• Non ci sono risultati.

Lefschetz properties for higher order Nagata idealizations

N/A
N/A
Protected

Academic year: 2021

Condividi "Lefschetz properties for higher order Nagata idealizations"

Copied!
20
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Advances

in

Applied

Mathematics

www.elsevier.com/locate/yaama

Lefschetz

properties

for

higher

order

Nagata

idealizations

Armando Cerminaraa, Rodrigo Gondimb,1, Giovanna Ilardia,∗, Fulvio Maddalonia

aDipartimentoMatematicaedApplicazioni“RenatoCaccioppoli”,UniversitàDegli

StudiDiNapoli“FedericoII”,ViaCinthia, ComplessoUniversitarioDiMonte S. Angelo80126, Napoli, Italy

b

UniversidadeFederalRuraldePernambuco,av.DonManoeldeMedeiross/n, DoisIrmãos, Recife, PE52171-900,Brazil

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received28July2018

Receivedinrevisedform5February 2019

Accepted7February2019 Availableonline15February2019

MSC:

primary13A02,05E40 secondary13D40,13E10

Keywords:

Lefschetzproperties ArtinianGorensteinalgebras Nagataidealization

We study a generalization of Nagata idealization for level algebras.ThesealgebrasarestandardgradedArtinian alge-braswhose Macaulay dualgeneratorisgivenexplicitly asa bigradedpolynomialofbidegree(1,d).Weconsiderthe alge-bra associated to polynomialsof thesame type of bidegree (d1,d2).WeprovethatthegeometryoftheNagata hypersur-faceofordere isverysimilartothegeometryoftheoriginal hypersurface.WestudytheLefschetz propertiesfor Nagata idealizationsoforderd1,provingthatWLPholdsifd1≥ d2. Wegivea completedescriptionofthe associatedalgebra in themonomialsquarefreecase.

©2019ElsevierInc.Allrightsreserved.

* Correspondingauthor.

E-mailaddresses:armando.cerminara@unina.it(A. Cerminara),rodrigo.gondim@ufrpe.br

(R. Gondim),giovanna.ilardi@unina.it(G. Ilardi),maddalonifulvio@gmail.com(F. Maddaloni).

1 PartiallysupportedbyICTP-INdAMResearchinPairsFellowship2018/2019andbyFACEPEATP

-0005-1.01/18.

https://doi.org/10.1016/j.aam.2019.02.002

(2)

0. Introduction

The Lefschetz properties are algebraic abstractions inspired by the so called Hard LefschetzTheoremaboutthecohomologyofsmoothprojectivevarietiesoverthecomplex numbers (see[18,24]).Since thecohomology ringof suchvarieties arestandardgraded ArtinianK-algebras satisfyingthePoincaréduality,from thealgebraic viewpointthese

algebras can be characterized as standard graded Artinian Gorenstein algebras, AG

algebrasforshort(see[12,19]).Inthiscontext,A=

d



k=0

Ak,theHardLefschetzTheorem

canbereformulated asapossiblepurely algebraicpropertyofthealgebraA.

It is important to highlight that nowadays the Lefschetz properties are considered in a number of distinct contexts, such as Khaler manifolds, solvmanifolds (see [16]), arithmetichyperbolicmanifolds(see [2]),Shimuravarieties(see[13]),convexpolytopes (see[17]),Coxetergroups(see[22]),matroids,simplicialcomplexes[26,25,1,9,17] among others. InthesenewcontextstheLefschetz propertiesshowedto haveinteractions with thealgebraitself,thegeometryandthecombinatorics.Thisworkliesattheintersection

of these three areas. In fact, standard graded AG algebras can be presented as A =

Q/Ann(f ) wheref ∈ K[x0,. . . ,xn]d isahomogeneousformofdegreed inapolynomial

ring, Q = K[∂0,. . . ,∂n] is the associated ring of differential operators and Ann(f ) is

the ideal of differential operators that annihilates f . Therefore, in this paper we are interested in the algebraic structure of A, together the geometry of the hypersurface

X = V (f )⊂ Pn andthecombinatoricsoftheformf in averyparticularway.

ThecornerstoneofthealgebraictheoryofLefschetzpropertiesweretheoriginal papers ofStanley[26,25,27] andtheworksofWatanabe,summarized in[12]. Averyimportant constructionthatappearsmanytimesintheseworksisthesocalledNagataidealization alsocalledtrivialextension.IngeneralNagataidealizationisausefultool,developedby Nagata,toconvertanyR-moduleM inaidealofanotherring,AM.Inourperspective the startingpointis averyinteresting isomorphismbetweentheNagataidealizationof an idealI = (g0,. . . ,gm)⊂ K[u1,. . . ,um] andalevel algebrainsuchway thatthenew

ringisanAGalgebraand wegetanexplicitformulafortheMacaulaygeneratorf (see

[12,Proposition2.77])

f = x0g0+ . . . + xngn ∈ K[x0, . . . , xn, u1, . . . , um](1,d−1). (1)

ThisbigradedpolynomialiscloselyrelatedwithGordan–NoetherandPerazzo construc-tions of forms with vanishing Hessian (see [11,23,3,8]). It is not acoincidence since in [19] theauthors present aHessiancriterion forthe SLPsaying thatthevanishing of a (higher) Hessian implies the failure of SLP. This criterion was generalizedin [10] also fortheWLPusingmixedHessians.FollowingtheoriginalideasofGordan–Noether and Perazzo,thesecondauthorin[7] constructedfamiliesofpolynomialswhosek-thHessian is zero.A naturalgeneralizationof(1) shouldbeto considerpolynomials oftheform:

(3)

f = xd1

0 g0+ . . . + xdn1gn∈ K[x0, . . . , xn, u1, . . . , um](d1,d2). (2) Thesepolynomials arecalledNagatapolynomials oforderd1 (seeDefinition3.1).

ThestudyofthehypersurfaceswithvanishingHessianbeganin1852,whenO. Hesse wrote two papers (see [14,15]), in which he claimed they must be cones. Given an

ir-reducible hypersurface X = V (f ) ⊂ PN of degree deg f = d ≥ 3, P. Gordan and

M. Noetherprovedin[11] thatHesse’sclaimistrueforN ≤ 3,butitisfalseforN ≥ 4;

infactitispossibletoconstructcounterexamplesinPNforeachN ≥ 4 andforalld≥ 3.

Moreover, they classifiedall the counterexamples to Hesse’s claim inP4 (see [3,7,11]). PerazzoclassifiedcubichypersurfaceswithvanishingHessianinPNforN ≤ 6 (see[23]),

this workwas revisitedand generalizedin[8]. Theproblem is open intheother cases. InallthecaseswheretheclassificationofhypersurfaceswithvanishingHessianaredone theysharetwoveryparticulargeometric properties(see [3,6,8,24]):

(i) there is alinear space L in thesingular locus of X, thatis the linear span of the dual varietyoftheimage ofthepolar(gradient)map,thatisL=< Z∗>;

(ii) thehypersurfaceisatangentscrollover thedual ofthepolarimage.

InthispaperwestudytheLefschetzpropertiesforthealgebras associatedtoNagata polynomials oforder d1, thegeometry oftheNagata hypersurfacesoforder d1and the

interactionbetween thecombinatoricsoff and thealgebraicstructure ofA inthecase thatthegi aresquare freemonomials, byusingasimplicialcomplextostudythis case.

WeshowthatthegeometryofNagatahypersurfacesisverysimilartothegeometry of theknownhypersurfaceswithvanishingHessian.Hencethesearehypersurfaces, satisfy-ingatleastaLaplaceequation(see[4,5]).Weprovedthattheyarescrollhypersurfaces inTheorem 2.9andCorollary2.10.These areourfirstmain results.

From the algebraic viewpoint we are interested in the Lefschetz properties and the algebraicstructure ofNagataidealizations. TheLefschetzpropertiesarestudiedintwo cases:

(1) d1 < d2, inthis casewegiveexampleswithsmall numbersofsummandswhere the

SLPholds andwerecallaresultprovedin[7] (seeProposition2.5);

(2) d1≥ d2,inthiscaseA hastheWLPasprovedinProposition2.7.Thisisoursecond

mainresult.

ThestructureofthealgebraA,includingtheHilbertvectorandacompletedescription of the ideal I was proved inTheorem 3.5 for the case inwhich the gi are square free

monomials. Thisis ourthird main result.To proveit, weuse thecombinatoricsof the simplicialcomplexassociated tothemonomialsgi inordertodescribeboth Ak andIk.

Part ofthis paper was inspiredby the discussions ofa groupworkin theworkshop

(4)

participants of thegroupworkwereM.Boij, R.Gondim, J.Migliore,U. Nagel, A.

Se-celeanu, H.SchenckandJ.Watanabe.

1. ArtinianGorensteinalgebrasandtheLefschetzproperties

InthissectionwerecallsomebasicfactsaboutArtinianGorensteinalgebras andthe Lefschetz properties.Foramoredetailedaccount,letsee[12,20,24,19,7].

1.1. StandardgradedArtinian Gorenstein algebrasandHilbertvector

InallthepaperK denotesafieldofcharacteristiczero.

Definition 1.1.Let R = K[x0,. . . ,xn] be the polynomial ring in n+ 1 variables and

I⊂ R beanhomogeneousArtinianidealsuchthatI1= 0.WesaythatagradedArtinian

K-algebraA= R/I =

d



i=0

AiisastandardgradedArtinianK-algebraifitisgeneratedin

degree1 asalgebra.Settinghi= dimKAi,theHilbertvector isHilb(A)= (1,h1,. . . ,hd).

IfI1= 0,then h1 iscalled thecodimensionofA.

Definition 1.2. A standard graded Artinian algebra A is Gorenstein if and only if

dim Ad = 1 and the restriction of the multiplication of the algebra in complementary

degree, that is, Ak × Ad−k → Ad is a perfect paring for k = 0,1,. . . ,d (see [19]). If

Aj= 0 for j > d,thend iscalledthesocledegreeofA.

Remark1.3. SinceAk× Ad−k→ Adisaperfectparingfork = 0,1,. . . ,d,itinducestwo

K-linear maps, Ad−k → A∗k, with A∗k := Hom(Ak,Ad) andAk → A∗d−k, with A∗d−k :=

Hom(Ad−k,Ad),thataretwo isomorphisms.

Let R = K[x0,. . . ,xn] be the polynomial ring in n+ 1 variables. We denote by

Rd=K[x0,. . . ,xn]d theK-vectorspaceofhomogeneouspolynomialsofdegreed.

We denote by Q = K[X0,. . . ,Xn] the ring of differential operators of R, where

Xi := ∂xi for i = 0,. . . ,n. We denote by Qk = Q[X0,. . . ,Xn]k the K-vector space

of homogeneousdifferentialoperators ofR ofdegreek.

For eachd≥ k ≥ 0 thereexist naturalK-bilinear mapsRd× Qk → Rd−k definedby

differentiation:

(f, α)→ fα:= α(f ).

Letf ∈ R beahomogeneouspolynomialofdegreedeg f = d≥ 1,wedefine:

Ann(f ) :={α ∈ Q|α(f) = 0} ⊂ Q.

(5)

SinceAnn(f ) isahomogeneousidealofQ,wecandefine

A = Q

Ann(f ).

A isastandardgraded ArtinianGorensteinK-algebra.

Conversely,bythetheoryofinversesystems,wegetthefollowingcharacterizationof standardgraded ArtinianGorensteinK-algebras.

Theorem 1.4(Double annihilator theorem of Macaulay).LetR = K[x0,. . . ,xn] and let

Q =K[X0,. . . ,Xn] be the ring of differential operators. Let A = d



i=0

Ai = Q/I be an

Artinian standard graded K-algebra. Then A is Gorenstein if and only if there exists f ∈ Rd suchthat A Q/Ann(f ).

Aproofofthis resultcanbefoundin[19,Theorem 2.1].

Remark1.5.Withthepreviousnotation, letA=

d



i=0

Ai = Q/I bean Artinian

Goren-steinK-algebra with I = Ann(f ),I1 = 0 andAd = 0.Thesocle degree ofA coincides

withthedegreeoftheform f .

Now we deal with standard bigraded Artinian Gorenstein algebras, i.e. Artinian

Gorensteinalgebras,A= d  i=0 Ai,suchthat ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ Ad= 0 Ak = k  i=0

A(i,k−i) for k < d

.

Thepair(d1,d2),suchthatA(d1,d2)= 0 andd1+ d2= d,issaidthesoclebidegreeofA. Remark1.6.Since A∗k  Ad−k and sincedualityis compatiblewith directsum,we get

A∗(i,j) A(d1−i,d2−j).

Byabusenotation,we denotethe polynomialring viewedas standardbigradedring intheset of variables {x0, . . . , xn} and {u1, . . . , um} byR = K[x0,. . . ,xn,u1,. . . ,um].

Ahomogeneouspolynomialf ∈ R(d1,d2)issaidtobebihomogeneouspolynomialoftotal degreedeg f = d= d1+ d2 iff canbe writteninthefollowing way:

(6)

f =

s



i=1

figi, (3)

where fi∈ K[x0,. . . ,xn]d1 andgi∈ K[u1,. . . ,um]d2,∀i≤ s.

Remark 1.7.All bihomogeneous polynomials f ∈ K[x0,. . . ,xn,u1,. . . um](d1,d2) can be writtenas(3),wherefi∈ K[x0,. . . ,xn]d1 andgi∈ K[u1,. . . ,um]d2,∀i≤ s,are monomi-als.

A homogeneousidealI⊂ R is abihomogeneousidealif

I =



i,j=0

I(i,j)

where I(i,j)= I∩ R(i,j) ∀i,j.LetQ=K[X0,. . . ,Xn,U1,. . . ,Um] betheassociated ring

of differential operators and let f ∈ R(d1,d2) be abihomogeneous polynomial of total degree d= d1+ d2, thenI = Ann(f ) ⊂ Q isabihomogeneous idealand A= Q/I is a

standardbigradedArtinianGorensteinalgebraofsoclebidegree(d1,d2) andcodimension

N = n+ m+ 1.

Remark1.8.Letf ∈ R(d1,d2)be abihomogeneouspolynomialofdegree(d1,d2),andlet

A betheassociatedbigradedalgebraofsoclebidegree(d1,d2),thenfori> d1orj > d2:

I(i,j)= Q(i,j).

In fact forall α∈ Q(i,j) with i > d1 or j > d2 we get α(f ) = 0, so Q(i,j) = I(i,j). As

consequence,wehavethefollowingdecompositionforallAk:

Ak =



i≤d1,j≤d2,i+j=k

A(i,j).

Furthermore for i< d1 and j < d2, theevaluation map Q(i,j)→ A(d1−i,d2−j) given by

α→ α(f) providesthefollowingshort exactsequence:

0 −−−−→ I(i,j) −−−−→ Q(i,j) −−−−→ A(d1−i,d2−j) −−−−→ 0.

1.2. TheLefschetz propertiesandtheHessiancriterion

Definition 1.9.Let A = d  i=0 Ai

(7)

The algebra A is said to have the Weak Lefschetz Property, briefly W LP , if there existsanelementL∈ A1 suchthatthemultiplicationmap

•L : Ai→ Ai+1

isofmaximalrankfor0≤ i≤ d− 1.

The algebra A is said to have the Strong Lefschetz Property, briefly SLP , if there existsanelementL∈ A1 suchthatthemultiplicationmap

•Lk: A

i→ Ai+k

isofmaximalrankfor0≤ i≤ d and0≤ k ≤ d− i.

A issaidtohavetheStrongLefschetzPropertyin thenarrowsense ifthere existsan elementL∈ A1 suchthatthemultiplicationmap

•Ld−2i: A

i→ Ad−i

isbijectivefori= 0,. . . , d2 .

Remark1.10.InthecaseofstandardgradedArtinianGorensteinalgebras thetwo con-ditionSLPandSLPinthenarrowsense areequivalent.

Definition1.11.Letf ∈ Rdbeahomogeneouspolynomial,letA= d  i=0 Ai = Q Ann(f ) be theassociated ArtinianGorenstein algebraandletB = {αj|j = 1, . . . , σk} ⊂ Ak be an

orderedK-basis ofAk.Thek-th Hessianmatrix off with respecttoB is

Hesskf := (αiαj(f ))σi,j=1k .

Thek-thHessian off withrespect toB is

hesskf := det(Hesskf).

Theorem1.12.([28],[19])Letnotationbeasabove.AnelementL= a1X1+ . . . + anXn

A1 is astrongLefschetzelement of A= Q/Ann(f ) ifand only ifhesskf(a1,. . . ,an)= 0

forall k = 0,. . . , d/2 .In particular,if for some k≤ d2 we have hesskf = 0, thenA doesnothave theSLP.

(8)

2. HigherorderNagataidealization

2.1. Nagataidealization

Definition2.1. LetA bearingandM beaA-module.TheidealizationofM ,A M,is theproduct setA× M inwhichadditionand multiplicationaredefinedasfollows:

(a, m) + (b, n) = (a + b, m + n) and (a, m).(b, n) = (ab, bm + an). Thefollowing isaknownresultwhoseproofcanbefoundin[12,Theorem2.77]. Theorem 2.2. Let R = K[u1,. . . ,un] and R = K[u1,. . . ,un,x0,. . . ,xn] be polynomial

rings and letQ=K[∂1,. . . ,∂n] and Q =K[∂1,. . . ,∂n,δ0,. . . ,δn] the associatedring of

differential operators. LetI = (g1,. . . ,gm)⊂ Q be anidealgenerated byforms ofdegree

d and let A= Q/Ann(g1,. . . ,gm) be the associatedlevel algebra. Letf = x0g0+ . . . +

xmgm ∈ R be a bihomogeneous polynomial and let A = Q/Ann(f ) be the associated

algebra. Considering I asanA-module, wehave A I  A

2.2. Lefschetzpropertiesforhigherorder Nagataidealization

Definition 2.3.Abihomogeneous polynomial

f = s  i=0 xd1 i gi∈ K[x0, . . . , xn, u1, . . . , um](d1,d2) (4) iscalledaNagatapolynomialoforderd1,ifthepolynomialsgiarelinearlyindependent

and theydepend onallvariables.

ByTheorem2.2,thealgebraA= Q/Ann(f ) canberealizedasatrivialextensionand itissaidNagataidealizationoforderd1,socledegreed1+ d2andcodimensionn+ m+ 1.

Let R = K[x0,. . . ,xn,u1,. . . ,um] be the polynomial ring and f ∈ R(d1,d2), with

d1 ≥ 1, be apolynomialof typef = n  i=0 xd1 i gi,where gi is apolynomialin u1,. . . ,um

variables, for all i = 0,. . . ,m. We denote by Q = K[X0,. . . ,Xn,U1,. . . ,Um] the ring

of differential operators of R, where Xi = ∂xi, for i = 0,. . . ,n and Uj = ∂uj, for

j = 1,. . . ,m. LetA= Ann(f )Q theassociatedalgebra.

In thecased1< d2,we haveanexamplesuchthatA has theSLP, henceA has the

(9)

Example2.4. Letf = x2u3+ y2v3 be abihomogeneous polynomial.HenceA has bide-gree(2,3), Hilbertvector (1,4,6,6,4,1) and A has theSLP. Bythe Hessian criterion, Theorem1.12,therearetwo Hessianstocontrol,hess1f = 0 andhess2f= 0.

Ifthenumberofsummands inf isgreat enough,we getthefollowing Proposition: Proposition2.5([7],Proposition 2.5).Letx0,. . . ,xn andu1,. . . ,umbeindependentsets

of indeterminates with n ≥ m ≥ 2. For j = 1,. . . ,s, let fj ∈ K[x0,. . . ,xn]d1 and

gj ∈ K[u1,. . . ,um]d2 be linearlyindependent forms with 1≤ d1 < d2.If s>

m−1+d1

d1

, thentheformof degree d1+ d2 given by

f = f1g1+· · · + fsgs

satisfies

hesskf= 0

Corollary2.6. LetA beaNagataidealization oforder d1< d2,thenA fails SLP.

Ifweconsiderd1≥ d2, wehavethefollowingProposition:

Proposition 2.7.With the same notations, if d1 ≥ d2, then A has the WLP and L =

n



i=0

Xi isaweakLefschetzelement.

Proof. (Theidea ofthis result wassharedby thework groupinBanff.) We denote by

k = d1+d2

2 .Wenote thatd1≥ k.Infact,byhypothesisd1≥ d2,hence:

d1+ d1≥ d1+ d2 2d1 2 d1+ d2 2 ⇒ d1 d1+ d2 2 d1+ d2 2 = k. Wehave: Ak= A(k,0)⊕ A(k−1,1)⊕ · · · ⊕ A(k−d2,d2). Wewantto provethatforL= X0+ . . . + Xn∈ Q[X0,. . . ,Xn]1

•L: A(k−i,i)→ A(k−i+1,i)

has maximal rankfor all i = 0,. . . ,d2. Since A is a standardgraded AGalgebra it is

enoughtocheckitinthemiddle(see[21],Proposition2.1).

Wedenoteωj = Xjk−iαj,whereαj∈ Q[U1,. . . ,Um]i,forj = 0,. . . ,n andwesuppose

(10)



j

bjωj= 0⇒ bj = 0.

It impliesthattheαj(gj) arelinearindependentinK(x1,. . . ,xn).

LetΩj= Xjk−i+1αj=•L(ωj),wewanttoprovethat0,. . . ,Ωn} isalinear

indepen-dent systemfor A(k−i+1,i). Weconsider the following linearcombination

 j cjΩj = 0. Bydefinition,weget: 0 = j cjΩj(f ) =  j cjΩj  i xd1 i gi = j cjxdj1−k+i−1αj(gj).

Since αj(gj) arelinearindependent inK(x1,. . . ,xn),forallj = 0,. . . ,n,wehave

cjxdj1−k+i−1= 0⇒ cj= 0.

Theresultfollows. 2

Forthis case,thereisnothingweareabletosayabouttheSLP.

2.3. Thegeometryof Nagatahypersurfaces oforder d1

Definition 2.8.Let R = K[x0,. . . ,xn,u1,. . . ,um] be the polynomial ring, with K an

algebraically closed field. Let f ∈ R be a Nagata polynomial of order d1 and degree

deg f = d= d1+ d2.

ThehypersurfaceX = V (f )⊂ PN iscalledaNagatahypersurfaceoforderd

1.

Let X = V (f ) ⊂ PN be a Nagata hypersurface of order d1. We can consider two

linear space respectively Pm−1 with coordinates u1,. . . ,um and Pn with coordinates

x0,x1,. . . ,xn. Letpα∈ Pm−1 be apoint and we consider thefollowing linear space of

dimensionn+ 1:

:=pα,Pn = {pα, q : q ∈ Pn} .

IfweconsidertheintersectionwithX,weobtainavariety.isreduciblewhose

irreduciblecomponentsarethelinearspacePn andavariety,calledresidue anddenoted

byY˜α.Y˜α isaconeofvertexover a(n− 1)-dimensionalbasis.

Theorem 2.9. A Nagata hypersurface X = V (f )⊂ PN of order e consists of theunion of theresidueparts Y˜α,i.e.

(11)

Proof. Fixedapoint = (0: . . . : 0: a1: . . . : am)∈ Pm−1 andletp = (x0: . . . : xn :

0: . . . : 0) be apointinPn.Weconsider theline thatjoinsthepoints andp:

: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ x0= λx0 · · · · xn = λxn u1= μa1 · · · · um= μam withλ,μ∈ K.

SinceX = V (f ) isaNagatahypersurfaceoforderd1, wehave:

f = xd1

0 g0+ . . . + xdn1gn.

Ifweconsider theintersectionbetweentheline and theNagatahypersurfaceX,

weget:

fLα = λ

d1x

0d1g0(μa1, . . . , μam) + . . . + λd1xnd1gn(μa1, . . . , μam) = λd1μd2 n



i=0

xid1gi(a)

wherea isthevector(a1,. . . ,am).

Since andp arepointsofX,then n  i=0 xid1gi(a)= 0.Therefore ˜ Yα= V n  i=0 xid1gi(a)

and,byarbitrarinessofthepointspα∈ Pm−1 andp∈ Pn,wehave∪αY˜α= X. 2

Asconsequence ofthe abovetheorem,we cansayhow manylinearspaces there are

inaNagatahypersurfaceofordere.WenotethatPm−1andPn arelinearspacesonX.

Thuswehave:

Corollary 2.10.Let X = V (f )⊂ PN be a Nagata hypersurface of order d

1.There is a

familyof linesof dimensionm+ n− 1 onX.

Proof. Let ∈ Pm−1 be apoint, then there is afamily of lines of dimension n that

joinsandthelinearspacePn,forallpα∈ Pm−1.ThisfamilycoversY˜α.Thenwehave

afamilyoflinesofdimension(n)+ (m− 1)= n+ m− 1 onX.ThesingularlocusofX

(12)

Conversely, letp∈ Pn be apoint, thenthere isafamilyof linesof dimensionm− 1

thatjoinsp andallpointsq inthelinearspace Pm−1. Sotheprooffollows. 2 3. SimplicialNagataidealizationof orderk

Definition 3.1.Abihomogeneous polynomial

f =

n



i=0

xkigi∈ K[x0, . . . , xn, u1, . . . , um](k,d−k) (5)

is calledasimplicialNagatapolynomialoforderk ifallgi aresquare freemonomials.

Thefollowing combinatorialconstructionswereinspiredby[9].

Definition3.2. LetV ={u1, . . . , um} beafiniteset.Asimplicialcomplex Δ withvertex

set V is acollectionofsubsets ofV , i.e.asubsetof thepowerset 2V,suchthatfor all

A∈ Δ andforallsubsetB⊂ A,wehaveB∈ Δ.

WesaythatΔ isasimplexifΔ= 2V.

Themembers ofΔ arereferredas faces andthemaximalfaces(respectto the inclu-sion)are thefacets.Thevertex setofΔ is alsocalled 0-skeleton.IfA∈ Δ and|A|= k, it iscalled a(k− 1)-face,or aface ofdimension k− 1: the0-facesarethe verticesand the1-facesarecalled edges.

Definition3.3. Ifallthefacetshavethesamedimensiond> 0,thecomplexissaidtobe

pure.

Let Δ be a pure simplicial complex of dimension d > 0 with vertex set V =

{u1, . . . , um}, we denote by fk the number of (k− 1)-faces, hence f0 = 1, f1 = m,

fd+1 isthenumberoffacetsofΔ andfj= 0,forj > d+ 1.

Remark3.4.Thereisanaturalbijectionbetweenthesquarefreemonomials,ofdegree r, in the variables u1,. . . ,um, and the (r− 1)-faces of the simplex 2V, with vertex set

V = {u1, . . . , um}. In fact, a square free monomial g = ui1· · · uir, in the variables

u1,. . . ,um, correspondsto thefinite subsetof 2V given by{ui1, . . . , uir}.Toany finite subsetF of2V,weassociate themonomial mF =

ui∈F

ui ofsquarefreetype.

An important resultabout simplicial Nagata idealization canbe found in [9, Theo-rem 3.2].

(13)

3.1. Simplicial Nagataidealization oforder k

Letf ∈ K[x0,. . . ,xn,u1,. . . ,um](k,k+1) beasimplicialNagatapolynomialoforderk:

f =

n



r=1

xkrgr (6)

withgr monomialsinvariables u1,. . . ,umofdegreek + 1.

Wewantto characterizethe Hilbertvectorof thealgebras associated to theNagata polynomialoftype(6).

LetΔ beapuresimplicialcomplexofdimensionk,withvertexsetV ={u1, . . . , um}.

Wedenotebyfk thenumberof (k− 1)-faces,hencef0= 1,f1= m,fk+1 isthenumber

ofthefacetsofΔ andfj = 0 forj > k + 1.

Thefacetsof Δ,associated tof , correspondingto themonomials gi,will belabeled

bygi.TheassociatedalgebraisAΔ= Q/Ann(fΔ).Byabuseofnotation,wewillalways

denotefΔwithf andAΔwithA.

Ifp∈ K[u1,. . . ,um] isasquare freemonomial,we denoteby P ∈ K[U1,. . . ,Um] the

dualdifferentialoperatorP = p(U1,. . . ,Um).

Theorem3.5. Letf ∈ K[x0,. . . ,xn,u1,. . . ,um](k,k+1) beasimplicialNagata polynomial

oforder k: f = n  r=1 xkrgr

with gr monomials in variables u1,. . . ,um of degree k + 1. Let Δ be a pure simplicial

complex ofdimensionk and letA= Q/Ann(f ). Then

A =

d=2k+1

i=0

Ai where Ai= A(i,0)⊕ A(i−1,1)⊕ · · · ⊕ A(0,i), Ad = A(k,k+1)

(1) forallj = 1,. . . ,k + 1: dim A(i,j)= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ fj for i = 0 (n + 1)· fj for 1≤ i < k fk+1−j for i = k

where fj isthenumberof thesubfaces,of dimensionj− 1, of thefacet, gi,ofΔ.

(2) I = AnnQ(f ) is generatedby

(a) X0, . . . , Xnk+1 andU12,. . . ,Um2;

(14)

(c) the monomialsXriPr, fori = 1,. . . ,k, such that, fixed thefacet Mr of Δ,

cor-responding to the monomial gr, Pr is the dual differential operator of pr; pr is

a monomial in the variables u1,. . . ,um, corresponding to a face M of Δ s.t.

M∩ Mr=∅;

(d) thebinomialsXrkG˜r−XskG˜swheregr= ˜grgrsandgs= ˜gsgrsandgrsrepresents

acommon subface of gr,gs.

Proof. (1) Let f beof type(6) associatedto thepure simplicialcomplex Δ of dimen-sion k.Thevariables u1,. . . ,umrepresenttheverticesofΔ.

Weconsiderthefollowing cases:

• for i = 0 and j = 1,. . . ,k + 1, A(0,j) is generated by the only monomials of

degreej,inthevariablesU1,. . . ,Uk+1,thatdonotannihilatef .Thesemonomials

represent(j− 1)-facesofΔ.Weneedtoshowthattheyarelinearlyindependent overK.

Consider1, . . . , Ων} asystemofmonomialsofQ(0,j),whereΩs,fors= 1,. . . ,ν,

isassociated toany(j− 1)-faceω. Wetakeanylinearcombination:

0 = ν  r=0 crΩr(f ) = ν  r=0 cr n  s=0 xksΩr(gs) = n  s=0 xs ν  r=0 Ωr(gs). Therefore we get ν  r=0

crΩr(gs) = 0, for all s = 0,. . . ,n. For each r = 0,. . . ,ν,

there is a s = 0,. . . ,n, such that if Ωr(gs) = 0, then cr = 0 for all r. Hence

dim A(0,j) = fj,where fj isthenumberof(j− 1)-facesofΔ.

• for 1≤ i< k andj = 1,. . . ,k + 1,thegeneratorsof A(i,j) arethemonomialsof

typeXi

sUr1Ur2· · · Urj fors= 0,. . . ,n,forall j.Fixs= 0,. . . ,n,and letMs be the facet of Δ, corresponding to themonomial gs, the monomial Ur1Ur2· · · Urj of Q(0,j) is the dual differential operator of the monomial ur1ur2· · · urj, that gives the (j− 1)-dimensional subfaces of Ms. The monomials XsiUr1Ur2· · · Urj for s = 0,. . . ,n, for all j are linearly independent. In fact, denotingby Ωi

s the

monomial Xi

sUr1Ur2· · · Urj,fors= 0,. . . ,n,wenotethat: Ωis(f ) = cxk−is (Ur1· · · Urj)(gs)= 0

since (Ur1· · · Urj)(gs) identifies thevertices of the (j− 1)-dimensionalface. We get:

n



s=0

csΩis(f ) = 0⇔ cs= 0 ∀s.

For s = 0,. . . ,n, in correspondence of Ωsi(f ), we can get a number of (j

1)-dimensional faces of Δ. Denoting such number by fj, we have dim A(i,j) =

(15)

• fori= k andj = 1,. . . ,k, bydualityA∗(0,k+1−j) A(k,j),thencewehave:

dim A(k,j)= dim A∗(0,k+1−j)= fk+1−j.

(2) LetI = Ann(f ) betheannihilator.Weconsiderthefollowingexactsequence: 0 −−−−→ I(i,j) −−−−→ Q(i,j) −−−−→ A(k−i,k+1−j) −−−−→ 0. (7)

We havethefollowingcases:

• fori= 0 and1≤ j ≤ k + 1,wehaveby(7)

dim A(0,j)= fj ⇒ dim I(0,j) = dim Q(0,j)− fj.

Since A(0,j) hasa basisgiven by the(j− 1)-faces of Δ,then I(0,j) is generated

bymonomialsrepresentingallthe(j− 1)-facesofthecomplementof Δ.InI,it isenoughto considertheminimalfaces ofΔc, bydefinitionofideal.

WenotethatinI(0,2)there arealsothemonomialsU12,. . . ,Um2,sincethe

mono-mialsgi,inthevariablesu1,. . . ,umaresquare free.

• for1≤ i< k and1≤ j ≤ k + 1,fixthefacetMrofΔ,correspondingtogr,since

A(i,j) hasabasis given bythe (j− 1)-dimensional subfaces ofMr, then I(i,j) is

generatedbymonomialsXi

rPr wherePristhedualdifferentialoperatorofpr;pr

isamonomialinthevariablesu1,. . . ,um,correspondingtoa(j− 1)-dimensional

faceMr s.t.Mr∈ Δc orMr∈ Δ andMr∩ Mr=∅.

• fori= k and1≤ j ≤ k + 1,wefixtwofacetsofΔ,MrandMs,correspondingto

themonomialsgr and gs, andsuch thatMr∩ Ms= ∅. LetMrs= Mr∩ Ms; we

denotethemonomialcorrespondingtoitbygrs.WeconsiderM˜r= Mr\Mrsand

˜

Ms = Ms\Mrs. Letg˜r and g˜s be themonomials corresponding to M˜r and M˜s.

Wenote thatM˜r∩ ˜Ms = ∅.Hence thebinomials, XrkG˜r− XskG˜s, are inI(k,j),

whereG˜rand G˜s arethedualdifferentialoperators of˜grand ˜gsrespectively.

Letusconsiderthefollowingexactsequence:

0 −−−−→ I(k,j) −−−−→ Q(k,j) −−−−→ A(0,k+1−j) −−−−→ 0,

we get dim I(k,j) = dim Q(k,j)− fk+1−j. Let Q˜(k,j) be the K-space spanned by

allthemonomialsXk

rG˜r, whereG˜r isthedual differentialoperatorofgr thatis

amonomial inthe variables u1,. . . ,um, corresponding to a subface of Mr. Let

I(k,j) ⊂ I(k,j) be the K-vector space spanned by the monomials XrkPr, where

Pr isthedual differentialoperatorofthemonomial, inthevariablesu1,. . . ,um,

pr, not corresponding to a subface of Mr. They are two K-vector spaces s.t.

Q(k,j)= ˜Q(k,j)⊕ I(k,j).Weconsider theidealI˜(k,j)⊂ ˜Q(k,j).Theexactsequence

givenbyevaluationrestrictedtoQ˜(k,j) becomes:

(16)

Wenote:

dim I(k,j)= dim Q(k,j)− fk+1−j = dim ˜Q(k,j)+ dim I(k,j)− fk+1−j =

= dim ˜I(k,j)+ fk+1−j+ dim I(k,j)− fk+1−j = dim ˜I(k,j)+ dim I(k,j).

Hence I(k,j) = ˜I(k,j)⊕ I(k,j). Thegenerators of I˜(k,j) are the binomialXrkG˜r−

XskG˜s precisely.Theresultfollows.

Moreoverfori= k + 1 andj = 0,itisclearthatI(k+1,0)= (X0,. . . ,Xn)k+1.Infact

Xik+1(f )= 0,fori= 0,. . . ,n,sincethemonomialsinx0,. . . ,xn off havedegreek,

byRemark1.8. 2

Wediscuss thefollowing example:

Example 3.6.LetV ={u1,. . . ,u6} beafiniteset.Wehave:

2V ={∅, {u1}, . . . , {u6}, . . . , {u1, . . . , u6}}

LetΔ bethefollowingsimplicialcomplex: Δ ={∅, {u1}, . . . , {u6}   vertices ,{u1, u2}, . . . , {u5, u6}   edges ,{u1, u2, u3}, . . . , {u2, u3, u6}   2-faces }

It is given by two pyramids, with the common basis, of vertices u1,. . . u5 and u6 and

faces labeledbyg0,. . . ,g6 andg7:

u1 u2 u3 u4 u5 u6 g0 g1 g2 g3 g4 g5 g6 g7

The2-facesarethefacetsofΔ,thenΔ ispureofdimension2. Let

f = fΔ= x20u1u2u3+ x21u1u2u4+ x22u1u4u5+ x23u1u3u5+

(17)

bethebihomogeneouspolynomialofdegree5.ItisaNagatapolynomialoforder2 and the monomials g0 = u1u2u3, g1 = u1u2u4, g2 = u1u4u5, g3 = u1u3u5, g4 = u2u3u6,

g5= u2u4u6,g6= u4u5u6 andg7= u3u5u6 areofsquarefreetype.

Wehave

A = A0⊕ A1⊕ A2⊕ A3⊕ A4⊕ A5

andtheHilbertvectorisgivenby:

h0= 1 = h5 and h1= 14 = h4.

Wecalculateh2= dim A2 andh3= dim A3.

ByTheorem 3.5,wehave

h2= dim A2= dim A(2,0)+ dim A(1,1)+ dim A(0,2)=

= f3+ 8· f1+ f2= 8 + 8· 3 + 12 = 44

h3= dim A3= dim A(3,0)+ dim A(2,1)+ dim A(1,2)+ dim A(0,3)=

= 0 + f2+ 8· f2+ f3= 12 + 8· 3 + 8 = 44

HencetheHilbertvectoris(1,14,44,44,14,1). ByTheorem 3.5,I = Ann(f ) isgenerated by: • X0,. . . ,X73andU12,. . . ,Um2,bythepart(2a);

• sincethecomplementofΔ is:

Δc={{u1, u6} , . . . , {u2, u5}   diagonals ,{u1, u2, u6} , . . . , {u1, u5, u6}   2-faces , {u1, u2, u3, u5} , . . . , {u2, u3, u5, u6}   3-faces , . . . ,{u1, . . . , u6}}

and sincediagonals are theminimal faces of Δc, then the monomials U

1U6, U3U4

(18)

• Fori= 1,2,fixthefacet M0={u1,u2,u3}∈ Δ,correspondingto themonomialg0,

wehavethatthemonomialp0represents:

– oneoftheremainingvertices,forexampleu4:

u1 u2 u3 u4 u5 u6 g0 g1 g2 g3 g4 g5 g6 g7

andfinallyweget:P0= p0(U1,. . . ,U8)= U4.Thencethemonomialofdegreei+1,

Xi

0U4 isinI = Ann(f ). Theother monomialsof thistype areobtainedwith the

sameprocedure.

– oneoftheremainingedges,forexampletheedgethatjoinstheverticesu5andu6:

u1 u2 u3 u4 u5 u6 g0 g1 g2 g3 g4 g5 g6 g7 Weget: P0= p0(U1, . . . , U8) = U5U6

and the monomialof degreei+ 2, Xi

0U5U6, isinI = Ann(f ),by part(2c). The

(19)

• Thefacesg0andg3havethecommonedgethatjoinstheverticesu1u3: u1 u2 u3 u5 u6 g0 g1 g2 g3 g4 g5 g6 g7

g1,3 representsthe edge that joinsthe vertices u1 and u3. g˜0 and g˜3 represent the

vertices u2 andu5respectively.Wehave:

˜

G0= ˜g0(U1, . . . , U6) = U2and ˜G3= ˜g3(U1, . . . , U6) = U5.

Thebinomial,ofdegree3,X2

0U2−X32U5,isinI = Ann(f ) bythepart(2d).Theother

binomialsofdegree3 ofthistypeareobtainedbythesameprocedure.Wenotethat thefacesg0andg2havethecommonvertexu1,hence,intheidealI = Ann(f ) there

is the binomial, of degree 4, X02U2U3− X22U4U5; the other binomials,of degree 4,

areobtainedbythesameprocedure. Acknowledgments

The second author would thank M. Boij, J. Migliore, U. Nagel, A. Seceleanu,

H. Schenck and J. Watanabe for the very stimulating discussions about the subject

inBanff.I wouldlike tothank alsoalltheorganizers andtheparticipants ofworkshop

Lefschetz Properties and Artinian Algebras at BIRS, Banff, Canada in Mach, 2016. It wasaverypleasanttimetodoMathematicsandenjoyaveryniceplace.

Thesecond authorthanksCarolinaAraujoforusefuldiscussionsaboutthegeometry ofNagatahypersurfaces,comparingitwiththeclassicalcase.

The authors want to thank P. de Poi for his import remarks and comments on a

previousversionofthemanuscript.

Thesecond author was partially supportedby ICTP-INdAM Research inPairs

Fel-lowship2018/2019andbyFACEPE ATP- 0005-1.01/18.

References

[1]E.Babson,E.Nevo,Lefschetzpropertiesandbasicconstructionsonsimplicialspheres,J.Algebraic Combin.31 (1)(2010)111–129.

(20)

[2]N.Bergeron,Lefschetzpropertiesforarithmeticrealandcomplexhyperbolicmanifolds,Int.Math. Res.Not.20(2003)1089–1122.

[3]C.Ciliberto,F.Russo,A.Simis,Homaloidalhypersurfacesandhypersurfaceswithvanishing Hes-sian,Adv.Math.218(2008)1759–1805.

[4]P.DePoi,G.Ilardi,OnhigherGaussmaps,J.PureAppl.Algebra219 (11)(2015)5137–5148. [5]P.DePoi,R.DiGennaro,G.Ilardi,Onvarietieswithhigherosculatingdefect,Rev.Mat.Iberoam.

29 (4)(2013)1191–1210.

[6]A.Garbagnati,F.Repetto,AgeometricalapproachtoGordan–Noether’sandFranchetta’s contri-butionstoaquestionposedbyHesse,Collect.Math.60(2009)27–41.

[7]R.Gondim,OnhigherHessiansandtheLefschetzproperties,J.Algebra489(2017)241–263. [8]R.Gondim,F.Russo,CubichypersurfaceswithvanishingHessian,J.PureAppl.Algebra219 (4)

(2015)779–806.

[9]R.Gondim,G.Zappalà,LefschetzpropertiesforArtinianGorensteinalgebraspresentedbyquadrics, Proc.Amer.Math.Soc.146 (3)(2018)993–1003.

[10]R.Gondim,G.Zappalà,OnmixedHessiansandtheLefschetzproperties,arXiv:1803.09664. [11]P.Gordan,M.Nöther,UeberdiealgebraischenFormen,derenHesse’scheDeterminanteidentisch

verschwindet,Math.Ann.10(1876)547–568.

[12]T.Harima,T.Maeno,H.Morita,Y.Numata,A.Wachi,J.Watanabe,TheLefschetzProperties, LectureNotesinMathematics,vol. 2080,Springer,Heidelberg,2013,xx+250pp.

[13]M.Harris,J.S.Li,ALefschetzpropertyforsubvarietiesofShimuravarieties, J.AlgebraicGeom. 7 (1)(1998)77–122.

[14]O.Hesse, ÜberdieBedingung,unter welcheeinehomogene ganzeFunctionvon n unabhángigen VariabelndurchLineäre Substitutionenvon n andern unabhángigenVariabelnauf einehomogene Function sichzurück-führen lässt, die eineVariable weniger enthält, J. Reine Angew. Math. 42 (1851)117–124.

[15]O.Hesse,ZurTheoriederganzenhomogenenFunctionen,J.ReineAngew.Math.56(1859)263–269. [16]H.Kasuya,Minimalmodels,formality, andhard Lefschetzpropertiesofsolvmanifoldswithlocal

systems,J.DifferentialGeom.93 (2)(2013)269–297.

[17]M.Kubitzke,E.Nevo,TheLefschetzpropertyforbarycentricsubdivisionsofshellablecomplexes, Trans.Amer.Math.Soc.361 (11)(2009)6151–6163.

[18]K. Lamotke, Topology of complexalgebraicvarieties afterS. Lefschetz,Topology 20 (1) (1981) 15–51.

[19]T.Maeno,J.Watanabe,LefschetzelementsofartinianGorensteinalgebrasandHessiansof homo-geneouspolynomials,IllinoisJ.Math.53(2009)593–603.

[20]J.Migliore,U.Nagel,Surveyarticle:atouroftheweakandstrongLefschetzproperties,J.Commut. Algebra5 (3)(2013)329–358.

[21]J.Migliore,R.Miró-Roig,U.Nagel,Monomialideals,almostcompleteintersectionsandtheweak Lefschetzproperty,Trans.Amer.Math.Soc.363 (1)(2011)229–257.

[22]Y.Numata,A.Wachi,ThestrongLefschetzpropertyofthecoinvariantringoftheCoxetergroup oftype H4,J.Algebra318 (2)(2007)1032–1038.

[23]U. Perazzo,Sulle varietà cubiche lacui hessiana svanisce identicamente, G.Mat. Battaglini 38 (1900)337–354.

[24]F. Russo, On theGeometry of SomeSpecial Projective Varieties, Lecture Notesof the Unione MatematicaItaliana,vol. 18,Springer,2016.

[25]R.Stanley,Hilbertfunctionsofgradedalgebras,Adv.Math.28(1978)57–83.

[26]R.Stanley,Weylgroups,thehardLefschetztheorem,andtheSpernerproperty,SIAMJ.Algebr. DiscreteMethods1(1980)168–184.

[27]R.Stanley,Log-concaveandunimodalsequencesinalgebra,combinatorics, andgeometry,Graph TheoryAppl.(1986)500–535.

[28]J.Watanabe,Aremarkon theHessianofhomogeneouspolynomials,in: TheCurvesSeminar at Queen’s,VolumeXIII,Queen’sPapersinPureandAppl.Math.119(2000)171–178.

Riferimenti

Documenti correlati

In turn, American hegemony perpetuated – despite the great XX century event of the “revolt against the West” – the Western centrality in the international system, both in terms

Our main interest is to compare a classical estimation method; namely Exact Maximum Likelihood Estimation (EMLE) with the Generalized Maximum Entropy (GME) approach for estimating

Geomorphological and glaciological mapping of the area was carried out by means remote sensing study of the surface and field control of evidence, performed during a

J. LosI, Notizie degli scaui e delle ricerche archeologiche nel Modenese 2014. Modena, Piazza Roma. Fortifcazioni ¿ domus di età romana, forti' fcazioni di età

BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy for the neuromonitoring of the premature

We present a novel method to quantify the higher-order citation influence of publications, considering both direct, or first-order, and indirect, or higher-order citations..

Non era tuttavia esplicitato quale specifico peso avesse ciascuno dei due elementi (contenuto e lavori preparatori) ai fini della decisione della Corte né era chiarito in che senso

Therefore, the lower yield strength and the higher ductility of the specimens sintered at 1125°C result in a greater plastic deformation, evidenced by the deeper