• Non ci sono risultati.

Ionic strength-controlled hybridization and stability of hybrids of KRAS DNA single-nucleotides: A surface plasmon resonance study

N/A
N/A
Protected

Academic year: 2021

Condividi "Ionic strength-controlled hybridization and stability of hybrids of KRAS DNA single-nucleotides: A surface plasmon resonance study"

Copied!
6
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Colloids

and

Surfaces

B:

Biointerfaces

jou rn a l h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / c o l s u r f b

Ionic

strength-controlled

hybridization

and

stability

of

hybrids

of

KRAS

DNA

single-nucleotides:

A

surface

plasmon

resonance

study

N.

Giamblanco

a,∗

,

S.

Petralia

b

,

S.

Conoci

b,∗

,

C.

Messineo

a

,

G.

Marletta

a

aDept.ofChemicalSciences,UniversityofCatania,VialeA.Doria6-95129Catania,Italy bSTMicroelectronics,StradalePrimosole50,95121Catania,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received2January2017

Receivedinrevisedform17June2017 Accepted19June2017

Availableonline21June2017 Keywords:

SNP

DNAhybridization SPR

a

b

s

t

r

a

c

t

Thediscriminationofafullymatched,unlabeledKRASwild-type(WT)(C-G)targetsamplewithrespect

tothreeofthemostfrequentKRAScodonmutations(G12S(C-A),G12R(C-C),G12C(C-T))was

inves-tigatedusinganoptimizeddetectionstrategyinvolvingsurfaceplasmonresonance(SPR),basedon

optimizedprobe-surfacedensityandionicstrengthcontrol.ThechangesobservedintheSPRsignalwere

alwayslargerforWTcomparedwiththesingle-mismatchtargetDNAoligonucleotides,andwerealigned

withthetheoreticalenergydifferencesbetweenthebasepairC-G,C-T,C-A,C-C.Hybridizationratesof

∼106M−1s−1weredetectedwithouttheintroductionofhightemperatureandlabels,usuallyneeded

inconventionalhybridizationmethods.Onehundredpercentmutationdiscriminationofthematched

KRASwild-type(C-G)sequencewithrespecttothreemismatchedG12C(C-T),G12S(C-A),G12R(C-C)

targetsequenceswasachieved.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

TheidentificationofspecificDNAsequencesplaysakeyrolein biomedicalresearch.Inthiscontext,thedetectionofsinglebase DNAmutationisparticularlyrelevantasitisassociatedwith sev-eralgeneticdiseases.Singlenucleotidepolymorphisms(SNPs)are themost abundantgeneticvariations and theyare involved in severaltypesofcancersuchascolorectalandpancreas adenocar-cinoma[1].Currently,mostoftheconventionaltestsforSNPsare basedonDNAamplificationmethodologiessuchasreal-time Poly-meraseChainReaction(PCR)[2],sequencing[3],DNAhybridization techniqueslikemicroarrays[4–7]and fluorescencedetectionof theinsituhybridization(FISH)[8,9].Themajorlimitationsofthe sequencingmethodsderivefromthecomplexityofthe method-ologytogetherwiththecontaminationriskarisingfromthePCR exponentialamplification[10].

The discrimination of one or more mismatches generally requiresthefinetuningofthehybridizationconditions,including surface-probe interactions, probe length[11], probe conforma-tion, target length and concentration, labeling of the target, hybridizationtemperature,compositionandionicstrengthofthe hybridizationbuffer,post-hybridizationwashstringencyand

tem-∗ Correspondingauthors.

E-mailaddresses:ngiamblanco@hotmail.com(N.Giamblanco),

sabrina.conoci@st.com(S.Conoci).

perature,andotherdissociationconditionsoftheprobeandtarget duplex[11–16].

SeveralbioanalyticalapproachesforthedetectionofSNPusing SPR biosensors are described in literature [17,18]. Indeed, Sur-facePlasmonResonance(SPR)isa veryattractivetechniquefor awiderangeofanalyticalapplications[19,20].Ingeneticstudies, SPRhasproventobeverysuitableforfast,sensitive,label-freeand realtimeone-stepmonitoringofthehybridizationbetweenprobe and target DNA, and base pair mismatchdetection [21–23,17]. Currently,themolecularinteractionofDNA-targetswithspecific probesimmobilizedonagoldsurfaceisdetectedinrealtimeby changesintherefractiveindexoccurringintheliquid-solid inter-facedirectlyconnectedtothebiomoleculeretainedmassonthe sensorsurface.Inordertooptimizethesensitivityandspecificity withSPR,manystrategiesandassays basedontheuseof help-ingagents(i.e.,proteins,nanoparticles(NPs),intercalatingagents or artificialDNAs) havebeen developed[24].However, despite thesignificantimprovementsinthesensitivityobtainedbyusing nanomaterial-basedSNPassayscoupledwithanumberof differ-entreadoutstrategies,themutationdiscriminationability(MDA) neverrisesabove90%[16].MDAisdefinedastheabilityto discrim-inateaspecificpointmutationbycomparingthesignalrecorded by hybridization with a target having a single mismatch with respecttothesignalgivenbythefullycomplementarytarget[16] (for a more rigorousdefinition, seeEq. (3) in “Results and Dis-cussion Section-Singlenucleotide polymorphisms Discrimination”).

http://dx.doi.org/10.1016/j.colsurfb.2017.06.021

(2)

Additionally, althoughall these strategies optimizethe sensing performance,easeofuseandcostsarenotnecessarilyimportant characteristics.Suchstrategiesactuallyrequirecomplexreagents andmulti-stepreactions,whichmakeitdifficulttoscaleuptowards devices.

Inapreviouspaper[25],wedescribedasinglestepandlabel freemethodtoselectively detecttheHVBgenome withsimple linearssDNAprobesimmobilizedontheAusurfacesofaQCM res-onator.Inthisstudy,weadoptedanoptimizeddetectionstrategy toefficientlydiscriminateSNPusing93-merDNAtargetsequences associatedwiththeKirstenRatSarcomaViralOncogenehomolog (KRAS)gene.TheSNPvariationsinKRASgenecodons12,13,and 61,aredirectlyassociatedwiththedevelopmentofmanykindsof cancer[26–29],andtheirdetectioniscriticalfortheselectionofthe appropriatetypesoftreatment[30].Europeanauthorities respon-siblefor healthand theAmerican Society forClinical Oncology requestedanefforttoidentifyKRASmutationsforearlydetection ofcancerpathologies[31].Thesepointsstimulateresearchforthe establishmentofcost-effective,rapidandlarge-scaleKRAS muta-tionscreeningmethodsforpersonalizedcancertherapy.Currently, thedetectionofpointmutationinhumangenomicDNAusing sim-ple,fastandreliablemethodologiesremainsachallenge.

In this paper, in order to achieve high specificity via SPR transduction,a detectionstrategy was adoptedbased onprobe immobilizationoptimizationatthesurface,followedbyasuitable hybridizationstepandafinaldenaturationwashingprocess.The resultsobtainedby meansofQuartz CrystalMicrobalancewith Dissipationmonitoring(QCM-D)andSurfacePlasmonResonance (SPR)techniquesshowthatanefficientsinglebasemutation dis-criminationofamatchedKRASwild-type(C-G)sequenceversus threemismatchedtargetsequences(i.e.,G12C(C-T),G12S(C-A) andG12R(C-C))canbeobtained.

2. Materialsandmethods 2.1. Chemicals

ThiolatedoligonucleotidesWTprobe(35bps)andWT,G12C, G12SandG12Rtargetsequences(93mer)werepurchasedfrom Purimex(Germany).Thedetailedcompositionofthesequencesis reportedinTable1.

2.2. Probeimmobilizationandhybridizationreagents

Theprobeoligonucleotidessolutionwaspreparedata concen-trationof1.0␮Min0.1Mphosphatebuffer(PBS)and1.37MNaCl. ThewaterwaspurifiedusingaMilliporefiltrationsystem.

Thetargetsolutionswerepreparedat0.5␮Mconcentrationin 0.1Mphosphatebuffer(PBS)and1.37MNaCl,byheatingat70◦C for3minandcoolingonicefor2min.Thisprocedureisintended topreventhairpinformationresultingfromtheanalysisperformed withOligoAnalyzer3.1software(datanotshown).Thetarget

solu-tionswereallowedtoequilibrateatroomtemperaturefor15min beforeuse.

WashingsolutionsconsistofSSCbuffer:1×SSC=150mMNaCl, 15mMsodiumcitrate,0.1%SDSinwater(pH7.0).

2.3. Surfaceplasmonresonancemeasurements

TheSPRmeasurementswereconductedusingtheSPRNavi200 (BioNavis,Finland), adouble channeland prismcoupling-based instrument.

BeforemodifyingthessDNAprobe,thegoldchipwasimmersed inaboilingsolution(30%H2O2,28%ammoniaanddoubledistilled waterinavolumeratioof1:1:5)for10min.Thecleanedchipwas thendoublerinsedwithdistilledwateranddriedbynitrogenflow beforeuse.Thechipwasthensetintheflowcellandwashedwith aPBSbuffer(50␮Lmin−1 flowrate)flowuntilthebaselinewas constant.

ThessDNAprobewasinjectedintheflowcellandakineticof molecularadsorptiononthegoldchipwasfollowedbythe moni-toringofchangesintherefractiveindexattheinterfaceofthegold chipsurfaceonprobe interactionbydetectingtheanglechange ofthereflectedlaserbeam(SPRangleshifts(␪))accordingtothe Kretschmannconfiguration[32].TherinsingstepwithPBS0.1M followedtheprobeimmobilizationstep.

Thekineticsofhybridizationwithperfectlymatchedand mis-matchedtargetswerecarriedoutbyflowingthetargetsolutions intheSPRcell,preparedaccordingtotheabovementioned proce-dure(seeProbeimmobilizationandhybridizationReagentssection). Thetargethybridizationkineticswererecordedbymonitoringthe specificSPRangleshifts.

Afterhybridization,asecondwashingstepwascarriedoutby flowingthewashingbuffer(50␮Lmin−1 flow rate)andthe dif-ferenceintheresponsesignalwascomputedfromthedifference betweentheinitialandfinalbuffersignals.Allmeasurementswere performedat25◦Croomtemperature.

Accordingtotheresultsinpreviousstudies[33]andthe specifi-cationsprovidedbytheequipmentmanufacturer,ashiftintheSPR angleof100mDegequatestoasurfacecoverageof100ng/cm2.

3. Resultsanddiscussion

93-mersyntheticDNAsequencesbasedoncodon12oftheKRAS genewereusedasmodelsfortargetsamples.TheG12S,G12Tand G12RmutationschosenforthisresearcharethepredominantSNPs incancer-associatedKRASgenes,representing83%oftherelative frequencyofmutationsofresiduesG12[34].

Table1 shows thedetails of thesequences followed in this study.Theprobes weredesigned sothat themutationposition ((A-C)forG12S,(C-T)forG12Cand(C-C)forG12R),isplacedin themiddleoftheprobestrand.Thisdecisionisbasedonprevious studiesdemonstratingthatthislocusisthemostconvenientfor mismatchdiscrimination[35].Infact,whenasequencemismatch

Table1

Oligonucleotidesequencesandmodifications.

Name Sequence

TargetWildType(WT) GACTGAATATAAACTTGTGGTAGTTGGAGCTGGTGGCGTAGGCAAGAGTGCCTT

GACGATACAGCTAATTCAGAATCATTTTGTGGACGAATA

MismatchedTargetG12S GACTGAATATAAACTTGTGGTAGTTGGAGCTAGTGGCGTAGGCAAGAGTGCCTT

GACGATACAGCTAATTCAGAATCATTTTGTGGACGAATA

MismatchedTargetG12C GACTGAATATAAACTTGTGGTAGTTGGAGCTTGTGGCGTAGGCAAGAGTGCCTT

GACGATACAGCTAATTCAGAATCATTTTGTGGACGAATA

MismatchedTargetG12R GACTGAATATAAACTTGTGGTAGTTGGAGCTCGTGGCGTAGGCAA

GAGTGCCTT

GACGATACAGCTAATTCAGAATCATTTTGTGGACGAATA

(3)

Fig.1.ChangesintheangularpositionoftheSPRpeakfortheWTprobe immobi-lizationonthegoldsubstrate.TherinsingwithPBSisindicatedbythearrow.The dataaretheaverageofthreeexperiments.

occursinthemiddleoftheprobesequence,agreaterreduction

in the thermodynamicstability of the hybridis observed with

respecttothemismatchattheendoftheprobesequence.

Accord-ingly,thehybridizationofthemutantsequencestothetargetis

expectedtobeunfavorablewithrespecttotheexpectedperfect

matchhybridizationwiththeWildTarget.

3.1. Probegrafting

Thefirstpartofthisworkfocusesonthesurfaceimmobilization

oftheWT-probeconsistingofashortoligonucleotide(35merlong)

totakeadvantageofthethermodynamicallylessfavourable

non-specificbindingoccurringforshortsequences[13,36].Theprobe

was linked to the surface of an SPR gold sensor, according to theproceduredescribed intheExperimental Section.In partic-ular,anadeninedA10 spacerwasusedasterminalblockofthe probesequencetoreduceanyspecificinteractionwiththe sen-sorsurface.Additionally,thedA10 spacerpromotesanL-shaped probeconformation,forcingthestrandintoanuprightstructure [37,38].Theimmobilizationkineticsusing1.0␮Msolutionof thio-latedWTprobeonAusurfacesweremonitoredinsituviaSPRand quartzcrystalmicrobalancewithdissipationmonitoring(QCM-D). SPRresultsarereportedinFig.1.TheSPRsignalreachesasteady stateshiftof220±10mDeg,correspondingtoanestimatedprobe densityof1.2±0.2×1013molecules/cm2 (consideringtheprobe molecularweightof10.806kDaandtheSPR’smasssensitive fac-torof100mDegper100ng/cm2).Theorderofmagnitudeofthe obtainedprobedensity (about 1.0×1013molecules/cm2) corre-spondstothedensityexpectedforAusurfacesimmobilizedwith probeshavingapolyadenine(dA)10lateralspacerandinthe pres-enceofbufferscontainingdivalentsalts[39–44].Thesignalshift remainsstableduringthesubsequentrunninginthePBSbuffer, indicatingthatthessDNAprobeisfirmlyboundtothegoldsurface. Aclosevalueofprobedensitywasalsoobtainedfromthe QCM-D measurement (see Supporting Information). The equilibrium value of the WT probe linked mass was 442.2±35.4ng/cm2, or 2.5×1013±2.0×1012molecules/cm2. This value is 50% higher than the mass probe density values measured by SPR (1.2×1013molecules/cm2). Thisapparent differencecould be a consequenceofthehydratedmassrevealedbyQCM-D.

Accordingly,theSPRdatawasconsideredforarealistic evalua-tionoftheeffectiveamountofprobelinkedtothesensorsurface aswellasontheprobe-functionalizedsurfaces.

ThesurfacedensitycalculatedfromtheSPRdatayieldsan aver-age0.12molecules/nm2(SPR),correspondingtoanintermolecular spacing of2.86nm,assumingasimple hexagonalclosepacking arrangement of the linked probe strands. This surface density (1.2×1013molecules/cm2)iscomparablewiththedatafoundby

Fig.2. AngularshiftoftheSPRminimumpeakforWTtargetandthreemismatched G12C,G12SandG12Rafterhybridizationstep(arrowindicatedas“target”)and washingstep(arrowindicatedas“WB”).

Schreineretal.[41]fortheimmobilizationofSH-ss(dA)15probe (1.3×1013molecules/cm2).Schreineretal. alsoprovedthat the averagespacingbetweentwoadjacentprobesiscontrolledbythe lengthofthepolyAspacer.Therefore,inourcase,the(dA)10spacer canbereasonablysupposedasactingasananchoringblock pro-motinganL-shapedprobeconformation.

Thishypothesisisfurthersupportedbythefactthatthe acous-ticratio,D/f,measuredbymeansofQCM-Dforboundprobe molecules,changesfrom280×10−10/HzbeforerinsingwithPBS buffer, to 700×10−10/Hz after the rinsing step (see Support-ingInformation).Thisisinlinewithsimilarresultsreportedfor straight-shapedconformationsofsurface-boundssDNAmolecules [45].

We therefore propose that, under the presently employed experimentalconditions,theprobeassumesthemorefavourable L-shapedconformationtoachieveanoptimalprocessofmolecular recognitionthroughhybridizationreactions.

3.2. Singlenucleotidepolymorphismsdiscrimination

Differentstringencycontrolstrategiesareavailablefor biochip-based DNA hybridization analysis. The selection of a suitable strategyisstrictlydependentonthesensingplatformused.Inour case,theabilityofourimmobilizedprobe todiscriminatepoint mutationsviaSPRwasassessedusingatwo-stepstrategy:thefirst stepishybridizationunderhighionicstrengthbuffer;thesecond stepiswashingwithmoderateionicstrengthbuffer.

Fig.2showstheSPRcurvesobtainedwiththeabovementioned two-stepstrategy.Inparticular,thesectionbetweenthe“target” and “WB” arrows shows theSPR shifts resultingfrom thefirst hybridizationstep.ThiswasachievedbyexposingtheWT-probeto a500nMsolutionofthefullycomplementary93-mertarget(WT) and tothethree 93-mersingle-base-mismatchedMMsolutions (G12C,G12SandG12R),underthesamehighionicstrength con-ditions(0.1Mphosphatebuffersolutioncontaining1.37MNaCl). ThelargestSPRshift,diagnosticofthemosteffectivebinding,was obtainedforperfectmatchingoftheWTtarget,withavalueof 90±10mDegversus70±9mDegfortheG12Ctarget,60±9mDeg forG12Sand36±9mDegforG12R.

In terms of retained masses (Fig. 3a), the above SPR shifts correspondtovalues of90ng/cm2 forWT,70ng/cm2 for G12C, 60ng/cm2 forG12Sand 36ng/cm2 forG12Rtarget,respectively (datacalculatedconsideringinstrumentsensitivityfactorof100 mDeg=100ng/cm2).Thehybridizationefficiency(%HE)was calcu-latedfromEq.(1)

%HE=



T P



(4)

Fig.3.(a)SPRretainedmassvalues(–ng/cm2)andHybridization

Efficien-ciesafterhybridizationstep.Theerrorbarsindicatethestandarddeviation(SD) obtainedonn=3measurements;(b)Hybridizationkinetic:plottingofd/dtversus thehybridizedtargetmassforWTandMMtargets.

where[T]isthenumberoftargetmolecules,and[P]isthenumber ofprobemolecules.

Accordingtothisequation,thecalculatednominal Hybridiza-tionEfficiencies(HE)are16%forWTtarget,about12%forG12C, 10%forG12Sand6%forG12R,ingoodagreementwithliterature [44].Additionally,thedecreasingtrendin%HEcloselyfollowsthe theoreticalenergystabilitytrendofthebasepairs:C-G(WT)>C-T (G12C)>C-A (G12S)>C-C (C12R) [46]. These HE values are sig-nificantlylowerthanthosereportedintheliteratureforsimilar (dA)n-probes,wherevaluesrangingfrom50to60%areobserved [41–44].Thisfindingsuggeststhatthehybridizationsteadystateis notreachedintheanalysistimeframe.

The time evolution of the hybridized target was analysed accordingtotheLangmuirmodel(Fig.3b),viathefollowing equa-tion[15]: d dt =konCt



1−  max



(2) whereKon=kads/kdes,d(t)isthetime-dependentsurfacedensity fortheadsorbedmolecules(Nofadsorbedmoleculespersecond andcm2),

maxisthemaximumcoveragevalueandCtisthetarget concentrationinsolution.

Accordingtothissimplemodel,thekineticrateofhybridization (kon)canbeeasilycalculatedfromtheinterceptofthelinearpartof d/dtversus.Inparticular,konis3.3±0.1×106M−1 s−1forWT, 2.5±0.1×106M−1s−1forG12C,1.9±0.1×106M−1s−1forG12S and1.2±0.1×106M−1s−1forG12R.

Theseresultsindicatethat kineticsforthefully complemen-tarytargetaresignificantlyfasterthanthemismatchedsequences, givenrecentliteraturereportsindicatingthatthesubstitutionof thesinglebasehasastrongeffectonthehybridizationrate[47].

Thehybridizationkineticsdatareportedintheliteraturevary significantlyfrom∼103M−1s−1to∼106M−1s−1[48]dueto

sev-Fig.4. SPRretainedmassvalues(–ng/cm2)afterwashingwithPBSbuffer.The

errorbarsindicatethestandarddeviation(SD)obtainedonn=3measurements.

eralfactorsaffectingthem.Theorderofmagnitudeobtainedhere (∼106M−1s−1)fallsinsidethehigherrangesgiveninliterature, indicatingveryfasthybridizationwithoutthespecific optimiza-tionofmeltingtemperatureandstringencyconditions.Thisfinding canbelinkedtothepresenceoftheL-shapedadenineblockwhich isabletogenerateafavourableconfigurationforhybridizationby increasingtheaccessibilityofthetargetmolecules.[38,42].

Afterhybridization,asecondstepinvolvingwashing(diagram partofFig.2startingfrom“WB”arrow)isperformed.Toefficiently removethelessstableduplexstructures(notfullycomplementary targets),awashingbufferwithlowionicstrength(oneorderof magnitudelowerthanthatemployedinthehybridizationstep)was employedinthepresenceofthedenaturisingagentSDS,astandard additiveforwashingsolutions instandardhybridization experi-ments[49,50].TheSPRresponsesforallstrands(Fig.2–curvesin therangeof60–80min)revealthatonlytheWTtargetexhibitsa detectableSPRsignal,whileallthemismatchedsequencesshow valuesthatcannotbedistinguishedfromthebaseline.Thismeans that this secondwashing step completelyremoved themutant hybrids(i.e.,G12C,G12RandG12S),keepingonlytheperfectmatch wildtype(WT)genomesbound.

Fig.4showstheretainedmassofhybridscalculatedfromtheSPR shiftsafterwashing.Thisdemonstratesthatonlythefullymatched target(WT)isstillretained,with40ng/cm2,evenifsomeofthe initiallyboundhybridsarelost.

Thisbehaviour can be explained ifwe consider that a high ionicstrengthsolution(1.37MNaCl)determinesaDebyelength atroomtemperatureofabout0.26nm;i.e.,smallerthanthe inter-phosphorous(P−-P−)distanceofabout0.76nminthenucleotide sequences.Accordingly,thenegativechargesofthephosphodiester groupsalongtheimmobilizedprobemoleculesarecompensatedby thecounter-ioncharges,stabilizingthetargetsequencesbinding withtheprobe.

Theabovementionedresultsallowthedefinitionofahighly effi-cientstrategytodiscriminatethefullymatchedduplexstructure (WT)fromthemutantKRASsequence.Theprocessisbasedonthe carefulcontrolofthepost-hybridizationwashingconditions,based ontheuseofmoderateionicstrengthconditions(0.15MNaCl,in thepresentcase)inpresenceofthestandarddenaturingwashing additive(0.1%V/VSDS)fortheefficientremovalofthelessstable mutantstrand-duplexhybrids.Theprocessprobablytakes advan-tageofthedifferenceinthermodynamicstabilitybetweenthefully matchedduplexstructure(WT)andtheMMduplexstructures.In fact,aspreviouslydiscussed[51–54],thehybridstabilitynearthe surfaceisreducedifwereducetheionicstrengthofthesolution. Inourcasewith(0.15MNaCl),weestimateaportionofabout10 ntisaffectedbythisdestabilization[51].

(5)

Theabovedistanceroughlycorrespondstothecentralposition ofthemutantsitesinthemutantKRASsequence,weakeningthe bindinginteractionofthemutantstrandswiththeWT-probeand thuspromptingthedissociation oftheprobe-targethybrids.On thecontrary,this factordoesnotaffectthebindingofthefully matchedWTsequence,enablingtheefficientretentionofthewild typesequencesinthetestedionicstrengthconditions.

Thefinalmutationdiscriminationabilityofthemethodmaybe definedthroughEq.(3),

%HE=100−



RM RC



×100



(3) whereRMistheretainedmassofthemismatchedduplex,andRC istheretainedmassforthefullycomplementaryduplex.The result-ingdata,forthespecificionicstrengthconditionsemployedinthese experiments,leadtoadiscriminationvalueof100%forthefully matchedtarget(WT)againsttheMMones.Itshouldbestressed thatsimilarSPR-basedmethodologiesdonotachievecomparable mutationdiscriminationvalues[15].

4. Conclusions

ThispaperdescribesasimpleSPRmethodtoachieverapidand excellentdiscriminationofthefullymatchedKRASwild-type (C-G)sequenceagainstthreemismatchedG12S(C-A),G12R(C-C), G12C(C-T)targetsequences,whichrepresentthemostcommon mutationsin the KRAS gene. Thismethod involvesa detection strategybasedonoptimizedprobe-surfacedensitycombinedwith ionic strength control. Twoexperimental stepswere executed: i)hybridizationunderhighionicstrengthbufferandii)washing withmoderateionicstrengthbuffer.Thankstothese complimen-taryeffects,wefoundhybridizationratesof∼106M−1s−1without theuseoftheoptimizedhybridizationtemperaturesorstringent conditions usually needed in conventional hybridization meth-ods.Moreover,we achieved a100% mutation discriminationof thematchedKRASwild-type(C-G)sequencewithrespecttothree mismatchedG12C(C-T),G12S(C-A),G12R(C-C)targetsequences. Theresultspresentedhereinshowthatfastandhigh discrimi-nationofSNPcanbeachievedwithconventionalSPRbiosensors withoutusing labels or target signalamplification probes.This modelstudypromptsustocontinueandextendourinvestigation tothecompletesetofKRAS mutations,withassayperformance evaluations(sensitivityandlimitofdetection)andthetestingof realsamples.

Acknowledgements

G.M. gratefully acknowledges the financial support for the projectand thebiennial fellowship of N.G.from the FIRB Pro-gram“AccordidiProgramma”(contractnumberRBAP11ZJFA002, Rome,Italy).AuthorswarmlythankbothDr.ValeriaFormicaand Dr.AndreaLastrinaforhistechnicalreviewofthemanuscript. AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.colsurfb.2017.06. 021.

References

[1]C.C.Pritchard,W.M.Grady,Colorectalcancermolecularbiologymovesinto clinicalpractice,Gut60(2011)116–129.

[2]M.Spata,M.E.Castagna,S.Conoci,ImagedataanalysisinqPCR:anmethodfor smartanalysisofDNAamplification,Sens.Biosens.Res.6(2015)79–84.

[3]D.Altshuler,V.J.Pollara,C.R.Cowles,W.J.Etten,J.Baldwin,L.Linton,E.S. Lander,AnSNPmapofthehumangenomegeneratedbyreduced representationshotgunsequencing,Nature407(2000)513–516.

[4]A.N.Rao,D.W.Grainger,Biophysicalpropertiesofnucleicacidsatsurface relevanttomicroarrayperformance,Biomater.Sci.2(2014)413–471.

[5]B.Foglieni,A.Brisci,F.SanBiagio,P.DiPietro,S.Petralia,S.Conoci,M.Ferrari, L.Cremonesi,IntegratedPCRamplificationanddetectionprocesseson lab-on-chipplatform:anewadvancedsolutionformoleculardiagnostics, Clin.Chem.Lab.Med.48(2010)329–336.

[6]S.Conoci,P.DiPietro,S.Petralia,M.G.Amore,F.SanBiagio,G.Alaimo,G. Iacono,E.Alessi,D.Ricceri,G.DiTrapani,F.DiFrancesco,M.Palmieri,Fastand efficientnucleicacidtestingbyST’sin-checklab-on-chipplatform,Proceding ofNSTINanotech2(2006)562–565.

[7]M.F.Santangelo,E.L.Sciuto,A.C.Busacca,S.Petralia,S.Conoci,S.Libertino, SiPMasminiaturisedopticalbiosensorforDNA-microarrayapplications, Sens.Biosens.Res.6(2015)95–98.

[8]R.Bishop,Applicationoffluorescenceinsituhybridization(FISH)indetecting geneticaberrationsofmedicalsignificance,Biosci.Horiz.2(2010)85–95.

[9]M.F.Santangelo,E.L.Sciuto,A.C.Busacca,S.Petralia,S.Conoci,S.Libertino, NovelSibasedtechnologiesforbio-sensingapplications,IEEEJ.Sel.Top. QuantumElectron.22(3)(2016)6900307.

[10]Next-GenerationGenomeSequencingTowardsPersonalizedMedicine,in: MichalJanitz(Ed.),September,Wiley-Blackwell,2008,ISBN:

978-3-527-32090-5–282pages.

[11]S.Mishra,S.Ghosh,R.Mukhopadhyay,Maximizingmismatchdiscrimination bysurface-tetheredlockednucleic-acidprobesviaionictuning,Anal.Chem. 85(2013)1615–1623.

[12]S.Ikuta,K.Takagi,R.B.Wallace,K.Itakura,DissociationKineticsof19base pairedoligonucleotide-DNAduplexescontainingdifferentsinglemismatched basepairs,NucleicAcidsRes.15(1987)797–811.

[13]J.Grimes,Y.V.Gerasimova,D.M.Kolpashchikov,Real-timeSNPanalysisin secondarystructure-foldednucleicacids,Angew.Chem.Int.Ed.Engl.49 (2010)8950–8953.

[14]D.Y.Zhang,S.X.Chen,P.Yin,Optimizingthespecificityofnucleicacid hybridization,Nat.Chem.4(2012)208–214.

[15]A.W.Peterson,L.K.Wolf,R.M.Georgiadis,Hybridizationofmismatchedor partiallymarcheDNAatsurfaces,J.Am.Chem.Soc.124(2002)14601–14607.

[16]L.G.Carrascosa,A.Calle,L.M.Lechuga,Anal.Bioanal.Chem.393(2009) 1173–1182.

[17]J.Homola,S.S.Yee,G.Gauglitz,Surfaceplasmonresonancesensors:review, Sens.ActuatorsBChem.54(1999)3–15.

[18]G.Liu,Y.Wan,V.Gau,J.Zhang,L.Wang,S.Song,C.Fan,Anenzyme-based E-DNAsensorforsequence-specificdetectionoffemtomolarDNAtargets,J. Am.Chem.Soc.130(2008)6820–6825.

[19]J.Homola,S.S.Yee,G.Gauglitz,Surfaceplasmonresonancesensors:review, Sens.ActuatorsBChem.54(1999)3–15.

[20]S.Conoci,M.Palumbo,B.Pignataro,R.Rella,L.Valli,G.Vasapollo,Optical recognitionoforganicvapoursthroughultrathincalix[4]pyrrolefilms, ColloidsSurf.A-Physicochem.Eng.Asp.198(2002)869.

[21]C.Ananthanawata,T.Vilaivanb,V.P.Hovenb,X.Su,ComparisonofDNA, aminoethylglycylPNAandpyrrolidinylPNAasprobesfordetectionofDNA hyrbidizationusingsurfaceplasmonresonancetechnique,Biosens. Bioelectron.25(2010)1064–1069.

[22]M.L.Ermini,S.Mariani,S.Scarano,M.Minunni,Bioanalyticalapproachesfor thedetectionofsinglepolymorphismsbysurfaceplasmonresonance biosensor,Biosens.Bioelectron.61(2014)28–37.

[23]M.J.Matsishin,lu.V.Ushenin,A.E.Rachkov,A.P.Solatkin,SPRdetectionand discriminationoftheoligonucleotidesrelatedtothenormalandthehybrid bcr-ablgenesbytwostringencycontrolstrategies,NanoscaleRes.Lett.11 (2016)19–26.

[24]S.Marini,S.Scarano,M.Carrai,R.Barale,M.Minunni,Directgenotypingof C3435TsinglenucleotidepolymorphisminunamplifiedhumanMDR1gene usingasurfaceplasmonresonanceimagingDNAsensor,Anal.Bioanal.Chem. 407(2015)4023–4028.

[25]N.Giamblanco,S.Conoci,D.Russo,G.Marletta,Single-steplabel-free HepatitisBvirusdetectionbypiezoelectricbiosensor,RSCAdv.5(2015) 38152–38158.

[26]O.Kranenburg,TheKRASoncogene:past,present,andfuture,Biochim. Biophys.Acta1756(2005)81–82.

[27]F.DiFiore,F.Blanchard,F.Charbonnier,F.LePessot,A.Lamy,M.P.Galais,L. Bastit,A.Killian,R.Sesboüe,J.J.Tuech,A.M.Queuniet,B.Paillot,J.C.Sabourin, F.Michot,P.Michel,T.Frebourg,ClinicalrelevanceofKRASmutation detectioninmetastaticcolorectalcancertreatedbyCetuximabplus chemotherapy,Br.J.Cancer96(2007)1166–1169.

[28]C.Eng,CirculatingDNAbiomarkers:aprimerformetastaticcolorectalcancer, LancetOncol.16(2015)878–879.

[29]P.Valentini,R.Fiammengo,S.Sabella,M.Gariboldi,G.Maiorano,R.Cingolani, P.P.Pompa,Gold-nanoparticle-basedcolorimetricdiscriminationof cancer-relatedpointmutationswithpicomolarsensitivity,ACSNano7(2013) 5530–5538.

[30]P.Domagala,J.Hybiak,V.Sulzyc-Bielicka,C.Cybulski,J.Rys,W.Domagala, KRASmutationtestingincolorectalcancerasanexampleofthepathologist’s roleinpersonalizedtargetedtherapy:apracticalapproach,Pol.J.Pathol.63 (2012)145–164.

[31]C.J.Allegra,J.M.Jessup,M.R.Somerfield,S.R.Hamilton,E.H.Hammond,D.F. Hayes,P.K.McAllister,R.F.Morton,R.L.Schilsky,AmericanSocietyofClinical

(6)

Oncologyprovisionalclinicalopinion:testingforKRASgenemutationsin patientswithmetastaticcolorectalcarcinomatopredictresponseto anti-epidermalgrowthfactorreceptormonoclonalantibodytherapy,J.Clin. Oncol.27(2009)2091–2096.

[32]J.Homola,S.S.Yee,G.Gauglitz,Surfaceplasmonresonancesensors:review, Sens.ActuatorsBChem.54(1999)3–15.

[33]E.Stenberg,B.Persson,H.Roos,C.Urbaniczky,Quantitativedeterminationof surfaceconcentrationofproteinwithsurfaceplasmonresonanceusing radiolabeledproteins,J.ColloidInterfaceSci.143(1991)513–526.

[34]Y.Imamura,T.Morikawa,X.Liao,P.Lochhead,A.Kuchiba,M.Yamauchi,Z.R. Qian,R.Nishihara,J.A.Meyerhardt,K.M.Haigis,C.S.Fuchs,S.Ogino,Specific mutationsinKRAScodons12and13,andpatientprognosisin1075 BRAF-wild-typecolorectalcancers,Clin.CancerRes.18(2012)4753–4763.

[35]C.Rennie,H.A.Noyes,S.J.Kemp,H.Hulme,A.Brass,D.C.Hoyle,Strong position-dependenteffectsofsequencemismatchesonsignalratiosmeasured usinglongoligonucleotidemicroarrays,BMCGenomics9(2008)317–328.

[36]D.M.Kolpashchikov,AbinaryDNAprobeforhighlyspecificnucleicacid recognition,J.Am.Chem.Soc.128(128)(2006)10625–10628.

[37]A.Opdahl,D.Y.Petrovykh,H.Kimura-Suda,M.J.Tarlov,L.J.Whitman, Independentcontrolofgraftingdensityandconformationofsingle-stranded DNAbrushes,PNAS104(2007)9–14.

[38]H.Ravan,S.Kashanian,N.Sanadgol,A.Badoei-Dalfard,Z.Karami,Strategies foroptimizingDNAhybridizationonsurfaces,Anal.Biochem.444(2014) 41–46.

[39]A.B.Steel,R.L.Levicky,T.M.Herne,M.J.Tarlov,Immobilizationofnucleicacids atsolidsurfaces:effectofoligonucleotidelengthonlayerassembly,Biophys. J.79(2000)975–981.

[40]D.Y.Petrovykh,H.Kimura-Suda,L.J.Whitman,J.MichaelTarlov,Quantitative analysisandcharacterizationofDNAimmobilizedongold,J.Am.Chem.Soc 125(2003)5219–5226.

[41]S.M.Schreiner,D.F.Shudy,A.L.Hatch,A.Opdahl,Controlledandefficient hybridizationachievedwithDNAprobesimmobilizedsolelythrough preferentialDNA-substrateinteractions,Anal.Chem.82(2010)2803–2810.

[42]S.M.Schreiner,A.L.Hatch,D.F.Shudy,D.R.Howard,C.Howell,J.Zhao,P. Koelsch,M.Zharnikov,D.Y.Petrovykh,A.Opdahl,ImpactofDNA-surface interactionsonthestabilityofDNAhybrids,Anal.Chem.83(2011) 4288–4295.

[43]C.Howell,Y.L.Jeyachandran,P.Koelsch,M.Zharnikov,Orientationand orderinginsequence-andlength-mismatchedsurface-boundDNAhybrids,J. Phys.Chem.C116(2012)11133–11140.

[44]C.Howell,H.Hamoud,M.Zharnikov,Thymine/adenine

diblock-oligonucleotidemonolayersandhybridbrushesongold:a spectroscopicstudy,Biointerphases8(2013)6.

[45]A.Tsortos,G.Papadakis,K.A.Mitsakakis,E.Gizeli,Quantitativedetermination ofsizeandshapeofsurface-boundDNAusinganacousticwavesensor, Biophys.J.94(2008)2706–2715.

[46]D.L.Nelson,M.M.Cox,PrinciplesofBiochemistry,IehningerPublished, W.H.Freeman,2004(ISNB0716743396).

[47]N.Giamblanco,A.Rapisarda,G.Marletta,Localizedsurfaceplasmon resonancestudyofsinglebasemutationeffectoncompetitiveDNAstrands hybridization,J.ColloidsandInterfaceSci.487(2017)141–178.

[48]R.Levicky,A.Horgan,PhysicochemicalperspectivesonDNAmicroarrayand biosensortechnologies,TrendsBiotechnol.23(2005)143–149.

[49]R.E.Farrell,RNAMethodologiesALaboratoryGuideforIsolationand Characterization,4thedition,Jr.ElsevierInc.,2010(Chapter13).

[50]K.Rose,J.O.Mason,R.Lathe,Hybridizationparametersrevisited:solutions containingSDS,Biotechniques33(2002)54–58.

[51]A.Vainrub,B.M.Pettitt,Surfaceelectrostaticeffectsinoligonucleotide microarrays:controlandoptimizationofbindingthermodynamics, Biopolymers68(2003)265–270.

[52]W.Kaiser,U.Rant,Conformationsofend-tetheredDNAmoleculesongold surfaces:influencesofappliedelectricpotential,electrolytescreening,and temperature,J.Am.Chem.Soc.132(2010)7935–7945.

[53]U.Rant,K.Arinaga,S.Scherer,E.Pringsheim,S.Fujita,N.Yokoyama,M. Tornow,GerhardAbstreiter,SwitchableDNAinterfacesforthehighly sensitivedetectionoflabel-freeDNAtargets,PNAS104(2007)17364–17369.

[54]U.Rant,K.Arinaga,S.Fujita,N.Yokoyama,G.Abstreiter,M.Tornow,Electrical manipulationofoligonucleotidesgraftedtochargedsurfaces,Org.Biomol. Chem.4(2006)3448–3455.

Figura

Table 1 shows the details of the sequences followed in this study. The probes were designed so that the mutation position ((A-C) for G12S, (C-T) for G12C and (C-C) for G12R), is placed in the middle of the probe strand
Fig. 2. Angular shift of the SPR minimum peak for WT target and three mismatched G12C, G12S and G12R after hybridization step (arrow indicated as “target”) and washing step (arrow indicated as “WB”).
Fig. 4. SPR retained mass values ( – ng/cm 2 ) after washing with PBS buffer. The

Riferimenti

Documenti correlati

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any

Thus, GB design based on fractal theory is essentially related to the fractal features of the fine grain set and the multifractal and generalized fractal characteristics of the S3

AoD: Diastolic aortic diameter; AoS: Systolic aortic diameter; AoSI: Aortic stiffness index; CoA: Aortic coarctation; CV: cardiovascular; DBP: Diastolic blood pressure; E:

Come già trattato, la BSC rappresenta uno strumento di pianificazione e comunicazione strategica più che di mero monitoraggio dei risultati e, dunque, è necessario incentrare lo

FORMISANO, Michelangelo; Federico, Costanzo; DE SANCTIS, MARIA CRISTINA; DE ANGELIS,

In the MCAO mode, MAORY uses the adaptive mirror M4 and tip-tilt mirror M5 in the telescope and up to two post-focal adaptive mirrors in the module itself to achieve high

A preliminary analysis with 3 years of P7 data [3] has shown that the galactic diffuse component and some point sources can account for the observed emission and no strong structures

Scopri la trama e le recensioni presenti su Anobii di L'incendiaria scritto da Stephen King, pubblicato da Sperling & Kupfer in formato Tascabile economico.. 14