• Non ci sono risultati.

Mineralogical mapping of Coniraya quadrangle of the dwarf planet Ceres

N/A
N/A
Protected

Academic year: 2021

Condividi "Mineralogical mapping of Coniraya quadrangle of the dwarf planet Ceres"

Copied!
13
0
0

Testo completo

(1)

Mineralogical mapping of Coniraya quadrangle of the dwarf planet Ceres

Title

RAPONI, Andrea; CARROZZO, FILIPPO GIACOMO; ZAMBON, Francesca; DE

SANCTIS, MARIA CRISTINA; CIARNIELLO, Mauro; et al.

Authors

10.1016/j.icarus.2017.10.023

DOI

http://hdl.handle.net/20.500.12386/29037

Handle

ICARUS

Journal

318

Number

(2)

A. Raponi

, F.G. Carrozzo

, F. Zambon

, M.C. De Sanctis

, M. Ciarniello

, A. Frigeri

,

E. Ammannito

b

, F. Tosi

a

, J.-Ph. Combe

c

, A. Longobardo

a

, E. Palomba

a

, C.M. Pieters

d

,

C.A. Raymond

e

, C.T. Russell

f

a INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere, 100, I-00133 Rome, Italy b Italian Space Agency (ASI), Via del Politecnico snc, I-00133 Rome, Italy

c Bear Fight Institute, 22, Fiddler’s Road, P.O. Box 667, Winthrop, WA 98862, USA

d Department of Earth, Environmental and Planetary Sciences, Brown University, 324 Brook Street, Providence, RI 02912, USA e NASA/Jet Propulsion Laboratory and California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

f Institute of Geophysics and Planetary Physics, University of California at Los Angeles, 3845 Slichter Hall, 603 Charles E. Young Drive, East, Los Angeles, CA

90095-1567, USA

a

r

t

i

c

l

e

i

n

f

o

Article history: Received 28 April 2017 Revised 15 September 2017 Accepted 12 October 2017 Available online xxx

a

b

s

t

r

a

c

t

CereshasbeenexploredbyNASA/Dawnspacecraft,whichallowedforthediscovery ofthe main min-eralogicalandcompositionalcharacteristicsofCeres’surface.Here,weusemainlydatafromtheVisible andInfraRedimagingspectrometer(VIR)inordertoinvestigatethemainspectralcharacteristicsofthe quadrangleAc-H-2 Coniraya,one ofthe 15quads inwhichCeres’ surface hasbeen divided.Coniraya quadrangleischaracterizedbythepresenceofmostlyhighlydegradedimpactcratersofdiameters be-tween50and 200kmandclustersofsmalltomidsizeimpact craters.Althoughthecompositionover thequadrangleappearstobequiteuniform,significantdifferenceshavebeendetectedbetween differ-entcratersbyspectral parametersanalysisand spectralmodeling. Ernutetcraterpresentstwo regions withverypeculiarbandat3.4μm,typicaloforganicsaliphatic material.Oneregionresultto be cor-relatedwith largeramountof carbonates, theotherregion doesnot present suchcorrelation. Ikapati cratershowsstrong absorptionbandsat4.0μm,indicatingthepresenceofNa-carbonatesinthefloor andejecta.Ikapati,GaueandothercraterspresentsmallerspectralfeaturesofNH4and/orOHstretching, suggestingavolatiledepletionprocessinducedbytheheatingoftheimpactevent.

© 2017ElsevierInc.Allrightsreserved.

1. Introduction

NASA’s Dawn spacecraft arrived at dwarf planet 1-Ceres on March 6, 2015, with its scientific payload: the Visible and near-InfraRedimagingspectrometer (VIR)(DeSanctis etal., 2011),the Gamma Ray and Neutron Detector (GRaND) (Prettyman et al., 2011),andtheFramingCamera(FC)(Sierksetal.,2011),alongwith theradiosciencepackage(Konoplivetal.,2011).

Here,weusedatareturnedbyVIRandFCinstrumentsinorder to studythemineralogical composition ofthe quadrangleAc-H-2 ‘Coniraya’(21–66°Nand0–90°E),whichisone offour quadran-glesinCeres’northernhemisphere.

Ceres’ surface shows ubiquitous absorption bands at 2.7 μm (OH stretching in Mg-phyllosilicates) and 3.1 μm related

NH4-∗ Corresponding author.

E-mail address: andrea.raponi@iaps.inaf.it (A. Raponi).

phyllosilicates, respectively (De Sanctis et al., 2015; Ammannito etal.,2016).

The thermally-corrected reflectance spectrum of Ceres shows several distinct absorption bands at 3.3–3.5, and 3.95 μm, re-latedtothepresenceofMg-carbonatesandNH4-phyllosilicates(De

Sanctisetal.,2015).

AlthoughspectralpropertiesofCeres’surfacearequiteuniform, there are some peculiar areas where significant differences have beendetectedinspectralparameterssuch asslopes,albedo,band depthsandband centers.Thecasethatstandsout abovethe sur-rounding terrainsare the bright areas(“Ceralia and Vinalia facu-lae”)in theOccator crater (DeSanctis etal., 2016; Raponi etal., 2017; Longobardo et al., 2017), where the albedo is 5–10 times higherthan the average surface. The OH feature inthese faculae is shifted from 2.72 to 2.76 μm, indicating the presence of Al-phyllosilicates,whilethe carbonatefeaturesare shiftedfrom3.95 to 4.0 μm with increasing band depth, suggesting a large abun-dance of Na-carbonates (De Sanctis et al., 2016). Additionally to

https://doi.org/10.1016/j.icarus.2017.10.023

0019-1035/© 2017 Elsevier Inc. All rights reserved.

(3)

theOccatorcrater, otherareasshow asignatureofNa-carbonates (Carrozzoetal.2017), e.g.,Ikapaticrater, locatedinthe‘Coniraya’ quadrangle,whichispartoftheanalysisdoneinthepresentwork. KnowledgeofthemineralogyofCereshasbeenenrichedbythe discoveryoforganicmaterialmainlyintheformofaliphatic mate-rial(DeSanctisetal.2017)neartheErnutetcrater(latitude∼53°N, longitude45.5°E, diameter53.4km),containedinConiraya quad-rangle.

Oxo crater is another interesting region, which the Coniraya quadrangleshares with the Ac-H-5 ‘Fejokoo’ crater, but which is mostly located in the latter. It is a fresh crater where a large amountofwatericehasbeendetected(Combeetal.,2016;Raponi etal.,2016;Combeetal.,2017).Moreover,itisthesecond bright-estfeatureonCeresafterthebrightmaterialoftheOccatorcrater. Watericewasdetectednearthesouthernrimandcorrespondsto thehighalbedomaterialsonthefloorofthecrater(Combeetal., 2016).The watericelocationisentirelyinthe ‘Fejokoo’ quadran-gle. We refer to Combe et al. (2017),and Singh et al.(2017) for furtherdetailsaboutthiscrater.

InSection2,wepresentthedatasetandthemethodologyused toperformthespectralanalysis.InSection3,thethermalemission removal,relevantforthe discussionofthespectrainthe thermal emissionrange,isdescribed. InSection4,we giveageneralview ofthequadrangle,discussingthespectralparameters,suchasband centers, band depth, spectral slope and albedo. In Section 5, we presenta quantitative analysisofabundances ofthe main miner-alsidentifiedascomponentofsurfacematerials, bymeans ofthe Hapkeradiativetransfermodel.Themainfindingsarediscussedin

Section6,underthegeneralcontextofCeres’surface.

2. Dataanalysisdescription

The present workuses the dataset acquiredby VIR,the map-ping spectrometer of the Dawn mission (Russell and Raymond, 2011;DeSanctisetal.,2011).ImagesprovidedbytheDawn Fram-ingCamera(Sierksetal.,2011)arealsousedforcontextand mor-phologicalanalysis.

VIRisanimagingspectrometeroperatingintwo channels:the visiblechannel, ranging between 0.25–1.05 μm, andthe infrared channel,between1.0–5.1μm.VIRis capableofhighspatial(IFOV = 250μrad/pixel, FOV = 64 × 64 mrad)and spectral (

VIS = 1.8nm/band;

IR=9.8nm/band)performances,allowingforthe identificationofspectral features inorderto derive the composi-tion,structureofthesurface,andthermalemission.

VIR acquired data of Ceres during all of the mission phases: Survey(spacecraftaltitude4350km),HighAltitudeMappingOrbit (HAMO)(spacecraft altitude1450km) andLow AltitudeMapping Orbit(LAMO)(spacecraft altitude370km)(Russell andRaymond, 2011).Here,weusedtheHAMOdatasetwithnominalspatial res-olutionof360–400m/pix.

The calibrated data (Filacchione and Ammannito, 2014) are cleanedforartifactswith theprocedure describedin Carrozzoet al.(2016).In ordertoanalyze thespectral signatureinthe range ofwavelengthsaffectedbythermalemission(usuallyfrom3.2μm longward), we usethe method describedin Section 3to remove the thermalemission. In thispaper, photometric effects are cor-rectedforboth topographicvariationsandphysicalcharacteristics oftheregolith usingtheHapke approach(Ciarnielloetal., 2017). However,othermethodsforphotometriccorrectioncanbeapplied (Longobardoetal.,2017),yieldingsimilarresults,buttheyarenot consideredinthiswork.

Toanalyzealargedatasetliketheoneconsideredinthiswork, we developed an automatic data process able to return different spectralindicatorsfromCeresobservations.This algorithmallows ustomapthespatialdistributionofeachspectralindicatoracross

thesurface(formoredetailsaboutthisalgorithm,seeFrigerietal., 2017).Themainspectralparametersselectedare:

- photometricallycorrectedreflectanceat1.2μm, - spectralslopeintherange1.891–1.163μm, - banddepthsofphyllosilicatebandsat2.7,

- banddepthsofNH4-phyllosilicatebandsat3.1μm,

- banddepthsat3.4μm,

Inthe presentwork wealso considerthe band depths of car-bonatesat3.3–3.5μm,and3.9μm(notcomputedintheautomatic algorithm).

3. Thermalremoval

Theobserved spectraofCeres’surfaceareaffected bythermal emission from ∼3.2 μm longward. The radiance of the thermal emission hides the absorption bands and prevents a comparison withlaboratory data.We implemented a proper algorithm in or-dertoremovethethermalemissionwhilepreservingthespectral featurespresentinthespectra.Thisismadebymodelingthetotal radianceasthesumofthesolarradiancereflectedbythesurface andthethermalemissionofthesurfaceitself,andthenperforming theremovalofthelatter,asfollows:

The model of the solar reflected radiance is produced by a modelofreflectanceofthesurface,multipliedbythesolar irra-dianceatCeres’heliocentricdistance.Tobeconsistentwiththe spectralmodelingdiscussedinSection5weusedthesame re-flectancemodeltoestimatethereflectancelevelinthethermal emissionrange.

ThePlanckfunctionissummeduptothismodelinordertofit thetotalradiancelevel.FreeparametersofthePlanckfunction aretemperature andemissivity. Theirretrievedvalues are not discussedinthepresentwork.

OncethePlanckfunctionhasbeenderived,wesubtractitfrom the total measured radiance, andwe divide the result by the solarirradiancetoobtainthereflectanceinthewholerange. Thereflectancecontinuuminthethermalemissionrange,after removalof the Planckfunction, could be over or underestimated dependingonthereflectancemodelused.However,themeasured spectralfeaturesarenotaffectedbythisuncertainty.Typicalresult of thermal removal is shown in Fig. 2. The spectral range 3.3 – 4.2μm,afterthermalremoval,presenttheabsorptionbandsofthe carbonatesat3.5μmand3.95μm(seealsoFig.8).

4. Spectralanalysis

The quadrangle is dominated by mostly highly degraded im-pactcratersofdiametersbetween50and200kmandclustersof smalltomidsizeimpactcraters.Thesevenmostprominentimpact cratershavebeennamedConiraya,Gaue,Omonga,Ikapati,Achita, Ernutet,andLiber(seeFig.1).Conirayaisthelargestimpactcrater inthequadrangle,whileGaueandIkapaticratersarethefreshest largeimpact craters.Werefer toPasckertetal.(2016) fora com-pletegeologicalmappingoftheConirayaquadrangle.

Mapsshowingbandparameters(Figs.3–7)havebeencomputed fromVIRdataacquiredduringthesurveyandHAMOphase.

We consider thermally corrected spectra as discussed in

Section3.Beforeproducingthemaps,theHapkephotometric cor-rection has been applied to the VIR data (Hapke et al., 1993;

Ciarniello etal., 2017). The maps havebeen correctedfor rough-ness,singlescatteringphasefunction,andoppositioneffectsusing parametersderivedbyCiarnelloetal.(2017).Theresultofthe cor-rectionprocedureisthereflectanceasobservedinstandard view-ing geometry (incidence angle = 30°, emission angle = 0°). The methodsusedtoproducetheVIRdatamosaicisfullydescribedin

(4)

Fig. 1. Upper panel: figure adapted from Roatsch et al. (2016) , showing the 15-quadrangle scheme in which Ceres’ surface has been divided. The Coniraya quadrangle, highlighted in red, is the main focus of this study and is located at 0 °–90 °, 21 °–66 ° N. Bottom: Dawn Framing Camera clear filter LAMO base map mosaic in the Lambert Conical projection, with 35 m/pixel resolution. The names of the main craters are indicated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(5)

Fig. 2. Thermal emission removal of a typical spectrum of the average surface of Ceres. Red and black lines are respectively the reflectance spectra before and af- ter thermal emission removal. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

Frigerietal.(2017).Thedistributionofthe2.7μm,3.1μmand3.4 μmband depthsareshowninFigs.3–5.Thecorrectedreflectance mapat1.2μmisshowninFig.6,andthespectralslopeisshown inFig.7.

AccordingtoDeSanctisetal.(2015);Ammannitoetal.(2016); andDe Sanctiset al.(2017),the band depth at 2.7 μmis corre-latedwithMg-phyllosilicateabundance,the3.1μmbanddepth is correlatedwithNH4-phyllosilicate,andthe 3.4-μmband depth in

Ernutetiscorrelatedwithorganicmaterialabundance.

A global trend for the band depth at 2.7 μm (Fig. 3) shows alower amountof phyllosilicatesin craterfloors andthecrater’s ejecta(seealsoPasckertetal.(2016)),especiallyforthethree cen-tralcraters Ernutet, Liber, andIkapati andforGaue crater in the Easternside ofthequadrangle.The highestvaluesforthese end-membersarefoundinthewestern,andsouthwesternsidesofthe map,wheresignificantcratersarenotpresent.

Thebanddepthat3.1μmhasalmostthesamebehaviorofthe 2.7-μmbanddepth(Fig.4),apartfromtwoconsiderations:

thehighlatitudespresentasystematicdeeperbanddepththan theregionatlowerlatitude;

the Ernutet crater floorandsurrounding terrainsshow an in-creaseinband depth, differentlyfromthe2.7-μmband depth andalltheotherlarge-sizedcraters.

The deep band depth at 3.4μm in the Ernutet crater terrain (Fig. 5 and 7C) is an indication of a large abundance of organic aliphaticmaterials, asdiscussed in De Sanctis et al.(2017). It is

theonlycaseonthewholeCeres’surfacewhereorganicsfeatures aresoevident.

The photometrically-corrected reflectance level at 1.2 μm re-turnsagoodcorrelationwiththebanddepthat3.4μm(seeFig.6). Moreover, thespectral slope appearsredderin theErnutet crater organic-rich areas (Figs. 7 and8A). This would point to brighter albedo,andreddishspectraoftheorganicmaterialthan the aver-agesurfaceofCeres.

Conversely, bluer spectra are detected in Ikapati floor and its crater ejecta (see Figs. 7, and 8A) pointing to differences in the compositionasdiscussedinSections5and6.

Weextractaveragespectrafromthreeregionswhichappearto be the mostpeculiarwithin the quadranglebecause oftheir dif-ferences withrespect the average Ceresspectrum: Ernutet, Ikap-ati,andGauecraters. Inparticular,carbonates absorptionsof Ika-pati are broader andshifted toward longer wavelengths with re-spect the other craters (Fig. 8). This is similar to the bright re-gionintheOccatorcrater,wherethisshifthasbeenattributedtoa changeinthe carbonatescomposition,fromMg-Carbonateto Na-carbonates(DeSanctisetal., 2016). TheIkapatiregion shows Na-carbonatesandcouldthushavebeeninvolvedinprocessessimilar to thosesuggestedfor theOccator crater, whichincludea recent aqueousalteration (DeSanctis etal., 2016). We refer toCarrozzo etal.(2017)fora complete discussionon thecarbonate distribu-tiononCeres’surface.

5. Spectralmodeling

To obtain an information on the abundances of the minerals making up the surface, we used a quantitative spectral analysis ofthecomposition usingHapke’sradiativetransfermodel(Hapke 1993, 2012) as described by Ciarniello et al. (2011) and Raponi etal.(2016).Thewholeformulationofthebidirectionalreflectance (r)is: r= SSA 4

π

μ

0

μ

+

μ

0[ BSHp

(

g

)

+H

(

SSA,

μ

)

H

(

SSA,

μ

0

)

− 1] ×S

(

i,e,g,

θ

)

BCB (1)

Wherei,e,garetheincidence,emission,andphaseangles, re-spectively,and

μ

0,

μ

arethecosinesoftheincidenceandemission

angles.Theseparameterscomefromtheshapemodelandposition ofthe spacecraftatthe time ofobservation.The parameters that contain mostofthe spectral informationarethe singlescattering albedo(SSA),andtherelatedAmbartsumian–Chandrasekhar func-tionsH(SSA,

μ

)describingthemultiplescatteringcomponents.

(6)

Fig. 4. The band depth at 3.1 μm is indicative of the NH4-phyllosilicates abundance.

Fig. 5. The band depth at 3.4 μm is linked with the abundance of organic materials.

Fig. 6. Coniraya photometrically corrected reflectance map at 1.2 μm.

Otherparametersdescribethephotometricbehaviorasa func-tion oftheviewinggeometry, especiallythephase function; they are:

thesingleparticlephasefunctionp(g),

theshadowhidingoppositioneffectBSH(g),

thecoherentback-scatteringoppositioneffectBCB(g),

the shadowfunction modelling large-scaleroughness S(i, e, g,

θ

),with

θ

beingtheaveragesurfaceslope.

These photometric parameters are fixed after Ciarniello et al. (2017),whodefinedtheaveragescatteringpropertiesofCeres’

re-golith.Thespectral propertiesaremainly affectedby theSSA pa-rameters.Thelatterhavebeenmodeledforanintimatemixing be-tween different minerals,which implies that the particles of the end-membermaterials are incontactwitheach other andallare involvedinthescatteringofasinglephoton.TheSSAofeach min-eralisdefinedstartingfromtheirgrainsizeandtheiroptical con-stantsasdescribedinHapke(2012).The opticalconstantsare de-rivedfromlaboratorymeasurements(Table1)withthemethod de-scribedbyCarlietal.(2014).

TheaverageSSAoftheregolithisdefinedthroughtheweights

(7)

Fig. 7. Coniraya 1.891–1.163 μm spectral slope map. To calculate the spectral slope, we use the definition used by Filacchione et al. (2012) : Slope = (R λ2 –R λ1 )/( λ2–λ1)/R λ1 ,

where λ1 = 1.163 v, λ2 = 1.891 μm, and R λis the reflectance at λ.

Fig. 8. Panel A: collected spectra normalized at 1.89 μm, from three different crater of Coniraya quadrangle, and the average Ceres spectrum ( Ciarniello et al. 2017 ) for comparison. Panels B–D: spectral range centered on the main absorption bands, after smoothing and continuum removed. Each spectrum is an average of tens of pixel taken from the region indicated in Panel E.

(8)

Fig. 9. Measured data with error bars of calibration uncertainties (black), and models (red), for the 4 average spectra shown in Fig. 8 A. Retrieved parameters are shown in

Table 2 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

End-members used in calculating optical constants of the mineral types. Spectra are taken from the Relab spectral database.

Mineral Type Sample ID Antigorite Mg-phyllosilicate AT-TXH-007 Dolomite Mg-Ca-carbonate CB-EAC-003 NH 4 -montmorillonite NH 4 -phyllosilicate JB-JLB-189

Magnetite Dark material MG-EAC-002 Heated Natrite Na-carbonate CB-EAC-034-C Kerite Organic-aliphatics MA-ATB-043

weight pi is definedasthe cross section of thegrains ofthe ith

mineralas afraction ofthearea. pis alsoa volume fraction, as-suminggrainsizesareequalforallminerals.Hereafterwereferto theweightspas“abundances”.

SSA=SSA1p1+SSA2p2+SSA3p3+..

with:p1+p2+p3+..=1 (2)

The best-fitting result is obtained by comparison of the model with the measured spectra, applying the Levenberg– Marquardtmethodfornon-linearleast-squaresmultipleregression (Marquardt1963).

Freemodelparameterstoberetrievedare: (i) abundancesoftheend-members;

(ii) grain size of the regolith (assumed equal for all end-members);

(iii)amultiplicativeconstant oftheabsolutelevelofreflectance ofthemodelinordertoaccountforuncertaintiesinthe ra-diometric and photometricaccuracies, aswell aserrors on the localgeometryinformationdueto unresolvedshadows androughness;

(iv) a slope added to the model in order to better fit the measured spectrum: in some cases, the measured spectra presentanartificialslopewherehighsignalcontrastis mea-sured between adjacent pixels, like regions near shadows. This is due to a varying spatial point spread function to-wardslongerwavelengths(Filacchione2006);

(v) temperatureandeffectiveemissivity(Davidssonetal.,2009). Thelatteristheproductofthedirectionalemissivity(Hapke 2012) andafree parameterused toaccount forunresolved shadow and the structure of the surface (Davidsson et al. 2009).Itsinterpretationisoutsidethescopeofthiswork. Thetotalradiance ismodeledby accountingforboth the con-tributionsofthereflectedsunlight,andthethermalemission:

Rad=r ×F

D2 +

ε

e f f× B

(

λ

,T

)

(3)

whereris the Hapkebidirectional reflectance(Eq.(1)), Fʘ is the solarirradianceat1AU,Distheheliocentricdistance(inAU),

ε

eff

istheeffectiveemissivity,B(

λ

,T)isthePlanckfunction.Thus,the estimationofthethermalemissiondiscussedinSection 3isdone simultaneously withthe reflectance modeling inorder to yielda consistentresultbetweenthesetwocontributionstothetotal sig-nalmeasured.

TheSSAismodeledstartingfrommineralsalreadydiscussedin

DeSanctisetal.(2015,2016)(seeTable1)whicharerelatedtothe averageCeressurface.

On Ceres’ surfacethe predominant component is a dark ma-terial,whoseidentificationischallenging, becauseitsspectrum is featureless, except for the tentative absorption band centered at 1μm, which canbe attributedto iron (Fe).We found a good fit withmagnetite(Fe3O4),however,alargeamountofFeisnot

con-sistent withGRAND measurements (Prettymanet al.2017). More likelydarksurfaceofCeresshouldbecomposedbyalargeamount

(9)

Table 2

Retrieved abundances from the best fits shown in Fig. 9 . In all cases the rest of the composition is a dark neutral material as described in the text.

Ernutet (%) Ikapati (%) Gaue (%) Ceres average (%) Mg-phyllosilicates 6.6 5.8 6.4 6.2

NH 4 -phyllosilicates 7.5 3.3 3.8 7.0

Mg-Ca-carbonate 3.6 2.3 2.2 2.2 Na-carbonate 0.0 3.3 0.0 0.0 Organics 5.6 0.0 0.0 0.0

Fig. 10. Distributions of the abundances of the modeled endmembers of the Ernutet crater. Panel A: Mg-phyllosilicates, panel B: NH 4 -phyllosilicate, panel C: organics, panel

D: Mg–Ca-carbonates.

ofcarbonbearingmaterial,beingcarbonaceouschondriteitsclose meteoriticanalogue(ChapmanandSalisbury,1973,McSweenetal., 2016).Moreover, weemphasize thatthemodelusedinthiswork isonlybased onspectral features,beingthe absolutesignal level ofthemodeladjustedwiththemultiplicativeconstantandthe ad-ditionalslope.

We apply themodel totheaverage spectraofErnutet, Ikapati andGaueshownin Fig.8, whichturned out to be peculiarfrom theanalysisofthequadrangle (previoussection).The bestfitare showninFig.9,andtheretrievedparametersinTable2.

We also apply the spectral modeling to each pixelof the ob-servationscoveringthewholeareaofthethreecraters.The abun-dances of the end members have been retrieved and projected (Figs.10–12).Thegrainsizeretrievedwasinallcasesoftheorder of100μm,withoutclearvariationsonthemaps.Thuswedecided tofixthisvalueinthefittingprocedure.

5.1. Ernutet

MapsofFig.10Cshowsthatabundancedistributionoforganics inErnutetcraterclearlydefinetworegionswithhigher concentra-tion:

- alargerregion inthesouth-western rimwiththehigher con-centrationonthecraterfloor,butextendingoutsidethecrater - a smallerregion in thenorthern-western rim, located outside

thecraterfloor.

Withtheresolutionofthemap(∼400m/px)weobtaina max-imumconcentrationof6%.However,wecannotexclude that non-resolvedareascancontainmoreorganics.Thesameconsideration isvalidforalltheotherabundancesretrieved,anddiscussed here-after.Therestofthesurfaceappeartobedevoidoforganics. How-ever,fromthemodelingwecannotexcludeanamount<1%.

(10)

Fig. 11. Distributions of the abundances of the modeled endmembers of the Ikapati crater. Panel A: Mg-phyllosilicates, panel B: NH 4 -phyllosilicate, panel C: Na-carbonates.

Other end-members abundances are not shown because they do not present significant differences with respect the average surface.

LargeramountofMg-phyllosilicates(Fig.10A)ismappedinside thefloorofErnutet,upto8–9%.Thesurroundingregionoftherim areslightlydepletedwithrespecttheaverageCeressurface.In par-ticulartheregionwithhigherconcentrationoforganicspresenta loweramountofMg-phyllosilicates(5–6%).

Differently from the Mg-phyllosilicates, organic-rich regions containlargeramountofNH4-phyllosilicates(upto8–9%asshown

in Fig. 10B). Eastern part of the map presents lower amount of NH4-phyllosilicates(4–5%),whilethefloorofthecraterhasan

het-erogeneousamount.

Map ofcarbonates (Fig. 10D) showsan interesting correlation withthe larger/southernorganic-richregion. From modeling, car-bonates are up to 4.5% in the southern part of the floor. The smaller/northernorganic-richregion,doesnotpresentsuchagood correlationwithcarbonates.

5.2. Ikapati

PhyllosilicatesmapsofIkapaticratershowninFig.11Aand11B, indicateaclearcorrelationbetweenOHandNH4stretchinginthis

crater. Lower amount has been found in the crater floor andin the westernejecta. Inthe sameareaslarger concentrationof Na-carbonateshasbeenderivedfromthemodel(upto3%).Those car-bonatesare absentintheaverage Ceressurface, andonlypresent in smallspecificareas (Palomba etal., 2017 submittedto Icarus), suchasthefaculaeoftheOccatorcrater.

5.3.Gaue

Differently from Ikapati crater, phyllosilicates maps of Gaue (Fig.12Aand12B)arenotwell correlatedeachother:themapof Mg-phyllosilicates has an heterogeneous distribution with values rangingfrom5to10%,whilethemapofNH4-phyllosilicateclearly

presentsalower amountonthecraterfloor(2–3%),andabout6% outsideit. However, the two end-member are well correlated in asmall regioninthe north/westernpart ofthemap, were larger amountofbothMgandNH4-phyllosilicateshavebeenderived:

re-spectively10%and7%.

6. Discussionandconclusions

From the analysis of the Coniraya quadrangle, some relevant characteristicsemerge.Here we discussthemajor findingsin the generalcontextofCeres’surface.

6.1. Phyllosilicatesdistribution

Thebanddepthat2.7and3.1μmmappedinthisworkareboth indicative of phyllosilicate abundance, and relative differences in their distributions are detectable (e.g.,between Ikapatiand Gaue craters).ThiswasalsohighlightedbyAmmannitoetal.(2016)asa generalresultforCeres’surface.

(11)

Fig. 12. Gaue crater. Mg-phyllosilicates and NH 4 -phyllosilicate abundances. Other parameters are not shown because they do not present significant differences with respect

the average surface.

The floor of the freshest and largest craters present smaller banddepthat2.7and3.1μm.

The modelingperformedforErnutet,Ikapati,andGauecraters revealsthatthesmallerbanddepthcanbe interpretedasalower amountofMg/NH4-phyllosilicates.Smallerphyllosilicatesband

as-sociates with relatively young crater seems quite common on Ceres’surface(DeSanctisetal.2017),whichmaybetheresultofa volatiledepletionduetoimpactheating.Anoticeableexception is representedbythelarge-scaledepressionofVendimiaPlanitia, lo-catedintheeasternadjacentquadrangles.Themeasured phyllosil-icateabsorptions at2.7 and3.1 μm,in two main craters located inthisarea,Dantu(Stephan etal., 2017)andKerwan(Palombaet al.,2017), are strongerthanits surroundingareas,andthey actu-allyarethe deepestphyllosilicateabsorptionsmeasured on Ceres (Stephanetal.,2017).Thisobservedtrendmayrevealachangein thecomposition of Ceres’crust withincreasing depth belowthe topographicmean(Stephanetal.,2017).

The MgandNH4-phyllosilicatesmodeled presentdifferent

de-pletioninthethreecraters mappedinFigs.10–12.Thecasesthat standout arethe highcontrastforIkapaticrater floorandejecta (Fig.11A,11B),andtheNH4-phyllosilicatesontheGauecraterfloor

(Fig.12B).

This wouldpointtoa complexpicture inwhichdifferent pro-cesses can concur to determine the volatiles abundances during theimpact (e.g.,energy releasedby the impactor,depth of exca-vation),aftertheimpact(e.g.,aqueousalteration,hydrothermal ac-tivity,lateral mixing by micrometeoriticimpacts, space weather), andcouldalsoreflectheterogeneitiesonCeres’surfacepreexistent totheimpactevent.

6.2.Ikapaticraterandejecta

Asdiscussedintheprevioussection,Ikapatifreshcratershows slightlysmallerbanddepthat2.7and3.1μm,whichwouldmean alowerconcentrationofMg/NH4-phyllosilicates.Bytakinginto

ac-counttheaveragespectrumshowninFig.10,wenoticeother rel-evantdifferences:largerabsorptionband ofcarbonates,andbluer spectralslope.Moreover,thebandcenterofthecarbonates absorp-tionbandshowsa shiftfrom3.95to4.0μm(seeFig.8D),similar tothebrightregionintheOccatorcrater,wherethisshifthasbeen attributedto a change in the carbonates composition, from Mg-Carbonateto Na-Carbonates (De Sanctiset al., 2016). The Ikapati regioncouldthushavebeeninvolvedinsimilarprocesses,as sug-gestedfortheOccatorcrater,whichincludearecentaqueous

alter-ation(DeSanctisetal.,2016).However,inIkapatitheNa-carbonate isspreadinthefloorandejecta,ratherthanbeingconcentratedin specificregionsinsidethecraterfloor.Thiscanbetheresultofthe impacteventofIkapatithatspreadbrightmaterialpreviously con-centrated infaculae like inOccator crater. Thishypothesis would pointtoauniqueformationprocessforallbrightmaterialpresent onthesurfaceassuggestedby(Steinetal., 2017),beingtheir dif-ferencesduetothefollowingstoryofimpactevents.

Contrarily to the slow process occurring to form the bright material, the volatile depletion due to the impact induced heat-ing could be fast,andit canexplain the correlation ofthe lower amount of hydrated (OH- stretching)and ammoniated phyllosili-cates(NH4-strecthing)incorrespondenceoftheejecta.

6.3. Ernutetcraterandorganic-richregions

TheErnutetcraterisauniquefeatureofCeres’surface, reveal-ing a large amount of organic material that is mapped in this work bythe 3.4-μmabsorption band,andthe abundancemap of

Fig. 10C. This absorptions is characteristic of the symmetric and antisymmetric stretchingfrequencies ofmethyl(CH3) and

methy-lene (CH2) functional groups, typical of aliphatic hydrocarbons

(Orthous-Daunayetal.,2013).Themodelperformedinthepresent work(Fig.9A)andin(DeSanctisetal.2016)showsthatCeres or-ganicssignaturesareverysimilarwiththeorganicbandsof terres-trialhydrocarbonssuchaskerite.

An evident correlation with organics distribution has been foundwiththeabsolutelevelofreflectanceat1.2μm(Fig.6),and thereddishslope(Fig.7),revealingapossibleconstraintonthe op-ticalpropertiesoftheorganicmaterial:brighterandmorereddish thantheaveragesurfaceofCeres.

TheabundancemapoforganicsshowninFig.10Cclearlydefine tworegions withhigherconcentrationoforganics.Intheworkof

DeSanctisetal.(2016)thesetworegionswerelabeledasregionA (southern)andB(northern).Inthesametworegionswederived: (1) smallerabundanceofMg-phyllosilicates(Fig.10A);

(2) slightlylargerabundanceofNH4-phyllosilicates(Fig.10B);

(3) only in the southern region larger abundance of Mg-Ca-carbonates(Fig.10D).

De Sanctis etal. 2016 suggested an endogenous originof the organics, on the base of the larger presence of carbonates, (and slightlargerpresenceofNH4-phyllosilicates),both beingproducts

(12)

The uniqueness of specific places on Ceres surface, together withthediversityofmineralogyisanindicationofacomplex en-vironmenttypicalofanactivebody.

Acknowledgments

VIR isfunded by theItalianSpace Agency-ASIandwas devel-oped under the leadership of INAF-Istituto di Astrofisica e Plan-etologia Spaziali, Rome-Italy.The instrument wasbuilt by Selex-Galileo,Florence-Italy.Theauthorsacknowledgethesupportofthe Dawn Science,Instrument, andOperations Teams.This work was supportedbyASI-INAFn.I/004/12/0andNASA.

References

Ammannito, E., De Sanctis, M.C., Ciarniello, M., Frigeri, A., Carrozzo, F.G., Combe, J.- Ph., Ehlmann, B.L., Marchi, S., McSween, H.Y., Raponi, A., Toplis, M.J., Tosi, F., Castillo-Rogez, J.C., Capaccioni, F., Capria, M.T., Fonte, S., Giardino, M., Jau- mann, R., Longobardo, A., Joy, S.P., Magni, G., McCord, T.B., McFadden, L.A., Palomba, E., Pieters, C.M., Polanskey, C.A., Rayman, M.D., Raymond, C.A., Schenk, P.M., Zambon, F., Russell, C.T., 2016. Distribution of phyllosilicates on the surface of Ceres. Science 353 (6303). doi: 10.1126/science.aaf4279 , id.aaf4279 .

Carrozzo, F.G., Raponi, A., De Sanctis, M.C., Ammannito, E., Giardino, M., D’Aversa, E., Fonte, S., Tosi, F., 2016. Artifacts reduction in VIR/Dawn data. Rev. Sci. Instrum. 87 (12). doi: 10.1063/1.4972256 , id.124501 .

Carli, C. , Ciarniello, M. , Capaccioni, F. , Serventi, G. , Sgavetti, M. , 2014. Spectral variability of plagioclase-mafic mixtures (2): Investigation of the optical con- stant and retrieved mineral abundance dependence on particle size distribution. Icarus 235, 207–219 .

Carrozzo, F.G., De Sanctis, M.C., Raponi, A., Ammannito, E., Castillo-Rogez, J.C., Ehlmann, B.L., Marchi, S., Stein, N., Ciarniello, M., Tosi, F., Capaccioni, F., Capria, M.T., Fonte, S., Formisano, M., Frigeri, A., Giardino, M., Longobardo, A., Magni, G., Palomba, E., Zambon, F., Raymond, C.A., Russell, C.T., 2017. Nature, formation and distribution of carbonates on Ceres. Science. (Forthcoming).

Chapman, C.R. , Salisbury, J.W. , 1973. Comparisons of meteorite and asteroid spectral reflectivities. Icarus 19, 507–522 .

Ciarniello, M. , Capaccioni, F. , Filacchione, G. , Clark, R.N. , Cruikshank, D.P. , Cerroni, P. , Coradini, A. , Brown, R.H. , Buratti, B.J. , Tosi, F. , Stephan, K. ,2011. Hapke modeling of Rhea surface properties through Cassini-VIMS spectra. Icarus 214, 541–555 .

Ciarniello, M., De Sanctis, M.C., Ammannito, E., Raponi, A., Longobardo, A., Palomba, E., Carrozzo, F.G., Tosi, F., Li, J.-Y., Schröder, S.E., Zambon, F., Frigeri, A., Fonte, S., Giardino, M., Pieters, C.M., Raymond, C.A., Russell, C.T., 2017. Spec- trophotometric properties of dwarf planet Ceres from the VIR spectrometer on board the Dawn mission. Astron. Astrophys. 598. doi: 10.1051/0 0 04-6361/ 201629490 , id.A130 .

Combe, J.-Ph., McCord, T.B., Tosi, F., Ammannito, E., Carrozzo, F.G., De Sanctis, M.C., Raponi, A., Byrne, S., Landis, M.E., Hughson, K.H.G., Raymond, C.A., Russell, C.T., 2016. Detection of local H 2 O exposed at the surface of Ceres. Science 353

(6303). doi: 10.1126/science.aaf3010 , id.aaf3010 .

Combe, J.-Ph., Raponi, A., Tosi, F., De Sanctis, M.C., Carrozzo, F.G., Zambon, F., Am- mannito, E., Hughson, K.H.G., Nathues, A., Hoffmann, M., Platz, T., Thangjam, G., Schorghofer, N., Schro ¨der, S.E., Byrne, S., Landis, M.E., Ruesch, O., McCord, T.B., Johnson, K.E., Singh, S.M., Raymond, C.A., Russell, C.T., 2017. Exposed H2O-rich areas detected on Ceres with the Dawn Visible and InfraRed mapping spectrom- eter. Icarus. (Forthcoming).

Davidsson, Björn J.R. , Gutiérrez, Pedro J. , Rickman, Hans , 2009. Physical properties of morphological units on Comet 9P/Tempel 1 derived from near-IR Deep Impact spectra. Icarus 201, 335–357 .

De Sanctis, M.C., Coradini, A., Ammannito, E., Filacchione, G., Capria, M.T., Fonte, S., Magni, G., Barbis, A., Bini, A., Dami, M., Ficai-Veltroni, I., Preti, G.the VIR Team, 2011. The VIR spectrometer. Space Sci. Rev. 163 (1–4), 329–369. doi: 10.1007/ s11214- 010- 9668- 5 .

doi: 10.1126/science.aaj2305 .

Filacchione, G. , 2006. Calibrazioni a terra e prestazioni in volo di spettrometri ad immagine nel visibile e nel vicino infrarosso per l’esplorazione planetaria. Ph.D thesis. Università di Napoli Federico II, 316 pages .

Filacchione, G., Ammannito, E. Dawn VIR Calibration Document, version 2.4 (2014), https://sbn.psi.edu/archive/dawn/vir/DWNVVIR _ I1B/DOCUMENT/ VIR _ CALIBRATION/VIR _ CALIBRATION _ V2 _ 4.PDF .

Filacchione, G. , Capaccioni, F. , Ciarniello, M. , Clark, R.N. , Cuzzi, J.N. , Nicholson, P.D. , Cruikshank, D.P. , Hedman, M.M. , Buratti, B.J. , Lunine, J.I. , Soderblom, L.A. , Tosi, F. , Cerroni, P. , Brown, R.H. , McCord, T.B. , Jaumann, R. , Stephan, K. , Baines, K.H. , Flamini, E. , 2012. Saturn’s icy satellites and rings investigated by Cassini-VIMS: III - Radial compositional variability. Icarus 220 (2), 1064–1096 .

Frigeri, A. De Sanctis, M.C., Ammannito, E., Tosi, F., Ciarniello, M., Zambon, F., Car- rozzo, F.G., Raponi, A., McCord, T.B., Raymond, C.A., Russell, C.T., 2017. The spec- tral parameter maps of Ceres from NASA/DAWN VIR data. Icarus. (Forthcoming).

Hapke, B. , 1993. Theory of Reflectance and Emittance Spectroscopy. Cambridge Uni- versity Press .

Hapke, B. , 2012. Theory of Reflectance and Emittance Spectroscopy, second ed. Cam- bridge University Press .

Konopliv, A.S. , Asmar, S.W. , Bills, B.G. , Mastrodemos, N. , Park, R.S. , Raymond, C.A. , Smith, D.E. , Zuber, M.T. , 2011. The Dawn gravity investigation at Vesta and Ceres. Space Sci. Rev. 163, 461–486 .

Longobardo, A., et al., 2017. Mineralogy of the Occator quadrangle. Icarus, (Forth- coming).

Marquardt, D. , 1963. SIAM. J. Appl. Math. 11, 431 .

McSween, H.Y., Castillo-Rogez, J., Emery, J.P., De Sanctis, M.C., Dawn Science Team Rationalizing the Composition and Alteration of Ceres, 47th Lunar and Plane- tary Science Conference, held March 21–25, 2016 at The Woodlands, Texas. LPI Contribution No. 1903, p.1258 (2016).

Orthous-Daunay, F.-R. , Quirico, E. , Beck, P. , Brissaud, O. , Dartois, E. , Pino, T. , Schmitt, B. , 2013. Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites. Icarus 223, 534–543 .

Palomba, E., Longobardo, A., De Sanctis, M.C., Carrozzo, F.G., Galiano, A., Zambon, F., Raponi, A., Ciarniello, M., Stephan, K., Williams, D., Ammannito, E., Capria, M.T., Fonte, S., Giardino, M., Tosi, F., Raymond, C.A., Russell, C.T., 2017. Mineralogical mapping of the Kerwan quadrangle on Ceres. Icarus. (Forthcoming).

Pasckert, J.H. , Hiesinger, H. , Williams, D.A. , Crown, D.A. , Mest, S.C. , Buczkowski, D.L. , Scully, J.E.C. , Schmedemann, N. , Jaumann, R. , Roatsch, T. , Preusker, F. , Nass, A. , Nathues, A. , Hoffmann, M. , Schäfer, M. , De Sanctis, M.C. , Raymond, C.A. , Rus- sell, C.T. , 2016. Geologic mapping of the Ac-H-2 coniraya quadrangle of Ceres from NASA’s dawn mission. In: Proceedings of the Forty-Seventh Lunar and Planetary Science Conference, LPI Contribution No. 1903, p. 1450 .

Prettyman, T.H. , Feldman, W.C. , McSween, H.Y. , Dingler, R.D. , Enemark, DonaldC. , Patrick, D.E. , Storms, S.A. , Hendricks, JohnS. , Morgenthaler, J.P. , Pitman, K.M. , Reedy, R.C. , 2011. Dawn’s gamma ray and neutron detector. Space Sci. Rev. 163, 371–459 .

Raponi, A. , Ciarniello, M. , Capaccioni, F. , Filacchione, G. , Tosi, F. , De Sanctis, M.C. , Capria, M.T. , Barucci, M.A. , Longobardo, A. , Palomba, E. , Kappel, D. , Arnold, G. , Mottola, S. , Rousseau, B. , Rinaldi, G. , Erard, S. , Bockelee-Morvan, D. , Leyrat, C. , 2016. The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov–Gerasimenko: spectral analysis. MNRAS 462 .

Raponi, A. , De Sanctis, M.C. , Carrozzo, F.G. , Ciarniello, M. , Castillo-Rogez, J.C. , Am- mannito, E. , Frigeri, A . , Longobardo, A . , Palomba, E. , Tosi, F. , Zambon, F. , Ray- mond, C.A. , Russell, C.T. , 2017. Mineralogy of Occator Crater on Ceres. In press .

Roatsch, T., Kersten, E., Matz, K.-D., Preusker, F., Scholten, F., Jaumann, R., Ray- mond, C.A., Russell, C.T., 2016. High-resolution Ceres high altitude mapping or- bit atlas derived from dawn framing camera images. Planet. Space Sci. 129, 103– 107. doi: 10.1016/j.pss.2016.05.011 .

Russell, C.T. , Raymond, C.A. ,2011. The dawn mission to Vesta and Ceres. Space Sci. Rev. 163, 3–23 .

Sierks, H., Keller, H.U., Jaumann, R., Michalik, H., Behnke, T., Bubenhagen, F., Büt- tner, I., Carsenty, U., Christensen, U., Enge, R., Fiethe, B., Gutiérrez-Marqués, P., Hartwig, H., Krüger, H., Kühne, W., Maue, T., Mottola, S., Nathues, A., Reiche, K.- U., Richards, M.L., Roatsch, T., Schröder, S.E., Szemerey, I., Tschentscher, M., 2011. The dawn framing camera. Space Sci. Rev. 163 (1–4), 263–327. doi: 10.1007/ s11214-011-9745-4 .

(13)

Singh, S., Combe, J.-Ph., McFadden, L.A., McCord, T.B., Johnson, K.E., Hughson, K.H.G., Zambon, F., Ciarniello, M., Carrozzo, F.G., Ammannito, E., De Sanctis, M.C., Ruesch, O., Stephan, K., Tosi, F., Longobardo, A., Raymond, C.A., Russell, C.T., 2017. Mineralogy mapping of the Ac-H-5 Fejokoo quadrangle of Ceres. Icarus (Forth- coming).

Stein, N., Ehlmann, B.L., Palomba, E., De Sanctis, M.C., Nathues, A., Hiesinger, H., Am- mannito, E., Raymond, C.A., Jaumann, R., Longobardo, A., Russell, C.T., 2017. The formation and evolution of bright spots on Ceres, Icarus. (Forthcoming).

Stephan, K., Jaumann, R., Zambon, F., Carrozzo, F.G., De Sanctis, M.C., Tosi, F., Am- mannito, E., Longobardo, A., Palomba, E., McFadden, L.A., Krohn, K., Williams, D.A., Raponi, A., Ciarniello, M., Combe, J.-Ph., Frigeri, A., Roatsch, T., Matz, K.-D., Preusker, F., Raymond, C.A., Russell, C.T., 2017b. Spectral investigation of quad- rangle Ac-H-3 of the dwarf planet Ceres – the region of impact crater Dantu. Icarus (Forthcoming).

Riferimenti

Documenti correlati

Two different versions of the m 2 miss , computed using the information obtained from the RICH detector as an alternative to the STRAW spectrometer or using the nominal momentum of

One of the main challenges of the experiment will be the design of detector to veto the photons at small polar angle (SAC)2. The SAC must intercept photons from K L decays that

NEW RECORD OF HALIMEDACEAN ALGAE FROM THE UPPER TRIASSIC OF THE SOUTHERN ALPS (DOLOMITES, ITALY).. MARTIN NOSE 1 , FELIX SCHLAGINTWEIT 2 &amp; ALEXANDER

The thamnasterioid arrangement type shows a significant distribution pattern, being observed exclusively in the most inner sector of reef complex and absent in central

OSPZ6. Palynomorphs recovered from Chal i Sheh, Darreh Yas, Kuh e Faraghan and Zard Kuh sections and from core-samples from Well-2, 3, 5, 6 and 8 al- lows the recognition

Our investigation led us to conclude that the optimal region to sample for geochemical and isotope analyses is the middle part of the mid-section of the shell, avoiding the

In NE Italy some fragmentary specimens were found in peculiar intervals of the Cretaceous hemipelagic Scaglia-type succession of northeastern Italy (black shales of

Per quanto riguarda infine le composizioni di Yoshinao Nakada, da segnalare, in questa categoria, 落ち着いて (ocitsuite = «Con calma»), di Isola del fuoco e