• Non ci sono risultati.

Effects of Poisson noise in a IF model with STDP and spontaneous replay of periodic spatiotemporal patterns, in absence of cue stimulation

N/A
N/A
Protected

Academic year: 2021

Condividi "Effects of Poisson noise in a IF model with STDP and spontaneous replay of periodic spatiotemporal patterns, in absence of cue stimulation"

Copied!
7
0
0

Testo completo

(1)

ContentslistsavailableatSciVerseScienceDirect

BioSystems

j ou rna l h o me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / b i o s y s t e m s

Effects

of

Poisson

noise

in

a

IF

model

with

STDP

and

spontaneous

replay

of

periodic

spatiotemporal

patterns,

in

absence

of

cue

stimulation

Silvia

Scarpetta

a,b,∗

,

Ferdinando

Giacco

c

,

Fabrizio

Lombardi

d

,

Antonio

de

Candia

e

aDepartmentofPhysics‘E.R.Caianiello’,UniversityofSalerno,84084Fisciano(SA),Italy bINFNUnita’diNapoliGruppocoll.diSalerno,Italy

cDepartmentofMathematicsandPhysics,SecondUniversityofNaples,81100Caserta,Italy dInstituteofComputationalPhysicsforEngineeringMaterials,ETH,Zurich,Switzerland eDepartmentofPhysics,UniversityFedericoII,CNR-SPINandINFN,Napoli,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16October2012

Receivedinrevisedform28February2013 Accepted19March2013 Keywords: Neuralcriticality STDP Associativememory

a

b

s

t

r

a

c

t

Weconsideranetworkofleakyintegrateandfireneurons,whoselearningmechanismisbasedonthe Spike-Timing-DependentPlasticity.Thespontaneoustemporaldynamicofthesystemisstudied, includ-ingitsstorageandreplayproperties,whenaPoissoniannoiseisaddedtothepost-synapticpotentialof theunits.Thetemporalpatternsstoredinthenetworkareperiodicspatiotemporalpatternsofspikes. Weobservethat,eveninabsenceofacuestimulation,thespontaneousdynamicsinducedbythenoise isasortofintermittentreplayofthepatternsstoredintheconnectivityandaphasetransitionbetween areplayandnon-replayregimeexistsatacriticalvalueofthespikingthreshold.Wecharacterizethis transitionbymeasuringtheorderparameteranditsfluctuations.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

We study theeffects of noise in the spontaneous collective dynamicsof anetwork of Nleaky Integrateand Fire(LIF) neu-rons, whose learning mechanism is based onthe Spike-Timing DependentPlasticity(STDP).Thetemporalpatternsweconsiderare periodicspike-timingsequences,whosefeaturesareencodedinthe relativephaseshiftsbetweenneurons’spikes.Wereviewthe stor-ageandreplaypropertiesofsuchLIFnetworkswhoseconnections comefromalearningstrategybasedonSTDPwithPphase-coded patternswithrandomphases.

ThenwefocusontheeffectsofanindependentPoissoniannoise addedtothepost-synapticpotentialsduringspontaneous activ-ity.Inpreviousworks(ScarpettaandGiacco,2012;Scarpettaetal., 2010)wefocusedonthedynamicsemergingasaconsequenceof ashortcuestimulation,andweshowedthatinordertotrigger spontaneouspatternsofactivityreminiscentofthosestored dur-ingthelearningstage,afewspikeswiththerightphaserelationship aresufficient.Herewefocusonthespontaneousdynamicswithout anyexternalstimulus,andweshowthatanoisysignaladdedtothe potentialsmayinduceanintermittentreplayofthestoredpatterns.

∗ Correspondingauthorat:DepartmentofPhysics‘E.R.Caianiello’,Universityof Salerno,84084Fisciano(SA),Italy.Tel.:+39089969418;fax:+39089969658.

E-mailaddress:silvia@sa.infn.it(S.Scarpetta).

Thisspontaneousreactivationinducedonlybynoise,is particu-larlyrelevantconsideringthatrelationshipbetweenspontaneous andevokedcorticalactivityduringdevelopmentistheobjectof manyrecentstudies(Berkesetal.,2011;Hanetal.,2008).Notably westudythephase-transitionwhichappearsinthenoisy sponta-neousdynamicsofourmodel,inabsenceofexternalstimulation. Wecharacterizethecriticalregime,atthetransitionbetweenthe regionofspontaneouspersistentreplayandtheregionofno-replay. Inthiscriticalregimeashorttransientintermittentreplayis initi-atedbynoise.Thereplaylastsforashorttimeandafterawhile anewpatternmaybetransientlyreactivatedspontaneously.To characterizethespontaneousactivityofthenetwork,weevaluate theorderparameteranditsfluctuationsasafunctionofspiking thresholdofthecoupledneurons.Atalowspikingthresholdthe orderparameterishighandfluctuationsarelow,whileatthe criti-calspikingthreshold,wherethereisatransitionbetweenno-replay (highth)andpersistentreplay(lowth), theorderparameter’s

fluctuationsaremaximized,asexpectedfora continuousphase transition.Interestinglymanyrecentexperimentalresults,suchas

Tagliazucchietal.(2012),suggestthatrestingbrainspendsmost ofthetimeneartothecriticalpointofasecondorderphase transi-tion.Animportantresultofthispaperisthestudyofthedynamical criticalpointandofthedifferentdynamicalregimesobservedby changingtheexcitabilityparametersofthenetwork.

Thepaperisorganizedasfollows:inSection2weintroduce theLIFneuronalmodelandtheSTDPlearningruleusedtodesign 0303-2647/$–seefrontmatter © 2013 Elsevier Ireland Ltd. All rights reserved.

(2)

theconnections,withabriefillustrationoftheevokedbehavior (Section2.1);inSection3westudytheabilityofthenoisetoinduce thespontaneousrecallofthepatterninabsenceofexternal stimula-tion,weintroduceanorderparameter,andwefocusonthecritical region;summaryanddiscussionareoutlinedinSection4.

2. Themodel

ThespikingmodelhasbeenintroducedinScarpettaandGiacco (2012),Scarpettaetal.(2010).Webrieflyreviewthemodelhere. ThesingleneuronmodelisaLIF.WeusetheSpikeResponseModel (SRM) formulation (Gerstnerand Kistler, 2002; Gerstner et al., 1993)oftheIFmodel.Inthispicture,thepost-synapticmembrane potentialofaneuroniisgivenby:

hi(t)=i(t)+



j Jij



ˆtj>ˆti



(t− ˆtj), (1)

wherei=1,...,N,Nbeingthenumbersofunitsinthenetwork,i(t)

isaPoissonnoise,Jijarethesynapticconnections,



(t)describesthe

responsekerneltoincomingspikesonneuroni,andthesumover ˆtjrunsoverallpre-synapticfiringtimesfollowingthelastspike

ofneuroni.Namely,eachpre-synapticspikej,witharrivaltime ˆtj,issupposedtoaddtothemembranepotentialapost-synaptic

potentialoftheformJij



(t− ˆtj),where



(t− ˆtj)=K



exp



−t− ˆtj m



−exp



−t− ˆtj s



(t− ˆtj) (2)

wherem isthemembranetimeconstant(here10ms),sisthe

synapsetimeconstant(here5ms),istheHeavisidestep func-tion,andKisamultiplicativeconstantchosensothatthemaximum valueof thekernelis 1. Thesignof thesynapticconnectionJij

setsthe signofthe post-synapticpotential’s change,sothere’s inhibitionfornegativeJijandexcitationforpositiveJij.Whenthe

membranepotentialhi(t)exceedsthespikingthresholdith,aspike

isscheduled,andthemembranepotentialisresettotheresting valuezero.

Wewanttomimicthespontaneousactivityofcorticalnetworks invitro,intheabsenceofexternalstimulation.Therearemany differentpossiblecausesofnoiseinthesystem.Here,wefocuson theeffectsofPoissonnoise,thereforei(t)ismodelledas

i(t)=Jnoise



ˆtnoise>ˆti



(t− ˆtnoise). (3)

Thetimes ˆtnoisearerandomlyextractedforeachneuroni,andJnoise

arerandomstrengths,extractedindependentlyforeachneuroni andtime ˆtnoise.Theintervalsbetweentimes ˆtnoiseareextractedfrom

a Poissonian distribution P(ıt)∝e−ıt/(Nnoise), while the strength

JnoiseisextractedfromaGaussiandistributionwithmeanJnoiseand

standarddeviation(Jnoise).Thisdescribesthenoisyenvironment

inwhichournetworkisembedded,intheabsenceofanyexternal stimulation.

Asshowninmanyrasterplotofinvitrospontaneous dynam-icswithneuronalavalanches,thereisoftenasmallsubsetofunits whichhasahigherspikingratethantheotherunits.Theseunits withspontaneoushigherspikingratearemodelledhereasa sub-setofunitswithlowerspikingthreshold.Theseunitswithlower spikingthresholdarethereforemoresensitivetothePoissonian noisewhichactsonthemembranepotentialsofalltheunitsof thenetwork.Ifsomeoftheselow-thresholdunitsbelongstoone ofthestoredpatternandhaveconsecutivephasesinthispattern, thenitmayhappenthattheseunitsareabletoinitiateacollective replayofthepattern.Tocheckthishypothesis,therefore,we imag-inethatforeachstoredpatternthereisasmallsubsetofZ=N/30 units,withconsecutivephasesinthepattern,thathavelowspiking

Fig.1. PlotofthelearningwindowA()usedinthelearningruletomodelSTDP effects.TheparametersofthefunctionA()aredeterminedbyfittingthe experi-mentaldatareportedinBiandPoo(1998).

thresholdth1.Theselowthresholdunitswillbemoresensitiveto

noise,andtheiractivationmayeventuallytriggerthereplayofthe storedpatterns.WhiletheothersNPZunitswillhavethreshold th2.

Numericalsimulations of thedynamics are performed for a networkwithPstoredpatterns,whereconnectionsJijare

deter-minedviaalearningrulepreviouslyintroducedinScarpettaand Giacco(2012),Scarpettaetal.(2010,2011,2001,2002),Yoshioka etal.(2007).Theconnectionsvaluesarefrozen,andthecollective dynamicsisstudied.

Therefore,followingScarpettaandGiacco(2012),the connec-tionsJijduetothelearningoftheperiodicpatternissimplygiven

by Jij = ∞



n=−∞ A(tj−ti+nT)=



n A



j 2 − i 2 + n 



, (4) wheretj (ti)isthespiketimeofunitj(i)inthepattern.The learn-ingwindowA(=t−t’)isthemeasureofthestrengthofsynaptic changewhenatimedelayoccursbetweenpreandpost-synaptic activity(Fig.1).Thestoredpatternsaredefinedasprecise peri-odicsequence of spikes,i.e. spike-phasecoded patterns,asthe onesshown inFig.2,madeupofonespikepercycle,and each spikehasaphase j randomlychosenfromauniform distribu-tionin[0,2).Thesetoftimingofspikesofunitjinpatternis tj+nT=( 

j )/(2 )+n/ ,where =1/Tistheoscillation

frequencyoftheneuronsinthestoredpattern.Thus,eachpattern isrepresentedthroughthefrequency andthespecificphases

ofspike j oftheneuronsj=1,...,N.

Whenmultiplephase coded patternsarestored,thelearned connectionsaresimplythesumofthecontributionsfrom individ-ualpatterns,namely

Jij= P



=1

Jij. (5)

AsdiscussedinScarpettaandGiacco(2012),thefunctionA()used satisfiesthebalancecondition

−∞A()d=0.Thisassuresthatin

theconnectionmatrixthesummedexcitation(1/N)

i,J

(3)

Fig.2.Examplesoftwoperiodicspatiotemporal(phase-coded)patternsofspikes thatarestoredinourIFnetwork.Only10units(randomlychosen)areshown.

thesummedinhibition(1/N)

i,J

ij<0Jijareequalinthe

thermody-namiclimit.

2.1. Emergingofcollectivepatterns

TherecurrentnetworkwithNLIFunits,withconnectionsfixed tothevaluescalculatedinEq.(4)fordifferentvaluesofPisstudied. FollowingScarpettaandGiacco(2012),theresponseofthesystem toacueexternalstimulation,inabsenceofnoise,isillustratedin

Fig.3.AshortcuewithM=300spikeswiththeproperphase rela-tionshipisabletoinducethepersistentreplayofthestoredpattern inaproperregionofparameters,i.e.forlowspikingthresholds. Whileathighthreshold,suchasinFig.3c,thecuestimulationonly triggerashorttransientreplay,andatevenhigherthresholdno activityistriggeredbythestimulation.

Intheregimeofcorrectreply,showninFig.3aandb,wecheck thatifthepartialcueistakenfrompattern=2,theneuronsphase relationshipsrecallthephaseofpattern=2(uncorrelatedwith pattern=1)(notshown).

Notethat,aftertheshortcuepresentation,theretrieval dynam-ics hasthesame phase relationship amongunits as thestored pattern,butthereplaymayhappenonatimescaledifferentfrom thescaleusedtostorethepattern,andthecollectivespontaneous dynamicsisatimecompressed(ordilated) replayofthestored pattern. The time scale of replay changes slightly with spiking threshold.IntheexampleofFig.3aandb,thetimescaleofthe retrievaldynamicsisfasteratlowerthreshold,andisdifferentthan thetimescaleusedtolearnthepatterns.Thetimescaleofreplay activityalsodependson ,asstudiedin ScarpettaandGiacco (2012).Herewefocusonthecase =3Hzbecausethe

correspond-ingtimescaleoftheretrievaldynamicsissuchthattheoscillations frequencyisintherangeofthetaoscillations.Thestorage capac-ity,definedasthemaximumnumberofencodedandsuccessfully retrievedpatterns,hasbeenstudiedinScarpettaandGiacco(2012)

whenthenetworkrespondtoashortcuestimulation.

Thestoragecapacity,asdefinedinScarpettaandGiacco(2012), isshownasafunctionofthespikingthresholdth,inFig.4a,when

M=N/10spikesareusedascue,and =3Hz.Fortheproper

val-uesofthresholdandforPlowerthanPmax,theevokedretrieval

issuccessful(i.e.cuewithafewspikes(M=N/10)isableto selec-tivelyactivatetheself-sustainedreplayofthestoredpattern).We alsoshow,fortheregionofcorrect evokedreplay,thevalueof

theoscillationfrequencyofcollectiveactivityduringthereplayin

Fig.4b.Atspikingthresholdhigherthanacriticalvaluecrit th no

per-sistentreplaywaspossibleforanyvalueofPinresponsetothecue stimulation.FollowingresultsofScarpettaandGiacco(2012),and

Fig.4,weestimatethiscriticalpointwhenN=3000, =3Hztobe aboutcrit

th 95.Atthresholdsclosetothiscriticalvaluethe

net-workrespondstocuewithatransientactivitythatisashortreplay ofthestoredpattern,butnotwithapersistentreplay.

Thecriticalregime,nearthephasetransition,isinvestigated here,butintheabsenceofanyexternalcuestimulation(M=0). Whilein previousworks(ScarpettaandGiacco,2012;Scarpetta etal.,2010;Yoshiokaetal.,2007)westudiedthedynamics trig-geredbyashortstimulationcue,inthefollowingweinvestigate thespontaneous dynamics withoutanycue stimulation, in the presenceofPoissoniannoiseonly.

Whileintheregionofpersistentreplaytheevokeddynamicsis robustwrtnoise,intheregionnearthecriticalpointthesystemis moresensitivetonoise,thereforeitisimportanttofocusoneffects ofnoiseinthisregionintheabsenceofcuestimulation.Notablyin thiscriticalregionitisthenoiseitselfwhichmayinitiateashort replay,withoutanyexternaltrigger.

InthefollowingthereforewestudyifaPoissoniannoise,ina networkwiththeproperconnectivityasours,isabletoinduce tran-sientpatternreplay,intheabsenceonanycuestimulation.Thisis motivatedalsobyrecentliteratureontheintriguingrelationship betweenevokedandspontaneouscorticalactivity,andonthe pat-ternreplayobservedinthepost-tasksleep.Indeedduringsleep thereactivationofpatternsstoredin theconnectivityisclearly nottriggeredbysensorystimulationbutinducedbynoiseitself spontaneously.

3. Effectsofnoiseinthespontaneouscriticalregime,in absenceofanycuestimulation

Weinvestigatehereif,eveninabsenceofexternalcue stimula-tion,collectivepatternsofactivity,reminiscentofstoredpatterns, emergespontaneously,inducedbynoise.Wethereforestudythe networkspontaneousdynamicsinthecriticalregime,inabsence ofanycuestimulation,inthepresenceofaPoissoniannoise.We focushereonthecriticalbehaviorobservednearthedynamical phase-transition,betweentheregionofpermanentreplayandthe regionofno-replay.Figs.5–7showthespontaneousdynamicsofa networkofN=3000units,P=2patternsstoredintheconnectivity, andnoisegivenbyEq.(3)withnoise=1ms,Jnoise=0,(Jnoise)=5,

intheabsenceofexternalstimulation.AsubsetofN1=200units

havealowspikingthresholdth1=26(tomodeltheheterogeneity

observedininvitrodynamics),andtheotherN−N1=2800units

haveth2=80,90,105,respectively,inFigs.5–7.Differentvaluesof

th1=20,22,24,26,28,30havebeeninvestigated,aswelldifferent

valuesofnoisevariance,andthephenomenaobservedaresimilar butlesspronounced.Sowefixthesevaluesofth1=26,(Jnoise)=5

andweshowthespontaneousbehaviorasafunctionofthreshold ofthemajorityofunitsth2.

Atlowerthreshold,th2=80 inFig.5thecollectivereplayof

thepattern=1,inabsenceofanycuestimulation,istriggered spontaneouslyandlastsforaverylongtime.Therasterplotofthe networkdynamicsisshownwithadifferentsortingofunitson theverticalaxes,showingthatpattern=1isreplayed.Thereplay isinitiatedsincethenoisyunitshavetriggeredit,andthereplay ispermanentandveryrobustinthisregime.Fig.6showsthatat th2=th2c =90,fromtimetotime,thereisashorttransientreplay

ofthepatterns.Eachreplayeventlastsforalimitedintervaloftime andthenfadesaway.InFig.6a,theunitsaresortedaccordingto increasingvaluesofstoredphasesinpattern=1,whileinFig.6b unitsaresortedaccordingto=2.Whenpattern=1isrecalled,

(4)

a

b

c

Fig.3. Networkdynamicsatdifferentvaluesofspikingthresholdth.Inthesesimulationsacueexternalstimulation(Mspikes,showningreen)isused,andasinglevalue ofspikingthresholdisusedforallunitsofthenetwork,andthenoiseisabsent.Atpropervalueofthespikingthresholdthecueinitiatesapersistentretrievalofthe spatiotemporalpattern,whileattoohighthresholdthenetworkissilentorwithonlyashorttransientretrieval.Exampleofselectivesuccessfulevokedretrieval(a,b)and exampleoffailure(c)areshown.Therasterplotof50units(randomlychosen)isshownsortedontheverticalaxisaccordingtoincreasingvaluesofphase 1

i ofthefirst storedpattern=1.ThenetworkhasN=3000IFneurons,th=75,90,105,respectively,ina,bandc.ConnectionsaregivenbyEq.(5)withP=2storedpatternsat =3Hz.

Fig.4. (a)Storagecapacity˛c=Pmax/N,definedasinScarpettaandGiacco(2012),isshownat =3Hzasafunctionofspikingthreshold,whenM=N/10spikesareusedas cuestimulation.AsalwaysinthispaperthenumberofunitsisN=3000.Thefigureshowsthatnearcrit

th 95thereisatransitionfromaregionofevokedpersistentreplay toaregionofno-replay.(b)Frequencyofthecollectiveoscillationsofthenetworkdynamicsduringevokedreplay,asafunctionofspikingthreshold,forP=Pmax.

Fig.5.Spontaneousdynamics,withoutanycuestimulation,inanoisyenvironment(noise=1ms,Jnoise=0,(Jnoise)=5)withth2=80,th1=26,N=3000, =3Hz.Spikesare shownwithunitssortedontheverticalaxesaccordingtoorderofunitsinthefirst(a)orsecond(b)storedpattern.Unitswiththresholdth1=26areshowningreen,the otherinblack.Permanentreplayoffirstpatternisobserved,initiatedbythenoisyunits(lowthreshold,moresensitivetonoise).

(5)

Fig.6. Spontaneousdynamicswithoutanycuestimulationinanoisyenvironment(noise=1ms,Jnoise=0,(Jnoise)=5)withth2=90,th1=26,N=3000, =3Hz.Spikesare shownwithunitssortedontheverticalaxesaccordingtoorderofunitsinthefirst(a)orsecond(b)storedpattern.Unitswiththresholdth1=26areshowningreen,the otherinblack.Shorttransientreplaysofthetwopatternsareinitiated,fromtimetotime.

Fig.7.Spontaneousdynamicswithoutanycuestimulationinanoisyenvironment(noise=1ms,Jnoise=0,(Jnoise)=5)withth2=105,th1=26,N=3000, =3Hz.Spikesare shownwithunitssortedontheverticalaxesaccordingtoorderofunitsinthefirst(a)orsecond(b)storedpattern.Unitswiththresholdth1=26areshowningreen,the otherinblack.Noreplayisobserved.

ashortsortedsequenceofspikesappearsinFig.6a,whilewhen pattern=2isretrieved,ashortsortedsequenceofspikesappears inFig.6b.Athigherthreshold,suchasth2=105inFig.7noreplay

isobserved,andonlynoisyactivityisobserved.Itisnotablythat, atintermediatevalueth2=90thisintermittentreplayisobserved

here,inabsenceofanyexternalcuestimulation.Weobserveasort ofspontaneousreactivationofallstoredpatterns,astheonethat seemstohappenduringsleep,usefulformemoryconsolidation.

3.1. Thecriticalpoint

In orderto characterizethis transition betweena regime of spontaneouspermanentretrieval(intheabsenceofcue stimula-tion)toaregimeofno-retrieval,wemeasurethevarianceandthe meanvaluem(Tw)oftheorderparameter.

In analogywith theHopfield model, we introduce an order parametertoestimatetheoverlapbetweenthenetworkcollective activityduringthespontaneousdynamicsandthestored phase-codedpattern.Thisquantityis1whenthephases jofneuronsj

coincideswiththestoredphases j,andisclosetozerowhenthe phasesareuncorrelatedwiththestoredones.

Therefore, we consider the following time-dependent dot product|M(t,Tw)|=< (t)| >where  isthevectorhaving

componentsei j ,namely: |M(t,Tw)|=

1 N



j=1,...,N t<t∗j <t+Tw e−i2tj∗/Twei  j

(6)

wheretj∗isthespiketimingofneuronjduringthespontaneous dynamics,andTwisanestimationoftheperiodofthecollective

spontaneousperiodicdynamics.

Then,weconsiderthemeanvalueoftheorderparameter: m(Tw)=N1

s|M(t,T

(6)

Fig.8. Meanvaluem(TW)oftheorderparameterforpattern=1(circles)andits fluctuations(stars)asafunctionofthechosenwindowTw,fordifferentth2.N=3000, th1=26and =3HzasinFigs.5–7.

wheretheaverage···isdoneonthestartingtimetofthewindow, andNsistheaveragenumberofspikesonawindowoftimeTw.

Thefluctuationsoftheorderparameteraredefinedby 2(|M(t,Tw)|)= 1

Ns2

[|M(t,Tw)|2|M(t,

Tw)|2

]. (8)

Theorderparameter|M(Tw)|,attheoptimaltime-windowTw,

i.e.withTw whichmaximizes|M(Tw)|,measuresthesimilarity

inthesequenceofspikingneuronsandinthephaselagbetween thespikes.Thisisasuitablechoiceespeciallywhenthereplayofa spatiotemporalpatternhastobedetectedindependentlyfromthe compressionofthetimescale.Notethatifwehaveaspiketrain thatisnotperiodic,wecannotdefinetheperiod,howeverwecan definetheorderparameterlookingatthetime-windowTwwhich

maximizes|M(Tw)|.

InFig.8starsarefluctuationswhilecirclesarethemeanvalue m(Tw),forthreevaluesof

th2=80,90,100,anddifferentvalues

ofthetime-windowTw.Wesimulate

th1=20,22,24,26,28,30,

andweplotresultsforth1=26(whichisthevaluewhichgives

higherorderparameter)inFig.8.Soweevaluatethemeanvalue andthefluctuationsoftheorderparameterforthevalueofTw

whichmaximizesit.

InFig.9themeanvaluemoforderparameterandits

fluctu-ations2(|M|)areshownasafunctionofspikingthreshold th2,

whenth1=26andfortheoptimalTw.Atlow spikingthreshold

(th2=80)mishighand2(|M|)islow,indicatingthat,asshown

inFig.5thenoiseisabletoinitiateasuccessfulretrieval(persistent replay)ofthestoredpattern.Athighthreshold(th2=100)either

themeanvalueandthefluctuationsoftheorderparameterarelow. Atthecriticalpoint(th2=90)betweenthetworegimes,the

fluc-tuationsoftheorderparameteraremaximized,asexpectedina continuousphasetransition.

The transition is then characterized by a dynamical order parameter,intermsofadynamicalphasetransition,betweentwo differentdynamicalbehaviors(allintheabsenceofanyexternalcue stimulation).Acriticalbehavior,withmaximizationoffluctuation oforderparameteratthecriticalthreshold,isobservedhereasin continuousphasetransitions.Notablyrecentresults(Tagliazucchi etal.,2012)show,usinglargescalefMRImeasures,thatthebrain spentmosttimenearacriticalpoint.Futureworkswillfocuson

Fig.9.Meanvaluem(TW)oftheorderparameter,atoptimalTw,anditsfluctuations asafunctionofth2,forN=3000,th1=26and =3HzasinFigs.5–7.

thespontaneousactivityatthecriticalthresholdfromthepointof viewofneuralavalanches.

4. Discussion

Here, using an STDP-based learning process (Scarpetta and Giacco,2012;Scarpettaetal.,2011,2011,2009;STDP,2008),we storeintheconnectivityofaLIFnetwork,severalspatiotemporal spikepatterns,andwefindthat,dependingontheexcitabilityof thenetwork,differentworkingregimesarepossible,with collec-tive,transientorpersistent,replayactivityinducedsimplybynoise. Inourmodelnotonlytheorderofactivationofthesequenceis pre-served,butalsotheprecisephaserelationshipamongunitsofthe periodicspatiotemporalpattern.

Whileintheregionofpersistentreplaythesystemisrobust w.r.t.noise, asdiscussed inScarpettaand Giacco(2012),inthe regionnearthecriticalpointthesystemismoresensitivetonoise, asshownhere.Inthecriticalregimeindeed,thedifferentsequences storedintheconnectivitymaybereactivatedtransiently,fromtime totime,duetonoise,andinabsenceofanycuestimulation.

Weshowthatatthecriticalpointthefluctuationsoftheorder parameteraremaximized,sincethecollectiveactivityismadeof differentsequencesofdifferentlengths,whichgiveriseto corre-latedactivityonthetopofanoisyuncorrelatedactivity.

Recentlythereisrenewedinterestinreverberatoryactivity(Lau andBi,2005)andincorticalspontaneousactivity(Ringach,2009; Pastalkovaetal.,2008)whosespatiotemporalstructureseemsto reflecttheunderlyingconnectivity,whichinturnmaybetheresult ofthepastexperiencestoredintheconnectivity.

Similaritybetweenspontaneousandevokedcorticalactivities hasbeenshowntoincreasewithage(Berkesetal.,2011),andwith repetitivepresentationofthestimulus(Hanetal.,2008). Interest-ingly, inourIFmodel, inorder toinducespontaneouspatterns ofactivityreminiscentofthosestoredduringthelearningstage, alimitednumberofspikeswiththerightphaserelationshipare sufficient,andmoreimportantly,eveninabsenceofsensory stim-ulus,anoisewiththerightphaserelationshipsisabletoinducea patternofactivityreminiscentofastoredpattern.Therefore,by adapting thenetwork connectivitytothephase-codedpatterns observedduringthelearningmode,thenetworkdynamicsbuildsa

(7)

representation of the environment and then, during proper conditions, suchas sleepor rest, thedynamical attractors cor-responding to the stored patterns are transiently activated by noise.

Regardingplacecellsforexample,apossiblescenarioisthat,the patternactivatedrepeatedlyduringexperienceisstoredinthe con-nectivity,andthenactivatedduringsleepwhenthenetworkisnear criticalpointandnoiseisabletoinitiateshortreplaysequences,in absenceofsensorystimulation.Duringexploration,whenthe ani-malvisitadjacentplacefields,theevokedactivityoftheplacecells isa sequenceofspikeswiththeconsecutiveactivationofplace cells,thenalsoinsideasinglethetacyclethecellsareactivatedin therightsequence.Duringsleep,intheabsenceofexternalinputs, therole ofrecurrentconnections increases,probablydue toan increaseofexcitabilityvianeuromodulatorsorothermechanisms, andthespontaneousactivityofthenetworkshowstemporarily shortreplayofstoredpatterns,probablyinitiatedsimplybythe noise,asproposedinthiswork.

References

Berkes,P.,Orban,G.,Lengyel,M.,Fiser,J.,2011. Spontaneouscorticalactivity revealshallmarksofanoptimalinternalmodeloftheenvironment.Science331, 83–87.

Bi,G.Q.,Poo,M.M.,1998. Precisespiketimingdeterminesthedirectionandextent ofsynapticmodificationsinculturedhippocampalneurons.J.Neurosci.18, 10464–10472.

Gerstner,W.,Kistler,W.,2002.SpikingNeuronModels:SingleNeurons,Populations, Plasticity.CambridgeUniversityPress,NY.

Gerstner,W.,Ritz,R.,vanHemmen,J.L.,1993. Whyspikes?Hebbianlearningand retrievaloftime-resolvedexcitationpatterns.Biol.Cybern.69,503–515.

Han,F.,Caporale,N.,Dan,Y.,2008. Reverberationofrecentvisualexperiencein spontaneouscorticalwaves.Neuron60,321–327.

Lau,P.-M.,Bi,G.-Q.,2005.Synapticmechanismsofpersistentreverberatoryactivity inneuronalnetworks.Proc.Nat.Acad.Sci.U.S.A.102,10333–10338. Pastalkova,E.,Itskov,V.,Amarasingham,A.,Buzsaki,G.,2008.Internallygenerated

cellassemblysequencesintherathippocampus.Science321,1322–1327. Ringach,D.L.,2009.Spontaneousanddrivencorticalactivity:implicationsfor

com-putation.Curr.Opin.Neurobiol.19,439–444.

Scarpetta, S.,Giacco,F.,2012. Associative memoryofphase-coded spatiotem-poralpatterns inleaky IntegrateandFire networks.J. Comput.Neurosci., http://dx.doi.org/10.1007/s10827-012-0423-7.

Scarpetta,S.,Zhaoping,L.,Hertz,J.,2001. Spike-Timing-DependentLearningfor OscillatoryNetworks.AdvancesinNeuralInformationProcessingSystems,vol. 13.MITPress.

Scarpetta,S.,Zhaoping,L.,Hertz,J.,2002.Hebbianimprintingandretrievalin oscil-latoryneuralnetworks.NeuralComput.14,2371–2396.

Scarpetta,S.,Giacco,F.,Marinaro,M.,2009.Roleoftemporallyasymmetricsynaptic plasticitytomemorizegroup-synchronouspatternsofneuralactivity.Front. Artif.Intell.Appl.204,247–260.

Scarpetta,S.,DeCandia,A.,Giacco,F.,2010. Storageofphase-codedpatternsvia STDPinfully-connectedandsparsenetwork:astudyofthenetworkcapacity. Front.Synapt.Neurosci.2,1–12.

Scarpetta,S.,Giacco,F.,DeCandia,A.,2011.Storagecapacityofphase-codedpatterns insparseneuralnetworks.EPL95,28006.

Scarpetta,S.,DeCandia,A.,Giacco,F.,2011.Dynamicsandstoragecapacityofneural networkswithsmall-worldtopology.ProceedingsoftheConferenceonNeural NetsWIRN10.Front.Artif.Intell.Appl.226,218–226.

Encodingandreplayofdynamicattractorswithmultiplefrequencies:analysisofa STDPbasedlearningrule,2008.LectureNotesinComputerScience(including subseriesLectureNotesinArtificialIntelligenceandLectureNotesin Bioinfor-matics),LNCS5286,pp.38–60.

Tagliazucchi,E.,Balenzuela,P.,Fraiman,D.,Chialvo,D.R.,2012.Criticalityin large-scalebrainfMRIdynamicsunveiledbyanovelpointprocessanalysis.Front. Fract.Physiol.3,15,http://dx.doi.org/10.3389/fphys.2012.00015.

Yoshioka,M.,Scarpetta,S.,Marinaro,M.,2007. Spatiotemporallearninginanalog neuralnetworksusingspike-timing-dependentsynapticplasticity.Phys.Rev.E 75,051917.

Riferimenti

Documenti correlati

Come si evince scorrendo l’indice di questo numero, che segue la successione cronologica degli interventi nel corso del Convegno, le prime relazioni sono state dedicate al progetto

 Different cross-talk cancelling filters for front and rear Stereo Dipoles, designed inverting the actual measurements taken on the dummy head placed in the listening

As the earthquake duration is defined as the time point at which the envelope encounters the rms-noise level, we can numerically estimate the corresponding

The data underline differences in MAPK signaling requirements for IL-22 and IL-23 during PRRs ligation, suggesting a critical role of the intracellular pathways in the regulation

postcolonial exotic in Chimamanda Ngozi Adichie’s Half of a Yellow Sun, in «Journal.. of Postcolonial Writing», 48:1

The higher level of discrimination and resilience and the lower level of ISS, rumination, and health problems of Italian LGB+ people than their Taiwanese counterparts may also