• Non ci sono risultati.

PCA-based method for managing and analyzing single-spot analysis referenced to spectral imaging for artworks diagnostics

N/A
N/A
Protected

Academic year: 2021

Condividi "PCA-based method for managing and analyzing single-spot analysis referenced to spectral imaging for artworks diagnostics"

Copied!
8
0
0

Testo completo

(1)

Method

Article

PCA-based

method

for

managing

and

analyzing

single-spot

analysis

referenced

to

spectral

imaging

for

artworks

diagnostics

Giacomo

Marchioro,

Claudia

Daffara

*

Dept.ofComputerScience,UniversityofVerona,StradaleGrazie15,37134,Verona,Italy

ABSTRACT

Artworksdiagnosticsisbasedonthejointuseofseveralnondestructivetechniquestoacquirecomplementary informationonthematerials.Acommonpracticeinthefieldistoperformtheanalyseswithsingle-spotanalytical techniques,e.g.spectroscopy-based,afterapreliminaryscreeningoftheartworkwithfull-fieldimaging-based techniques.Wepresentamethodanditspracticalimplementationforfusingandanalyzingdatacollectedusing analyticalsystemsthatacquiresinglespotmeasurementsmappedtospectralimagingstacks.Thefuseddatasetof single-spotandimagingobservationsisanalyzedusingprincipalcomponentanalysis(PCA).Theeffectivenessof themethodforartworksdiagnosticsis shownonspectroscopy andimagingdatasetsof anancientcanvas painting.TheresultsofthePCA analysisonthefinalfuseddataset arecomparedagainstthePCA analysis performedontheoriginaldatasetsfromsingle-spotandimagingmeasurementstakenseparately.Wepropose twopracticalimplementationsoftheprocedure,onebasedonusinggraphicaluserinterface(GUI)and open-source GIS software(QGIS), the other onebased on anopen-source Python module,named SPOLVERRO, specificallydevelopedforthisproject andreleasedonapublicrepository.Themethodallowsconservation scientiststoanalizeeffectivelytheheterogeneousdatasetsacquiredinadiagnosticcampaign.

 single-spotspectroscopydataarereferencedonimagingdata.

 thesamplingareaofeachspectroscopyspotisusedforextractingandaveragingtherespectiveimagingdata values.

 thefinalmatrixisanalyzedusingPCAforextractingfurtherinformation.

©2020PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

DOIoforiginalarticle:http://dx.doi.org/10.1016/j.microc.2019.104469

*Correspondingauthor.

E-mailaddress:[email protected](C.Daffara).

http://dx.doi.org/10.1016/j.mex.2020.100799

2215-0161/©2020 Publishedby ElsevierB.V. This is anopen accessarticle underthe CCBY-NC-ND license(http://

creativecommons.org/licenses/by-nc-nd/4.0/).

ContentslistsavailableatScienceDirect

MethodsX

(2)

ARTICLE INFO

Methodname:PCA-basedmethodformanagingandanalyzingsingle-spotanalysisreferencedtospectralimagingforartworks

diagnostics

Keywords:CulturalHeritage,PCA,GIS,XRF,Multispectralimaging,Hyperspectralimaging,Spectroscopy,Datafusion,Artworks

Articlehistory:Received26November2019;Accepted13January2020;Availableonline23January2020

SpecificationTable

SubjectArea: EnvironmentalScience

Morespecificsubjectarea: DiagnosticsofCulturalHeritage,multi-modaldatafusion

Methodname: PCA-basedmethodformanagingandanalyzingsingle-spotanalysisreferencedtospectral

imagingforartworksdiagnostics

Nameandreferenceof

originalmethod:

NA

Resourceavailability: https://github.com/giacomomarchioro/spolverro

Methoddetails Background

Duringthediagnosticcampaigndifferentnondestructivetechniquesareusedforinvestigatingthe artwork[1–4].Wecandistinguishbetweensystemsthatareabletoacquireimages(imagingsystems) andsystemsthat areabletoacquire onlya singlespotforeach measurement,e.g. spectroscopy systems.Inthismethodwecallthelattersingle-spotsystems,wherewemeanby“spot”thesampling area,i.e.theareaandtheassociatedvolumeoftheartworkfromwhichmostoftheanalyticalsignalis collected.Eventhoughinrecentyearsresearchershavebeendevelopingmanyspectroscopyscanning systemsabletoscanrelativelylargeareas(intheorderofthesquaremetre),thesesystemsareoften expensiveandnotcommerciallyavailable.Furthermore,incaseoflargeartworks(suchasfrescosand largecanvaspaintings)thetimerequiredforscanningtheentiresurfaceisoftenprohibitive.Inthe currentpraxis,imagingtechniquescomprisingmultispectralandhyperspectralcamerasareusedfor exploringlargeareas,while,instead,hand-heldandportablespectrometersareoftenusedinalimited numberofselectedpointsforgatheringfurtherinformation.Themanagementofthedifferentdata collectedusingthevarioustechniquesiscrucialfortakingfulladvantageoftheinformationcontained. Butactually,conservatorsandconservationscientistsoftenlacktherequiredcomputerliteracyfor combiningandanalyzingheterogeneousdatasets.

Inthiscontext,weproposeamethodanditspracticalimplementationforfusingandanalyzingthe datacollectedfromanalyticalsingle-spotsystemsmappedtospectralimagingstacks.Theprocedure wasoriginallydevelopedtosupporttheanalysisofspectroscopyandimagingdataroutinelyacquired duringthediagnosticsofancientartworksinthemuseumsofVenice[5],thenitwasstandardizedand, here,releasedasavailableresource.

The need toperformthemethodin a reproducibleway, for example,byusing programming languagestowriteallthestepsoftheanalysisasreproduciblescript,maylimittheadoptionofthe methodtospecificusers.Hence,inparallelwiththeimplementationofthemethodusingscriptswe showanalternativepracticalsolutionbasedonusingsoftwarewithgraphicaluserinterface(GUI). Geographical information systems (GIS) can beused effectively in the management of thedata collectedduringthediagnosticcampaignonartworks[6].Becauseofthewiderusercommunity,GIS aregenerallystableandmatureandcanbeusedasanalternativetoadhocsolutionsforCultural Heritage[7].CulturalHeritageoperatorsandscholarsusingGISarefacilitatedbytheGUI,however, becauseofthemanyfunctionalitiesofthissoftware,theyoftenneedtobeguidedstepbystep.

(3)

Thegeneralproceduretodesigndatamanagementandanalysisinartworkdiagnosticscanbe summarizedinthestepsinFig. 1.Inthefirstphase,imagingsystemsareusedforexploringalargearea ortheentireareaoftheartwork.Iftheacquiredimagesaredistorted,itispreferabletoperformthe correctionofthedistortionbeforeproceedingwiththefollowing steps.In thesecondphase,the

(4)

conservationscientistperformsafirstanalysisofthedataandplanstogetherwithconservatorsand arthistoriansfurtherinvestigationsbasedonusing,forexample,single-spotsystemsasportableX-ray fluorescence(XRF), FT-IR, and Ramanspectrometers. During the acquisition,the positionof the measurementsperformedwiththesingle-spottechniqueisrecordedandeventuallymappedtothe imagingdata.Atthisstage,theheterogeneousdatacollectedfromimagingandsingle-spottechniques canbefusedinasingledataset.Basedonthepositionofthereferencedsingle-spotmeasurementand ontheestimatedsamplingareaofthesingle-spottechnique(Fig.2),thesoftwareextractsthepixelsof theimagingtechniqueenclosedintheboundaryofthespotandcomputestheaverageofthepixel valuesbelongingtothesamemultispectralchannel.Theresultisadatamatrixpxn,wherepindicates thenumber of rows representingtheobservations, equal tothenumber of spots collected, and nindicatesthecolumnscontainingthevaluesofeachsingle-spotanalysisandtherespectiveaveraged multispectral imaging values. In the last phase, the final data matrix can be analyzed using multivariateanalysis.Inthismethod,weproposeprincipalcomponentanalysis(PCA)forextracting meaningfulinformationfromthedatafusionprocessandvalidatingtheprocedure.

Softwareneeded

The general procedure described in the previous section has been implemented by taking advantageofavailable freeandopen-sourcetoolsand thedevelopedcodeis madeavailableasa Pythonmodule,that wecalled SPOLVERRO.For implementing thesoftware weused Python3.6 programming language, together with third-party open-source scientific libraries to make the workflowautomatedandmorereproducible.ThePythonShapefileLibrary(PyShpv.2.1)isusedfor readingtheshapefilevectordataformat,whilerasterdata(i.e.imagingdata)areprocessedusingthe Rasteriolibrary(v.0.10)[8],whichisbasedontheGeospatialDataAbstractionLibrary(GDAL)[9]by theOpenSourceGeospatialFoundation.FortheanalysisofthedataweusedtheNumPyandtheSciPy library,togetherwiththescikit-learnlibrary[10]forcomputingthePCA.TheMatplotliblibrary[11]is usedforplottingtheoutputs.

RegardingthealternativeimplementationofthemethodbasedonGISsoftware,wechooseQGIS (version 2.16 Nødebo or greater), a free and open-source multiplatform software with a wide communityofusersabletoprovidesupport.QGIScanbeusedforperformingthefirstfourstepsofthe procedure(Fig.3).

Hardwareneeded:imagingandsingle-spotinstruments

Toapplythemethoditisneededatleastoneimagingtechniqueandonesingle-spottechniquefor performing the measurements. The method presented is more effective when multispectral or

Fig.2.Illustrationofsamplingareaandassociatedexperimentalsurfaceforthesingle-spotanalysis.Intheapplicationshown,

(5)

hyperspectral imaging systems are combined with portable or handheld spectrometers, as shown. However,themethodcanin principle beappliedalso withsystemsthatrecorda limitednumber ofbandsor variables.Themethod,asreportedhere,assumesthattheimagingtechniquehasaspatialresolutionequal orhigherthanthesingle-spottechnique.However,itcanbeappliedalsowithimagingtechniqueswith lowerspatialresolutionassumingacertainhomogeneityoftheartworkmaterial.

Step1–acquisitionandcorrectionoftheimagingdata

Thefirststepconsistsinacquiringtheimagingdata.Itispreferabletocorrectanydistortionofthe imagestoensureacorrectreferencingoftheacquisitionscollectedusingthesingle-spottechniques. Thedistortionscanbecorrectedusingspecificsoftware,otherwise,ifortho-photosareavailableas groundtruth,theimagescanberegisteredmanuallyusingcontrolpointsandthe“Georeferencer Plugin”oftheQGISsoftware.Iftheimagingsystemsoutputtheimagesinaformatnotreadableby QGIS,theGDALdriverscanbeusedforconvertingthemultispectralorhyperspectralimagestacktoa suitableformate.g.geoTIFFor.lan.IfweassignaprojectionwhenimportingthedatainGIS,wemust besuretouseaplanarprojectione.g.EPSG:32632andnottoselectellipsoidalmeasurements. Step2–planningofthesingle-spotanalysescampaign

After the acquisition of the imaging dataset a first inspection of the images collected is propaedeutictothesuccessivestep.Inthiscase,false-colourcompositeimagingisoftenhelpfulfor identifyingtogetherwiththeconservatorsand arthistorianstheproblematicareas(forexample, addressingquestion suchasdetectingoriginal orrestoredareasof theartwork)and guidingthe followingsamplingusingsingle-spotanalyses.Therearemanystrategiesforfacilitatingthisprocess, forexample,avectorlayerintheGISsoftwarecanbecreatedforstoringthepositionswherethe analysiswillbeperformed.Thisplanningstepisveryimportantincasethesingle-spotinstrumentis notatdisposalforthedurationoftheentirediagnosticcampaignandhencethetime(andcost)of measurementsmustbeoptimized.

Step3–acquisitionandmappingofthesingle-spotanalyses

Thepositionwherethesingle-spotmeasurementsareacquiredmustberecordedaccurately.If mechanical positioning systems or optical tracking systems are available, they can be used for

Fig.3.AscreenshotofaQGISproject,whereXRFmeasurementsaremappedtomultiplerasterimagesoveralargemural

(6)

assigningautomatically the position to each spectrometry measurement relative to the images coordinatereferencesystem.Otherwise,GISsoftwarecanbeusedforcreatinganewvectorlayerand theoperatorcanreferencemanuallythesinglespot-measurementstotheimagingdatapreviously imported.ItisagoodpracticetotakephotosduringtheacquisitionandestablishauniqueIDforeach measurementstoensurethecorrectreferencingofthesinglepoints.Inthisway,wecanstorethe positionofthepoints (forinstance,asa shape file)and laterjoin thecorrespondingsingle-spot analysisdata.Thiscanbedonebyexportingthespectroscopydatainacommonformate.g.csvandby importingitasanattributetable,whichcanbejoinedwiththeshapefileusingthebuilt-inQGIS“join feature”intothelayerpropertiesandtheIDasjoinfield.Thesameprocedurecanbecarriedoutusing thePythonShapefileLibrary.

Step4–extracttheimagingdatawithinthesamplingareaofthesingle-spottechnique

Forcreatinganewmatrixcontainingboththesingle-spotanalysesandthecorrespondingsignal recordedwiththeimaging techniques in thesameposition, foreach location of thesingle-spot analysesthecorrespondingimagingvaluesmustbeextracted.Forperformingthistask,thesampling areaofthespectroscopytechniqueusedmustbepreviouslyestimated.Theimagingdatawithinthe sampleareaareextractedandaveragedforeachspectralchannelorbandoftheimagingtechnique. ThisprocedurecanbeimplementedprogrammaticallyusingPythonandRasterio.Inthiscase,we approximatethesamplingareatoasquareofsideequaltothediameterofthesamplingarea.Knowing thecorrespondingphysicaldimensionofthepixelintheartworksurface,agridofpointsequivalentto thesamplingareaiscalculated.Foreachpointthenearestrasterpixelforeachchannelisextracted. Otherwise,usingQGIS,asimilarprocedurecanbecarriedoutusingthe“Pointsamplingtool”pluginor theSagafunction“RasterValuestoPoints(inQGISv.>3.14).

Step5–analysisofthefinaldatamatrix

The final data matrix is composed of a number of rows corresponding to the number of measurementsperformedwiththesingle-spottechnique.Eachrowisthejointvectorcomprehending thesingle-spotanalysisdataandthecorrespondingaveragedimagingvaluesextractedwithinthe samplingareaforeachspectralchannelorband.Inotherwords,eachrowisanobservationwhileeach columnrepresentsavariable.Differentpreprocessingofthedatacanbecarriedoutbeforeapplying multivariateanalysistothedata.However,itmightbereasonabletoexcludenoisychannelsbefore applyingfurtherprocessing.Inthismethod,wesuggestusingPrincipalComponentAnalysisafterthe standardizationofthedataset.Thestandardizationisperformedbyremovingthemeanandbyscaling tounitaryvariancethefuseddataset.Theprocessingcanbecarriedoutviascriptsusingscikit-learn [10],otherwise,fornon-Pythonusers,usingavailablefreeandopen-sourcetoolswithGUIsuchas Gnumeric.Eventually,clusteringtechniquescanbeusedtoidentifyclustersinthescoreplotsobtained withthePCAanalysis.

Methodvalidation

Themethodhasbeenvalidatedondatasets ofanancientlargecanvas painting(called telero), masterpiecebythevenetianartistCarpaccio,collectedduringtheIperion[12]projectaspresentedin ourpublication[5].Inthecasestudy,themultispectralimagingtechniqueiscombinedwiththeXRF spectroscopysingle-spottechnique.AmultispectralcubehasbeencollectedusingaVis-NIRscanner (16bandsinthevisibleand16bandsinthenearinfraredupto2250nm)whileasetof47spotanalyses hasbeenperformedusingahand-heldXRFspectrometerovertheredareasofthepainting.Tovalidate themethodwefirstperformedthesteps1–4oftheprocedure,thenwetestedtheeffectivenessofthe methodforanalyzingthetwodatasetsseparatelyandafterthefifthstepoftheprocedurethatfuses thetwodatasetstogether.OnceextractedthevaluesforeachspotwestandardizedtheVis-NIRdataset andtheXRFdatasetseparately,weperformedthePCAoneachdataset,andweevaluatedtheresults against the PCA computed on the two datasets fused in a single representation after the standardization.Previously,eachobservationwascategorizedintotwogroups,onecomprisingthe

(7)

variousmixtures ofpigmentsandlabelledusingcolourdependingontheattributedpigment,the otheroneusingdifferentmarkersrepresentingdatacollectedinacompromisedarea(circlemarker) ornot(trianglemarker).

TheresultsareshowninFig.4depictingthescoreplotsofthefirstthreeprincipalcomponentsof thePCAperformedonthedatasets.ThescoreplotoftheXRFdataset(Fig.4a)highlightssomeclusters withdifferentmixtureofpigments.Thescoreplotwiththefirstthreeprincipalcomponentsofthe datasetobtainedextracting thevalues from theVis-NIR multispectral cube (Fig. 4b) shows two clustersseparatedbythe firstprincipal component,one representingthecompromisedpictorial layersandtheotheronerelativetothedatacollectedontheotherareas.However,inthiscasethe clustersrelativetothepigmentmixturearenotclear.Finally,thescoreplotobtainedusingthejoint datasetmatrix(Fig.4c)clearlydistinguishesthedatacollectedonthedamagedareasfromtheothers. Furthermore,wecanidentifydifferentclustersdependingonthepigmentsusedinthepictoriallayer. Hints

Ingeneral,wemustconsiderthatevenifthedataisreferencedontheartworksurfacethesignal maycomefromdifferentdepthsofthepictoriallayer,dependingonthepropertiesofthematerials andtheradiationused.Hence,theinformationretrievedmustbeconsideredrelativetoanunknown portionofvolumeratherthantothesamplingarea.Thecontributionofartworkstratigraphymaterials tothecollectedsignalisnoteasytodetermineandgenerallyitvariesdependingontheradiation wavelength.Thisissueconcernsboththeuseofanalyticalsingle-spottechniquesandmultispectral imagingtechniques.

Instep4,theusermayaveragetheimagingdataonanareagreaterthantheeffectivesamplingarea ofthesingle-spottechnique.Ingeneral,thesizeoftheareatobeaveragedshouldtakeintoaccount alsotheerrorinmappingthesingle-spotmeasurementtotherasterimage.

Instep4,itcanbeusefultocalculate,besidestheaverage,alsothestandarddeviationforeach multispectralchannel.Thiscangiveaninsightintothehomogeneityofthesampledarea.Inartworks diagnosticsthisissuemaybecrucialduetothehighheterogeneityofthematerials.Ifthestandard deviationishigh,errorsintheprocessofmappingthesingle-spotmeasurementstotheimagingdata mayhavegreatinfluenceonthefinalresult.

Instep4,theusershouldknowhowthesoftwarecomputestheextractionofthevaluesfromthe imagestackinthesamplingarea.Inparticular,itmustbeclarifiedifthevaluesareinterpolatedorare extractedfromthenearestpixel.Inourcase,weextractedthevaluestothenearestpixel.

DeclarationofCompetingInterest

The authors declare that they have no known competing financial interests or personal relationshipsthatcouldhaveappearedtoinfluencetheworkreportedinthispaper.

Fig.4.ScoreplotsofthefirstthreeprincipalcomponentsofthePCAperformedontheXRFspectroscopydataset(a),onthe

(8)

Acknowledgements

ThisworkwaspartiallysupportedbytheScan4RecoprojectfundedbytheEuropeanUnionHorizon 2020FrameworkProgrammeforResearchandInnovationundergrantagreementno665091.We wouldliketothankNicoledeManincor,EnricoFiorin,MarcoRaffaelliforcollectingthedatausedfor thevalidationofthemethod,andGiovanniAllegriforsuggestionsontheprojectionsystemsusedfor theGISanalysis.

References

[1]H.Liang,Advancesinmultispectralandhyperspectralimagingforarchaeologyandartconservation,Appl.Phys.A-Mater. 106(2012)309–323,doi:http://dx.doi.org/10.1007/s00339-011-6689-1.

[2]K.Janssens,G.VanderSnickt,F.Vanmeert,S.Legrand,G.Nuyts,M.Alfeld,L.Monico,W.Anaf,W.DeNolf,M.Vermeulen, Non-invasiveandnon-destructiveexaminationofartisticpigments,paints,andpaintingsbymeansofX-raymethods,Top. Curr.Chem.374(2016)81,doi:http://dx.doi.org/10.1007/s41061-016-0079-2.

[3]M.Alfeld,L.deViguerie,Recentdevelopmentsinspectroscopicimagingtechniquesforhistoricalpaintings-areview, Spectrochim.ActaB136(2017)81–105,doi:http://dx.doi.org/10.1016/j.sab.2017.08.003.

[4]C.Daffara,S.Parisotto,D.Ambrosini,Multipurpose,dual-modeimaginginthe3–5mmrange(MWIR)forartwork diagnostics:asystematicapproach,Opt.LaserEng.104(2018)266–273,doi:http://dx.doi.org/10.1016/j.

optlaseng.2017.10.006.

[5]N.deManincor,G.Marchioro,E.Fiorin,M.Raffaelli,O.Salvadori,C.Daffara,Integrationofmultispectralvisible-infrared imagingandpointwiseX-rayfluorescencedatafortheanalysisofalargecanvaspaintingbyCarpaccio,Microchem.J.153 (2020),doi:http://dx.doi.org/10.1016/j.microc.2019.104469.

[6]W.Schmid(Ed.),GRADOC-GraphicDocumentationSystemsinMuralPaintingConservation.ResearchSeminar,Rome16– 20November1999,ICCROM,Rome,2000.

[7]A.Amat,C.Miliani,B.G.Brunetti,Non-invasivemulti-techniqueinvestigationofartworks:anewtoolforon-the-spotdata documentationandanalysis,J.Cult.Herit.14(2013)23–30,doi:http://dx.doi.org/10.1016/j.culher.2012.02.015.

[8]S.Gillies,etal.,Rasterio:GeospatialRasterI/OforPythonprogrammers,(2013).https://github.com/mapbox/rasterio.

[9]F.Warmerdam,Thegeospatialdataabstractionlibrary,in:B.Hall,M.G.Leahy(Eds.),OpenSourceApproachesinSpatial DataHandling,Springer-Verlag,BerlinHeidelberg,2008,pp.87–104,doi:http://dx.doi.org/10.1007/978-3-540-74831-1. [10]F.Pedregosa,G.Varoquaux,A.Gramfort,V.Michel,B.Thirion,O.Grisel,M.Blondel,P.Prettenhofer,R.Weiss,V.Dubourg,

Scikit-learn:machinelearninginpython,J.Mach.Learn.Res.12(2011)2825–2830.

[11]J.D.Hunter,Matplotlib:a2Dgraphicsenvironment,Comput.Sci.Eng.9(2007)90–95,doi:http://dx.doi.org/10.1109/ MCSE.2007.55.

[12]IPERIONCHIntegratedPlatformfortheEuropeanResearchInfrastructureONCulturalHeritage,MolabFacility,(2019).

Riferimenti

Documenti correlati

Nello stesso documento viene autorizzata, senza remunerazione aggiuntiva a quella ricevuta come capo del dipartimento di botanica della Stazione, a unirsi alla visita che

Brun (S.), Université de Montpellier (France) Bruno de Sousa (R.), Instituto Superior de Agronomia, Lisboa (Portugal) Caldeira (I. J.), Estação Vitivinícola Nacional, Dois

With a purely practical approach, the lecture will show some results about the effect of not genetically engineered commercial yeast strains on the content of several

1- Policlinico Veterinario Roma Sud (Roma, Italia); 2- Dipartimento di Scienze Veterinarie, Università di Torino (Torino, Italia); 3- Dipartimento di Patologia, Scuola

The reversibility of these changes, at least partial, was suggested by longitudinal examination of cancer patients, one study finding a significant increase of white matter volume

This work proposes a methodology to quantify the autogenous self-healing in terms of recovery of the compression strength and ultrasonic pulse velocity in samples made of

Taking into account the constraints on the FS velocity and on the interaction time, we obtained a solid re-acceleration model, showing how the AGILE γ-ray excess can be explained