• Non ci sono risultati.

Problema n.117 de "La Gaceta de la RSME"

N/A
N/A
Protected

Academic year: 2021

Condividi "Problema n.117 de "La Gaceta de la RSME""

Copied!
3
0
0

Testo completo

(1)

Proposed problem Dear Oscar, I would like to submit the following problem

Let α and β be real numbers such that for any positive integer k

α ̸= −2k, α ̸= (2k − 1), β ̸= 2k + 2, β ̸= −2k − 1. Define an . = nk=1 α + (−1)kk β + (−1)k+1+ (−1)k+1(k + 1) and T (α, β)= lim. N→∞ Nn=1 an, U (α, β) . = lim N→∞ Nn=1 nan, S(α, β) . = lim N→∞ Nn=1 (−1)nan

a) Prove that if −1 < α + β < 1, the limits exist.

b) Find the values of (α, β) such that (β + α)S(α, β)− 3T (α, β) − 2U(α, β) > 0

Proof a). Define cn = (−1)nan. We start with the limit defining S(α, β) and prove that asymptotically cn has definite sign.

cn

cn−1

= α + (−1) nn

β + (−1)n+1+ (−1)n+1(n + 1) For n even the ratio is cn

cn−1

= α + n

β− 1 − (n + 1) and asymptotically we have cn cn−1 = 1 + β + α− 2 n + O(n −2), pn pn−1 = 1 1 n 2 n ln n + O(n −2). If β + α− 2 < −1 that is β + α < 1, it follows cn/cn−1 < pn/pn−1. For n odd the ratio is cn

cn−1 =

α− n

β + 1 + (n + 1) and asymptotically we have cn cn−1 = 1 + −β − α − 2 n + O(n −2), If −β − α − 2 < −1 that is β + α > −1, it follows cn/cn−1 < pn/pn−1.

Moreover since +1 is the leading term of the asymptotic expansions of the ratios cn/cn−1, we can affirm that cn has definitively constant sign. Combining the two cases, we obtain the convergence of the limit S(α, β) provided that −1 < β + α < 1.

Moreover we have qn qn−1 = 1 1 n− 1 n ln n + O(1/n 2) 1

(2)

Thus if β + α > 1 we would have for n even cn/cn−1 ≥ qn/qn−1 yielding divergence since we know that ∑q2n diverges. If β + α ≤ −1 the same occurs for n odd letting us to conclude that the series defining S(α, β) converges if and only if −1 < β + α < 1.

• The convergence of the limit T (α, β) for |α + β| < 1 follows immediately since it is an

alternating series (an = (−1)ncn) converging absolutely as showed although we have not found its character for |α + β| ≥ 1

• As for the convergence of the limit U(α, β), it defines also a Leibnitz–series. Since bn = (−1)nncn, it suffices to show that |bn| goes to zero monotonically. To this end we employ the theorem whose proof we omit since it is well known, just apply Cauchy–property of any convergent sequence and use monotonicity

Theorem Ifxn is a convergent series of positive, monotone terms, then nxn → 0 Thus we have ncn→ 0.

The monotonicity of ncn amounts to show

cn

cn−1 n

n− 1 ≤ 1.

For n even we have

cn cn−1 n n− 1 = ( 1 + 1 n ) ( 1 + α + β− 2 n + O(1/n 2 ) ) = = 1 + β + α− 1 n + O(n −2)≤ 1 for β + α < 1

For n odd we have

cn cn−1 n n− 1 = ( 1 + 1 n ) ( 1 + −α − β − 2 n + O(1/n 2 ) ) = = 1 + −β − α − 1 n + O(n −2)≤ 1 for β + α >−1

To prove b) we show that

(β + α)S(α, β)− 3T (α, β) − 2U(α, β) + αc1+ b1+ 2a1 = 0, |β + α| < 1

Since S(α, β) is finite for any |α + β| < 1, and αc1+ b1+ a1 = α− 1, b) follows.

To this end let’s rewrite the ratio cn/cn−1 as

cnβ + αcn−1+ cn(−1)n+1+ cn(−1)n+1(n + 1) + (−1)nncn−1 = 0 or

cn(β + α) + α(cn−1− cn) + cn(−1)n+1+ cn(−1)n+1(n + 1) + (−1)nncn−1 = 0 2

(3)

By summing between n = 2 and n = N and telescoping we get (β + α) Nn=2 cn+ αc1− αcN Nn=2 an− Nn=2 (an+ bn)− Nn=2 (an−1+ bn−1)

The limit N → ∞ yields

(β + α)S(α, β)− 3T (α, β) − 2U(α, β) + αc1+ 2a1+ b1 = 0

or

(β + α)S(α, β)− 3T (α, β) − 2U(α, β) = (α− 1)(α − 3)

β + 3

The answer to b) is thus α < 1 or α > 3 and β >−3 and clearly |α + β| < 1. The second possible condition 1 < α < 3 and β <−3 is actually forbidden by |α + β| < 1.

References

[1] Prob. num. 11260, Amer.Math.Monthly, Vol.113, num.10, 2006 [2] Prob. num. 11409, Amer.Math.Monthly, Vol.116, num.1,n 2009 [3] Prob. num. 11473, Amer.Math.Monthly, Vol.116, num.10, 2009

[4] Prob. num. 3583, Crux Mathematicorum with Math. Mayhem, Vol.36–7, Nov.2010

Perfetti Paolo, Dipartimento di Matematica, Universit`a degli studi di Tor Vergata Roma, via della ricerca scientifica, 00133 Roma, Italy

email: perfetti@mat.uniroma2.it

Roma(Italy) 06/15/2013 Best regards

Paolo Perfetti

Riferimenti

Documenti correlati

Universit` a degli Studi di Roma Tor Vergata.. Corso di Laurea in Ingegneria Civile

Sistemi a chiave pubblica Il metodo di Cesare `e un metodo a chiave privata, cio`e l’informazione grazie alla quale si pu`o sia criptare permette facilmente anche di decifrarlo:

Per determinare una tale base R, determiniamo separatamente una base per ciascun autospazio: la base R sar` a l’unione delle basi degli autospazi. Cerchiamo quindi una

5.1) Considera un insieme X, dotato della topologia cofinita. Esibisci un ricoprimento aperto di S che non ammette sottoricoprimento finito.. 5.3) Sia B una base per la topologia di

7.1) Determina uno spazio topologico X e una famiglia numerabile di compatti la cui unione non sia compatta.. 7.2) Esibisci uno spazio metrico (X, d) ed un sottoinsieme S chiuso

11.3) Determina il gruppo fondamentale dello spazio topolgico X ottenuto togliendo m punti distinti a R

3.13) Determinare una retta che interseca la propria coniugata solo nel punto A(2, −7). Tale piano ` e unico? Determinare inoltre la giacitura del piano α e discutere se tale

Universit` a degli Studi di Roma Tor Vergata.. Corso di Laurea