• Non ci sono risultati.

Search for a light pseudoscalar Higgs boson in the dimuon decay channel in pp collisions at √s=7TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for a light pseudoscalar Higgs boson in the dimuon decay channel in pp collisions at √s=7TeV"

Copied!
15
0
0

Testo completo

(1)

Search for a Light Pseudoscalar Higgs Boson in the Dimuon Decay Channel

in

pp Collisions at

p

ffiffiffi

s

¼ 7 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 27 June 2012; published 20 September 2012)

The dimuon invariant mass spectrum is searched in the range between 5.5 and 14 GeV for a light pseudoscalar Higgs boson a, predicted in a number of new physics models, including the next-to-minimal supersymmetric standard model. The data sample used in the search corresponds to an integrated luminosity of 1:3 fb1 collected in pp collisions at pffiffiffis¼ 7 TeV with the CMS detector at the LHC. No excess is observed above the background predictions and upper limits are set on the cross section times branching fraction  Bðpp ! a ! þÞ in the range of 1.5–7.5 pb. These results improve on existing bounds on the ab b coupling for ma< mð1SÞand are the first significant limits for ma> mð3SÞ. Constraints on the supersymmetric parameter space are presented in the context of the next-to-minimal model.

DOI:10.1103/PhysRevLett.109.121801 PACS numbers: 14.80.Da, 13.85.Qk

Low energy supersymmetry is an elegant solution to the hierarchy problem that arises in the standard model, pro-vides a candidate for dark matter, and allows for the uni-fication of gauge couplings at the grand-unified-theory scale [1–5]. However, the minimal supersymmetric model (MSSM) has an ad hoc Higgs superfield mixing parameter () and requires very large masses for the supersymmetric partner of the top quark (stop) in order for the lightest CP-even Higgs boson to be heavier than 122 GeV without large stop mixing [6]. Both problems are solved in the next-to MSSM (NMSSM) (a review can be found in Ref. [7]), which extends the MSSM by introducing a complex singlet superfield which necessarily contains a scalar field component. Associated super- and scalar-potential terms generate an effective  parameter and easily raise the mass of the light Higgs boson without requiring a heavy stop [8,9]. The added scalar field ex-pands the Higgs sector to three CP-even scalars (h1;h2;h3), two CP-odd scalars (a1; a2), and two charged scalars (Hþ; H). The a1is a superposition of the MSSM doublet pseudoscalar (aMSSM) and the additional singlet pseudo-scalar of the NMSSM (aS): a1 ¼ cosAaMSSMþ sinAaS, where A is the mixing angle. The NMSSM has two symmetries that, if imposed (e.g., at the grand-unified-theory scale), imply that small ma1, even ma1<2mB(where mBis the B meson mass), andjcosAj  1 are very natural possibilities [10]. However, the reduced couplings Ca1b b¼ Ca1þ¼ Ca

1þ¼ tancosA can be sizeable for large

values of tan, the ratio of neutral Higgs field vacuum

expectation values, even if cosA is small. More generally, superstring modeling suggests the possibility of many light a particles, at least some of which couple to þ, þ, and b b [11]. In the following, a (a1) denotes a general (NMSSM) light pseudoscalar Higgs boson.

Searches for a light a are mainly sensitive to Cab b [12,13]. For ma< mð3SÞ, the strongest constraints on Cab b are those from BABAR [14,15]. For ma> mð3SÞ, only the Tevatron and Large Hadron Collider (LHC) have sensitivity [16], using production via gg! a, where the coupling Cab b derives from quark (especially bottom and top) triangle loops. This process, plus higher-order corrections, leads to a large cross section due to the large gg parton luminosity at small gluon momentum fractions, provided the Cab b(q¼ t; b in particular) couplings are not too suppressed. This large cross section will typically lead to a significant number of gg! a ! þ events even thoughBða ! þÞ is small.

In the NMSSM context, where Ca1b b¼ tan cosA, the existing limits [17,18] translate to rather modest limits on j cosAj. Such bounds do not strongly constrain NMSSM models of interest for possibly hiding a light Higgs boson because of h! aa decays (with a ! 2, 2g, 2c, 2s decays being dominant [19]) that are not excluded by large electron-positron (LEP) collider experiments [20,21].

At tree level, the branching fraction for a! þ depends on ma and on tan, but not on cosA [16]. It is nearly constant for ma> 5 GeV and ranges from 103to 4 103for tan¼ 1 to tan ¼ 50, changing very little once tan > 2. In contrast, ðgg ! aÞ increases rapidly with tan due to the fact that Cab b/ tan. However, top-quark loop contributions and higher-order corrections im-ply a slower ðgg ! aÞ increase than tan2. In the context of the NMSSM, all q q couplings of the a1are proportional to cosA, implying that ðgg ! a1Þ / cos2A.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

This Letter presents the results of a search in pp colli-sions for a light a with a mass near the  resonances decaying into two oppositely charged muons. Data used for this analysis were recorded by the Compact Muon Solenoid (CMS) detector in pp collisions at a center-of-mass energy of 7 TeV, between August and November 2011. The sample corresponds to a total integrated lumi-nosity of 1:3 fb1, collected with a dedicated trigger. As estimated in Ref. [16] and explicitly demonstrated here, CMS has sensitivity beyond the BABAR and CDF limits, for the latter due to the higher production yield [LHCðpp ! aÞ  4:5Tevatronðp p ! aÞ] and the higher acceptance and efficiency of the muon detector. Furthermore, the CMS analysis can extend the limits into the ma> mð3SÞmass range.

The central feature of the CMS detector is a supercon-ducting solenoid, of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter, and the brass-scintillator hadron calorimeter. Muons are measured by gas-ionization detectors em-bedded in the steel return yoke in the pseudorapidity range jj < 2:4, (   ln½tanð=2Þ, where  is the polar angle of the trajectory of a particle with respect to the direction of the counterclockwise proton beam) using three detector technologies: drift tubes (DT) (for the range jj < 1:2), resistive plate chambers (RPC) (forjj < 1:6) and cathode strip chambers (CSC) (for 0:9 <jj < 2:4). The DT and RPC are indicated as the central ‘‘barrel’’ while the CSC comprises the ‘‘end caps.’’ A more detailed description of the CMS detector can be found in [22].

We search the dimuon invariant mass distribution be-tween 5.5 and 8.8 GeV (defined as ‘‘mass range 1’’) and between 11.5 and 14 GeV (‘‘mass range 2’’) for a narrow resonance a, with a decay widthMeV, which is natural in the NMSSM context. We avoid the range between 9 and 11 GeV because the abundant contributions of the botto-monium resonances to the mass spectrum makes this search unfeasible. Selection criteria are applied to reduce backgrounds from the QCD continuum, and we perform a mass scan in mass ranges 1 and 2 to determine a potential contribution from an a signal. Given the better mass reso-lution in the barrel part of the detector than in the end caps, we also separate the mass scan into two acceptance re-gions, based on the dimuon , in order to improve the sensitivity.

We analyze events collected with an online selection that requires the detection of two opposite-sign muons with transverse momenta pT> 3:5 GeV and additional require-ments imposed at the high level trigger (HLT). All three muon systems, DT, CSC, and RPC, take part in the trigger decision. A good primary vertex is also required, as defined in Ref. [23]. The additional HLT requirements include pTðþÞ > 6 GeV, 5:5 < mþ< 14 GeV, and a

dis-tance of the closest approach of the muon tracks to the

beam axis compatible with that expected for prompt decays. A prescale factor of 2 was imposed on the trigger to maintain a reasonable trigger rate.

The main backgrounds arise from QCD processes and, in the lower invariant mass range, from a residual tail of the ð1SÞ resonance. We determine the background shape in the invariant mass directly from data, and use simulated events as a cross check. Signal samples, QCD, and  resonances are simulated with PYTHIA 6.4.24, Tune D6T [24], and CTEQ6 parton distribution functions [25]. Tune Z2 gives compatible results. As the NMSSM is not fully implemented in PYTHIA, we generate the MSSM pseudo-scalar A boson in the mass range of 5.5 to 14 GeV and require dimuon decays. These samples also contain a simulation of the effects on the number of primary vertices from overlapping pp interactions in the same bunch crossing.

To select the best dimuon candidate in each event, quality criteria are applied to the tracks which reject mis-identified muons and muons from kaon and pion decays. Muons are required to be within the geometrical accep-tance (jj  2:4) and to be in the plateau of the trigger efficiency, with pT> 5:5 GeV. Muon tracks are required to have at least 11 hits in the silicon tracker, at least one of which must be in the pixel detector, and a track fit 2=dof < 1:8. This value is chosen to maximize the signal significance with respect to the QCD continuum, which is extracted directly from data.

Isolation requirements suppress misidentified leptons from jets and nonprompt muons from hadron decays. Muons are required to be isolated within a cone of radius R¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðÞ2þ ðÞ2¼ 0:3 around the muon direction, where  is the azimuthal angle. The muon isolation, Irel, is defined as the sum of the pT (as measured in the silicon tracker) and transverse energy (as measured in the calo-rimeters) of all objects within this cone (excluding the muon itself), divided by the muon as measured by the tracker. We require Irel< 0:2. This requirement is opti-mized by comparing the simulated a signal with opposite-sign dimuons from data, and we verify that this value is appropriate for both the barrel and end cap dimuon pairs. This isolation requirement rejects a large fraction of the background arising from the QCD production of jets.

Dimuon candidates consist of two opposite-sign muons [26] with an invariant mass between 5.5 and 14 GeV. If more than one dimuon candidate is present, that with the highest 2probability associated to the kinematic fit of the dimuon vertex is retained.

The invariant mass spectrum in the search range has two main contributions: the QCD continuum and the bottomo-nium resonances. To characterize these shapes for use in the mass scan, we perform a binned maximum likelihood fit to the total invariant mass distribution. For the QCD continuum, we use a first-order polynomial probability density function (PDF). Each  resonance is parametrized

(3)

via a double Crystal Ball (CB) function [27,28]. The resolution of one of the CB functions is left free in the fit but is constrained to be the same for all the three reso-nances. The resolution of the second CB function is deter-mined from the fit of the ð1SÞ peak, and forced to scale with the mass of the other two resonances. As the reso-nances overlap, we fit for the presence of all three  states simultaneously using three double CB functions. The mean of the CB of the ð1SÞ is left free in the fit to accommodate a possible bias in the momentum scale calibration. The number of free parameters is reduced by fixing the ð2SÞ and ð3SÞ mass differences, relative to ð1SÞ, to their world average values [6].

The fits to the  shape and continuum background are performed in the barrel and end cap regions separately, and are shown in Fig.1. The fitted numbers of events are given in Table I; the barrel-end caps ratio for the  peaks is consistent with Monte Carlo (MC) predictions. Outside the  peak range, corresponding to the signal search mass ranges, the data are well described by a first-order poly-nomial. Figure 1 also shows hypothetical signals from pseudoscalar Higgs bosons a with masses 7 and 12 GeV, and 2 pb cross sections, scaled by a factor of 10 for visibility. We perform mass scans of the invariant mass spectra, dividing mass range 1 into 110 steps and mass

range 2 into 100 steps of 30 MeV each, and treating the barrel and end cap spectra separately. At each step, we build a signal Gaussian PDF with a mean fixed to the center of the step and a width determined by the mass resolution, use a first-order polynomial to characterize the back-ground, and perform an unbinned maximum likelihood fit to search for a possible contribution from the a. For each signal mass point, we determine the resolution by fitting the a invariant mass spectrum with two CB functions (as for the , the sum of two CB functions better describes the resolution) and the mass resolution is calculated as the weighted average of the widths of the two functions. The resulting dimuon invariant mass resolution ranges from 50 to 120 MeV (90 to 190 MeV) in the barrel (end caps) for the mass range 5.5 to 14 GeV. These agree well with the resolution obtained from the  resonances in data and MC simulation. We fit the resolution as a function of mass using the simulated signal samples, and use this to extract the values of the dimuon mass resolution for each mass bin needed in the scan to determine the upper limit.

In mass range 1, we take into account the radiative tail of the ð1SÞ by including its shape determined from the full invariant mass spectrum fit. No significant discrepancy with SM background predictions is observed, and we proceed to set cross section limits, as described below.

The efficiency for the selection is factorized into three contributions, ¼ acc trig sel, where accis the kin-ematic acceptance for the a, trig is the efficiency of the muon trigger, and sel is the efficiency of the selection applied to the dimuon candidates. We use PYTHIA 6 to simulate the a signal and to determine acc. The trigger and selection efficiencies ( trigand sel) are measured with J=c events in data using the tag-and-probe technique [28]. We perform this study in bins of  and pT of the probe muon. The efficiency values extracted from data are com-pared with those obtained from the simulation of prompt J=c ! þ. The difference between the efficiency in data and MC simulation is evaluated in bins of pT and  and used as a correction to weight the MC events in order to accommodate possible discrepancies. These corrections are typically on the order of a few percent. For each dimuon candidate, the weight is the product of the correc-tions for the two muons.

The isolation requirement efficiency that contributes to sel cannot be measured using the J=c data set as one of the main production mechanisms for J=c is through B-meson decays, resulting in nonisolated muons. This is not well accounted for in simulation, and would result in biased data or MC efficiency corrections. In order to estimate this correction, we use Z! þ events and consider the lower pT spectrum of the probe muon.

The total efficiency is defined for each a mass sample as the fraction of generated signal events, weighted by the appropriate data-MC corrections, that satisfy all the selection requirements. This ranges from 1%–3.5% for the

Events/[0.1 GeV] 3 10 4 10 Barrel Data Total Fit 6 7 8 9 10 11 12 13 14 Events/[0.1 GeV] 3 10 4 10 CMS mµµ[GeV] 7 GeV Signal x10 12 GeV Signal x10 Endcap Data Total Fit 7 GeV Signal x10 12 GeV Signal x10 L = 1.3 fb-1 = 7 TeV s

FIG. 1 (color online). Dimuon invariant mass distribution for the barrel (upper) and end caps (lower) after the event selection. The invariant mass distributions are fitted accounting for the three  resonances and QCD continuum. Hypothetical signals from pseudoscalar Higgs bosons a at 7 and 12 GeV are shown.

TABLE I. Fitted numbers of  and continuum background events in the invariant mass range 5.5–14 GeV. The  contribu-tions are summed over the three resonances.

Contribution events (barrel) events (end caps)

 93 753 396 95 876 454

(4)

a mass range of 5.5–14 GeV, and we fit the distributions with second (third) order polynomial functions in the barrel (end caps) to use in the mass scan. The increase in the efficiency as a function of the invariant mass is mainly due to the pTrequirements on the muons at the HLT level. Several sources of systematic uncertainty affect these results, including a 2.2% uncertainty on the integrated luminosity [29]. The efficiency corrections are determined using the tag-and-probe results described above. We de-termine, event-by-event, the uncertainty on the total effi-ciency corrections by propagating the uncertainties on the single muon corrections. This total event efficiency uncer-tainty is largely independent of mass, with a maximum value of 12%. We apply this value as a systematic uncer-tainty for every bin in the scan.

The isolation efficiency is uncertain at the 5% level, corresponding to the largest discrepancy between data and MC simulation in the entire relevant pT range. We evaluate the systematic uncertainty on the resolution of the a as the quadrature sum of the difference between the mass resolution of the a with a mass of 10 GeV and the resolu-tion of the ð2SÞ (which has the same mass) in MC simulation, and the difference between the latter and the mass resolution obtained for the ð2SÞ from data. Additionally, the finite statistics for the determination of the mass resolution as a function of the dimuon mass contributes a source of uncertainty. We consider the mass ranges separately and include these systematic uncertain-ties in the calculation of the upper limit on the cross section times branching fraction. Overall, this adds an 11% (4%) effect for the barrel (end caps).

Systematic uncertainties on the background description include the shape uncertainty of the first-order polynomial fit of the background PDF. We fit the background with alternative functions (a second-order polynomial and an exponential function), generate MC pseudoexperiments using these functions, and fit the distributions using the first-order polynomial. The resulting systematic uncertain-ties, from the distribution of the fitted parameters, is of the order of a few percent.

No significant signal is observed, and we determine 95% confidence level (C.L.) upper limits on  Bðpp ! a ! þÞ as a function of the dimuon mass using the CL

s approach [30–32]. A few steps at the edges of the mass scans, where the fitting procedure has no predictive power on the signal shape, are not used. Figure2shows the upper limit results for the two mass ranges including the system-atic uncertainties discussed above. These limits are significant in the context of the NMSSM, and can be presented in terms of upper limits onj cosAj. The larger the value of tan, the stronger is the constraint. Figure3 presents upper limits,j cosAjmax as a function of m

a1 for

 ¼ 1; 2; 3; 10; 30; 50. Our upper limits are compared to an earlier analysis of the BABAR ð1SÞ and ð3SÞ data [33], and are superior for ma1 7:5 GeV for tan ¼ 50,

decreasing to ma1 6 GeV for tan ¼ 2, and are superior for all masses at tan¼ 1. Further, these are the first significant limits for ma> mð3SÞ.

In conclusion, we performed a search for a narrow, low mass pseudoscalar a, which is produced by gg! a and decays via a! þin the mass ranges 5.5–8.8 GeV and

11.5 12 12.5 13 13.5 14 0 2 4 6 8 10 12 14 Observed 1 Expected 2 Expected CMS m [GeV] = 7 TeV s -1 L = 1.3 fb 5.5 6 6.5 7 7.5 8 8.5 0 2 4 6 8 10 12 14 Observed 1 Expected 2 Expected CMS m [GeV] = 7 TeV s -1 L = 1.3 fb

FIG. 2 (color online). Upper limits at 95% C.L. on   Bðpp ! a ! þÞ in mass range 1 (upper panel) and mass range 2 (lower panel) including systematic uncertainties. The dotted lines correspond to the expected limits, and the bands correspond to 1- and 2- level uncertainties on the expected limits.

CMS -1 L = 1.3 fb CMS Limits BaBar Limits = 7 TeV s 6 8 10 12 14 1.00 0.50 0.20 0.10 0.05 0.02 0.01 m [GeV]a 1 |cos | A max

FIG. 3 (color online). Upper limits on the NMSSM parameter j cosAj as a function of ma1 in the two mass ranges. The solid

curves correspond to different tan values: from top to bottom, tan¼ 1, tan ¼ 2, tan ¼ 3, tan ¼ 10, tan ¼ 30, and tan¼ 50. For each tan value in mass range 1, the second, dotted curve shows the limits from the BABAR  analysis. There are no BABAR limits for tan¼ 1 in mass range 1, or for any tan in mass range 2. The line atj cosAjmax¼ 1 is equivalent to no limit. Results from CDF are not shown as they are less stringent than the BABAR limits.

(5)

11.5–14 GeV, using a data sample corresponding to an integrated luminosity of 1:3 fb1collected with the CMS detector. No significant signal is observed, and we set upper limits on  Bðpp ! a ! þÞ. These upper limits are applied in the context of the light pseudoscalar a1 of the NMSSM to yield upper limits on the NMSSM parameter j cosAj. These limits are superior to existing constraints for a significant portion of the ma1< mð1SÞ

mass range, and are the first significant limits available in the ma1> mð3SÞmass range.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge sup-port from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and

CNRS/IN2P3 (France); BMBF, DFG, and HGF

(Germany); GSRT (Greece); OTKA and NKTH

(Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U.K.); DOE and NSF (U.S.).

[1] Y. A. Gol’fand and E. P. Likhtman, JETP Lett. 13, 323 (1971).

[2] J. Wess and B. Zumino,Nucl. Phys. B70, 39 (1974). [3] H. P. Nilles,Phys. Rep. 110, 1 (1984).

[4] H. E. Haber and G. L. Kane,Phys. Rep. 117, 75 (1985). [5] R. Barbieri, S. Ferrara, and C. A. Savoy, Phys. Lett.

119B, 343 (1982).

[6] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).

[7] M. Maniatis,Int. J. Mod. Phys. A 25, 3505 (2010). [8] J. Ellis, J. F. Gunion, H. E. Haber, L. Roszkowski, and

F. Zwirner,Phys. Rev. D 39, 844 (1989).

[9] U. Ellwanger and M. Rausch de Traubenberg,Z. Phys. C 53, 521 (1992).

[10] B. A. Dobrescu and K. T. Matchev,J. High Energy Phys. 09 (2000) 031.

[11] M. Dine, Supersymmetry and String Theory: Beyond the Standard Model (Cambridge University Press, Cambridge, 2007).

[12] J. F. Gunion,J. High Energy Phys. 08 (2009) 032. [13] M. Lisanti and J. G. Wacker, Phys. Rev. D 79, 115006

(2009).

[14] B. Aubert et al. (BABAR),Phys. Rev. Lett. 103, 081803 (2009).

[15] B. Aubert et al. (BABAR),Phys. Rev. Lett. 103, 181801 (2009).

[16] R. Dermisek and J. F. Gunion,Phys. Rev. D 81, 055001 (2010).

[17] G. Apollinari et al.,Phys. Rev. D 72, 092003 (2005). [18] T. Aaltonen et al. (CDF Collaboration),Eur. Phys. J. C

62, 319 (2009).

[19] R. Dermisek and J. F. Gunion,Phys. Rev. Lett. 95, 041801 (2005).

[20] S. Schael et al. (ALEPH, DELPHI, L3, OPAL Collaborations, and LEP Working Group for Higgs Boson Searches),Eur. Phys. J. C 47, 547 (2006). [21] S. Schael et al. (ALEPH Collaboration),J. High Energy

Phys. 05 (2010) 049.

[22] S. Chatrchyan et al. (CMS Collaboration), JINST 3, S08004 (2008).

[23] CMS Collaboration, Report No. CMS-PAS-TRK-10-005, 2010,http://cdsweb.cern.ch/record/1279383.

[24] T. Sjo¨strand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05, (2006) 026.

[25] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and W.-K. Tung, J. High Energy Phys. 07 (2002) 012.

[26] CMS Collaboration , Report No. CMS-PAS-MUO-10-002, 2010,http://cdsweb.cern.ch/record/1279140. [27] M. Oreglia, Ph.D. thesis, Stanford University

[SLAC-R-236, UMI- 81-08973, 1980],http://www.slac.stanford.edu/ pubs/slacreports/slac-r-236.html.

[28] V. Khachatryan et al. (CMS Collaboration),Phys. Rev. D 83, 112004 (2011).

[29] CMS Collaboration, CMS Physics Analysis Summary, Report No. CMS-PAS-SMP-12-008, 2012, http://cdsweb .cern.ch/record/1434360.

[30] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).

[31] A. L. Read,J. Phys. G 28, 2693 (2002).

[32] ATLAS and CMS Collaborations, LHC Higgs Combination Group, Report No. ATL-PHYS-PUB 2011-11, No. CMS NOTE-2011/005, 202011-11, http://cdsweb .cern.ch/record/1379837.

[33] R. Dermisek and J. F. Gunion,Phys. Rev. D 81, 075003 (2010).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2 C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2J. Hammer,2N. Ho¨rmann,2J. Hrubec,2M. Jeitler,2,b W. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bD. Liko,2I. Mikulec,2M. Pernicka,2,aB. Rahbaran,2C. Rohringer,2

H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2P. Wagner,2W. Waltenberger,2G. Walzel,2E. Widl,2 C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Bansal,4T. Cornelis,4E. A. De Wolf,4

(6)

X. Janssen,4S. Luyckx,4T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4 Z. Staykova,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5 S. Blyweert,5J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5A. Olbrechts,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6T. Hreus,6 A. Le´onard,6P. E. Marage,6T. Reis,6L. Thomas,6C. Van der Velde,6P. Vanlaer,6J. Wang,6V. Adler,7K. Beernaert,7

A. Cimmino,7S. Costantini,7G. Garcia,7M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7J. Mccartin,7 A. A. Ocampo Rios,7D. Ryckbosch,7N. Strobbe,7F. Thyssen,7M. Tytgat,7L. Vanelderen,7P. Verwilligen,7 S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8G. Bruno,8R. Castello,8A. Caudron,8L. Ceard,8C. Delaere,8

T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,cJ. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8 C. Nuttens,8D. Pagano,8L. Perrini,8A. Pin,8K. Piotrzkowski,8N. Schul,8J. M. Vizan Garcia,8N. Beliy,9 T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10M. Correa Martins Junior,10D. De Jesus Damiao,10 T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11A. Custo´dio,11E. M. Da Costa,11 C. De Oliveira Martins,11S. Fonseca De Souza,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11V. Oguri,11

W. L. Prado Da Silva,11A. Santoro,11L. Soares Jorge,11A. Sznajder,11C. A. Bernardes,12,dF. A. Dias,12,e T. R. Fernandez Perez Tomei,12E. M. Gregores,12,dC. Lagana,12F. Marinho,12P. G. Mercadante,12,dS. F. Novaes,12

Sandra S. Padula,12V. Genchev,13,fP. Iaydjiev,13,fS. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13 V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14

P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15 J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15Z. Zhang,15C. Asawatangtrakuldee,16Y. Ban,16 S. Guo,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16H. Teng,16S. Wang,16B. Zhu,16W. Zou,16C. Avila,17

J. P. Gomez,17B. Gomez Moreno,17A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18 R. Plestina,18,gD. Polic,18I. Puljak,18,fZ. Antunovic,19M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20 J. Luetic,20S. Morovic,20A. Attikis,21M. Galanti,21G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21

P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,hS. Elgammal,23,iA. Ellithi Kamel,23,jS. Khalil,23,i M. A. Mahmoud,23,kA. Radi,23,l,mM. Kadastik,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24A. Tiko,24V. Azzolini,25

P. Eerola,25G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26 M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26 T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26K. Banzuzi,27 A. Karjalainen,27A. Korpela,27T. Tuuva,27M. Besancon,28S. Choudhury,28M. Dejardin,28D. Denegri,28 B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28

E. Locci,28J. Malcles,28L. Millischer,28A. Nayak,28J. Rander,28A. Rosowsky,28I. Shreyber,28M. Titov,28 S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29M. Bluj,29,nC. Broutin,29P. Busson,29C. Charlot,29 N. Daci,29T. Dahms,29L. Dobrzynski,29R. Granier de Cassagnac,29M. Haguenauer,29P. Mine´,29C. Mironov,29

M. Nguyen,29C. Ochando,29P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29 J.-L. Agram,30,oJ. Andrea,30D. Bloch,30D. Bodin,30J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30 E. Conte,30,oF. Drouhin,30,oC. Ferro,30J.-C. Fontaine,30,oD. Gele´,30U. Goerlach,30P. Juillot,30A.-C. Le Bihan,30 P. Van Hove,30F. Fassi,31D. Mercier,31S. Beauceron,32N. Beaupere,32O. Bondu,32G. Boudoul,32J. Chasserat,32 R. Chierici,32,fD. Contardo,32P. Depasse,32H. El Mamouni,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32 T. Kurca,32M. Lethuillier,32L. Mirabito,32S. Perries,32V. Sordini,32S. Tosi,32Y. Tschudi,32P. Verdier,32S. Viret,32

Z. Tsamalaidze,33,pG. Anagnostou,34S. Beranek,34M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34 R. Jussen,34K. Klein,34J. Merz,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34 D. Sprenger,34H. Weber,34B. Wittmer,34V. Zhukov,34,qM. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35

M. Erdmann,35R. Fischer,35A. Gu¨th,35T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35 P. Kreuzer,35J. Lingemann,35C. Magass,35M. Merschmeyer,35A. Meyer,35M. Olschewski,35P. Papacz,35 H. Pieta,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35D. Teyssier,35M. Weber,35 M. Bontenackels,36V. Cherepanov,36G. Flu¨gge,36H. Geenen,36M. Geisler,36W. Haj Ahmad,36F. Hoehle,36 B. Kargoll,36T. Kress,36Y. Kuessel,36A. Nowack,36L. Perchalla,36O. Pooth,36J. Rennefeld,36P. Sauerland,36

A. Stahl,36M. Aldaya Martin,37J. Behr,37W. Behrenhoff,37U. Behrens,37M. Bergholz,37,rA. Bethani,37 K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37E. Castro,37F. Costanza,37D. Dammann,37 C. Diez Pardos,37G. Eckerlin,37D. Eckstein,37G. Flucke,37A. Geiser,37I. Glushkov,37P. Gunnellini,37S. Habib,37

(7)

M. Kra¨mer,37D. Kru¨cker,37E. Kuznetsova,37W. Lange,37W. Lohmann,37,rB. Lutz,37R. Mankel,37I. Marfin,37 M. Marienfeld,37I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37 J. Olzem,37H. Perrey,37A. Petrukhin,37D. Pitzl,37A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37E. Ron,37

M. Rosin,37J. Salfeld-Nebgen,37R. Schmidt,37,rT. Schoerner-Sadenius,37N. Sen,37A. Spiridonov,37M. Stein,37 R. Walsh,37C. Wissing,37C. Autermann,38V. Blobel,38S. Bobrovskyi,38J. Draeger,38H. Enderle,38J. Erfle,38

U. Gebbert,38M. Go¨rner,38T. Hermanns,38R. S. Ho¨ing,38K. Kaschube,38G. Kaussen,38H. Kirschenmann,38 R. Klanner,38J. Lange,38B. Mura,38F. Nowak,38T. Peiffer,38N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38 P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Schro¨der,38T. Schum,38M. Seidel,38H. Stadie,38G. Steinbru¨ck,38 J. Thomsen,38C. Barth,39J. Berger,39C. Bo¨ser,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39

M. Feindt,39M. Guthoff,39,fC. Hackstein,39F. Hartmann,39T. Hauth,39,fM. Heinrich,39H. Held,39 K. H. Hoffmann,39S. Honc,39I. Katkov,39,qJ. R. Komaragiri,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39

M. Niegel,39A. Nu¨rnberg,39O. Oberst,39A. Oehler,39J. Ott,39G. Quast,39K. Rabbertz,39F. Ratnikov,39 N. Ratnikova,39S. Ro¨cker,39A. Scheurer,39F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39 D. Troendle,39R. Ulrich,39J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39M. Zeise,39G. Daskalakis,40T. Geralis,40

S. Kesisoglou,40A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40C. Mavrommatis,40 E. Ntomari,40L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41I. Evangelou,42C. Foudas,42,f P. Kokkas,42N. Manthos,42I. Papadopoulos,42V. Patras,42G. Bencze,43C. Hajdu,43,fP. Hidas,43D. Horvath,43,s F. Sikler,43V. Veszpremi,43G. Vesztergombi,43,tN. Beni,44S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44 J. Karancsi,45P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. B. Beri,46V. Bhatnagar,46N. Dhingra,46R. Gupta,46

M. Jindal,46M. Kaur,46M. Z. Mehta,46N. Nishu,46L. K. Saini,46A. Sharma,46J. Singh,46Ashok Kumar,47 Arun Kumar,47S. Ahuja,47A. Bhardwaj,47B. C. Choudhary,47S. Malhotra,47M. Naimuddin,47K. Ranjan,47 V. Sharma,47R. K. Shivpuri,47S. Banerjee,48S. Bhattacharya,48S. Dutta,48B. Gomber,48Sa. Jain,48Sh. Jain,48 R. Khurana,48S. Sarkar,48M. Sharan,48A. Abdulsalam,49R. K. Choudhury,49D. Dutta,49S. Kailas,49V. Kumar,49

P. Mehta,49A. K. Mohanty,49,fL. M. Pant,49P. Shukla,49T. Aziz,50S. Ganguly,50M. Guchait,50,uM. Maity,50,v G. Majumder,50K. Mazumdar,50G. B. Mohanty,50B. Parida,50K. Sudhakar,50N. Wickramage,50S. Banerjee,51

S. Dugad,51H. Arfaei,52H. Bakhshiansohi,52,wS. M. Etesami,52,xA. Fahim,52,wM. Hashemi,52A. Jafari,52,w M. Khakzad,52A. Mohammadi,52,yM. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52B. Safarzadeh,52,z

M. Zeinali,52,xM. Abbrescia,53a,53bL. Barbone,53a,53bC. Calabria,53a,53b,fS. S. Chhibra,53a,53bA. Colaleo,53a D. Creanza,53a,53cN. De Filippis,53a,53c,fM. De Palma,53a,53bL. Fiore,53aG. Iaselli,53a,53cL. Lusito,53a,53b G. Maggi,53a,53cM. Maggi,53aB. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53bN. Pacifico,53a,53bA. Pompili,53a,53b

G. Pugliese,53a,53cG. Selvaggi,53a,53bL. Silvestris,53aG. Singh,53a,53bR. Venditti,53aG. Zito,53aG. Abbiendi,54a A. C. Benvenuti,54aD. Bonacorsi,54a,54bS. Braibant-Giacomelli,54a,54bL. Brigliadori,54a,54bP. Capiluppi,54a,54b

A. Castro,54a,54bF. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54b D. Fasanella,54a,54b,fP. Giacomelli,54aC. Grandi,54aL. Guiducci,54a,54bS. Marcellini,54aG. Masetti,54a M. Meneghelli,54a,54b,fA. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54aF. Primavera,54a,54b A. M. Rossi,54a,54bT. Rovelli,54a,54bG. Siroli,54a,54bR. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55b

M. Chiorboli,55a,55bS. Costa,55a,55bR. Potenza,55a,55bA. Tricomi,55a,55bC. Tuve,55a,55bG. Barbagli,56a V. Ciulli,56a,56bC. Civinini,56aR. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56aS. Gonzi,56a,56b M. Meschini,56aS. Paoletti,56aG. Sguazzoni,56aA. Tropiano,56a,fL. Benussi,57S. Bianco,57S. Colafranceschi,57,aa

F. Fabbri,57D. Piccolo,57P. Fabbricatore,58R. Musenich,58A. Benaglia,59a,59b,fF. De Guio,59a,59b L. Di Matteo,59a,59b,fS. Fiorendi,59a,59bS. Gennai,59a,fA. Ghezzi,59a,59bS. Malvezzi,59aR. A. Manzoni,59a,59b

A. Martelli,59a,59bA. Massironi,59a,59b,fD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59a S. Ragazzi,59a,59bN. Redaelli,59aS. Sala,59aT. Tabarelli de Fatis,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60a,f

N. Cavallo,60a,bbA. De Cosa,60a,60b,fO. Dogangun,60a,60bF. Fabozzi,60a,bbA. O. M. Iorio,60aL. Lista,60a S. Meola,60a,ccM. Merola,60a,60bP. Paolucci,60a,fP. Azzi,61aN. Bacchetta,61a,fD. Bisello,61a,61bA. Branca,61a,f

R. Carlin,61a,61bP. Checchia,61aT. Dorigo,61aF. Gasparini,61a,61bU. Gasparini,61a,61bA. Gozzelino,61a K. Kanishchev,61a,61cS. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61bA. T. Meneguzzo,61a,61bJ. Pazzini,61a

N. Pozzobon,61a,61bP. Ronchese,61a,61bE. Torassa,61aM. Tosi,61a,61b,fS. Vanini,61a,61bP. Zotto,61a,61b A. Zucchetta,61aG. Zumerle,61a,61bM. Gabusi,62a,62bS. P. Ratti,62a,62bC. Riccardi,62a,62bP. Torre,62a,62b

P. Vitulo,62a,62bM. Biasini,63a,63bG. M. Bilei,63aL. Fano`,63a,63bP. Lariccia,63a,63bA. Lucaroni,63a,63b,f G. Mantovani,63a,63bM. Menichelli,63aA. Nappi,63a,63bF. Romeo,63a,63bA. Saha,63aA. Santocchia,63a,63b

(8)

S. Taroni,63a,63b,fP. Azzurri,64a,64cG. Bagliesi,64aT. Boccali,64aG. Broccolo,64a,64cR. Castaldi,64a R. T. D’Agnolo,64a,64cR. Dell’Orso,64aF. Fiori,64a,64b,fL. Foa`,64a,64cA. Giassi,64aA. Kraan,64aF. Ligabue,64a,64c T. Lomtadze,64aL. Martini,64a,ddA. Messineo,64a,64bF. Palla,64aA. Rizzi,64a,64bA. T. Serban,64a,eeP. Spagnolo,64a P. Squillacioti,64a,fR. Tenchini,64aG. Tonelli,64a,64b,fA. Venturi,64a,fP. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65a

D. Del Re,65a,65b,fM. Diemoz,65aM. Grassi,65a,65b,fE. Longo,65a,65bP. Meridiani,65a,fF. Micheli,65a,65b S. Nourbakhsh,65a,65bG. Organtini,65a,65bR. Paramatti,65aS. Rahatlou,65a,65bM. Sigamani,65aL. Soffi,65a,65b

N. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66aN. Cartiglia,66a M. Costa,66a,66bN. Demaria,66aA. Graziano,66a,66bC. Mariotti,66a,fS. Maselli,66aE. Migliore,66a,66b V. Monaco,66a,66bM. Musich,66a,fM. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66aA. Potenza,66a,66b

A. Romero,66a,66bM. Ruspa,66a,66cR. Sacchi,66a,66bV. Sola,66a,66bA. Solano,66a,66bA. Staiano,66a A. Vilela Pereira,66aS. Belforte,67aV. Candelise,67a,67bF. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67a M. Marone,67a,67b,fD. Montanino,67a,67b,fA. Penzo,67aA. Schizzi,67a,67bS. G. Heo,68T. Y. Kim,68S. K. Nam,68

S. Chang,69J. Chung,69D. H. Kim,69G. N. Kim,69D. J. Kong,69H. Park,69S. R. Ro,69D. C. Son,69T. Son,69 J. Y. Kim,70Zero J. Kim,70S. Song,70S. Choi,71D. Gyun,71B. Hong,71M. Jo,71H. Kim,71T. J. Kim,71K. S. Lee,71 D. H. Moon,71S. K. Park,71M. Choi,72S. Kang,72J. H. Kim,72C. Park,72I. C. Park,72S. Park,72G. Ryu,72Y. Cho,73

Y. Choi,73Y. K. Choi,73J. Goh,73M. S. Kim,73E. Kwon,73B. Lee,73J. Lee,73S. Lee,73H. Seo,73I. Yu,73 M. J. Bilinskas,74I. Grigelionis,74M. Janulis,74A. Juodagalvis,74H. Castilla-Valdez,75E. De La Cruz-Burelo,75

I. Heredia-de La Cruz,75R. Lopez-Fernandez,75R. Magan˜a Villalba,75J. Martı´nez-Ortega,75 A. Sa´nchez-Herna´ndez,75L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76F. Vazquez Valencia,76 H. A. Salazar Ibarguen,77E. Casimiro Linares,78A. Morelos Pineda,78M. A. Reyes-Santos,78D. Krofcheck,79

A. J. Bell,80P. H. Butler,80R. Doesburg,80S. Reucroft,80H. Silverwood,80M. Ahmad,81M. I. Asghar,81 H. R. Hoorani,81S. Khalid,81W. A. Khan,81T. Khurshid,81S. Qazi,81M. A. Shah,81M. Shoaib,81G. Brona,82 K. Bunkowski,82M. Cwiok,82W. Dominik,82K. Doroba,82A. Kalinowski,82M. Konecki,82J. Krolikowski,82

H. Bialkowska,83B. Boimska,83T. Frueboes,83R. Gokieli,83M. Go´rski,83M. Kazana,83K. Nawrocki,83 K. Romanowska-Rybinska,83M. Szleper,83G. Wrochna,83P. Zalewski,83N. Almeida,84P. Bargassa,84A. David,84

P. Faccioli,84M. Fernandes,84P. G. Ferreira Parracho,84M. Gallinaro,84J. Seixas,84J. Varela,84P. Vischia,84 I. Belotelov,85P. Bunin,85M. Gavrilenko,85I. Golutvin,85I. Gorbunov,85A. Kamenev,85V. Karjavin,85G. Kozlov,85 A. Lanev,85A. Malakhov,85P. Moisenz,85V. Palichik,85V. Perelygin,85S. Shmatov,85V. Smirnov,85A. Volodko,85 A. Zarubin,85S. Evstyukhin,86V. Golovtsov,86Y. Ivanov,86V. Kim,86P. Levchenko,86V. Murzin,86V. Oreshkin,86

I. Smirnov,86V. Sulimov,86L. Uvarov,86S. Vavilov,86A. Vorobyev,86An. Vorobyev,86Yu. Andreev,87 A. Dermenev,87S. Gninenko,87N. Golubev,87M. Kirsanov,87N. Krasnikov,87V. Matveev,87A. Pashenkov,87

D. Tlisov,87A. Toropin,87V. Epshteyn,88M. Erofeeva,88V. Gavrilov,88M. Kossov,88,fN. Lychkovskaya,88 V. Popov,88G. Safronov,88S. Semenov,88V. Stolin,88E. Vlasov,88A. Zhokin,88A. Belyaev,89E. Boos,89 V. Bunichev,89M. Dubinin,89,eL. Dudko,89A. Ershov,89V. Klyukhin,89O. Kodolova,89I. Lokhtin,89A. Markina,89

S. Obraztsov,89M. Perfilov,89S. Petrushanko,89A. Popov,89L. Sarycheva,89,aV. Savrin,89A. Snigirev,89 V. Andreev,90M. Azarkin,90I. Dremin,90M. Kirakosyan,90A. Leonidov,90G. Mesyats,90S. V. Rusakov,90 A. Vinogradov,90I. Azhgirey,91I. Bayshev,91S. Bitioukov,91V. Grishin,91,fV. Kachanov,91D. Konstantinov,91 A. Korablev,91V. Krychkine,91V. Petrov,91R. Ryutin,91A. Sobol,91L. Tourtchanovitch,91S. Troshin,91N. Tyurin,91

A. Uzunian,91A. Volkov,91P. Adzic,92,ffM. Djordjevic,92M. Ekmedzic,92D. Krpic,92,ffJ. Milosevic,92 M. Aguilar-Benitez,93J. Alcaraz Maestre,93P. Arce,93C. Battilana,93E. Calvo,93M. Cerrada,93 M. Chamizo Llatas,93N. Colino,93B. De La Cruz,93A. Delgado Peris,93D. Domı´nguez Va´zquez,93 C. Fernandez Bedoya,93J. P. Ferna´ndez Ramos,93A. Ferrando,93J. Flix,93M. C. Fouz,93P. Garcia-Abia,93

O. Gonzalez Lopez,93S. Goy Lopez,93J. M. Hernandez,93M. I. Josa,93G. Merino,93J. Puerta Pelayo,93 A. Quintario Olmeda,93I. Redondo,93L. Romero,93J. Santaolalla,93M. S. Soares,93C. Willmott,93C. Albajar,94

G. Codispoti,94J. F. de Troco´niz,94H. Brun,95J. Cuevas,95J. Fernandez Menendez,95S. Folgueras,95 I. Gonzalez Caballero,95L. Lloret Iglesias,95J. Piedra Gomez,95,ggJ. A. Brochero Cifuentes,96I. J. Cabrillo,96

A. Calderon,96S. H. Chuang,96J. Duarte Campderros,96M. Felcini,96,hhM. Fernandez,96G. Gomez,96 J. Gonzalez Sanchez,96C. Jorda,96P. Lobelle Pardo,96A. Lopez Virto,96J. Marco,96R. Marco,96 C. Martinez Rivero,96F. Matorras,96F. J. Munoz Sanchez,96T. Rodrigo,96A. Y. Rodrı´guez-Marrero,96 A. Ruiz-Jimeno,96L. Scodellaro,96M. Sobron Sanudo,96I. Vila,96R. Vilar Cortabitarte,96D. Abbaneo,97 E. Auffray,97G. Auzinger,97P. Baillon,97A. H. Ball,97D. Barney,97C. Bernet,97,gG. Bianchi,97P. Bloch,97

(9)

A. Bocci,97A. Bonato,97C. Botta,97H. Breuker,97T. Camporesi,97G. Cerminara,97T. Christiansen,97 J. A. Coarasa Perez,97D. D’Enterria,97A. Dabrowski,97A. De Roeck,97S. Di Guida,97M. Dobson,97 N. Dupont-Sagorin,97A. Elliott-Peisert,97B. Frisch,97W. Funk,97G. Georgiou,97M. Giffels,97D. Gigi,97K. Gill,97

D. Giordano,97M. Giunta,97F. Glege,97R. Gomez-Reino Garrido,97P. Govoni,97S. Gowdy,97R. Guida,97 M. Hansen,97P. Harris,97C. Hartl,97J. Harvey,97B. Hegner,97A. Hinzmann,97V. Innocente,97P. Janot,97 K. Kaadze,97E. Karavakis,97K. Kousouris,97P. Lecoq,97Y.-J. Lee,97P. Lenzi,97C. Lourenc¸o,97T. Ma¨ki,97 M. Malberti,97L. Malgeri,97M. Mannelli,97L. Masetti,97F. Meijers,97S. Mersi,97E. Meschi,97R. Moser,97 M. U. Mozer,97M. Mulders,97P. Musella,97E. Nesvold,97T. Orimoto,97L. Orsini,97E. Palencia Cortezon,97

E. Perez,97L. Perrozzi,97A. Petrilli,97A. Pfeiffer,97M. Pierini,97M. Pimia¨,97D. Piparo,97G. Polese,97 L. Quertenmont,97A. Racz,97W. Reece,97J. Rodrigues Antunes,97G. Rolandi,97,iiT. Rommerskirchen,97 C. Rovelli,97,jjM. Rovere,97H. Sakulin,97F. Santanastasio,97C. Scha¨fer,97C. Schwick,97I. Segoni,97S. Sekmen,97

A. Sharma,97P. Siegrist,97P. Silva,97M. Simon,97P. Sphicas,97,kkD. Spiga,97M. Spiropulu,97,eM. Stoye,97 A. Tsirou,97G. I. Veres,97,tJ. R. Vlimant,97H. K. Wo¨hri,97S. D. Worm,97,llW. D. Zeuner,97W. Bertl,98K. Deiters,98

W. Erdmann,98K. Gabathuler,98R. Horisberger,98Q. Ingram,98H. C. Kaestli,98S. Ko¨nig,98D. Kotlinski,98 U. Langenegger,98F. Meier,98D. Renker,98T. Rohe,98J. Sibille,98,mmL. Ba¨ni,99P. Bortignon,99M. A. Buchmann,99 B. Casal,99N. Chanon,99A. Deisher,99G. Dissertori,99M. Dittmar,99M. Du¨nser,99J. Eugster,99K. Freudenreich,99 C. Grab,99D. Hits,99P. Lecomte,99W. Lustermann,99A. C. Marini,99P. Martinez Ruiz del Arbol,99N. Mohr,99

F. Moortgat,99C. Na¨geli,99,nnP. Nef,99F. Nessi-Tedaldi,99F. Pandolfi,99L. Pape,99F. Pauss,99M. Peruzzi,99 F. J. Ronga,99M. Rossini,99L. Sala,99A. K. Sanchez,99A. Starodumov,99,ooB. Stieger,99M. Takahashi,99 L. Tauscher,99,aA. Thea,99K. Theofilatos,99D. Treille,99C. Urscheler,99R. Wallny,99H. A. Weber,99L. Wehrli,99 E. Aguilo,100C. Amsler,100V. Chiochia,100S. De Visscher,100C. Favaro,100M. Ivova Rikova,100B. Millan Mejias,100

P. Otiougova,100P. Robmann,100H. Snoek,100S. Tupputi,100M. Verzetti,100Y. H. Chang,101K. H. Chen,101 C. M. Kuo,101S. W. Li,101W. Lin,101Z. K. Liu,101Y. J. Lu,101D. Mekterovic,101A. P. Singh,101R. Volpe,101 S. S. Yu,101P. Bartalini,102P. Chang,102Y. H. Chang,102Y. W. Chang,102Y. Chao,102K. F. Chen,102C. Dietz,102 U. Grundler,102W.-S. Hou,102Y. Hsiung,102K. Y. Kao,102Y. J. Lei,102R.-S. Lu,102D. Majumder,102E. Petrakou,102 X. Shi,102J. G. Shiu,102Y. M. Tzeng,102X. Wan,102M. Wang,102A. Adiguzel,103M. N. Bakirci,103,ppS. Cerci,103,qq C. Dozen,103I. Dumanoglu,103E. Eskut,103S. Girgis,103G. Gokbulut,103E. Gurpinar,103I. Hos,103E. E. Kangal,103 G. Karapinar,103A. Kayis Topaksu,103G. Onengut,103K. Ozdemir,103S. Ozturk,103,rrA. Polatoz,103K. Sogut,103,ss

D. Sunar Cerci,103,qqB. Tali,103,qqH. Topakli,103,ppL. N. Vergili,103M. Vergili,103I. V. Akin,104T. Aliev,104 B. Bilin,104S. Bilmis,104M. Deniz,104H. Gamsizkan,104A. M. Guler,104K. Ocalan,104A. Ozpineci,104M. Serin,104 R. Sever,104U. E. Surat,104M. Yalvac,104E. Yildirim,104M. Zeyrek,104E. Gu¨lmez,105B. Isildak,105,ttM. Kaya,105,uu

O. Kaya,105,uuS. Ozkorucuklu,105,vvN. Sonmez,105,wwK. Cankocak,106L. Levchuk,107F. Bostock,108 J. J. Brooke,108E. Clement,108D. Cussans,108H. Flacher,108R. Frazier,108J. Goldstein,108M. Grimes,108 G. P. Heath,108H. F. Heath,108L. Kreczko,108S. Metson,108D. M. Newbold,108,llK. Nirunpong,108A. Poll,108

S. Senkin,108V. J. Smith,108T. Williams,108L. Basso,109,xxK. W. Bell,109A. Belyaev,109,xxC. Brew,109 R. M. Brown,109D. J. A. Cockerill,109J. A. Coughlan,109K. Harder,109S. Harper,109J. Jackson,109B. W. Kennedy,109

E. Olaiya,109D. Petyt,109B. C. Radburn-Smith,109C. H. Shepherd-Themistocleous,109I. R. Tomalin,109 W. J. Womersley,109R. Bainbridge,110G. Ball,110R. Beuselinck,110O. Buchmuller,110D. Colling,110N. Cripps,110

M. Cutajar,110P. Dauncey,110G. Davies,110M. Della Negra,110W. Ferguson,110J. Fulcher,110D. Futyan,110 A. Gilbert,110A. Guneratne Bryer,110G. Hall,110Z. Hatherell,110J. Hays,110G. Iles,110M. Jarvis,110 G. Karapostoli,110L. Lyons,110A.-M. Magnan,110J. Marrouche,110B. Mathias,110R. Nandi,110J. Nash,110

A. Nikitenko,110,ooA. Papageorgiou,110J. Pela,110,fM. Pesaresi,110K. Petridis,110M. Pioppi,110,yy

D. M. Raymond,110S. Rogerson,110A. Rose,110M. J. Ryan,110C. Seez,110P. Sharp,110,aA. Sparrow,110A. Tapper,110 M. Vazquez Acosta,110T. Virdee,110S. Wakefield,110N. Wardle,110T. Whyntie,110M. Chadwick,111J. E. Cole,111 P. R. Hobson,111A. Khan,111P. Kyberd,111D. Leggat,111D. Leslie,111W. Martin,111I. D. Reid,111P. Symonds,111 L. Teodorescu,111M. Turner,111K. Hatakeyama,112H. Liu,112T. Scarborough,112O. Charaf,113C. Henderson,113 P. Rumerio,113A. Avetisyan,114T. Bose,114C. Fantasia,114A. Heister,114J. St. John,114P. Lawson,114D. Lazic,114 J. Rohlf,114D. Sperka,114L. Sulak,114J. Alimena,115S. Bhattacharya,115D. Cutts,115A. Ferapontov,115U. Heintz,115 S. Jabeen,115G. Kukartsev,115E. Laird,115G. Landsberg,115M. Luk,115M. Narain,115D. Nguyen,115M. Segala,115 T. Sinthuprasith,115T. Speer,115K. V. Tsang,115R. Breedon,116G. Breto,116M. Calderon De La Barca Sanchez,116 S. Chauhan,116M. Chertok,116J. Conway,116R. Conway,116P. T. Cox,116J. Dolen,116R. Erbacher,116M. Gardner,116

(10)

J. Gunion,116R. Houtz,116W. Ko,116A. Kopecky,116R. Lander,116T. Miceli,116D. Pellett,116F. Ricci-tam,116 B. Rutherford,116M. Searle,116J. Smith,116M. Squires,116M. Tripathi,116R. Vasquez Sierra,116V. Andreev,117 D. Cline,117R. Cousins,117J. Duris,117S. Erhan,117P. Everaerts,117C. Farrell,117J. Hauser,117M. Ignatenko,117

C. Jarvis,117C. Plager,117G. Rakness,117P. Schlein,117,aJ. Tucker,117V. Valuev,117M. Weber,117J. Babb,118 R. Clare,118M. E. Dinardo,118J. Ellison,118J. W. Gary,118F. Giordano,118G. Hanson,118G. Y. Jeng,118,zzH. Liu,118

O. R. Long,118A. Luthra,118H. Nguyen,118S. Paramesvaran,118J. Sturdy,118S. Sumowidagdo,118R. Wilken,118 S. Wimpenny,118W. Andrews,119J. G. Branson,119G. B. Cerati,119S. Cittolin,119D. Evans,119F. Golf,119 A. Holzner,119R. Kelley,119M. Lebourgeois,119J. Letts,119I. Macneill,119B. Mangano,119S. Padhi,119C. Palmer,119

G. Petrucciani,119M. Pieri,119M. Sani,119V. Sharma,119S. Simon,119E. Sudano,119M. Tadel,119Y. Tu,119 A. Vartak,119S. Wasserbaech,119,aaaF. Wu¨rthwein,119A. Yagil,119J. Yoo,119D. Barge,120R. Bellan,120 C. Campagnari,120M. D’Alfonso,120T. Danielson,120K. Flowers,120P. Geffert,120J. Incandela,120C. Justus,120

P. Kalavase,120S. A. Koay,120D. Kovalskyi,120V. Krutelyov,120S. Lowette,120N. Mccoll,120V. Pavlunin,120 F. Rebassoo,120J. Ribnik,120J. Richman,120R. Rossin,120D. Stuart,120W. To,120C. West,120A. Apresyan,121 A. Bornheim,121Y. Chen,121E. Di Marco,121J. Duarte,121M. Gataullin,121Y. Ma,121A. Mott,121H. B. Newman,121

C. Rogan,121V. Timciuc,121P. Traczyk,121J. Veverka,121R. Wilkinson,121Y. Yang,121R. Y. Zhu,121B. Akgun,122 R. Carroll,122T. Ferguson,122Y. Iiyama,122D. W. Jang,122Y. F. Liu,122M. Paulini,122H. Vogel,122I. Vorobiev,122 J. P. Cumalat,123B. R. Drell,123C. J. Edelmaier,123W. T. Ford,123A. Gaz,123B. Heyburn,123E. Luiggi Lopez,123

J. G. Smith,123K. Stenson,123K. A. Ulmer,123S. R. Wagner,123J. Alexander,124A. Chatterjee,124N. Eggert,124 L. K. Gibbons,124B. Heltsley,124A. Khukhunaishvili,124B. Kreis,124N. Mirman,124G. Nicolas Kaufman,124 J. R. Patterson,124A. Ryd,124E. Salvati,124W. Sun,124W. D. Teo,124J. Thom,124J. Thompson,124J. Vaughan,124

Y. Weng,124L. Winstrom,124P. Wittich,124D. Winn,125S. Abdullin,126M. Albrow,126J. Anderson,126 L. A. T. Bauerdick,126A. Beretvas,126J. Berryhill,126P. C. Bhat,126I. Bloch,126K. Burkett,126J. N. Butler,126 V. Chetluru,126H. W. K. Cheung,126F. Chlebana,126V. D. Elvira,126I. Fisk,126J. Freeman,126Y. Gao,126D. Green,126

O. Gutsche,126J. Hanlon,126R. M. Harris,126J. Hirschauer,126B. Hooberman,126S. Jindariani,126M. Johnson,126 U. Joshi,126B. Kilminster,126B. Klima,126S. Kunori,126S. Kwan,126C. Leonidopoulos,126D. Lincoln,126 R. Lipton,126J. Lykken,126K. Maeshima,126J. M. Marraffino,126S. Maruyama,126D. Mason,126P. McBride,126

K. Mishra,126S. Mrenna,126Y. Musienko,126,bbbC. Newman-Holmes,126V. O’Dell,126O. Prokofyev,126 E. Sexton-Kennedy,126S. Sharma,126W. J. Spalding,126L. Spiegel,126P. Tan,126L. Taylor,126S. Tkaczyk,126

N. V. Tran,126L. Uplegger,126E. W. Vaandering,126R. Vidal,126J. Whitmore,126W. Wu,126F. Yang,126 F. Yumiceva,126J. C. Yun,126D. Acosta,127P. Avery,127D. Bourilkov,127M. Chen,127S. Das,127M. De Gruttola,127

G. P. Di Giovanni,127D. Dobur,127A. Drozdetskiy,127R. D. Field,127M. Fisher,127Y. Fu,127I. K. Furic,127 J. Gartner,127J. Hugon,127B. Kim,127J. Konigsberg,127A. Korytov,127A. Kropivnitskaya,127T. Kypreos,127

J. F. Low,127K. Matchev,127P. Milenovic,127,cccG. Mitselmakher,127L. Muniz,127R. Remington,127 A. Rinkevicius,127P. Sellers,127N. Skhirtladze,127M. Snowball,127J. Yelton,127M. Zakaria,127V. Gaultney,128 L. M. Lebolo,128S. Linn,128P. Markowitz,128G. Martinez,128J. L. Rodriguez,128J. R. Adams,129T. Adams,129

A. Askew,129J. Bochenek,129J. Chen,129B. Diamond,129S. V. Gleyzer,129J. Haas,129S. Hagopian,129 V. Hagopian,129M. Jenkins,129K. F. Johnson,129H. Prosper,129V. Veeraraghavan,129M. Weinberg,129 M. M. Baarmand,130B. Dorney,130M. Hohlmann,130H. Kalakhety,130I. Vodopiyanov,130M. R. Adams,131 I. M. Anghel,131L. Apanasevich,131Y. Bai,131V. E. Bazterra,131R. R. Betts,131I. Bucinskaite,131J. Callner,131

R. Cavanaugh,131C. Dragoiu,131O. Evdokimov,131L. Gauthier,131C. E. Gerber,131D. J. Hofman,131 S. Khalatyan,131F. Lacroix,131M. Malek,131C. O’Brien,131C. Silkworth,131D. Strom,131N. Varelas,131 U. Akgun,132E. A. Albayrak,132B. Bilki,132,dddW. Clarida,132F. Duru,132S. Griffiths,132J.-P. Merlo,132 H. Mermerkaya,132,eeeA. Mestvirishvili,132A. Moeller,132J. Nachtman,132C. R. Newsom,132E. Norbeck,132 Y. Onel,132F. Ozok,132S. Sen,132E. Tiras,132J. Wetzel,132T. Yetkin,132K. Yi,132B. A. Barnett,133B. Blumenfeld,133

S. Bolognesi,133D. Fehling,133G. Giurgiu,133A. V. Gritsan,133Z. J. Guo,133G. Hu,133P. Maksimovic,133 S. Rappoccio,133M. Swartz,133A. Whitbeck,133P. Baringer,134A. Bean,134G. Benelli,134O. Grachov,134 R. P. Kenny Iii,134M. Murray,134D. Noonan,134S. Sanders,134R. Stringer,134G. Tinti,134J. S. Wood,134 V. Zhukova,134A. F. Barfuss,135T. Bolton,135I. Chakaberia,135A. Ivanov,135S. Khalil,135M. Makouski,135

Y. Maravin,135S. Shrestha,135I. Svintradze,135J. Gronberg,136D. Lange,136D. Wright,136A. Baden,137 M. Boutemeur,137B. Calvert,137S. C. Eno,137J. A. Gomez,137N. J. Hadley,137R. G. Kellogg,137M. Kirn,137

(11)

J. Temple,137M. B. Tonjes,137S. C. Tonwar,137E. Twedt,137G. Bauer,138J. Bendavid,138W. Busza,138E. Butz,138 I. A. Cali,138M. Chan,138V. Dutta,138G. Gomez Ceballos,138M. Goncharov,138K. A. Hahn,138Y. Kim,138 M. Klute,138K. Krajczar,138,fffW. Li,138P. D. Luckey,138T. Ma,138S. Nahn,138C. Paus,138D. Ralph,138C. Roland,138

G. Roland,138M. Rudolph,138G. S. F. Stephans,138F. Sto¨ckli,138K. Sumorok,138K. Sung,138D. Velicanu,138 E. A. Wenger,138R. Wolf,138B. Wyslouch,138S. Xie,138M. Yang,138Y. Yilmaz,138A. S. Yoon,138M. Zanetti,138

S. I. Cooper,139B. Dahmes,139A. De Benedetti,139G. Franzoni,139A. Gude,139S. C. Kao,139K. Klapoetke,139 Y. Kubota,139J. Mans,139N. Pastika,139R. Rusack,139M. Sasseville,139A. Singovsky,139N. Tambe,139 J. Turkewitz,139L. M. Cremaldi,140R. Kroeger,140L. Perera,140R. Rahmat,140D. A. Sanders,140E. Avdeeva,141 K. Bloom,141S. Bose,141J. Butt,141D. R. Claes,141A. Dominguez,141M. Eads,141J. Keller,141I. Kravchenko,141

J. Lazo-Flores,141H. Malbouisson,141S. Malik,141G. R. Snow,141U. Baur,142A. Godshalk,142I. Iashvili,142 S. Jain,142A. Kharchilava,142A. Kumar,142S. P. Shipkowski,142K. Smith,142G. Alverson,143E. Barberis,143 D. Baumgartel,143M. Chasco,143J. Haley,143D. Nash,143D. Trocino,143D. Wood,143J. Zhang,143A. Anastassov,144

A. Kubik,144N. Mucia,144N. Odell,144R. A. Ofierzynski,144B. Pollack,144A. Pozdnyakov,144M. Schmitt,144 S. Stoynev,144M. Velasco,144S. Won,144L. Antonelli,145D. Berry,145A. Brinkerhoff,145M. Hildreth,145 C. Jessop,145D. J. Karmgard,145J. Kolb,145K. Lannon,145W. Luo,145S. Lynch,145N. Marinelli,145D. M. Morse,145 T. Pearson,145R. Ruchti,145J. Slaunwhite,145N. Valls,145M. Wayne,145M. Wolf,145B. Bylsma,146L. S. Durkin,146

A. Hart,146C. Hill,146R. Hughes,146K. Kotov,146T. Y. Ling,146D. Puigh,146M. Rodenburg,146C. Vuosalo,146 G. Williams,146B. L. Winer,146N. Adam,147E. Berry,147P. Elmer,147D. Gerbaudo,147V. Halyo,147P. Hebda,147

J. Hegeman,147A. Hunt,147P. Jindal,147D. Lopes Pegna,147P. Lujan,147D. Marlow,147T. Medvedeva,147 M. Mooney,147J. Olsen,147P. Piroue´,147X. Quan,147A. Raval,147B. Safdi,147H. Saka,147D. Stickland,147 C. Tully,147J. S. Werner,147A. Zuranski,147J. G. Acosta,148E. Brownson,148X. T. Huang,148A. Lopez,148 H. Mendez,148S. Oliveros,148J. E. Ramirez Vargas,148A. Zatserklyaniy,148E. Alagoz,149V. E. Barnes,149 D. Benedetti,149G. Bolla,149D. Bortoletto,149M. De Mattia,149A. Everett,149Z. Hu,149M. Jones,149O. Koybasi,149 M. Kress,149A. T. Laasanen,149N. Leonardo,149V. Maroussov,149P. Merkel,149D. H. Miller,149N. Neumeister,149 I. Shipsey,149D. Silvers,149A. Svyatkovskiy,149M. Vidal Marono,149H. D. Yoo,149J. Zablocki,149Y. Zheng,149

S. Guragain,150N. Parashar,150A. Adair,151C. Boulahouache,151K. M. Ecklund,151F. J. M. Geurts,151 B. P. Padley,151R. Redjimi,151J. Roberts,151J. Zabel,151B. Betchart,152A. Bodek,152Y. S. Chung,152R. Covarelli,152

P. de Barbaro,152R. Demina,152Y. Eshaq,152A. Garcia-Bellido,152P. Goldenzweig,152J. Han,152A. Harel,152 D. C. Miner,152D. Vishnevskiy,152M. Zielinski,152A. Bhatti,153R. Ciesielski,153L. Demortier,153K. Goulianos,153

G. Lungu,153S. Malik,153C. Mesropian,153S. Arora,154A. Barker,154J. P. Chou,154C. Contreras-Campana,154 E. Contreras-Campana,154D. Duggan,154D. Ferencek,154Y. Gershtein,154R. Gray,154E. Halkiadakis,154 D. Hidas,154A. Lath,154S. Panwalkar,154M. Park,154R. Patel,154V. Rekovic,154J. Robles,154K. Rose,154S. Salur,154

S. Schnetzer,154C. Seitz,154S. Somalwar,154R. Stone,154S. Thomas,154G. Cerizza,155M. Hollingsworth,155 S. Spanier,155Z. C. Yang,155A. York,155R. Eusebi,156W. Flanagan,156J. Gilmore,156T. Kamon,156,ggg V. Khotilovich,156R. Montalvo,156I. Osipenkov,156Y. Pakhotin,156A. Perloff,156J. Roe,156A. Safonov,156

T. Sakuma,156S. Sengupta,156I. Suarez,156A. Tatarinov,156D. Toback,156N. Akchurin,157J. Damgov,157 P. R. Dudero,157C. Jeong,157K. Kovitanggoon,157S. W. Lee,157T. Libeiro,157Y. Roh,157I. Volobouev,157 E. Appelt,158C. Florez,158S. Greene,158A. Gurrola,158W. Johns,158C. Johnston,158P. Kurt,158C. Maguire,158 A. Melo,158P. Sheldon,158B. Snook,158S. Tuo,158J. Velkovska,158M. W. Arenton,159M. Balazs,159S. Boutle,159

B. Cox,159B. Francis,159J. Goodell,159R. Hirosky,159A. Ledovskoy,159C. Lin,159C. Neu,159J. Wood,159 R. Yohay,159S. Gollapinni,160R. Harr,160P. E. Karchin,160C. Kottachchi Kankanamge Don,160P. Lamichhane,160

A. Sakharov,160M. Anderson,161M. Bachtis,161D. Belknap,161L. Borrello,161D. Carlsmith,161M. Cepeda,161 S. Dasu,161L. Gray,161K. S. Grogg,161M. Grothe,161R. Hall-Wilton,161M. Herndon,161A. Herve´,161P. Klabbers,161

J. Klukas,161A. Lanaro,161C. Lazaridis,161J. Leonard,161R. Loveless,161A. Mohapatra,161I. Ojalvo,161 F. Palmonari,161G. A. Pierro,161I. Ross,161A. Savin,161W. H. Smith,161and J. Swanson161

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

(12)

5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 40Institute of Nuclear Physics ‘‘Demokritos’’, Aghia Paraskevi, Greece

41University of Athens, Athens, Greece 42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46Panjab University, Chandigarh, India

47University of Delhi, Delhi, India 48Saha Institute of Nuclear Physics, Kolkata, India

49Bhabha Atomic Research Centre, Mumbai, India 50

Tata Institute of Fundamental Research-EHEP, Mumbai, India 51Tata Institute of Fundamental Research-HECR, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53aINFN Sezione di Bari, Bari, Italy 53bUniversita` di Bari, Bari, Italy 53cPolitecnico di Bari, Bari, Italy 54aINFN Sezione di Bologna, Bologna, Italy

54bUniversita` di Bologna, Bologna, Italy 55aINFN Sezione di Catania, Catania, Italy, USA

55b

Universita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

56bUniversita` di Firenze, Firenze, Italy

57INFN Laboratori Nazionali di Frascati, Frascati, Italy 58INFN Sezione di Genova, Genova, Italy

(13)

59aINFN Sezione di Milano-Bicocca, Milano, Italy 59bUniversita` di Milano-Bicocca, Milano, Italy

60aINFN Sezione di Napoli, Napoli, Italy 60bUniversita` di Napoli ‘‘Federico II’’, Napoli, Italy

61aINFN Sezione di Padova, Padova, Italy 61bUniversita` di Padova, Padova, Italy 61cUniversita` di Trento (Trento), Padova, Italy

62aINFN Sezione di Pavia 62b

Universita` di Pavia

63aINFN Sezione di Perugia, Perugia, Italy 63bUniversita` di Perugia, Perugia, Italy

64aINFN Sezione di Pisa, Pisa, Italy 64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65aINFN Sezione di Roma, Roma, Italy 65bUniversita` di Roma ‘‘La Sapienza’’, Roma, Italy

66aINFN Sezione di Torino, Torino, Italy 66bUniversita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67bUniversita` di Trieste, Trieste, Italy 68Kangwon National University, Chunchon, Korea

69Kyungpook National University, Daegu, Korea

70Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71

Korea University, Seoul, Korea 72University of Seoul, Seoul, Korea 73Sungkyunkwan University, Suwon, Korea

74Vilnius University, Vilnius, Lithuania

75Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 76Universidad Iberoamericana, Mexico City, Mexico

77Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 78Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

79University of Auckland, Auckland, New Zealand 80University of Canterbury, Christchurch, New Zealand

81National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 82Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

83Soltan Institute for Nuclear Studies, Warsaw, Poland

84Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 85Joint Institute for Nuclear Research, Dubna, Russia

86Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia 87Institute for Nuclear Research, Moscow, Russia

88Institute for Theoretical and Experimental Physics, Moscow, Russia 89Moscow State University, Moscow, Russia

90P.N. Lebedev Physical Institute, Moscow, Russia

91State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 92University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

93Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 94

Universidad Auto´noma de Madrid, Madrid, Spain 95Universidad de Oviedo, Oviedo, Spain

96Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 97CERN, European Organization for Nuclear Research, Geneva, Switzerland

98Paul Scherrer Institut, Villigen, Switzerland

99Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 100Universita¨t Zu¨rich, Zurich, Switzerland

101National Central University, Chung-Li, Taiwan 102National Taiwan University (NTU), Taipei, Taiwan

103

Cukurova University, Adana, Turkey

104Middle East Technical University, Physics Department, Ankara, Turkey 105Bogazici University, Istanbul, Turkey

106Istanbul Technical University, Istanbul, Turkey

(14)

108University of Bristol, Bristol, United Kingdom 109Rutherford Appleton Laboratory, Didcot, United Kingdom

110Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom

112Baylor University, Waco, Texas, USA

113The University of Alabama, Tuscaloosa, Alabama, USA 114Boston University, Boston, Masschusetts, USA 115Brown University, Providence, Rhode Island, USA 116

University of California, Davis, Davis, California, USA 117University of California, Los Angeles, Los Angeles, California, USA

118University of California, Riverside, Riverside, California, USA 119University of California, San Diego, La Jolla, California, USA 120University of California, Santa Barbara, Santa Barbara, California, USA

121California Institute of Technology, Pasadena, California, USA 122Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 123University of Colorado at Boulder, Boulder, Colorado, USA

124Cornell University, Ithaca, New York, USA 125Fairfield University, Fairfield, Connecticut, USA 126Fermi National Accelerator Laboratory, Batavia, Illinois, USA

127University of Florida, Gainesville, Florida, USA 128Florida International University, Miami, Florida, USA

129Florida State University, Tallahassee, Florida, USA 130Florida Institute of Technology, Melbourne, Florida, USA 131University of Illinois at Chicago (UIC), Chicago, Illinois, USA

132

The University of Iowa, Iowa City, Iowa, USA 133Johns Hopkins University, Baltimore, Maryland, USA

134The University of Kansas, Lawrence, Kansas, USA 135Kansas State University, Manhattan, Kansas, USA

136Lawrence Livermore National Laboratory, Livermore, California, USA 137University of Maryland, College Park, Maryland, USA 138Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

139University of Minnesota, Minneapolis, Minnesota, USA 140University of Mississippi, Oxford, Mississippi, USA 141University of Nebraska-Lincoln, Lincoln, Nebraska, USA 142State University of New York at Buffalo, Buffalo, New York, USA

143Northeastern University, Boston, Massachusetts, USA 144Northwestern University, Evanston, Illinois, USA 145University of Notre Dame, Notre Dame, Indiana, USA

146The Ohio State University, Columbus, Ohio, USA 147Princeton University, Princeton, New Jersey, USA 148University of Puerto Rico, Mayaguez, Puerto Rico, USA

149Purdue University, West Lafayette, Indiana, USA 150Purdue University Calumet, Hammond, Indiana, USA

151Rice University, Houston, Texas, USA 152University of Rochester, Rochester, New York, USA 153The Rockefeller University, New York, New York, USA

154Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA 155

University of Tennessee, Knoxville, Tennessee, USA 156Texas A&M University, College Station, Texas, USA

157Texas Tech University, Lubbock, Texas, USA 158Vanderbilt University, Nashville, Tennessee, USA 159University of Virginia, Charlottesville, Virginia, USA

160Wayne State University, Detroit, Michigan, USA 161University of Wisconsin, Madison, Wisconsin, USA

aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. dAlso at Universidade Federal do ABC, Santo Andre, Brazil.

(15)

fAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. hAlso at Suez Canal University, Suez, Egypt.

iAlso at Zewail City of Science and Technology, Zewail, Egypt. jAlso at Cairo University, Cairo, Egypt.

kAlso at Fayoum University, El-Fayoum, Egypt. lAlso at Ain Shams University, Cairo, Egypt. mNow at British University, Cairo, Egypt.

nAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland. oAlso at Universite´ de Haute-Alsace, Mulhouse, France. pNow at Joint Institute for Nuclear Research, Dubna, Russia. qAlso at Moscow State University, Moscow, Russia.

rAlso at Brandenburg University of Technology, Cottbus, Germany. sAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. t

Also at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

uAlso at Tata Institute of Fundamental Research-HECR, Mumbai, India. vAlso at University of Visva-Bharati, Santiniketan, India.

wAlso at Sharif University of Technology, Tehran, Iran. xAlso at Isfahan University of Technology, Isfahan, Iran. yAlso at Shiraz University, Shiraz, Iran.

zAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran. aaAlso at Facolta` Ingegneria Universita` di Roma, Roma, Italy.

bbAlso at Universita` della Basilicata, Potenza, Italy.

ccAlso at Universita` degli Studi Guglielmo Marconi, Roma, Italy. ddAlso at Universita` degli studi di Siena, Siena, Italy.

eeAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania. ffAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia.

ggAlso at University of Florida, Gainesville, Florida, USA.

hhAlso at University of California, Los Angeles, Los Angeles, California, USA. ii

Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

jjAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. kkAlso at University of Athens, Athens, Greece.

llAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. mmAlso at The University of Kansas, Lawrence, Kansas, USA.

nnAlso at Paul Scherrer Institut, Villigen, Switzerland.

ooAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. ppAlso at Gaziosmanpasa University, Tokat, Turkey.

qqAlso at Adiyaman University, Adiyaman, Turkey. rrAlso at The University of Iowa, Iowa City, Iowa, USA. ssAlso at Mersin University, Mersin, Turkey.

ttAlso at Ozyegin University, Istanbul, Turkey. uuAlso at Kafkas University, Kars, Turkey.

vvAlso at Suleyman Demirel University, Isparta, Turkey. ww

Also at Ege University, Izmir, Turkey.

xxAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. yyAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

zzAlso at University of Sydney, Sydney, Australia. aaaAlso at Utah Valley University, Orem, Utah, USA. bbbAlso at Institute for Nuclear Research, Moscow, Russia.

cccAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. dddAlso at Argonne National Laboratory, Argonne, Illinois, USA.

eeeAlso at Erzincan University, Erzincan, Turkey.

fffAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. gggAlso at Kyungpook National University, Daegu, Korea.

Figura

FIG. 1 (color online). Dimuon invariant mass distribution for the barrel (upper) and end caps (lower) after the event selection
FIG. 2 (color online). Upper limits at 95% C.L. on   Bðpp ! a !  þ   Þ in mass range 1 (upper panel) and mass range 2 (lower panel) including systematic uncertainties

Riferimenti

Documenti correlati

Onchocerca lupi paramyosin (Ol-para, 2,643 bp cDNA) was herein isolated and characterised in adults, both males and females, and microfilariae.. The predicted Ol- PARA protein (i.e.

In 2012, during a conference in Rome about Late Antique plates deco- rated with engravings, I presented a paper about the potentially very useful contribute that the

In both cases, an accurate reflection is needed: archaic texts often present palaeographic characters, writing techniques and linguistic issues that are completely different from

Per esempio, venivano ammessi alla ricollocazione solo i richiedenti appartenenti a nazionalità per le quali la percentuale di decisioni di riconoscimento della

To identify the miRNA targetome, the 560 DE mRNAs and the 6 DE miRNAs were selected for gene target analysis, using an integrated approach of validated and predicted interaction

The ALICE Collaboration acknowledges the following funding agencies for their support in building and run- ning the ALICE detector: State Committee of Science, World Fed- eration

The clotting time was evaluated manually, and the anticoagulant activity at each cell concentration was calculated as the ratio between the clotting time of patient plasma and

Peripheral insulin resistance (IR) promotes increased production of free fatty acids (FFA) direct in the liver, resulting in an imbalance between oxidation/divestiture