TwostrategieswereadoptedtoproducetheTiO2-based
com-posites,differingfromthemorphologyoftheGLlayers:(1)freshly
preparedGLlayersinwatersuspension(GLW)werereadilyused;
(2)GLlayers(10mg/mL)wereallowedtodryatroomtemperature
onaflatsurface(glasssurface).Theresultedself-assembled
prod-uctwasscrapedfromtheglasssurfaceobtainingflatplateletsof
assembledGLlayers(GLplatelets,GLP).
2.4. SynthesisofTiO2/GLWandTiO2/GLPcomposites
Twocompositeswereprepared bydirectly growingTiO2 on
GLWandGLP.TiO2/GLWandTiO2/GLPcompositeswereprepared
adapting the strategy reported by Jiang et al. for the
prepara-tiongrapheneoxide/TiO2composites[16]:2.5gof(NH4)2TiF6and
2.35gofH3BO3weredissolvedin125mLoftheGL(orGLP)
aque-oussuspension(75mg/L)andstirredfor2hat60◦C.Aftercooling
agreysolidwasrecoveredbyfiltration(Anodisc,poresize0.2m),
washedwithdistilledwater,vacuumdriedfor1handthencalcined
at200◦Cfor1h.TheexpectedGLlayerspercentageis5wt.%
Thisapproachaimstodeveloptwocompositeswithdifferent
morphology,asillustratedinFig.1.InthecaseofTiO2/GLW,the
GLandtheTiO2precursorsarewellmixedinthereactivemixture
allowingagooddispersionofGLintoTiO2.InthecaseofTiO2/GLP,
theGLlayersareassembledinflatblocksofferingaflatsurfacefor
thegrowingofTiO2crystal.
2.5. Characterizationprocedure
Thethermalstabilityofthepreparedsampleswasevaluatedby
usingthermogravimetricanalysis(TGA)performedona
Perkin-ElmerPyris 1 Thermogravimetric Analyzer. The materialswere
heatedinanoxidativeenvironment(air,30mLmin−1)from50◦C
Fig.1. RepresentationofthehypothesizedmorphologiesofTiO2/GLWandTiO2/GLP
composites.
The Brunauer–Emmet–Teller (BET) specific surface areas of
the samples were measured by N2 adsorption at 77K using a
QuantachromeAutosorb1-C.Thesampleswereoutgassedunder
vacuumat110◦Cbeforetheanalysis.Adsorption/desorptiondata
wereprocessedin accordance withtheBarrett–Joyner–Halenda
(BJH)model.
X-raydiffraction(XRD)analysiswascarriedoutusingaPhilips
PW1710diffractometeroperatingbetween5and802withaCu
K␣radiation.Adiffractionexperimentwasrunonstandardglass
slideforthebackgroundcorrection.
The determination of surface acidic functionalities was
per-formedaccordingtothefluorimetrictestreportedbyVisentinetal.
[25].Thecarbonaceousmaterial(0.01mg)wastreatedwith1.5mL
ofasolutionofTHAinethanol(4.3×10−6M)for30minunder
con-tinuousstirringatroomtemperature.Thesuspensionwasfiltered
ona20nmfilterunit(Anotop25,Whatman)andthefluorescence
emissionwasmeasuredwithaPerkin-ElmerLS50B
spectrofluo-rimeter(scanspeed100nm/min,emissionrecordedintherange
between570and700nmuponexcitationat594nm).
ScanningElectronMicroscopy(SEM)wasperformedonaFEI
InspectTMS50ScanningElectronMicroscope.Analysiswasrealized
onapowdersamplepreviouslydriedandsputtercoatedwithathin
layerofgoldtoavoidcharging.
Electron Paramagnetic Resonance (EPR) Spectroscopy was
carried out by means of X-band (9GHz) Bruker Elexys E-500
spectrometer(Bruker,Rheinstetten,Germany), equippedwitha
super-highsensitivityprobehead.Solidsamplesweretransferred
to flame-sealedglass capillaries which, in turn,were coaxially
insertedinastandard4mmquartzsampletube.Measurements
wereperformedatroomtemperature.Theinstrumentalsettings
were as follows: sweepwidth, 100G; resolution, 1024 points;
modulationfrequency,100kHz;modulationamplitude,1.0G.The
amplitudeofthefieldmodulationwaspreventivelycheckedtobe
lowenoughtoavoiddetectablesignalovermodulation.
Prelimi-narily,EPRspectraweremeasuredwitha microwavepowerof
∼0.6mWtoavoidmicrowavesaturationofresonanceabsorption
curve.Severalscans,typically 16,wereaccumulatedtoimprove
thesignal-to-noiseratio.Successively,forpowersaturation
experi-ments,themicrowavepowerwasgraduallyincrementedfrom0.02
to160mW.Theg-factorvaluewasevaluatedbymeansaninternal
standard(TEMPOLethanolsolution)[26]whichwasinsertedinthe
quartzsampletubeco-axiallywiththecapillarycontainingtheGL
inwatersuspensionorcompositesamples.Freeradical
concen-trationinthesamplewasestimatedbyusingaTEMPOLethanol
solutionasreference,whoseconcentrationwasdeterminedbyUV
spectroscopy[27].TheareaundertheEPRabsorptioncurveswas
estimatedbydoubleintegrationoftheirfirstderivatives.
Non-contactAtomicForceMicroscopy(NC-AFM)wasemployed
to characterize the GL building-blocks. NC-AFM morphological
characterizationwascarriedoutbymeansofanXE100Park
instru-mentoperatinginnon-contactmode(amplitudemodulation,
sili-connitridecantileverfromNanosensor)atroomtemperatureand
inambientconditions.SamplesforNC-AFMimagingwereprepared
by drop-casting a very low-concentrated GL water-suspension
(0.1g/mL)ontofreshlycleavedmicasubstrates(gradeV-1,
Elec-tronMicroscopySciences),whichwerethenallowedtodryinair.
2.6. Photocatalyticreactorequipmentandanalyticalprocedure
The photocatalyticruns wereperformed, in duplicate,in an
annularbatchglassreactor(V0.280L,externaldiameter6.5cm,
height40cmandopticalpath1.1cm),equippedwithamercury
vaporhighpressurelamp(nominalpower125W,HeliosItalquartz)
mainlyemittingat305,313and366nm(manufacturerdata).The
photon flowsof thelamp at305, 313 and366nm,determined
throughactinometricanalysis,were4.85×10−5,8.34×10−5and
2.71×10−4E/min,respectively.Thereactorwasthermostatedat
25◦Cbyusingathermostatbath(JulaboED-13)andstirred
mag-netically.Theapparatusdevicehasbeenreportedelsewhere[28].
Before turning on the lamp, the aqueous solution,
con-taining the organic substrate ([3-PMA]o=1.5mM), cupric
salts ([CuSO4]o=1.5mM) and a proper load of catalyst
(TiO2=570g/mL, TiO2 composites=600g/mL) was purged
withanitrogenstreamfor30minatdark(flowrate=0.3L/min).
Thedifferentcatalystloadhasbeenchosentoaccounttheeffective
TiO2contentinTiO2composites.(30g/mLbeingtheGLamount,
5%of600g/mL).
The photocatalytic runswere carried out underinert
atmo-spheretopreventtheinletof oxygenand theexternalwallsof
thereactorwerecovered withanaluminum foiltopreventthe
dispersionofthelightemittedbythelamp.
ThepHwasadjustedatthedesiredvalue(pH3.0)with
perchlo-ricacid(pH-meterOrion420A+byThermo).
The samples, taken from the reactor at different reaction
times, were filtered on regenerated cellulose filters (0.45m,
Teknokroma)andanalyzedbyhighperformanceliquid
chromatog-raphy(HPLC)usinganAgilent1100instrumentequippedwitha
diodearrayUV–vislamp(265nm)andaSynergy4uMAX-RP80A
column(flowrate1.0mL/min,30◦C).Theadoptedgradient
elu-tionwas95%ofbuffersolution(ammoniumacetate20mM)and
5%ofacetonitrilefor5min,riseto75%ofbuffersolutionand25%of
acetonitrilein10min.Theconcentrationofdissolvedcopper,was
measuredbymeansofacolorimetricmethodwithananalyticalkit
(basedonoxalicacidbis-cyclohexylidenehydrazide,cuprizone®)
purchasedfromMacherey-Nagel.AUV–visspectrometer(Unicam)
was used tomeasure the dissolvedcopper at a wavelength of
585nm.Adetectionlimitof0.1mg/Lwasfoundduringthis
inves-tigation.
3. Resultsanddiscussion
3.1. GLWandGLPcharacterization
GL layers in water suspension (GLW) consist of small flat
nanoparticles decorated at the edge with oxygen-containing
groups (mainly carboxylic/carbonylic and hydrazones) with
graphenicbasalplaneuntouched[23].Thecarboxylicfunctional
groups, residual from the reduction treatmentof strongly
oxi-dizedCB,havebeenquantifiedbyasensitiveandfastfluorimetric
method [25]. The amountof acidgroups was estimated to be
9.4×10−8molCOOH/mg.Thepresenceofresidualcarboxylic
func-tionalgroupsallowsagoodstabilityanddispersionofGLsample
inaqueoussolution.
WhenGLlayersinwatersuspensionwereallowedtodryon
a flatsurface,theyunderwenttoself-assemblingforminga flat
filmwhoseheightdependsupontheconcentrationofthestarting
solution. NC-AFM morphological characterization of ultrathin
films(<20nm)obtainedfromGLdryinghasbeenreported
Fig.2. AFMcharacterization:(a)NC-AFMtopographicimage,4m×4m,showingthepresenceofGLnanoparticlesonamicasubstrate;(b)NC-AFMtopographicimage, 1.5m×1.5m,zoomedonsomerepresentativenanoparticles,reportingtheanalyzedprofilespositions;(c)heightprofilesonGLnanoparticles,takenalongthelines highlightedinpanel(b).
estimation.Here,theobservationoftheGLlayers,which areat
thebasisof theGLPformation,is reported.Thefreshly cleaved
micausedassubstrateguaranteesanatomicallyflatunderlying
surface, which is needed for the correct observation and size
measurementsof particlesona nanometerscale. Inaddition, a
very low-concentrated water-suspension (0.1g/mL) was used
fordrop-castingontomicasubstrate.Suchalowvaluewaschosen
inordertopreventtheformationofaggregatesonthesubstrate,
allowinginsteadtheachievementofratherindividualGLlayers.
Theconcentrationofwatersuspension,however,washighenough
toallowthepresenceofacertainnumberofnanoparticlesperunit
areaofthesubstrate,sothattobeeasilydetectableinthescanning
areaofthemicroscope.
Fig.2showsthepresenceofnanoparticlesdepositedonthemica
flatsurface.Adetailedcharacterizationofsuchparticlesrevealsa
sizedistribution,whichcanbeascribedtodifferentaggregation
amountsofelementaryconstituents.Selectedheightprofiles
cross-ingtheparticlesdemonstratefirstofall,theflatnessofthesubstrate
(themeasuredroughness,oftheorderof1Angstrom,is
undistin-guishablefromthenoiseleveloftheinstrument,andanywaywell
belowtheheightoftheparticlesunderstudy),anditssuitabilityfor
areliablecharacterizationofthenanoparticles.Fromsuchprofiles
weobservedverticalsizesrangingfromabout1nmorlesstofew
nanometers;thelargerlateraldimensions,afewtensof
nanome-ters(about50nm),confirmsthatatthechosenconcentrationof
watersuspensionsomeaggregationsarestilloccurring.
Whena concentrated GL water suspension (10mg/mL) was
allowedtodryonaflatsurface,acarbonaceousfilmisformed.The
productionofflatblocksabout1–2mthick(Fig.3)wasachieved
byscrapingthecarbonaceousfilm.Theseflatblocks,herenamed
GLplatelets(GLP),offeralargersurfaceforTiO2growing.
During the hydrolysis of (NH4)2TiF6, used as TiO2
precur-sor,titaniumhydroxide complex ionsweregradually produced
and furtherformTiO2 nanoparticles[16].The residual
oxygen-containinggroupsontheGLWandGLPsurface, notpresenton
therawCBsurfaceandintroducedaftertheoxidation-reduction
treatment,caninteractwithtitaniumhydroxidecomplexionsand
thegrowingTiO2 nanoparticlesthroughhydrogenbonds.These
interactions favor thenucleationofTiO2 nanoparticlesonGLW
andGLPsurface.
3.2. TiO2andcompositescharacterization
3.2.1. XRDanalysis
The X-ray diffraction patterns of the prepared samples are
reportedinthe20–802range(Fig.4).Thediffractionpatternof
neatTiO2confirmsthatthesampleispresentintheanataseform
(JCPDS21-1272).TheXRDpathofbothcompositesshowedthatthe
productionofTiO2intheanataseformisnotinfluencedbythe
addi-tionofGLlayers.Nevertheless,lowintensitysignalsattributedto
rutilecontamination(as2=27.5,(110)diffractionpeak)inTiO2
-GLWXRDpatternwerealsodetected.Therewerenoobservable
peaksoftheGLlayersinboththecompositesamples,possiblydue
bothtotherelativelylowcontentofcarbonaceousmaterialinthe
compositesandtotheirlowintensity,comparedtotheprevailing
TiO2 pattern.Thepeakat2=25.2(101diffractionpeak)forthe
TiO2/GLPsampleishigherwithrespecttotheneatTiO2,whereas
theTiO2/GLWexhibitsalowerintensitypeak.Thisresultindicates
a highercrystallinity ofTiO2/GLP. It canbespeculatedthatthe
presenceofwelldispersedGLlayersintotheTiO2/GLWcomposite
interfereswiththeTiO2crystallizationprocesswhereasGLPoffers
aflatsurfaceadvantageousforTiO2growingandcrystallization.
3.2.2. SEManalysis
ThemorphologyoftheTiO2/GLWandTiO2/GLPcompositeswas
observedwithSEM(Fig.5).NeatTiO2isalsoreportedfor
compar-ison.Thedimensionsofthecompositesrangeinthemicrometer
scale:thegranulometricanalysisperformedonthesamplesshows
thattheparticlesizedistributionislowerthan20mwhichallows
aneasyseparationofthecompositesbyfiltration.NeatTiO2anatase
exhibitsrathersphericalprimaryparticleswhichaggregate
form-inglargerparticles.Themorphologyofthecompositesissimilar
tothatexhibitedbyneatTiO2 andnosignificantdifferencesare
Fig.3.SEMimagesofGLP.
Fig.4. XRDpatternsofTiO2/GLWandTiO2/GLPcompositesandneatTiO2.
Table1
EPRspectralparametersforTiO2/GLW,TiO2/GLPandneatGLPpowders.
GLP TiO2/GLP TiO2/GLW
g-factor 2.0040±0.0004 2.0035±0.0004 2.0037±0.0004
B(G) 3.3±0.2 2.9±0.2 1.6±0.2
Spin×g−1 1.4×1014 8.5×1013 4.9×1014
3.2.3. BETanalysis
N2 adsorption/desorption measurements with BET method werecarried outto determinethe surfaceareaof thesamples. TiO2/GLPcompositehadasurfaceareaof106.9m2/g,higherthan thevaluesmeasuredfortheneatTiO2 and GLPthat are85and 76m2/g, respectively. The increase of the surface area is not deduciblebyaweightedaverageofthetwoneatcomponents(GLP and TiO2)indicating theoccurrence ofnon-additiveeffects due totheincorporationoftheGLPcomponent.Ahighersurfacearea wasexhibitedbyTiO2/GLW(138m2/g)andwasinterpretedasa consequenceofamoredefectiveandirregularsurfaceduetothe interferenceofGLintheTiO2crystallizationprocess(Figs.2and3).
3.2.4. TGAanalysis
Fig. 6 shows theTGA curves in oxidative environment (air)
for theTiO2/GLWand TiO2/GLP composites.NeatGLP wasalso
reported for comparison. The GLP sample exhibits two weight
losses,thefirstonebetween150and500◦C(∼40%oftotalweight
loss) due totheprogressive decomposition ofresidual
oxygen-containinggroups(carbonylic/carboxylic),andthesecondoneat
550◦CduetothebulkoxidationofGLP.Interestingly,thecurvefor
theTiO2/GLWcompositedoesnotexhibittheclearstepsofmass
lossatabout550◦CasTiO2/GLPsuggestingthattheGLlayersare
well-mixedwithinthecompositeandstabilizedbythedeposited
TiO2throughtheinteractionbetweenoxygen-containinggroups
ontheGLandTiO2particles.AccordingtotheTGAcurves,inboth
compositestheweightcontentofGLlayerswasroughlyevaluated
tobe3–4wt.%,slightlylowerthantheexpectedpercentage(5wt.%).
3.2.5. EPRanalysis
EPRmeasurementsonTiO2/GLWandTiO2/GLPcompositeswere
performedbyfollowinganexperimentalprocedurerecentlyused
inthecharacterizationofmelanins[29–31].AnalysisofthisEPR
signalprovidessignificantinformationonthenatureofthe
para-magneticcentersand onthesupramolecularpropertiesofsolid
materials.Inthisstudy,weundertookanEPRcharacterizationof
powderedsamplessynthesizedaspreviouslydescribed.NeatTiO2
andGLPwereusedasreferences.AllEPRspectraarereportedin
Fig.7,whereasthespectralparameterscalculatedfromthemare
summarizedinTable1.
ByobservingFig.7,nosignalwasdetectedforneatTiO2
(spec-trumA),indicatingnooxygenvacancyorTi3+inthispowderwhich
isconsistentwithapreviousreportthatindicatesnoEPRsignalfor
pureTiO2[32].InFig.7,thespectraB,CandDrepresentthespectra
ofneatGLP,TiO2/GLPandTiO2/GLWrespectively.Theypresenta
similarlineshape:asingle,roughlysymmetricsignalatagvalue
of∼2.0035–2.0040,(Table1),typicalofcarbon-centeredradicals.
Itisinagreementwiththeliterature[33,34]andcorrespondsto
thesampleswithahighcontentofcarbonwhichhavemore
para-magneticcenters.Inparticular,Nakamuraetal.attributedtheEPR
signalatthispositiontoanoxygenvacancy[35],whereasnoother
detectablesignal,suchasTi3+orO2−,appearsinourtests.Sincethe
signalsofthetwocomposites(Fig.7,spectraCandD)presentthe
samelineshapeobservedfortheGLP(Fig.7,spectrumB),the
emer-genceoftheoxygenvacancyinthehybridTiO2samplesisdirectly
dependentonthepresenceofGLlayersinthecompositesynthesis,
Fig.5.SEMimagesforTiO2/GLWandTiO2/GLPcompositesandneatTiO2.
However,adeeperanalysisofthespectraofcompositesshows
thattheTiO2/GLPspectrumisevidentlybroaderthantheTiO2/GLW
one.Thedifferenceinlineshapeswascorroboratedbythe
quanti-tativedeterminationofthesignalamplitude(B).TheBvalue
determinedfromthespectrumofTiO2/GLPissignificantlylower
thanthosederivedfromthespectrumofTiO2/GLPwhichis
com-parabletoGLPspectrum(Table1).Toascertainphysicalreasonsfor
thisexperimentalevidence,theEPRspectraofthesamesamples
were acquired setting a higher microwave power. An
inspec-tion of the normalized power saturation profiles, reported in
Fig.8,showsthat,asthemicrowavepowerisincreased,thespin
densityincreases.Also, thepowersaturationcurveof TiO2/GLP
(andsimilarlyofpureGLP)doesnotgotoaplateau,incontrast
tothatobservedinthecaseofTiO2/GLW.Thecomparativelylow
Bvalueand thepowersaturationprofile ofTiO2/GLW would
suggestarelativelyhomogeneousfree-radicalspeciesdistribution
thatisspatiallyconfinedwithinrestrictedregionofthecatalyst
supramolecularstructure, in contrast tothe broader variety of
free-radicalspeciesthatcouldbegeneratedwithinthedelocalized
Fig.6. TGAcurvesofTiO2/GLWandTiO2/GLPcompositesandGLP.
-electronsystemsoftheTiO2/GLP.Thereduced“mobility”offree
radicals,generatedunderirradiation,isinterpretedasan
interrup-tionoftheelectron“mobility”withinthegraphene-like,dispersed
overtheTiO2 matrix butnotgroupedin plateletasin thecase
of TiO2/GLP [34]. Thisproperty, added tothe presenceof
oxy-genvacancies,probablycontributestoimprovethephotocatalytic
activityofthecatalyst,asalsosuggestedinliterature[33].
Differ-entstudieshaveproposedthatthedefectsinthematerialstructure
haveasignificanteffectontheelectronicstatesoftheentireflakeof
graphene.Thesedefectscanincreasetheelectronsmobilitywhich
isdirectlycorrelatedtothematerialconductivity[36].Finally,a
Fig.7.EPRspectraofneatTiO2(A),neatGLP(B),TiO2/GLP(C)andTiO2/GLW(D)
Fig.8.InfluenceofmicrowavepoweronamplitudesoffreeradicalsofGLP(), TiO2/GLP(䊉)andTiO2/GLW()composites.
quantitativeanalysisofthespectraintensitiesshowsthatall
sam-plespresentasimilarhighspindensity(Table1).
3.3. Compositesphotocatalyticactivity
Compositesweretestedtochecktheirphotocatalyticactivityfor
thepartialoxidationof3-pyridinemethanol(3-PMA)to3-pyridine
carboxyaldehyde(3-PCA)andnicotinicacid(NA)underilluminated
anddeaeratedconditionsinthepresenceofcupricions,usedas
photoelectronscavengers.
Thenormalizedconcentrationprofilesfor3-PMAanddissolved
copper, andthereactionyieldsfor3-PCAand NA,under
differ-entexperimentaladoptedconditions,arereportedinFigs.9a–d
respectively.
Thehomogenoussystem,intheonlypresenceofCuSO4(empty
triangles),showsalowreactivityprobablyascribedtoa
photocat-alyticactivityoftheCu(II)/3-PMAcomplexes.Theadditionofthe
soleGLorGLPtotheaqueoussolution,containingcupricionsand
3-PMA,doesnotimprovethesystemreactivitywithrespectthe
previousone(emptysquaresanddiamonds).
Amarkedincreaseof3-PMAandCu(II)consumption,and3-PCA
andNAproductionrateswasachievedinpresenceofcupricions
withneatTiO2catalystataloadof570g/mL(fullsquares).
Fig.9. Selectivephoto-oxidationof3-PMAatdifferentexperimentalconditionsunderdeaeratedconditions:(a)3-PMAconsumption;(b)Cu(II)photoreduction;(c)3-PCA yield;(d)NAyield.[3-PMA]o=1.5mM,[CuSO4]o=1.5mM;pH3.0;T=25◦C.InpresenceofTiO2/GLP,load600ppm(䊉);neatTiO2,load570ppm();TiO2/GLW,load600ppm
Table2
Photocatalyticselectiveoxidationof3-PMAinpresenceofCuSO4anddifferentsolidsamples(neatTiO2,neatGL,neatGLPandcompositecatalysts)forareactiontimeof5h.
Conversion(X),yield(Y),selectivity(S).
Run Catalyst X(3-PMA)(%) Y(3-PCA)(%) S(3-PCA)(%) Y(NA)(%) S(NA)(%) Carbonmass
balance(%)
1 OnlyCuSO4 17.3 13.4 77.4 2.23 12.8 98.0
2 CuSO4andneatGL 12.4 9.14 73.7 1.63 13.1 98.2
3 CuSO4andneatGLP 8.44 4.08 48.3 1.21 14.3 96.3
4 CuSO4andneatTiO2 50.2 30.7 61.1 14.3 28.5 94.6
5 CuSO4andTiO2/GLW 35.8 24.1 67.3 7.28 20.3 94.4
6 CuSO4andTiO2/GLP 63.3 39.5 62.4 21.9 34.6 97.9
[3-PMA]o=1.5mM,[CuSO4]o=1.5mM;pH3.0;T=25◦C.
Thecomposites, present in thereactingsystem ata load of 600g/mLtoaccounttheeffectiveTiO2 content(95wt.%),show verydifferentcatalyticactivitiesdependingonthemorphologyof GLlayers(GLWorGLP)addedtothesystem.
WhenTiO2/GLWwasusedascatalyst(fulldiamonds),the reac-tivityisevenlowerthanthatinwhichneatTiO2ispresent.Onthe otherhand,thephotocatalyticoxidationratesof3-PMA,thecupric ionsreductionratesandtheyieldsto3-PCAandNAwererather increasedinthepresenceofTiO2/GLP(fullparticles)atthesame adoptedexperimentalconditions.
Thecollectedresultsindicatedthat,undertheadopted exper-imental conditions, the production of NA for photocatalytic oxidationof3-PMA,proceedsthroughthefollowingsteps: 1)photogenerationofholesandelectrons
TiO2basedcatalyst−→TiOhv 2basedcatalyst(e−cb,h+vb)
2)formationof3-PCA,asprimarychemicalintermediate,by reac-tionofholeswith3-PMA
TiO2basedcatalyst(2h+vb)+3-PMA→TiO2basedcatalyst +3-PCA
3)conversionof3-PCAtoNA
TiO2basedcatalyst(2h+vb)+3-PCA→TiO2basedcatalyst+NA 4)photoreductionofcupricionstocopperzero-valent
TiO2basedcatalyst(2e−cb)+Cu(II)→TiO2basedcatalyst+Cu(0)
Asummaryoftheconversiondegreesfor3-PMAand selectivi-tiesandyieldsto3-PCAandNA,alongwiththecarbonmassbalance, after5hofreactiontime,isreportedinTable2.First,thepresence
ofGLlayersinwatersuspensionorGLPonly(runs2and3)does
notprovideanyimprovementcomparedtothehomogeneous
sys-tem(run1).Onthecontrary,theadditionofneatTiO2only(run
4)involvesanincreaseof theconversiondegreeupto50% and
yieldsto3-PCAandNAupto31%and14%.Whereastheoverall
selectivity(87.3%)andthecarbonmassbalance(94.4%)arealmost
thesame,theuseofTiO2/GLWasphoto-catalyst(run5)involvesa
reductionoftheconversiondegree(35.8%)andyield(24%and7.3)
ifcomparedtotheuseofneatTiO2.
Onthecontrary,theuseofTiO2/GLPasphoto-catalyst(run6)
resultsinimprovedofthe3-PMAconversiondegree(63.3%)and
yield(39.5%for3-PCAand22%forNA).Moreover,highervalues
fortheglobalselectivity(97%)andthemasscarbonbalance(98%)
areachieved.TheTiO2/GLPcatalyst,comparedtoneatTiO2 and
TiO2/GLWcatalyst,promotestheselectiveoxidationof3-PMAto
3-PCAandof3-PCAtoNA.
IthasbeenreportedthatthephotocatalyticactivityofTiO2is
stronglyaffectedbyseveralparameterssuchasthephasestructure,
crystalsize,specificsurfaceareaandcrystallinity[37,38].Inorder
toachievebetterphotocatalyticperformances,agoodcrystallinity
isoftenrequiredtoreducetheformationofelectrontraps,which
mightaffectthephotocatalyticefficiency[39].Moreover,acatalyst
withalargespecificsurfaceareamaybealsodesirablesincethe
contactbetweenthe activesitesand thereactingsubstances is
enhanced.
The lower photocatalytic activity of TiO2/GLW sample was
driven by its lower crystallinity degree than TiO2/GLP one, in
spiteofitsslightlylargerspecificsurfacearea(138m2/g).Inthe
caseofTiO2/GLP,theimprovedphoto-catalystperformancesare
mainlyascribedbothtothehighercrystallinitydegreeandtothe
presence the broader variety of “long-live” free-radical species
photo-generatedwithinthedelocalizedGLP-electronsystems,as
indicatedbyEPRanalyses.Moreoverthelowerfree-radicaldensity,
evidencedinTiO2/GLP,canaccountforthedecreaseofthe
occur-renceofoxidationmechanismsofHOradicaltypethat,producing
hydroxylatedundesiredby-products,inevitablywouldlowerthe
selectivityofthesystemandyieldstodesiredproducts(3-PCAand
NA).
4. Conclusion
WaterstableGLlayers, producedthrough a two-step
oxida-tion/reductionwettreatmentofcarbonblack,havebeenusedin
twodifferentforms (inwater suspensionandassembled inflat
blocks) to prepare composites with TiO2 nanoparticles by
liq-uidphasedeposition(TiO2/GLWandTiO2/GLP,respectively).The
adoptedexperimentalapproachallowedtoexploretheeffectof
morphologyoncatalystperformancestowardselectiveconversion
of3-pyridinemethanolto3-pyridinecarboxyaldehydeand
nico-tinicacid(vitaminB3),underde-aeratedandUV/solarsimulated
conditions, in presence of cupric ions. An enhanced
photocat-alyticactivityofTiO2/GLP,withrespecttotheneatTiO2,hasbeen
observedandattributedbothtothebroadervarietyoffree-radical
speciesstabilizedwithinthedelocalized-electronsystemsofthe
TiO2/GLP,asindicatedbyEPRanalysesandtoareductionofthe
hydroxylradicalsformation.InthecaseofTiO2/GLW,thepresence
ofwelldispersedGLlayersduringTiO2nucleationseemsto
inter-ferewiththeTiO2crystallizationprocessloweringthecomposite
photocatalyticactivity,inspiteofitshighersurfacearea.Moreover,
beneficialeffects drivenbythepresenceofhighlyp-conjugated
systemsarenotobservedduetothespatiallyconfinedfree-radical
speciesinTiO2/GLW.
Acknowledgments
AuthorsthankMr.LucianoCorteseforSEMimagingandXRD
analysisandDr.PaolaGiudicianniforBETanalyses.Theworkwas
partiallyfinancedbyAccordoCNR-MSE“Utilizzopulitodei
References
[1]C.Walling,R.W.R.Humphreys,J.Org.Chem.46(1981)1260–1263.
[2]C.Parmeggiani,F.Cardona,GreenChem.14(2012)547–564.
[3]M.Addamo,V.Augugliaro,M.Bellardita,A.DiPaola,V.Loddo,G.Palmisano,L. Palmisano,S.Yurdakal,Catal.Lett.126(2008)58–62.
[4]V.Augugliaro,T.Caronna,V.Loddo,G.Marcì,G.Palmisano,L.Palmisano,S. Yurdakal,Chem.Eur.J.14(2008)4640–4646.
[5]S.Yurdakal,G.Palmisano,V.Loddo,V.Augugliaro,L.Palmisano,J.Am.Chem. Soc.130(2008)1568–1569.
[6]G.Palmisano,E.Garcıa-Lopez,G.Marcì,V.Loddo,S.Yurdakal,V.Augugliaro,L. Palmisano,Chem.Commun.46(2010)7074–7089.
[7]S.Yurdakal,V.Loddo,G.Palmisano,V.Augugliaro,H.Berber,L.Palmisano,Ind. Eng.Chem.Res.49(2010)6699–6708.
[8]R.Marotta,I.DiSomma,D.Spasiano,R.Andreozzi,V.Caprio,Chem.Eng.J.172 (2011)243–249.
[9]R.Marotta,I.DiSomma,D.Spasiano,R.Andreozzi,V.Caprio,J.Chem.Technol. Biotechnol.88(2013)864–872.
[10]D.Spasiano,L.P.P.Rodriguez,J.C.Olleros,S.Malato,R.Marotta,R.Andreozzi, Appl.Catal.B:Environ.136–137(2013)56–63.
[11]W.T.Chen,V.Jovic,D.Sun-Waterhouse,H.Idriss,G.I.N.Waterhouse,Int.J. HydrogenEnergy38(2013)15036–15048.
[12]K.Maeda,J.Photochem.Photobiol.C:Photochem.Rev.12(2011)237–268.
[13]Q.Wang,N.An,Y.Bai,H.Hang,J.Li,X.Lu,Y.Liu,F.Wang,Z.Li,Z.Lei,Int.J. HydrogenEnergy38(2013)10739–10745.
[14]X.An,J.C.Yu,RSCAdv.1(2011)1426–1434.
[15]S.Bai,X.Shen,RSCAdv.2(2012)64–98.
[16]G.Jiang,Z.Lin,C.Chen,L.Zhu,Q.Chang,N.Wang,W.Wei,H.Tang,Carbon49 (2011)2693–2701.
[17]K.Zhou,Y.Zhu,X.Yang,X.Jiang,C.Li,NewJ.Chem.35(2011)353–359.
[18]D.Wang,D.Choi,J.Li,Z.Yang,Z.Nie,R.Kou,ACSNano3(2009)907–914.
[19]Y.Liang,H.Wang,H.S.Casalongue,Z.Chen,H.Dai,NanoRes.3(2010)701–705.
[20]J.Liu,H.Bai,Y.Wang,Z.Liu,X.Zhang,D.D.Sun,Adv.Funct.Mater.20(2010) 4175-4181.
[21]S.Stankovich,R.D.Piner,X.Chen,N.Wu,S.T.Nguyen,R.S.Ruoff,J.Mater.Chem. 16(2006)155–158.
[22]S.Stankovich,D.A.Dikin,R.D.Piner,K.A.Kohlhaas,A.Kleinhammens,Y.Jia,Y. Wu,S.T.Nguyen,R.S.Ruoff,Carbon45(2007)1558–1565.
[23]R.Chuck,Appl.Catal.A:Gen.280(2005)75–82.
[24]M.Alfè,V.Gargiulo,R.DiCapua,F.Chiarella,J.N.Rouzaud,A.Vergara,A.Ciajolo, ACSAppl.Mater.Interfaces4(2012)4491–4498.
[25]S.Visentin,N.Barbero,S.Musso,V.Mussi,C.Biale,R.Ploeger,G.Viscardi,Chem. Commun.46(2010)1443–1445.
[26]M.F.Ottaviani,J.Phys.Chem.91(1987)779–784.
[27]N.D. Yordanov, K. Ranguelova, Spectrochim. Acta Part A 56 (2000) 373–378.
[28]R.Andreozzi,V.Caprio,A.Insola,R.Marotta,WaterRes.34(2000)463-472. [29]L.Panzella,G.Gentile,G.D’Errico,N.F.DellaVecchia,M.E.Errico,A.Napolitano,
C.Carfagna,M.d’Ischia,Angew.Chem.Int.Ed.52(2013)12684–12687.
[30]A.Pezzella,L.Capelli,A.Costantini,G.Luciani,F.Tescione,B.Silvestri,G.Vitiello, F.Branda,Mater.Sci.Eng.C33(2013)347–355.
[31]E.Cesareo,L.Korkina,G.D’Errico,G.Vitiello,M.S.Aguzzi,F.Passarelli,J.Z. Pedersen,A.Facchiano,PlosOne7(2012)e48849.
[32]F.Zuo,L.Wang,T.Wu,Z.Zhang,D.Borchardt,P.Feng,J.Am.Chem.Soc.132 (2010)11856–11867.
[33]E.A.Konstantinova,A.I.Kokorin,S.Sakthivel,H.Kisch,K.Lips,Chim.Int.J.Chem. 61(2007)810–814.
[34]M.Long, Y. Qin, C. Chen,X. Guo, B. Tan, J. Phys. Chem. C 117 (2013) 16734–16741.
[35]I.Nakamura,N.Negishi,S.Kutsuna,T.Ihara,S.Sugihara,K.Takeuchi,J.Mol. Catal.A:Chem.161(2000)205–212.
[36]L. ´Ciri ´c,A.Sienkiewicz,R.Gaál,J.Ja ´cimovi ´c,C.Vâju,A.Magrez,L.Forrò,Phys. Rev.B86(2012)195139.
[37]E.B.Li,X.Z.Li,M.F.Hou,K.W.Cheah,W.C.H.Choy,Appl.Catal.A285(2005) 181–189.
[38]J.Yu,J.C.Yu,M.K.P.Leung,W.Ho,B.Cheng,X.Zhao,J.Zhao,J.Catal.217(2003) 69–78.