Contents lists available atScienceDirect
Physics
Letters
B
www.elsevier.com/locate/physletb
Observation
of
the
B
0
→
ρ
0
ρ
0
decay
from
an
amplitude
analysis
of
B
0
→ (
π
+
π
−
)(
π
+
π
−
)
decays
.
LHCb
Collaboration
a
r
t
i
c
l
e
i
n
f
o
a
b
s
t
r
a
c
t
Articlehistory: Received26March2015
Receivedinrevisedform18May2015 Accepted10June2015
Availableonline15June2015 Editor:M.Doser
Proton–proton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb−1, are analysed to search for the charmless B0→
ρ
0ρ
0 decay. More than 600 B0→ (π
+π
−)(π
+π
−) signal decays are selected and used to performan amplitude analysis, under theassumption ofnoCPviolationin thedecay, from whichthe B0→ρ
0ρ
0 decayis observedforthefirsttimewith7.1standarddeviationssignificance.ThefractionofB0→ρ
0ρ
0decays yielding alongitudinally polarised final stateis measured to be fL=0.745+−00..048058(stat)±0.034(syst). The B0→ρ
0ρ
0branchingfraction,using the B0→ φK∗(892)0 decayas reference,isalsoreported asB(B0→
ρ
0ρ
0)= (0.94±0.17(stat)±0.09(syst)±0.06(BF))×10−6.©2015CERNforthebenefitoftheLHCbCollaboration.PublishedbyElsevierB.V.Thisisanopenaccess articleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
The study of B meson decays to
ρρ
final states provides themostpowerfulconstraintto datefortheCabibbo–Kobayashi– Maskawa(CKM)angleα
≡
arg(
VtdVtb∗)/(
VudVub∗)
[1–3].Mostof thephysics informationis providedby thedecay B0
→
ρ
+ρ
− asmeasuredatthee+e− collidersatthe
ϒ(
4S)
resonance[4,5],1 for whichthedominantdecayamplitude,involvingtheemissionofaW boson only (tree), exhibitsa phase difference that can be in-terpreted asthe sum of the CKM angles
β
+
γ
=
π
−
α
in the StandardModel.Thesubleadingamplitudeassociatedwiththe ex-changeofaW bosonandaquark (penguin)mustbedetermined inordertointerprettheelectroweakphase differenceintermsof theangleα
.Thisisrealisedbymeansofanisospinanalysis involv-ing the companionmodes B+→
ρ
+ρ
0 [6,7] and B0→
ρ
0ρ
0 [8, 9].2Inparticular,thesmallnessoftheamplitudeofthelatterleads toabetterconstraintonα
.The BaBar and Belle experiments reported evidence for the
B0
→
ρ
0ρ
0 decay [8,9] with an average branching fraction ofB(
B0→
ρ
0ρ
0)
= (
0.
97±
0.
24)
×
10−6 [8,9]. Despite smallob-served signal yields, each experiment measured the fraction fL
ofdecaysyieldingalongitudinallypolarisedfinalstatethroughan angularanalysis.TheBelle Collaboration didnotfindevidencefor polarisation, fL
=
0.
21+−00..2226[9],whiletheBaBar experimentmea-sureda mostly longitudinallypolarised decay, fL
=
0.
75+−00..1215 [8].These results differ at the level of 2
.
0 standard deviations. The1 Chargeconjugationisimplicitthroughoutthetextunlessotherwisestated. 2 ρ0standsforρ0(770)throughoutthetext.
largeLHCb datasetmayshedlightonthisdiscrepancy.Inaddition, LHCb mayconfirmthehintofB0
→
ρ
0f0
(
980)
decaysreportedbyBelle[9].MeasurementsoftheB0
→
ρ
0ρ
0 branchingfractionandlongitudinalpolarisationfractionatLHCb canbeusedasinputsin thedeterminationof
α
[2,3].This work focuses on the search and study of the B0
→
(
π
+π
−)(
π
+π
−)
decay in which the two(
π
+π
−)
pairs are se-lected in the low invariant mass range (<
1100 MeV/
c2). TheB0
→
ρ
0ρ
0 isexpectedtodominatethe(
π
+π
−)
massspectrum.The
(
π
+π
−)
combinationscanactuallyemergefromS-wave non-resonant andresonant contributions or other P- orD-wave reso-nancesinterferingwiththesignal.Hence,thedeterminationoftheB0
→
ρ
0ρ
0 yieldsrequiresatwo-bodymassandangularanalysis,fromwhichthe fractionofthelongitudinallypolarisedfinal state canbemeasured.
The branching fraction is measured relative to the B0
→
φ
K∗(
892)
0 mode. The B0→ φ
K∗(
892)
0 decay, which results in four light mesons inthe final state, issimilar to the signal, thus allowing foracancellationoftheuncertainties intheratioof se-lectionefficiencies.2. Datasetsandselectionrequirements
The analysed data correspond to an integrated luminosity of 1
.
0 fb−1 and2.
0 fb−1 from pp collisionsrecordedata centre-of-mass energy of 7 TeV,collected in 2011, and 8 TeV, collected in 2012,bytheLHCb experimentatCERN.The LHCb detector[10,11] isa single-armforward spectrome-tercoveringthepseudorapidity range 2
<
η
<
5,designedforthe study of particles containing b or c quarks. It includes ahigh-http://dx.doi.org/10.1016/j.physletb.2015.06.027
0370-2693/©2015CERNforthebenefitoftheLHCbCollaboration.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
precisiontrackingsystemconsistingofasilicon-stripvertex detec-torsurroundingthepp interactionregion[12],alarge-area silicon-stripdetectorlocatedupstreamofadipolemagnetwithabending power of about 4 Tm, and three stations of silicon-strip detec-torsandstraw drifttubes[13]placeddownstreamofthemagnet. Thetrackingsystemprovidesameasurementofmomentum,p,of chargedparticleswitharelativeuncertaintythatvariesfrom0.5% atlow momentum to 1.0% at200 GeV
/
c. The minimumdistance ofatracktoaprimary vertex,theimpactparameter,ismeasured with a resolution of(
15+
29/
pT)
μm, where pT is thecompo-nentofthemomentumtransversetothebeam,inGeV
/
c.Different typesofchargedhadronsaredistinguishedusinginformationfrom tworing-imaging Cherenkov(RICH)detectors [14]. Photons, elec-tronsandhadronsareidentifiedbyacalorimetersystemconsisting of scintillating-pad and preshower detectors, an electromagnetic calorimeterandahadroniccalorimeter.Muonsare identifiedbya systemcomposed ofalternatinglayers ofironandmultiwire pro-portionalchambers[15].The onlineeventselection is performed byatrigger[16],whichconsistsofahardwarestage,basedon in-formationfromthe calorimeterandmuonsystems,followedby a softwarestage,whichappliesafulleventreconstruction.Inthisanalysistwocategoriesofeventsthatpassthehardware trigger stage are considered: those where the trigger decisionis satisfied by the signal b-hadron decayproducts (TOS) and those whereonlytheother activityinthe eventdetermines thetrigger decision(TIS).Thesoftwaretriggerrequiresatwo-,three- or four-tracksecondary vertexwithlargetransversemomentaofcharged particles anda significant displacementfrom theprimary pp
in-teractionvertices (PVs).Atleastonechargedparticleshouldhave
pT
>
1.
7 GeV/
c andisrequiredtobeinconsistentwithoriginatingfromanyprimaryinteraction.Amultivariatealgorithm[17]isused fortheidentificationofsecondaryverticesconsistentwiththe de-cayofab hadron.
Further selection criteria are applied offline to reduce the number of background events with respect to the signal. The
(
π
+π
−)
candidatesmusthavetransversemomentum largerthan 600 MeV/
c, with at least one charged decay product with pT>
1000 MeV
/
c.Thetwo(
π
+π
−)
pairsarethencombinedtoformaB0 candidatewith a goodvertex quality andtransverse
momen-tumlarger than 2500 MeV
/
c.The invariant mass of each pairof opposite-chargepionsformingthe B0 candidateisrequiredto be intherange300–1100 MeV/
c2.Theidentificationofthefinal-stateparticles(PID)isperformedwithdedicatedneural-networks-based discriminatingvariables that combineinformation fromthe RICH detectorsandotherpropertiesoftheevent[14].Thecombinatorial backgroundisfurthersuppressedwithmultivariatediscriminators based on a boosted decision tree algorithm (BDT) [18,19]. The BDT is trainedwith simulated B0
→
ρ
0ρ
0 (whereρ
0→
π
+π
−) eventsas signal sample and candidates reconstructed with four-bodymass inexcess of5420 MeV/
c2 asbackgroundsample. The discriminatingvariablesarebasedonthekinematicsofthe Bde-cay candidate(B pT and theminimum pT of thetwo
ρ
0candi-dates)andongeometrical vertexmeasurements(qualityofthe B
candidatevertex,impactparametersignificancesofthedaughters,
B flight distancesignificance and B pointing to theprimary ver-tex). The optimal thresholds for the BDT and PID discriminating variables are determined simultaneously by means ofa frequen-tistestimator for which no hypothesis on the signal yield is as-sumed [20]. The B0 meson candidates are accepted in the mass
range5050–5500 MeV
/
c2.Thenormalisationmode B0
→ φ
K∗(
892)
0 isselectedwith sim-ilar criteria, requiring in addition that the invariant mass of the(
K+π
−)
candidate is found in a range of±
150 MeV/
c2 around theknownvalueoftheK∗(
892)
0mesonmass[21]andthe invari-antmassofthe(
K+K−)
pairisinarangeof±
15 MeV/
c2centredattheknownvalueofthe
φ
mesonmass[21].Asampleenriched inB0→ (
K+π
−)(
π
+π
−)
eventsisselectedusingthesameranges in(
π
+π
−)
and(
K+π
−)
massestoestimate thebackgroundwith onemisidentifiedkaon.The presenceof
(
π
+π
−)
pairsoriginatingfrom J/ψ
,χ
c0 andχc2
charmoniadecaysisvetoedbyrequiringtheinvariantmassesM of all possible
(
π
+π
−)
pairs to be|
M−
M0|
>
30 MeV/
c2,whereM0 standsforthecorrespondingknownvaluesofthe J
/ψ
,χc0
andχ
c2mesonmasses[21].Similarly,thedecaysD0→
K−π
+and D0
→
π
+π
− are vetoed by requiring the corresponding in-variantmassestodifferby25 MeV/
c2ormorefromtheknownD0mesonmass[21].Toreducecontaminationfromothercharm back-groundsandfromthe B0
→
a+1
(
→
ρ
0π
+)
π
−decay,theinvariantmassofanythree-bodycombinationintheeventisrequiredtobe largerthan2100 MeV
/
c2.Simulated B0
→
ρ
0ρ
0 and B0→ φ
K∗(
892)
0 decays are alsoused for determining the relative reconstruction efficiencies. The
pp collisionsaregeneratedusingPythia[22]withaspecificLHCb configuration [23]. Decays of hadronicparticles are described by EvtGen [24]. The interaction ofthe generated particles with the detector and its response are implemented using the Geant4 toolkit[25]asdescribedinRef.[26].
3. Four-bodymassfit
Thefour-bodymassspectrum M
(
π
+π
−)(
π
+π
−)
isfitwithan unbinnedextendedlikelihood.Thefitisperformedsimultaneously for the two data taking periods together with the normalisation channelM(
K+K−)(
K+π
−)
andPIDmisidentificationcontrol chan-nelM(
K+π
−)(
π
+π
−)
massspectra.Thefour-bodyinvariantmass modelsaccountforB0andpossibleB0s signals,combinatorial back-grounds, signal cross-feeds and background contributions arising frompartiallyreconstructedb-hadrondecaysinwhichoneormore particlesarenotreconstructed.The B0 and B0s meson shapes are modelled witha modified CrystalBalldistribution[27].Asecondpower-lawtailisaddedon the high-mass side of the signal shape to account for imperfec-tionsofthetrackingsystem.Themodelparametersaredetermined froma simultaneous fit ofsimulated signal events that fulfil the trigger,reconstructionandselectionchain,foreachdatataking pe-riod.Thevaluesofthetailparametersareidenticalforthe B0 and
B0
s mesons.Theirmassdifferenceisconstrainedtothevaluefrom
Ref.[21].ThemeanandwidthofthemodifiedCrystalBallfunction arefreeparametersofthefittothedata.
The combinatorial background in each four-body spectrum is described by an exponential function wherethe slopeis allowed tovaryinthefit.
The misidentification of one or more final-state hadrons may resultinafullyreconstructedbackgroundcontributiontothe cor-responding signal spectrum, denoted signal cross-feed. The mag-nitudeofthebranchingfractionsofthesignal andcontrol modes as well as the two-body mass selection criteria make these sig-nal cross-feeds negligible, with one exception: the misidentifica-tion of the kaon of the decay B0
→ (
K+π
−)(
π
+π
−)
as a pion yields a significant contribution in the M(
π
+π
−)(
π
+π
−)
mass spectrum. The mass shape of B0→ (
K+π
−)(
π
+π
−)
decaysre-constructed as B0
→ (
π
+π
−)(
π
+π
−)
is modelled by a Crystal Ball function, whose parameters are determined from simulated events. The yield of this signal cross-feed is allowed to vary in the fit. The measurement ofthe actual number ofreconstructedB0
→ (
K+π
−)(
π
+π
−)
events multiplied by the data-driven es-timate of the misidentification efficiency is consistent with the measuredyield.The partiallyreconstructed backgroundis modelledby an AR-GUSfunction [28]convolvedwithaGaussian functionaccounting
Fig. 1. Reconstructedinvariantmassspectrumof(left)
(
π+π−)(π+π−)and(right)(
K+K−)(K+π−).Thedataarerepresentedbytheblackdots.Thefitisrepresentedby thesolidblueline,theB0signalbythesolidredlineandtheB0sbythesolidgreenline.Thecombinatorialbackgroundisrepresentedbythepinkdottedline,thepartially
reconstructedbackgroundbythecyandottedlineandthecross-feedbythedarkbluedashedline.(Forinterpretationofthereferencestocolourinthisfigurelegend,the readerisreferredtothewebversionofthisarticle.)
Table 1
Yieldsfrom thesimultaneousfit forthe 2011and2012datasets.Thefirstand seconduncertaintiesarethestatisticalandsystematiccontributions,respectively.
Decay mode Signal yields 2011 Signal yields 2012 B0→ (π+π−)(π+π−) 185±15±4 449±24±7 B0→ (K+π−)(π+π−) 1610±42±5 3478±62±10 B0→ (K+K−)(K+π−) 1513±40±8 3602±62±10 B0 s→ (π+π−)(π+π−) 30±7±1 71±11±1 B0 s→ (K−π+)(π+π−) 40±10±3 96±14±6 B0 s→ (K+K−)(K−π+) 42±10±3 66±13±4
for resolution effects. Various mass shape parameterisations are examined.The bestfit isobtainedwhenthe endpointofthe AR-GUSfunctionisfixedtothevalue expectedwhenonepionisnot attributedtothedecay.TheothershapeparametersoftheARGUS function are free parameters ofthe fit, commonto the two data taking periods. The floating width parameter of the signal mass shapeisconstrainedtobeequaltothewidthoftheGaussian func-tionusedintheconvolution.
Fig. 1 displays the M
(
π
+π
−)(
π
+π
−)
and M(
K+K−)(
K+π
−)
spectra with the fit results overlaid. The signal event yields are shownin Table 1. Aside fromthe prominentsignal of the B0
→
(
π
+π
−)(
π
+π
−)
decays,the decay mode B0s→ (
π
+π
−)(
π
+π
−)
isobservedwithastatisticalsignificanceofmorethan10standard deviations. The statisticalsignificance is evaluated by taking the ratioof the likelihood ofthe nominal fitand ofthe fit withthe signalyieldfixedtozero.
Asystematicuncertainty duetothe fitmodelis associatedto the measured yields. The dominant uncertainties arise from the knowledge of the signal and signal cross-feed shape parameters determinedfromsimulatedevents.Severalpseudoexperimentsare generatedwhilevaryingtheshapeparameterswithintheir uncer-tainties, and the systematic uncertainties on the yields are esti-matedfromthedifferencesinresultswithrespecttothenominal fit.
4. Amplitudeanalysis
An amplitude analysis isused to determine the vector–vector (VV)contributionB0
→
ρ
0ρ
0 byusingtwo-bodymassspectraandangular variables. The four-body mass spectrum is first analysed with the sPlot technique [29] to subtract statistically the back-groundundertheB0
→ (
π
+π
−)(
π
+π
−)
signal.For the two-body mass spectra, contributions from resonant andnon-resonant scalar (S), resonant vector (V ) and tensor (T ) components are considered in the amplitude fit model through complexmasspropagators,M
(
mi)
,wherethelabeli=
1,
2 arethefirst and second pionpairs, which are assignedrandomly in ev-ery decay since they are indistinguishable.The P-wave lineshape model comprises the
ρ
0 meson, described using the Gounaris–Sakuraiparameterisation Mρ
(
mi)
[30],andtheω
meson,parame-terisedwitharelativisticspin-1Breit–WignerMω
(
mi)
.TheD-wavelineshape Mf2
(
mi)
accounts for the f2(
1270)
, modelled with arelativistic spin-2 Breit–Wigner. The S-wave model includes the
f0
(
980)
propagator Mf(980)(
mi)
, described usinga Flattéparam-eterisation[31,32],andalow-masscomponent.Thelatterincludes the broad low-mass resonance f0
(
500)
and a non-resonantcon-tributions, which are jointly modelled in the framework of the
K -matrix formalism [33] and referred as M(π π)0
(
mi)
. Followingthe K -matrix formalism, the amplitude for the low-mass
π
+π
−S-wavecanbewrittenas
A
(
m)
∝
Kˆ
1−
iρ
Kˆ
,
(1) withˆ
K≡ ˆ
Kres+ ˆ
Knon-res=
m0(
m)
(
m2 0−
m2)
ρ
(
m)
+
κ
,
(2)ρ
(
m)
=
2 q(
m)
m,
(3)where
κ
is measured to be−
0.
07±
0.
24 from a fit to the in-clusiveπ
+π
− mass distribution andm0 andare the nominal
massandmass-dependentwidthofthe f0
(
500)
,asdeterminedinRef.[34].Thefunctions
ρ
(
m)
andq(
m)
,definedinRef.[33],arethe phasespacefactorandtherelativemomentumofapionintheρ
0centre-of-masssystem.Byconvention,thephaseoftheM(π π)0
(
mi)
masspropagatorissettozeroatthe
ρ
0 nominalmass.The signal sample is described by considering the dominant amplitudesofthesignaldecay.The B
→
V V componentcontains the B→
ρ
0ρ
0 and B0→
ρ
0ω
amplitudes.The B→
V Scompo-nent accounts for B0
→
ρ
0(
π
+π
−)
0 and B0→
ρ
0f0
(
980)
am-plitudes and the B
→
V T contribution is limited to the purely longitudinalamplitudeoftheB0→
ρ
0f2
(
1270)
transition.Becauseof the broad natural width of the a±1 particle, a small contami-nation fromthedecays B0
→
a±1
π
∓ remains inthe sample. Thiscontributionwitha±1
→
ρ
0π
±inS-waveisconsideredalongwith its interference with the other amplitudes. This is done by in-troducing the CP-eveneigenstate from the linear combinationof individualamplitudesofthedecaysB0→
a+1
π
−andB0→
a−1π
+,as defined in Ref. [35]. The contribution of the decays B0
→
ωω
, B0→
f0(
980)
f0(
980)
, B0→
ω
S, B0→
ω
T ,B0→
f2(
1270)
S,B0
→
fFig. 2. Helicity angles for the(π+π−)(π+π−)system.
tobe negligible, wherethe
and⊥
subindicesindicate the par-allelandperpendicularamplitudesofthedecay.Thechoiceofthe baselinemodelwasmadepriortothemeasurementofthephysical parametersofinterestaftercomparingasetofalternative param-eterisationsaccordingtoadissimilaritystatisticaltest[36].ThedifferentialdecayrateforB0
→ (
π
+π
−)(
π
+π
−)
decaysat theB0productiontimet=
0 isgivenbyd5
d cos
θ
1d cosθ
2dϕ
dm21dm22∝
4(
m1,
m2)
11 i=1 Aifi(
m1,
m2, θ
1, θ
2,
ϕ
)
2,
(4)wherethevariables
θ
1,θ
2andϕ
arethehelicityangles,describedinFig. 2,and
4isthefour-bodyphasespacefactor.Thenotations
ofthecomplexamplitudes,Ai,andtheexpressionsoftheirrelated
angulardistributions, fi,are displayedinTable 2.The mass
prop-agatorsincludedinthe fi functionsarenormalisedtounityinthe
fitrange.
FortheCP conjugatedmode, B0
→ (
π
+π
−)(
π
+π
−)
,thedecay rateisobtainedunderthe transformation Ai→
ηi
Ai,whereη
i istheCP eigenvalueoftheCP eigenstatei,showninTable 2. Theuntaggedtime-integrated decayrateof B0 and B0 tofour pions,assumingnoCP violation,canbewrittenas
d5
(
+ )
d cosθ
1d cosθ
2dϕ
dm21dm22∝
11 j=1 i≤jR
e[
AiA∗jfif∗j](
2− δ
i j)(1+
η
iη
j)4(
m1,
m2) ,
(5)where
δ
i j=
1 wheni=
j andδ
i j=
0 otherwise.The efficiency of the selection of the final state B0
→
(
π
+π
−)(
π
+π
−)
varies as a function of the helicity angles and thetwo-bodyinvariant masses.Totake intoaccountvariations in the efficiencies, fourevent categories k are defined according to their hardware triggerdecisions(TIS orTOS)anddatataking pe-riod(2011and2012).Theacceptanceisaccountedforthroughthecomplexintegrals
ω
ki j=
(θ
1, θ
2,
ϕ
,
m1,
m2)
fif∗j(
2− δ
i j)
×
4(
m1,
m2)
d cosθ
1d cosθ
2dϕ
dm21dm22,
(6)where fi arethefunctionsgiveninTable 2and
theoverall
effi-ciency. Theintegralsarecomputedwithsimulatedeventsofeach ofthefourconsideredcategories,selectedwiththesamecriteriaas thoseappliedtodata,followingthemethoddescribedinRef.[38]. The coefficients
ω
ki j are used to determine the efficiency and to
buildaprobabilitydensityfunctionforeachcategory,whichis de-finedas Sk
(
m1,
m2, θ
1, θ
2,
ϕ
)
=
11 j=1
i≤j
R
e[
AiA∗jfif∗j](
2− δ
i j)(1+
η
iη
j)4(
m1,
m2)
11 j=1
i≤j
R
e[
AiA∗jω
ki j](
1+
η
iη
j).
(7)The four event categories are used in the simultaneous un-binned maximum likelihood fit which depends on the 19 free parametersindicatedinTable 3.
Systematic effects are estimated by fitting with the angular model and ensemble of1000 pseudoexperimentsgenerated with the same number of events asobserved in data. The biases are for theparameters ofinterest consistent with zero.A systematic uncertaintyisassignedbytaking50%ofthefitbiasorthe uncer-taintyonthermswhenthelatterisbiggerinordertoaccountfor possiblestatisticalfluctuations.
Several model related uncertainties are envisaged. The B0
→
a±1π
∓ angularmodelrequires knowledge ofthe lineshapeofthea±1 meson.Thea±1 naturalwidthischosentobe400 MeV
/
c2.Thedifference to the fit results obtained by varying the width from 250to 600 MeV
/
c2 is takenasthecorresponding systematicun-certainty.Inaddition,asystematicuncertaintyisobtainedby intro-ducingtheCP-oddcomponentinthefitmodelofthedecay ampli-tude B0
→
a±1π
∓byfixingtherelativeamplitudesof B0→
a+1π
−andB0
→
a−1
π
+ componentsto thevaluesmeasuredinRef.[39]. Table 2Amplitudes,Ai,CP eigenvalues,ηi,andmass-angledistributions, fi,oftheB0→ (π+π−)(π+π−)model.Theindicesi jkl indicate
theeightpossiblecombinationsofpairsofopposite-chargepions.Theanglesαkl,
β
i jandklaredefinedinRef.[37].
Ai ηi fi
A0
ρρ 1 Mρ(m1)Mρ(m2)cosθ1cosθ2
Aρρ 1 Mρ(m1)Mρ(m2)√12sinθ1sinθ2cosϕ
A⊥ρρ −1 Mρ(m1)Mρ(m2)√i2sinθ1sinθ2sinϕ
A0
ρω 1 √12[Mρ(m1)Mω(m2)+Mω(m1)Mρ(m2)]cosθ1cosθ2
Aρω 1 √12[Mρ(m1)Mω(m2)+Mω(m1)Mρ(m2)]√12sinθ1sinθ2cosϕ
A⊥ρω −1 √12[Mρ(m1)Mω(m2)+Mω(m1)Mρ(m2)]
i
√
2sinθ1sinθ2sinϕ
Aρ(π π )0 −1 1 √ 6[Mρ(m1)M(π π )0(m2)cosθ1+M(π π )0(m1)Mρ(m2)cosθ2] Aρf(980) −1 √16[Mρ(m1)Mf(980)(m2)cosθ1+Mf(980)(m1)Mρ(m2)cosθ2] A(π π )0(π π )0 1 M(π π )0(m1)M(π π )0(m2) 1 3 A0 ρf2 −1 5 24 Mρ(m1)Mf2(m2)cosθ1(3 cos 2θ 2−1)+Mf2(m1)Mρ(m2)cosθ2(3 cos 2θ 1−1) AS+ a1π 1 1 √ 8
Table 3
Resultsoftheunbinnedmaximumlikelihoodfittotheangularandtwo-bodyinvariantmassdistributions.Thefirstuncertaintyis statistical,thesecondsystematic.
Parameter Definition Fit result
fL |A0ρρ|2/(|A0ρρ|2+ |Aρρ|2+ |Aρρ⊥|2) 0.745−+00..048058±0.034 f |Aρρ|2/(|Aρρ|2+ |A⊥ρρ|2) 0.50±0.09±0.05 δ− δ0 arg(AρρAρρ0∗) 1.84±0.20±0.14 Fρ(π π )0 |Aρ(π π )0| 2/(|A0 ρρ|2+ |Aρρ|2+ |A⊥ρρ|2) 0.30+−00..1109±0.08 Fρf(980) |Aρf(980)|2/(|A0ρρ|2+ |Aρρ |2+ |A⊥ρρ|2) 0.29+−00..1209±0.08 F(π π )0(π π )0 |A(π π )0(π π )0| 2 /(|A0 ρρ|2+ |Aρρ|2+ |A⊥ρρ|2) 0.21+−00..0604±0.08 δ⊥− δρ(π π )0 arg(Aρρ⊥ A∗ρ(π π )0) −1.13 +0.33 −0.22±0.24 δ⊥− δρf(980) arg(A⊥ρρA∗ρf(980)) 1.92±0.24±0.16 δ(π π )0(π π )0− δ0 arg(A(π π )0(π π )0A 0∗ ρρ) 3.14+ 0.36 −0.38±0.39 Fρω (|A0ρω|2+ |Aρω|2+ |A⊥ρω|2)/(|A0ρρ|2+ |Aρρ|2+ |A⊥ρρ|2) 0.025+−00..048022±0.020 fLρω |A0ρω|2/(|A0ρω|2+ |Aρω|2+ |Aρω⊥ |2) 0.70−+00..2360±0.13 fρω |Aρω|2/(|Aρω|2+ |A⊥ρω|2) 0.97+−00..6956±0.15 δω0− δ0 arg(A0ρωA0ρρ∗) −2.56+−00..7692±0.22 δω− δ0 arg(AρωA0ρρ∗) −0.71+−00..7167±0.32 δω⊥− δρ(π π )0 arg(A⊥ρωA∗ρ(π π )0) −1.72±2.62±0.80 F0 ρf2 |A 0 ρf2| 2 /(|A0 ρρ|2+ |Aρρ|2+ |A⊥ρρ|2) 0.01+−00..0402±0.03 δ0 ρf2− δρ(π π )0 arg(A 0 ρf2A ∗ ρ(π π )0) −0.56±1.48±0.80 FS+ a1π |A S+ a1π| 2/(|A0 ρρ|2+ |Aρρ|2+ |A⊥ρρ|2) 1.4+−10..07+ 1.2 −0.8 δaS1+π− δρ(π π )0 arg(A S+ a1πA ∗ ρ(π π )0) −0.09 +0.30 −0.36±0.38
Anothersource of uncertainty originatesin the modelling ofthe lowmass
(
π
+π
−)
S-wavelineshape.The f0(
500)
massandnatu-ral widthuncertaintiesfromRef. [34] andtheuncertaintyonthe parameterthatquantifiesthenon-resonantcontributionare propa-gatedtotheangularanalysisparametersbygeneratingandfitting 1000 pseudoexperiments in which these input values are varied accordingtoa Gaussian distributionhaving their uncertainties as widths.Therootmeansquare ofthedistributionoftheresultsis assignedasasystematicuncertainty.Thesamestrategyisfollowed to estimate the systematicuncertainties originatingfrom the
ρ
0,f0
(
500)
andω
lineshapeparameters.Theuncertaintyrelatedtothe backgroundsubtractionmethod is estimated by varying within their uncertainties the fixed pa-rametersofthemassfitmodelandstudyingtheresultingangular distributionsandtwo-bodymassspectra.Thedifferencetothefit resultsistakenasasystematicuncertainty.Analternative subtrac-tionofthebackgroundestimatedfromthehigh-mass sidebandis performed,yieldingcompatibleresults.
The knowledge of the acceptance model described in Eq. (6) comes froma finite sample ofsimulated events.An ensemble of pseudoexperimentsisgeneratedbyvaryingtheacceptanceweights accordingtotheircovariancematrix.Therootmeansquare ofthe distributionoftheresultsisassignedasasystematicuncertainty.
Theresolutiononthehelicityanglesisevaluatedwith pseudo-experiments resulting in a negligible systematic uncertainty. The systematicuncertainty relatedto the
(
π
+π
−)
mass resolutionis estimatedwith pseudoexperiments by introducing a smearing of the(
π
+π
−)
mass.Differencesin theparameters betweenthefit withandwithoutsmearingaretakenasasystematicuncertainty.Table 4details thecontributions tothe systematicuncertainty inthemeasurementofthefractionofB0
→
ρ
0ρ
0signaldecaysinthe B0
→ (
π
+π
−)(
π
+π
−)
andits longitudinal polarisation frac-tion.The final resultsofthe combinedtwo-bodymassand angular analysisare shownin Fig. 3 and Table 3.The fit alsoallows for
Table 4
Relativesystematicuncertaintiesonthelongitudinalpolarisationparameter, fL,and
thefractionofB0→ρ0ρ0decaysintheB0→ (π+π−)(π+π−)sample.Themodel uncertaintyincludesthethreeuncertaintiesbelow.
Systematic effect Uncertainty onfL(%) Uncertaintyon P(B0→ρ0ρ0 )(%) Fit bias 0.1 0.8 Model 3.6 6.2 B0→a 1(1260)+π− 1.2 1.1 S-wave lineshape 3.4 6.1 Lineshapes <0.1 0.1 Background subtraction 0.1 0.5 Acceptance integrals 2.7 4.5 Angular/Mass resolution 0.8 1.5
the extractionof thefraction of B0
→
ρ
0ρ
0 decaysin the B0→
(
π
+π
−)(
π
+π
−)
sample,definedas P(
B0→
ρ
0ρ
0)
=
3 j=1
i≤j
R
e[
AiA∗jω
i j]
11 j=1
i≤j
R
e[
AiA∗jω
i j]
,
(8) whichis P(
B0→
ρ
0ρ
0)
=
0.
619±
0.
072(
stat)
±
0.
049(
syst).
The B0
→
ρ
0ρ
0signalsignificanceismeasuredtobe7.
1 standarddeviations.Thesignificanceisobtainedbydividingthevalueofthe purity by the quadrature ofthe statistical and systematic uncer-tainties. No evidenceforthe B0
→
ρ
0f0
(
980)
decaymode isob-tained.Thefractionoflongitudinalpolarisationofthe B0
→
ρ
0ρ
0decayismeasuredtobe
Fig. 3. Background-subtractedM(π+π−)1,2,cosθ1,2andϕdistributions.Theblackdotscorrespondtothefour-bodybackground-subtracteddataandtheblacklineisthe
projectionofthefitmodel.ThespecificdecaysB0→ρ0ρ0(brown),B0→ωρ0(dashedbrown),B0→V S (dashedblue),B0→S S (longdashedgreen),B0→V T (orange)
andB0→a±
1π∓ (lightblue)arealsodisplayed.TheB0→ρ0ρ0contributionissplitintolongitudinal(dashedred)andtransverse(dottedred)components.Interference
contributionsareonlyplottedforthetotal(black)model.Theefficiencyforlongitudinallypolarised B0→ρ0ρ0eventsis∼5timessmallerthanforthetransversecomponent.
(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.) 5. Branchingfractiondetermination
Thebranchingfractionofthe decaymode B0
→
ρ
0ρ
0 relativetothedecayB0
→ φ
K∗(
892)
0 canbeexpressedasB
(
B0→
ρ
0ρ
0)
B
(
B0→ φ
K∗(
892)
0)
=
λ
fL·
P(
B 0→
ρ
0ρ
0)
P(
B0→ φ
K∗(
892)
0)
×
N(
B0→ (
π
+π
−)(
π
+π
−))
N(
B0→ (
K+K−)(
K+π
−))
×
B
(φ
→
K+K−)
B
(
K∗→
K+π
−)
B
(
ρ
0→
π
+π
−)
2,
(9)wherethefactor
λ
fL correctsfordifferencesindetectionefficien-ciesbetweenexperimental andsimulateddatadueto the polari-sationhypothesis of the B0
→
ρ
0ρ
0 sample, P(
B0→
ρ
0ρ
0)
andP
(
B0→ φ
K∗(
892)
0)
are the fractions of B0→
ρ
0ρ
0 and B0→
φ
K∗(
892)
0 signals in the samplesof B0→ (
π
+π
−)(
π
+π
−)
andB0
→ (
K+K−)(
K+π
−)
decays,respectively.ThequantitiesN(
B0→
(
π
+π
−)(
π
+π
−))
andN(
B0→ (
K+K−)(
K+π
−))
aretheyieldsofB0
→ (
π
+π
−)(
π
+π
−)
and B0→ (
K+K−)(
K+π
−)
decays as de-terminedfromafittothefour-body massdistributions, weighted foreach data-taking period by the efficiencies of the signal and normalisation channels obtained from their respective simulated data.Finally,B(φ →
K+K−)
,B(
K∗(
892)
0→
K+π
−)
andB(
ρ
0→
π
+π
−)
denoteknownbranchingfractions[21].The product
λ
fL·
P(
B0
→
ρ
0ρ
0)
is determined from theam-plitudeanalysistobe1
.
13±
0.
19(
stat)
±
0.
10(
syst)
.Thisquantity ismainlyrelatedtothemodellingoftheS-wavecomponent, and dominatesthesystematicuncertaintyoftheparametersofinterest. The fraction of B0→ φ
K∗(
892)
0 present in the B0→
(
K+K−)(
K+π
−)
sample is takenfromRef. [40].A 1% systematic uncertainty is added, accounting for differences in the selection acceptanceforP- andS-wavecontributions.The amounts of B0
→ (
π
+π
−)(
π
+π
−)
and B0→
(
K+K−)(
K+π
−)
candidates are determined from the four-body massspectraanalysis andtheir associatedstatisticaland system-aticaluncertainties are propagatedquadratically tothe branching fractionuncertaintyestimate.Thelimitedsizeofthesimulatedeventssamplesthat meetall selectioncriteriaresult ina systematicuncertaintyof 1.7%(2.6%) on the measurement of the relative branching fraction for the 2011(2012) data-taking period. The impact of the discrepancies betweenexperimental andsimulated datarelated tothe B0 me-son kinematical properties is 0.6% (1.2%). The efficiencies of the particle-identification requirements are determined from control
samplesofdatawithasystematicuncertaintyof0.5%,mostly orig-inatingfromthelimitedsize ofthecalibrationsamples.An addi-tional1%systematicuncertaintyonthetrackingefficiencyisadded accountingfordifferentinteractionlengths between
π
andK .Therelativebranchingfractionismeasuredtobe
B
(
B0→
ρ
0ρ
0)
B
(
B0→ φ
K∗(
892)
0)
=
0.
094±
0.
017(
stat)
±
0.
009(
syst).
(10)The agreement between the results obtained in the two data-taking periods is tested with the best linear estimator tech-nique[41]yieldingcompatibleresults.
The average branching fraction of B0
→ φ
K∗(
892)
0 asdeter-mined in Ref. [21] does not take into account the correlations betweensystematicuncertaintiesduetotheS-wavemodelling. In-stead, we average the results fromRefs. [42–44] including these correlationstoobtain
B(
B0→ φ
K∗(
892)
0)
= (
1.
00±
0.
04±
0.
05)
×
10−5.Usingthisvaluein Eq.(10),thebranchingfractionofB0
→
ρ
0ρ
0isB
(
B0→
ρ
0ρ
0)
= (
0.
94±
0.
17(
stat)
±
0.
09(
syst)
±
0.
06(
BF))
×
10−6,
where the last uncertainty is due to the normalisation channel branching fraction. Using the B0
→
ρ
0ρ
0 branching fraction, theρ
0f0
(
980)
amplitude,aphasespacecorrectionandassuming100%correlated uncertainties, an upper limit for the B0
→
ρ
0f 0(
980)
decay,at90%confidencelevel,isobtained
B
(
B0→
ρ
0f0(
980))
×
B
(
f0(
980)
→
π
+π
−) <
0.
81×
10−6.
(11) 6. ConclusionsThe full data set collected by the LHCb experiment in 2011 and2012, corresponding to an integratedluminosity of 3
.
0 fb−1, isanalysed to searchforthe B0→
ρ
0ρ
0 decay.A yieldof634±
28
±
8 B0→ (
π
+π
−)(
π
+π
−)
signal decayswithπ
+π
− pairs in the300–1100 MeV/
c2 massrangeisobtained.Anamplitudeanal-ysisisconductedto determinethecontributionfrom B0
→
ρ
0ρ
0decays.Thisdecaymodeisobservedforthefirsttime witha sig-nificanceof7.1standarddeviations.Inthesame
π
+π
−pairsmass range,B0s
→ (
π
+π
−)(
π
+π
−)
decaysarealsoobservedwithasta-tisticalsignificanceofmorethan10standarddeviations.
Thelongitudinal polarisationfractionofthe B0
→
ρ
0ρ
0 decayis measuredto be fL
=
0.
745−+00..048058(
stat)
±
0.
034(
syst)
.TheB
(
B0→
ρ
0ρ
0)
= (
0.
94±
0.
17(
stat)
±
0.
09(
syst)
±
0.
06(
BF))
×
10−6,
where the last uncertainty is due to the normalisation channel. These resultsare the mostprecise to date and will improvethe precisionofthedeterminationoftheCKMangle
α
.The measured longitudinal polarisation fraction is consistent with the measured value from BaBar [8] while it differs by 2
.
3 standard deviations from the value obtained by Belle [9]. The branching fractionmeasurement isin agreement withthe values measuredbyboth BaBar[8]and Belle[9]Collaborations.Theevidence ofthe B0
→
ρ
0f0
(
980)
decaymodereportedbythe Belle Collaboration[9]isnotconfirmed,andanupperlimitat 90%confidencelevelisestablished
B
(
B0→
ρ
0f0(
980))
×
B
(
f0(
980)
→
π
+π
−) <
0.
81×
10−6.
AcknowledgementsWe express our gratitude to our colleagues in the CERN ac-celerator departments forthe excellent performance of the LHC. We thank the technical and administrative staff atthe LHCb in-stitutes. We acknowledge support from CERN and from the na-tional agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, HGF and MPG (Ger-many); INFN (Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Rus-sia);MinECo(Spain);SNSFandSER(Switzerland);NASU(Ukraine); STFC (United Kingdom); NSF (USA). The Tier1 computing cen-tres are supported by IN2P3 (France),KIT and BMBF(Germany), INFN(Italy),NWOandSURF(TheNetherlands),PIC(Spain),GridPP (United Kingdom). We are indebted to the communities behind the multiple open source software packages on which we de-pend.We are also thankful for thecomputing resources andthe accesstosoftwareR&Dtoolsprovidedby YandexLLC(Russia). In-dividualgroupsormembershavereceivedsupportfromEPLANET, Marie Skłodowska-Curie ActionsandERC (EuropeanUnion), Con-seilgénéraldeHaute-Savoie,LabexENIGMASSandOCEVU,Région Auvergne (France), RFBR (Russia), XuntaGal and GENCAT (Spain), Royal Society and Royal Commission for the Exhibition of 1851 (UnitedKingdom).
References
[1]M.Gronau,D.London,IsospinanalysisofCPasymmetriesinB decays,Phys. Rev.Lett.65(1990)3381.
[2]J.Charles,etal.,CurrentstatusoftheStandardModelCKMfitandconstraints onF=2 newphysics,arXiv:1501.5013.
[3]A.Bevan,et al.,Standardmodelupdatesandnewphysicsanalysiswiththe unitaritytrianglefit,Nucl.Phys.Proc.Suppl.241–242(2013)89.
[4]BaBar Collaboration, B. Aubert, et al., A study of B0 →ρ+ρ− decays
and constraintson the CKMangle alpha, Phys. Rev.D 76 (2007) 052007, arXiv:0705.2157.
[5]BelleCollaboration,A.Somov,et al.,Improved measurementofCP-violating parametersinB0→ρ+ρ−decays,Phys.Rev.D76(2007)011104,
arXiv:hep-ex/0702009.
[6]BelleCollaboration,J.Zhang,etal.,ObservationofB+→ρ+ρ0,Phys.Rev.Lett.
91(2003)221801,arXiv:hep-ex/0306007.
[7]BaBarCollaboration,B.Aubert,etal.,Measurementsofbranchingfraction, po-larization, and charge asymmetryof B±→ρ±ρ0 and asearch for B±→
ρ±f0(980),Phys.Rev.Lett.97(2006)261801,arXiv:hep-ex/0607092.
[8]BaBarCollaboration,B.Aubert,etal.,Measurementofthebranchingfraction, polarization,andCPasymmetriesinB0→ρ0ρ0 decay,andimplicationsfor
theCKMangleα,Phys.Rev.D78(2008)071104,arXiv:0807.4977.
[9]BelleCollaboration,P.Vanhoefer,etal.,StudyofB0→ρ0ρ0decays,
implica-tionsfortheCKMangleφ2andsearchforotherfourpionfinalstates,Phys.
Rev.D89(2014)072008,arXiv:1212.4015.
[10]LHCbCollaboration,A.A.AlvesJr.,etal.,TheLHCbdetectorattheLHC,J. In-strum.3(2008)08005.
[11]R. Aaij, et al., LHCb detector performance, Int.J. Mod. Phys. A 30 (2015) 1530022,arXiv:1412.6352,LHCb-DP-2014-002.
[12]R.Aaij,et al.,Performanceofthe LHCbvertexlocator,J. Instrum.9(2014) P09007,arXiv:1405.7808.
[13]R.Arink,et al.,PerformanceoftheLHCboutertracker,J.Instrum.9(2014) P01002,arXiv:1311.3893.
[14]M.Adinolfi,et al.,Performanceofthe LHCbRICHdetectorat theLHC,Eur. Phys.J.C73(2013)2431,arXiv:1211.6759.
[15]A.A. Alves Jr.,et al., Performance ofthe LHCb muonsystem, J. Instrum.8 (2013)P02022,arXiv:1211.1346.
[16]R.Aaij,et al., TheLHCb trigger anditsperformance in2011,J. Instrum.8 (2013)P04022,arXiv:1211.3055.
[17]V.V.Gligorov,M.Williams,Efficient,reliableandfasthigh-leveltriggeringusing abonsaiboosteddecisiontree,J.Instrum.8(2013)P02013,arXiv:1210.6861. [18]L.Breiman,J.H.Friedman,R.A.Olshen,C.J.Stone,Classificationandregression
trees,WadsworthInternationalGroup,Belmont,California,USA,1984. [19]R.E.Schapire,Y.Freund,Adecision-theoreticgeneralizationofon-linelearning
andanapplicationtoboosting,J.Comput.Syst.Sci.55(1997)119.
[20]G.Punzi,Sensitivityofsearches fornewsignalsand itsoptimization,in:L. Lyons,R.Mount,R.Reitmeyer(Eds.),StatisticalProblemsinParticlePhysics, Astrophysics,andCosmology,2003,p. 79,arXiv:physics/0308063.
[21]ParticleDataGroup,K.A.Olive,etal.,Reviewofparticlephysics,Chin.Phys.C 38(2014)090001.
[22]T.Sjöstrand,S.Mrenna,P.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys.Commun.178(2008)852,arXiv:0710.3820.
[23]I. Belyaev, et al., Handling ofthe generation of primary eventsin Gauss, theLHCbsimulationframework, in:NuclearScienceSymposiumConference Record(NSS/MIC),IEEE,2010,p. 1155.
[24]D.J.Lange,TheEvtGenparticledecaysimulationpackage,Nucl.Instrum. Meth-odsPhys.Res.,Sect.A,Accel.Spectrom.Detect.Assoc.Equip.462(2001)152. [25]Geant4Collaboration,J.Allison,etal.,Geant4developmentsandapplications,
IEEETrans.Nucl.Sci.53(2006)270;
Geant4Collaboration,S.Agostinelli,etal.,Geant4:asimulationtoolkit,Nucl. Instrum.MethodsPhys. Res., Sect.A,Accel. Spectrom.Detect.Assoc. Equip. 506(2003)250.
[26]M.Clemencic,etal.,TheLHCbsimulationapplication,Gauss:design,evolution andexperience,J.Phys.Conf.Ser.331(2011)032023.
[27]T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-primeandUpsilonresonances,PhDthesis,InstituteofNuclearPhysics, Krakow,1986,DESY-F31-86-02.
[28]ARGUS Collaboration, H. Albrecht, et al., Exclusive hadronic decays of B
mesons,Z.Phys.C48(1990)543.
[29]M.Pivk,F.R.Le,Diberder,sPlot:astatisticaltooltounfolddatadistributions, Nucl. Instrum. MethodsPhys. Res., Sect. A,Accel. Spectrom. Detect.Assoc. Equip.555(2005)356,arXiv:physics/0402083.
[30]G.J. Gounaris, J.J. Sakurai, Finite width corrections to the vector meson dominancepredictionforρ→e+e−,Phys.Rev.Lett.21(1968)244. [31]S.M.Flatté,Onthenatureof0+mesons,Phys.Lett.B63(1976)228. [32]S.M.Flatté,Coupled–channelanalysisofthe π ηand K− ¯K systemsnear
K− ¯K threshold,Phys.Lett.B63(1976)224.
[33]S.U. Chung, et al., Partial waveanalysis in k-matrix formalism, Ann. Phys. 507 (5)(1995)404.
[34]CLEOCollaboration,H.Muramatsu,etal.,DalitzanalysisofD0→K0
Sπ+π−,
Phys.Rev.Lett.89(2002)251802,arXiv:hep-ex/0207067.
[35]B. Bhattacharya, A. Datta, M. Duraisamy, D. London, Searching for new physicswithbsBs0V1V2penguindecays,Phys.Rev.D88 (1)(2013)016007, arXiv:1306.1911.
[36]M.Williams,Howgood areyourfits?Unbinnedmultivariategoodness-of-fit testsinhighenergyphysics,J.Instrum.5(2010)P09004,arXiv:1006.3019. [37]BaBarCollaboration,B.Aubert,etal.,Measurementofbranchingfractionsof
Bdecaysto K(1)(1270)π and K(1)(1400)π and determinationoftheCKM angle alpha from B0→a(1)(1260)±π∓, Phys. Rev. D 81 (2010) 052009,
arXiv:0909.2171.
[38]T.duPree,Searchforastrangephaseinbeautifuloscillations, CERN-THESIS-2010-124,Nikhef,Amsterdam,2010.
[39]Belle,J.Dalseno,etal.,Measurementofbranchingfractionandfirstevidence ofCPviolationinB0→a±
1(1260)π∓decays,Phys.Rev.D86(2012)092012,
arXiv:1205.5957.
[40]LHCbCollaboration, R. Aaij, et al., Measurementofpolarization amplitudes andC P asymmetriesinB0→ φK∗(892)0,J.HighEnergyPhys.05(2014)069,
arXiv:1403.2888.
[41]L.Lyons,D.Gibaut,P.Clifford,Howtocombinecorrelatedestimatesofasingle physicalquantity,Nucl.Instrum.MethodsPhys.Res.,Sect.A,Accel.Spectrom. Detect.Assoc.Equip.270(1988)110.
[42]BaBarCollaboration,B.Aubert,etal.,Time-dependentandtime-integrated an-gularanalysisof B0→ φKSπ0 and B0→ φK+π−, Phys.Rev.D78 (2008)
092008,arXiv:0808.3586.
[43]BelleCollaboration, M. Prim, et al., Angular analysisof B0→ φK∗ decays
and search for C P violation at Belle, Phys. Rev.D 88 (7) (2013) 072004, arXiv:1308.1830.
[44]CLEOCollaboration,R.A.Briere,etal.,ObservationofB0→ φK andB0→ φK∗,