• Non ci sono risultati.

Searches for new physics using the tt̄ invariant mass distribution in pp collisions at √s=8 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Searches for new physics using the tt̄ invariant mass distribution in pp collisions at √s=8 TeV"

Copied!
16
0
0

Testo completo

(1)

Searches for new physics using the

tt invariant mass distribution in pp collisions at

p

ffiffiffi

s

¼ 8 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 8 September 2013; published 22 November 2013)

Searches for anomalous top quark-antiquark production are presented, based on pp collisions at ffiffiffi

s p

¼ 8 TeV. The data, corresponding to an integrated luminosity of 19:7 fb1, were collected with the

CMS detector at the LHC. The observed tt invariant mass spectrum is found to be compatible with the standard model prediction. Limits on the production cross section times branching fraction probe, for the first time, a region of parameter space for certain models of new physics not yet constrained by precision measurements.

DOI:10.1103/PhysRevLett.111.211804 PACS numbers: 12.60.i, 13.85.Ni, 14.65.Ha

With the discovery of a Higgs boson with a mass around 125 GeV [1–3], the focus of particle physics has shifted towards understanding the properties of the new boson, uncovering the nature of the underlying electroweak sym-metry breaking (EWSB) mechanism, and finding new physics. The standard model (SM) is believed to be an effective theory, i.e., a low-energy approximation of a more complete theory incorporating gravity and explaining the origin of many parameters that are simply postulated within the SM. Many models beyond the SM (BSM) have been proposed in order to alleviate the hierarchy problem of the SM, which stems from the fact that quantum-loop corrections to the Higgs boson mass diverge quadratically with the highest energy scale of the model, requiring an enormous degree of fine-tuning to ensure that the Higgs mass remains close to the W-boson mass up to the Planck scale. Since the largest quantum correction to the Higgs boson mass involves a top quark loop, it is natural to suppose that these BSM mechanisms would involve interactions with the top quark.

Potential solutions to the hierarchy problem include models with extra spatial dimensions, either flat [4] or warped [5,6]. In these models, gravity is allowed to perme-ate the multidimensional space, which results in its apparent weakness from the point of view of an observer restricted to 3 þ 1 dimensions. This effect lowers the highest energy scale in the SM from the Planck scale to the TeV scale, thus eliminating the hierarchy between the EWSB scale and the highest scale in the theory. Such models often contain Kaluza-Klein excitations of particles, including gravitons and gluons, both of which can have enhanced couplings tott pairs [7]. Other new gauge bosons have been proposed, referred to generically asZ0, that also couple preferentially

to tt pairs [8–13]. Furthermore, there may be additional spin-zero resonances that preferentially decay to tt pairs [13,14]. These various resonances may be observable as enhancements in thett invariant mass spectrum.

Discrepancies have been observed in the forward-backward asymmetry of top quark production at the Tevatron [15]. Assuming this anomaly is due to new phys-ics above the TeV scale, an enhancement of the tt rate at high invariant mass could be visible at the Large Hadron Collider (LHC) [16,17].

In this Letter, a search for anomalous production of tt events is presented, from data corresponding to an inte-grated luminosity of 19:7 fb1 of pp collisions at pffiffiffis¼ 8 TeV, recorded with the Compact Muon Solenoid (CMS) detector [18] at the LHC. These results represent a signifi-cant improvement over the previous searches [19–24], due primarily to the large increase in the high-x parton lumi-nosity from the higher LHC energy in 2012, but also because of the increased size of the data sample and the combination of several statistically independent channels. Specific comparisons are made to the resonant production of Randall-Sundrum Kaluza-Klein (RS KK) gluons [7], of a Z0boson in the topcolor model [10], and of a scalar Higgs-like boson produced via gluon fusion through its couplings to the top quarks. In addition, enhancements of the tt invariant mass (Mtt) spectrum are constrained for Mtt> 1 TeV. These results probe, for the first time, a region of parameter space of models with warped extra dimensions not yet constrained by precision measurements [25].

Since the top quark decays primarily to aW boson and a bottom (b) quark, top pair production signatures are clas-sified based on whether theW bosons decay to leptons or quarks. This measurement combines analyses utilizing the final states where one or both W bosons from tt events decay to quarks (‘‘semileptonic’’ and ‘‘all-hadronic’’ events, respectively). The events are classified into two categories based on the expected kinematics of the top quark decay products. In the first category, the tt pair is produced near the kinematic threshold, resulting in a to-pology where each parton is matched to a single jet

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

(‘‘resolved topology’’). In the second category, each top quark is produced with a high Lorentz boost (> 2), result-ing in collimated decay products that may be clustered into a single jet (‘‘boosted topology’’). The transition between the resolved and boosted topologies occurs aroundMtt¼ 1 TeV. Both the resolved and boosted topologies are used to analyze the semileptonic events. However, all-hadronic events are analyzed only in the boosted topology, which is combined with the semileptonic boosted events to perform the search. As the all-hadronic analysis is dominated by multijet events, jet substructure criteria are imposed to further enhance sensitivity. The analysis techniques are similar to those explored in earlier analyses ofpp collision data [20,23].

The CMS detector, a general-purpose apparatus operat-ing at the CERN LHC, is described in detail elsewhere [18]. The central feature of the CMS apparatus is a super-conducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting sole-noid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel magnetic flux return yoke outside the solenoid.

At the CMS experiment, the polar angle is measured from the beam direction and the azimuthal angle  is measured perpendicular to the beam direction. The rapidity y is approximated by the pseudorapidity , defined as  ¼  ln½tanð=2Þ. The transverse momentum perpendicular to the beam line is denoted aspT.

The CMS experiment uses a particle-flow-based event reconstruction [26], which aggregates information from all subdetectors, including charged-particle tracks from the tracking system and deposited energy from the electromag-netic and hadron calorimeters. Given this information, all detected particles in the event are reconstructed as elec-trons, muons, photons, neutral hadrons, or charged had-rons. For this paper, electrons and photons are required to have jj < 2:5, and muons, jj < 2:1. The leading hard-scattering vertex of the event is defined as the vertex whose tracks have the largest squared-sum of transverse momen-tum. Charged hadrons associated with other vertices are removed from further consideration. The remaining candi-dates are clustered into jets using theFASTJET3.0 software package [27]. The semileptonic analyses use the anti-kT jet-clustering algorithm [28] with a size parameter of 0.5 (AK5 jets), while the all-hadronic analysis uses the Cambridge-Aachen (CA) jet-clustering algorithm [29,30] with a size parameter of 0.8 (CA8 jets) to take advantage of the capability of the CA algorithm to distinguish jet sub-structure. Jets are required to satisfy jj < 2:4. Jets are identified as b-quark jets if they satisfy the combined secondary vertex algorithm defined in Ref. [31].

The data for the semileptonic resolved category were collected with triggers requiring a single isolated muon or

electron with apTthreshold of 17 or 25 GeV, respectively, in combination with three jets withpT> 30 GeV. Offline, we select events containing exactly one isolated muon (with pT> 26 GeV), or electron (with peT> 30 GeV), and at least four jets withpT> 70, 50, 30, 30 GeV, respec-tively. The non-W multijet background (NWMJ) is sup-pressed further by requiring the transverse missing momentum EmissT , the modulus of the vector sum of all measured particlepT, to be larger than 20 GeV.

For the semileptonic boosted category, data were recorded with triggers requiring one muon (pT> 40 GeV), or one electron (pe

T> 35 GeV) in conjunction with two jets (pT> 100, 25 GeV). Since the top quark decay products can be collinear in this regime, no isolation requirements on the leptons are imposed in either the trigger or offline selections. Offline, we select events con-taining exactly one muon with pT> 45 GeV, or exactly one electron withpeT> 35 GeV and at least two jets with pT> 150, 50 GeV, respectively. To reduce the contamina-tion of the NWMJ processes, we follow the techniques of Ref. [23], placing requirements on the angle and relative momentum between the lepton and the nearest jet, and also requiringEmissT > 50 GeV and EmissT þ pe;T > 150 GeV.

The events satisfying the two semileptonic selections are separated into categories determined by the lepton flavor (electron or muon) and the number ofb-tagged jets Nb-tag (1 or 2 b-tagged jets for the resolved analysis, and 0 or  1 b-tagged jets for the boosted analysis). The purpose of this classification is to separate the sample into regions dominated by different background processes. The events in the categories with fewer b-tagged jets have a higher fraction of W þjets events, whereas those with more b-tagged jets have a higher fraction of tt events. This characterization is used to constrain the various back-ground components by imposing self-consistency among the channels. The reconstruction of semileptonictt candi-dates relies on a2 variable built by enforcing kinematic consistency (within uncertainties) with the tt hypothesis, imposing constraints on the reconstructedW and top can-didates. In the semileptonic boosted regime we follow the techniques of Ref. [23], and allow candidates with more than one parton merged into a single jet.

For the boosted all-hadronic analysis, data were recorded with a trigger requiring the scalar sum of the transverse momenta of reconstructed AK5 jets to be greater than 750 GeV. In the offline analysis selection, we require two CA8 jets, each withpT> 400 GeV.

The reconstruction of the boosted all-hadronic analysis relies on ‘‘top-tagging’’ techniques similar to those used in the previous analysis [20]. This algorithm [32], aiming to identify the top quark decay products within CA8 jets, reverses the jet-clustering sequence by iteratively separat-ing the jet into subjets until three or four subjets with sufficient pT are found. The algorithm is validated on a sample of tt events selected by requiring one muon and

(3)

additional jets [33]. The reconstructed single jet top quark mass is found to be consistent with the expectation from simulated events, as is the disubjetW mass, obtained from the minimum mass pairing of the leading three subjets. The two selected top-tagged jets are then required to be back to back, withjj > =2 and jyj < 1:0, to suppress nontop multijet (NTMJ) backgrounds.

SM top quark production is modeled with the next-to-leading-order (NLO) generatorPOWHEG(v1.0) [34], inter-faced with PYTHIA 6 (v6.2.24) [35] for parton showering with tuneZ2 [36].MADGRAPH(v5.1.1) [37] interfaced to PYTHIA 6is used for simulatingW and Z boson production in association with jets. Diboson processes are generated with PYTHIA 6 to compute both the matrix element and showering.

The MADGRAPH -PYTHIA 6combination is also used to generate signal Monte Carlo (MC) simulation events for limit setting, including high-mass SM-likeZ0 resonances with Z0=MZ0 ¼ 1% and Z0=MZ0 ¼ 10%, where Z0is the width of the resonance, andMZ0 is the mass. This relative width can be compared to the detector resolution of about 10% for att resonance mass. Hence, limits set for the Z0 with a width of 1% would apply to a larger class of models in which the resonance width is below the experimental resolution. TheMADGRAPH -PYTHIA 6combination is also used to generate a simplified model of a spin-zero reso-nance produced via gluon fusion through its couplings to top quarks, with the SM interference effects neglected in the model. A Kaluza-Klein excitation of a gluon with a width of approximately 15%–20% [7] is generated with PYTHIA8 (v1.5.3) [38].

The leading-order (LO) CTEQ6L parton distribution functions [39] are used, except for the generation of the POWHEGsamples, which use the NLO CT10 parton distri-bution function [40]. All MC samples include additional collisions per beam crossing and are reweighted to match the data taking conditions as well as the identification and trigger efficiencies measured in control samples.

For the semileptonic resolved analysis, an aggregate background estimate is taken for all SM components together directly from the data, with the SMtt component the dominant one. The number of signal events is extracted from a binned maximum likelihood fit to theMtt distribu-tion, assuming a smoothly falling probability density function (pdf ) for the SM backgrounds and a parametriza-tion of the signal pdf based on a Breit-Wigner shape. Only events with Mtt> 550 GeV are considered; below this value the SM backgrounds are not described by a smoothly falling pdf.

The Mtt distributions of the semileptonic and all-hadronic boosted topologies are fitted together in a single joint likelihood maximization, imposing consistency of the various background and signal components across the two channels. The initial estimates for the SM tt, single-top quark, W þ jets, and diboson production are based on simulation after applying data-MC corrections based on control samples in data. The boosted all-hadronic analysis has one additional background component, the NTMJ background, which is estimated using the probability to misidentify a light-parton jet as a top quark jet measured in data. This probability is derived as a function of the jetpT in a sample enriched in light-quark jets, kinematically

TABLE I. Constraints used in the likelihood maximization. TheMttdistributions of the boosted channels are combined into a single joint likelihood, imposing consistency of the various background and signal components.

Resolved semileptonic Boosted semileptonic Boosted all-hadronic Constraints on normalization

Luminosity [41] 2.6% 2.6% 2.6%

Pileup 6% 6% 6%

tt [42]    15% 15%

Parton distribution functions [43] 1 1 1

Single top    50%    W þlight-flavor jets    50%    W þheavy-flavor jets    100%    Z þjets    100%    Lepton selection 0.5–3.0% 0.5–3.0%    Top-tagging efficiency       9% Constraints on shape

tt renormalization, factorization, and matching scales    variation by2 and 0:5

Jet energy scale 1–6% 1–6% 1–6%

Jet energy resolution 8–10% 8–10% 8–10%

b-tagging efficiency 2–8% 2–8%   

b-tagging mis-ID    20%   

Top-tagging mis-ID       5–20%

(4)

similar to the signal region. It is then used to weight events in the signal region. Furthermore, the efficiency for iden-tifying true top quark jets is corrected in the signal MC simulations using measurements in a signal-depleted side-band region containing events with one isolated muon and additional jets. It is found that the efficiencies in data and MC simulations agree, having a ratio of 93 5%. The methods described above were validated using simulated samples and it was verified that signal contamination was minimal in the signal-depleted regions.

In the likelihood maximization, systematic uncertainties are treated as nuisance parameters. Those that are common among the channels are treated as 100% correlated, while those that are channel-specific are treated as uncorrelated.

The normalizations of the backgrounds are allowed to vary within log-normal constraints in the maximization of the joint likelihood. The shapes of the backgrounds are also allowed to vary within their uncertainties. The shapes and normalizations also account for systematic variations due to efficiency and misidentification rates. The constraints used in the joint likelihood maximization are listed in TableI.

The event yields from the various background compo-nents and data are shown in Table II. The yields of the simulated samples are quoted after the likelihood max-imization procedure, and the individual background uncer-tainties include only the uncertainty in the individual normalization. The total SM contribution includes all uncertainties, including the correlations not quoted in the individual components. Figure 1 shows the Mtt distribu-tions for all channels along with the expectation from aZ0 signal.

In all cases, the data are well described by the SM-only background hypothesis. The absence of a signal in theMtt distribution is quantified by deriving Bayesian upper limits on the signal cross section times branching fraction at 95% confidence level (C.L.), using pseudoexperiments. The resolved semileptonic analysis has some overlapping phase space with the boosted semileptonic analysis, and there is a transition point (1 TeV) where the expected sensitivities of the boosted and resolved analyses are equal, above which the boosted analysis result is quoted, and below which the resolved analysis result is quoted.

Figure 2shows the expected and observed limits for a narrow resonance, as a function of the invariant mass of the resonance. The specific example shown in Fig.2and given by the dashed line refers to a topcolorZ0with Z0=MZ0 ¼

1:2% based on predictions from Ref. [10]. The cross sec-tion limits for this case are obtained from the MC models with Z0=MZ0 ¼ 1:0%, scaled by the ratio of theoretical TABLE II. Number of expected and observed events in the

boosted analyses. Sample Semileptonic Nb-tag¼ 0 Semileptonic Nb-tag 1 All-hadronic Mtt 1 TeV tt 5440  520 9090  870 510  90 NTMJ       6600  200 Others 5880  820 1070  380    Total SM 11320  1300 10160  1300 7110  410 Data 10305 10159 6887 [GeV] t t M 0 500 1000 1500 2000 2500 3000 3500 Events / 100 GeV -1 10 1 10 2 10 3 10 4 10 Data t t others Z' 2 TeV = 8 TeV s , -1 CMS, 19.7 fb = 0 b-tag N µ e+ (a) Mtt [GeV] 0 500 1000 1500 2000 2500 3000 3500 Events / 100 GeV -1 10 1 10 2 10 3 10 4 10 Data t t others Z' 2 TeV = 8 TeV s , -1 CMS, 19.7 fb 1b-tag N µ e+ (b) [GeV] t t M 1000 1500 2000 2500 3000 3500 Events / 50 GeV -1 10 1 10 2 10 3 10 4 10 Data t t NTMJ Z' 2 TeV = 8 TeV s , -1 CMS, 19.7 fb all-hadronic (c) [GeV] t t (d) M 600 800 1000 1200 1400 1600 1800 2000 Events / 50 GeV 2 10 3 10 4 10 5 10 1b-tag , N µ e+ = 8 TeV s , -1 CMS, 19.7 fb Data Background Z' 750 GeV

FIG. 1 (color online). Comparison between data and SM pre-diction for reconstructedMttdistributions for the boosted semi-leptonic analysis with 0b-tagged jets (a) and 1 b-tagged jets (b), as well as for the all-hadronic analysis (c). For the semi-leptonic analyses, ‘‘others’’ refers to all nontop backgrounds, while for the all-hadronic analysis, ‘‘NTMJ’’ refers to the ‘‘non-top multijet’’ background. The shaded band corresponds to the SM background uncertainty. The likelihood fit projection on data for the semileptonic resolved analysis is shown in (d). A cross section of 1.0 pb is used for the normalization of theZ0samples.

[TeV] Z' M 0.5 1 1.5 2 2.5 3 ) [pb]t t B(Z' × Z' σ Upper limit on -3 10 -2 10 -1 10 1 10 2 10 Expected (95% CL) Observed (95% CL) Z' 1.2% width Expected σ 1 ± Expected σ 2 ± = 8 TeV s , -1 CMS, 19.7 fb resolved analysis boosted analyses

FIG. 2 (color online). The 95% C.L. upper limits on the production cross section times branching fraction as a function of Mtt for Z0 resonances with Z0=MZ0 ¼ 1:2% compared to predictions from Ref. [10] multiplied by 1.3 to account for higher-order effects [44].

(5)

cross sections. This scaling is done to compare to theoreti-cal results and previous measurements. As the cross section calculation is available for this model at LO only, the predictions are multiplied by a factor of 1.3 to account for higher-order effects [44]. The vertical dash-dotted line indicates the transition between the resolved and boosted analyses. TableIIIshows additional model-specific limits. The combination of the semileptonic and all-hadronic boosted analyses improves the expected cross section lim-its at 2 TeV by25%. Compared to the results of previous analyses [20–23] for specific models [7,10], the lower limits on the masses of these resonances have been improved by several hundred GeV. For the semileptonic resolved analysis, assuming a spin-zero resonance with narrow width, produced via gluon fusion with no interfer-ence with the SM background, the cross section limits are 0.8 pb and 0.3 pb for a spin-zero resonance of mass 500 and 750 GeV, respectively. These are the first limits at CMS for heavy Higgs-like particles decaying intott.

In addition to investigating possible resonant structures in the Mtt spectrum, the presence of new physics that causes a nonresonant enhancement of theMttspectrum is also tested. The boosted all-hadronic analysis is used to set limits on such new production for events with Mtt> 1 TeV, since the NTMJ background can be predicted entirely from data. The limit is expressed as a ratio of the total SMþ BSM tt cross section to the SM-only cross section (S, as defined in Ref. [20]). The efficiency to select SMtt events with Mtt> 1 TeV is ð3:4  1:7Þ  104. We find S < 1:2 at the 95% C.L., with a credible interval of 1.1–2.0 at 68% C.L., a factor of 2 improvement over the previously published limits [20].

In summary, we have performed searches for anomalous tt production using events in the semileptonic and all-hadronic topologies. In addition to new limits on nonreso-nant enhancements to top quark production, limits are set on the production cross section times branching fraction for several resonance hypotheses, for resonances in the mass range 0.5–3.0 TeV.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the suc-cess of the CMS effort. In addition, we gratefully acknowl-edge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effec-tively the computing infrastructure essential to our

analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and

CNRS/IN2P3 (France); BMBF, DFG, and HGF

(Germany); GSRT (Greece); OTKA and NKTH

(Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] ATLAS Collaboration,Phys. Lett. B 716, 1 (2012). [2] CMS Collaboration,Phys. Lett. B 716, 30 (2012). [3] CMS Collaboration,J. High Energy Phys. 06 (2013) 081. [4] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali,Phys.

Lett. B 429, 263 (1998).

[5] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

[6] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).

[7] K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez, and J. Virzi,Phys. Rev. D 77, 015003 (2008).

[8] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Phys. Lett. B 513, 232 (2001).

[9] J. L. Rosner,Phys. Lett. B 387, 113 (1996).

[10] R. M. Harris and S. Jain,Eur. Phys. J. C 72, 2072 (2012). [11] P. H. Frampton and S. L. Glashow,Phys. Lett. B 190, 157

(1987).

[12] D. Choudhury, R. M. Godbole, R. K. Singh, and K. Wagh,

Phys. Lett. B 657, 69 (2007).

[13] D. Dicus, A. Stange, and S. Willenbrock,Phys. Lett. B 333, 126 (1994).

[14] R. Frederix and F. Maltoni, J. High Energy Phys. 01 (2009) 047.

[15] K. Lannon, F. Margaroli, and C. Neu,Eur. Phys. J. C 72, 2120 (2012).

[16] J. A. Aguilar-Saavedra and M. Perez-Victoria, J. High Energy Phys. 05 (2011) 034.

[17] C. Delaunay, O. Gedalia, Y. Hochberg, G. Perez, and Y. Soreq,J. High Energy Phys. 08 (2011) 031.

[18] CMS Collaboration,JINST 3, S08004 (2008).

[19] F. De´liot, Y. Peters, and V. Sorin (CDF/D0),Int. J. Mod. Phys. A 28, 1330013 (2013).

[20] CMS Collaboration,J. High Energy Phys. 09 (2012) 029. TABLE III. 95% C.L. lower limits on the masses of new

particles in specific models.

Model Observed limit Expected limit

Z0, Z0=MZ0¼ 1:2% 2.1 TeV 2.1 TeV

Z0, Z0=MZ0¼ 10% 2.7 TeV 2.6 TeV

(6)

[21] ATLAS Collaboration,Phys. Rev. D 88, 012004 (2013). [22] ATLAS Collaboration, J. High Energy Phys. 09 (2012)

041.

[23] CMS Collaboration,J. High Energy Phys. 12 (2012) 015. [24] CMS Collaboration,Phys. Rev. D 87, 072002 (2013). [25] H. Davoudiasl, S. Gopalakrishna, E. Ponton, and J.

Santiago,New J. Phys. 12, 075011 (2010).

[26] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-09-001, 2009 [http:// cds.cern.ch/record/1194487].

[27] M. Cacciari, G. P. Salam, and G. Soyez,Eur. Phys. J. C 72, 1896 (2012).

[28] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[29] Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber,J. High Energy Phys. 08 (1997) 001.

[30] M. Wobisch and T. Wengler,arXiv:hep-ph/9907280. [31] CMS Collaboration,JINST 8, P04013 (2013).

[32] D. E. Kaplan, K. Rehermann, M. D. Schwartz, and B. Tweedie,Phys. Rev. Lett. 101, 142001 (2008).

[33] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.111.211804 for

additional validation plots.

[34] S. Alioli, P. Nason, C. Oleari, and E. Re,J. High Energy Phys. 06 (2010) 043.

[35] T. Sjo¨strand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

[36] CMS Collaboration,J. High Energy Phys. 09 (2011) 109. [37] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T.

Stelzer,J. High Energy Phys. 06 (2011) 128.

[38] T. Sjo¨strand, S. Mrenna, and P. Z. Skands,Comput. Phys. Commun. 178, 852 (2008).

[39] P. M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, and C.-P. Yuan, Phys. Rev. D 78, 013004 (2008).

[40] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan,Phys. Rev. D 82, 074024 (2010). [41] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-LUM-13-001, 2013 [http:// cds.cern.ch/record/1598864].

[42] CMS Collaboration,Phys. Rev. D 84, 092004 (2011). [43] J. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, J.

Kalk, H. L. Lai, and W. K. Tung,Phys. Rev. D 65, 014013 (2001).

[44] J. Gao, C. S. Li, B. H. Li, H. X. Zhu, and C.-P. Yuan,Phys. Rev. D 82, 014020 (2010).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2 C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2N. Ho¨rmann,2J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2

V. Knu¨nz,2M. Krammer,2,bI. Kra¨tschmer,2D. Liko,2I. Mikulec,2D. Rabady,2,cB. Rahbaran,2C. Rohringer,2 H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2W. Treberer-Treberspurg,2W. Waltenberger,2C.-E. Wulz,2,b

V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Alderweireldt,4M. Bansal,4S. Bansal,4T. Cornelis,4 E. A. De Wolf,4X. Janssen,4A. Knutsson,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4

Z. Staykova,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5 S. Blyweert,5J. D’Hondt,5A. Kalogeropoulos,5J. Keaveney,5M. Maes,5A. Olbrechts,5S. Tavernier,5 W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5C. Caillol,6B. Clerbaux,6G. De Lentdecker,6 L. Favart,6A. P. R. Gay,6T. Hreus,6A. Le´onard,6P. E. Marage,6A. Mohammadi,6L. Pernie`,6T. Reis,6T. Seva,6

L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wang,6V. Adler,7K. Beernaert,7L. Benucci,7A. Cimmino,7 S. Costantini,7S. Dildick,7G. Garcia,7B. Klein,7J. Lellouch,7A. Marinov,7J. Mccartin,7A. A. Ocampo Rios,7

D. Ryckbosch,7M. Sigamani,7N. Strobbe,7F. Thyssen,7M. Tytgat,7S. Walsh,7E. Yazgan,7N. Zaganidis,7 S. Basegmez,8C. Beluffi,8,dG. Bruno,8R. Castello,8A. Caudron,8L. Ceard,8G. G. Da Silveira,8C. Delaere,8 T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,eJ. Hollar,8P. Jez,8V. Lemaitre,8J. Liao,8O. Militaru,8

C. Nuttens,8D. Pagano,8A. Pin,8K. Piotrzkowski,8A. Popov,8,fM. Selvaggi,8M. Vidal Marono,8 J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10M. Correa Martins Junior,10

T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11J. Chinellato,11,gA. Custo´dio,11 E. M. Da Costa,11D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11H. Malbouisson,11

M. Malek,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11A. Santoro,11 A. Sznajder,11E. J. Tonelli Manganote,11,gA. Vilela Pereira,11C. A. Bernardes,12bF. A. Dias,12a,h T. R. Fernandez Perez Tomei,12aE. M. Gregores,12bC. Lagana,12aP. G. Mercadante,12bS. F. Novaes,12a Sandra S. Padula,12aV. Genchev,13,cP. Iaydjiev,13,cS. Piperov,13M. Rodozov,13G. Sultanov,13M. Vutova,13 A. Dimitrov,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15

H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15X. Wang,15Z. Wang,15 C. Asawatangtrakuldee,16Y. Ban,16Y. Guo,16Q. Li,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16D. Wang,16

L. Zhang,16W. Zou,16C. Avila,17C. A. Carrillo Montoya,17L. F. Chaparro Sierra,17J. P. Gomez,17 B. Gomez Moreno,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18R. Plestina,18,iD. Polic,18I. Puljak,18 Z. Antunovic,19M. Kovac,19V. Brigljevic,20K. Kadija,20J. Luetic,20D. Mekterovic,20S. Morovic,20L. Tikvica,20

(7)

M. Finger, Jr.,22A. A. Abdelalim,23,jY. Assran,23,kS. Elgammal,23,jA. Ellithi Kamel,23,lM. A. Mahmoud,23,m A. Radi,23,n,oM. Kadastik,24M. Mu¨ntel,24M. Murumaa,24M. Raidal,24L. Rebane,24A. Tiko,24P. Eerola,25 G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26

K. Lassila-Perini,26S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26T. Peltola,26E. Tuominen,26 J. Tuominiemi,26E. Tuovinen,26L. Wendland,26T. Tuuva,27M. Besancon,28F. Couderc,28M. Dejardin,28

D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28 G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28L. Millischer,28A. Nayak,28J. Rander,28 A. Rosowsky,28M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29M. Bluj,29,pP. Busson,29C. Charlot,29

N. Daci,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29A. Florent,29R. Granier de Cassagnac,29 M. Haguenauer,29P. Mine´,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29P. Paganini,29D. Sabes,29

R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,qJ. Andrea,30D. Bloch,30J.-M. Brom,30 E. C. Chabert,30C. Collard,30E. Conte,30,qF. Drouhin,30,qJ.-C. Fontaine,30,qD. Gele´,30U. Goerlach,30 C. Goetzmann,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30S. Gadrat,31S. Beauceron,32N. Beaupere,32 G. Boudoul,32S. Brochet,32J. Chasserat,32R. Chierici,32D. Contardo,32P. Depasse,32H. El Mamouni,32J. Fan,32

J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32S. Perries,32 L. Sgandurra,32V. Sordini,32M. Vander Donckt,32P. Verdier,32S. Viret,32H. Xiao,32Z. Tsamalaidze,33,r C. Autermann,34S. Beranek,34M. Bontenackels,34B. Calpas,34M. Edelhoff,34L. Feld,34N. Heracleous,34 O. Hindrichs,34K. Klein,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34

H. Weber,34B. Wittmer,34V. Zhukov,34,fM. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35 M. Erdmann,35R. Fischer,35A. Gu¨th,35T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35 S. Knutzen,35P. Kreuzer,35M. Merschmeyer,35A. Meyer,35M. Olschewski,35K. Padeken,35P. Papacz,35H. Pieta,35

H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35D. Teyssier,35S. Thu¨er,35M. Weber,35 V. Cherepanov,36Y. Erdogan,36G. Flu¨gge,36H. Geenen,36M. Geisler,36W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36

T. Kress,36Y. Kuessel,36J. Lingemann,36,cA. Nowack,36I. M. Nugent,36L. Perchalla,36O. Pooth,36A. Stahl,36 I. Asin,37N. Bartosik,37J. Behr,37W. Behrenhoff,37U. Behrens,37A. J. Bell,37M. Bergholz,37,sA. Bethani,37

K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37S. Choudhury,37F. Costanza,37 C. Diez Pardos,37S. Dooling,37T. Dorland,37G. Eckerlin,37D. Eckstein,37G. Flucke,37A. Geiser,37I. Glushkov,37

A. Grebenyuk,37P. Gunnellini,37S. Habib,37J. Hauk,37G. Hellwig,37D. Horton,37H. Jung,37M. Kasemann,37 P. Katsas,37C. Kleinwort,37H. Kluge,37M. Kra¨mer,37D. Kru¨cker,37E. Kuznetsova,37W. Lange,37J. Leonard,37

K. Lipka,37W. Lohmann,37,sB. Lutz,37R. Mankel,37I. Marfin,37I.-A. Melzer-Pellmann,37A. B. Meyer,37 J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37O. Novgorodova,37F. Nowak,37J. Olzem,37H. Perrey,37

A. Petrukhin,37D. Pitzl,37R. Placakyte,37A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37E. Ron,37 M. O¨ . Sahin,37J. Salfeld-Nebgen,37R. Schmidt,37,sT. Schoerner-Sadenius,37N. Sen,37M. Stein,37R. Walsh,37 C. Wissing,37M. Aldaya Martin,38V. Blobel,38H. Enderle,38J. Erfle,38E. Garutti,38U. Gebbert,38M. Go¨rner,38 M. Gosselink,38J. Haller,38K. Heine,38R. S. Ho¨ing,38G. Kaussen,38H. Kirschenmann,38R. Klanner,38R. Kogler,38

J. Lange,38I. Marchesini,38T. Peiffer,38N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38 E. Schlieckau,38A. Schmidt,38M. Schro¨der,38T. Schum,38M. Seidel,38J. Sibille,38,tV. Sola,38H. Stadie,38 G. Steinbru¨ck,38J. Thomsen,38D. Troendle,38E. Usai,38L. Vanelderen,38C. Barth,39C. Baus,39J. Berger,39 C. Bo¨ser,39E. Butz,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39M. Guthoff,39,c

F. Hartmann,39,cT. Hauth,39,cH. Held,39K. H. Hoffmann,39U. Husemann,39I. Katkov,39,fJ. R. Komaragiri,39 A. Kornmayer,39,cP. Lobelle Pardo,39D. Martschei,39M. U. Mozer,39Th. Mu¨ller,39M. Niegel,39A. Nu¨rnberg,39

O. Oberst,39J. Ott,39G. Quast,39K. Rabbertz,39F. Ratnikov,39S. Ro¨cker,39F.-P. Schilling,39G. Schott,39 H. J. Simonis,39F. M. Stober,39R. Ulrich,39J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39M. Zeise,39 G. Anagnostou,40G. Daskalakis,40T. Geralis,40S. Kesisoglou,40A. Kyriakis,40D. Loukas,40A. Markou,40 C. Markou,40E. Ntomari,40I. Topsis-giotis,40L. Gouskos,41A. Panagiotou,41N. Saoulidou,41E. Stiliaris,41 X. Aslanoglou,42I. Evangelou,42G. Flouris,42C. Foudas,42P. Kokkas,42N. Manthos,42I. Papadopoulos,42 E. Paradas,42G. Bencze,43C. Hajdu,43P. Hidas,43D. Horvath,43,uF. Sikler,43V. Veszpremi,43G. Vesztergombi,43,v

A. J. Zsigmond,43N. Beni,44S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44J. Karancsi,45P. Raics,45 Z. L. Trocsanyi,45B. Ujvari,45S. K. Swain,46,wS. B. Beri,47V. Bhatnagar,47N. Dhingra,47R. Gupta,47M. Kaur,47

M. Z. Mehta,47M. Mittal,47N. Nishu,47A. Sharma,47J. B. Singh,47Ashok Kumar,48Arun Kumar,48S. Ahuja,48 A. Bhardwaj,48B. C. Choudhary,48A. Kumar,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48P. Saxena,48

(8)

V. Sharma,48R. K. Shivpuri,48S. Banerjee,49S. Bhattacharya,49K. Chatterjee,49S. Dutta,49B. Gomber,49Sa. Jain,49 Sh. Jain,49R. Khurana,49A. Modak,49S. Mukherjee,49D. Roy,49S. Sarkar,49M. Sharan,49A. P. Singh,49 A. Abdulsalam,50D. Dutta,50S. Kailas,50V. Kumar,50A. K. Mohanty,50,cL. M. Pant,50P. Shukla,50A. Topkar,50

T. Aziz,51R. M. Chatterjee,51S. Ganguly,51S. Ghosh,51M. Guchait,51,xA. Gurtu,51,yG. Kole,51S. Kumar,51 M. Maity,51,zG. Majumder,51K. Mazumdar,51G. B. Mohanty,51B. Parida,51K. Sudhakar,51N. Wickramage,51,aa

S. Banerjee,52S. Dugad,52H. Arfaei,53H. Bakhshiansohi,53S. M. Etesami,53,bbA. Fahim,53,ccA. Jafari,53 M. Khakzad,53M. Mohammadi Najafabadi,53S. Paktinat Mehdiabadi,53B. Safarzadeh,53,ddM. Zeinali,53 M. Grunewald,54M. Abbrescia,55a,55bL. Barbone,55a,55bC. Calabria,55a,55bS. S. Chhibra,55a,55bA. Colaleo,55a

D. Creanza,55a,55cN. De Filippis,55a,55cM. De Palma,55a,55bL. Fiore,55aG. Iaselli,55a,55cG. Maggi,55a,55c M. Maggi,55aB. Marangelli,55a,55bS. My,55a,55cS. Nuzzo,55a,55bN. Pacifico,55aA. Pompili,55a,55bG. Pugliese,55a,55c G. Selvaggi,55a,55bL. Silvestris,55aG. Singh,55a,55bR. Venditti,55a,55bP. Verwilligen,55aG. Zito,55aG. Abbiendi,56a A. C. Benvenuti,56aD. Bonacorsi,56a,56bS. Braibant-Giacomelli,56a,56bL. Brigliadori,56a,56bR. Campanini,56a,56b P. Capiluppi,56a,56bA. Castro,56a,56bF. R. Cavallo,56aG. Codispoti,56a,56bM. Cuffiani,56a,56bG. M. Dallavalle,56a F. Fabbri,56aA. Fanfani,56a,56bD. Fasanella,56a,56bP. Giacomelli,56aC. Grandi,56aL. Guiducci,56a,56bS. Marcellini,56a

G. Masetti,56aM. Meneghelli,56a,56bA. Montanari,56aF. L. Navarria,56a,56bF. Odorici,56aA. Perrotta,56a F. Primavera,56a,56bA. M. Rossi,56a,56bT. Rovelli,56a,56bG. P. Siroli,56a,56bN. Tosi,56a,56bR. Travaglini,56a,56b

S. Albergo,57a,57bM. Chiorboli,57a,57bS. Costa,57a,57bF. Giordano,57a,cR. Potenza,57a,57bA. Tricomi,57a,57b C. Tuve,57a,57bG. Barbagli,58aV. Ciulli,58a,58bC. Civinini,58aR. D’Alessandro,58a,58bE. Focardi,58a,58b S. Frosali,58a,58bE. Gallo,58aS. Gonzi,58a,58bV. Gori,58a,58bP. Lenzi,58a,58bM. Meschini,58aS. Paoletti,58a G. Sguazzoni,58aA. Tropiano,58a,58bL. Benussi,59S. Bianco,59F. Fabbri,59D. Piccolo,59P. Fabbricatore,60a R. Ferretti,60a,60bF. Ferro,60aM. Lo Vetere,60a,60bR. Musenich,60aE. Robutti,60aS. Tosi,60a,60bA. Benaglia,61a M. E. Dinardo,61a,61bS. Fiorendi,61a,61bS. Gennai,61aA. Ghezzi,61a,61bP. Govoni,61a,61bM. T. Lucchini,61a,61b,c S. Malvezzi,61aR. A. Manzoni,61a,61b,cA. Martelli,61a,61b,cD. Menasce,61aL. Moroni,61aM. Paganoni,61a,61b D. Pedrini,61aS. Ragazzi,61a,61bN. Redaelli,61aT. Tabarelli de Fatis,61a,61bS. Buontempo,62aN. Cavallo,62a,62c A. De Cosa,62a,62bF. Fabozzi,62a,62cA. O. M. Iorio,62a,62bL. Lista,62aS. Meola,62a,62d,cM. Merola,62aP. Paolucci,62a,c

P. Azzi,63aN. Bacchetta,63aP. Bellan,63a,63bM. Biasotto,63a,eeD. Bisello,63a,63bA. Branca,63a,63bR. Carlin,63a,63b P. Checchia,63aT. Dorigo,63aU. Dosselli,63aM. Galanti,63a,63b,cF. Gasparini,63a,63bU. Gasparini,63a,63b P. Giubilato,63a,63bA. Gozzelino,63aK. Kanishchev,63a,63cS. Lacaprara,63aI. Lazzizzera,63a,63cM. Margoni,63a,63b A. T. Meneguzzo,63a,63bM. Nespolo,63aJ. Pazzini,63a,63bN. Pozzobon,63a,63bP. Ronchese,63a,63bF. Simonetto,63a,63b E. Torassa,63aM. Tosi,63a,63bS. Ventura,63aP. Zotto,63a,63bA. Zucchetta,63a,63bG. Zumerle,63a,63bM. Gabusi,64a,64b S. P. Ratti,64a,64bC. Riccardi,64a,64bP. Vitulo,64a,64bM. Biasini,65a,65bG. M. Bilei,65aL. Fano`,65a,65bP. Lariccia,65a,65b

G. Mantovani,65a,65bM. Menichelli,65aA. Nappi,65a,65b,aF. Romeo,65a,65bA. Saha,65aA. Santocchia,65a,65b A. Spiezia,65a,65bK. Androsov,66a,ffP. Azzurri,66aG. Bagliesi,66aJ. Bernardini,66aT. Boccali,66aG. Broccolo,66a,66c

R. Castaldi,66aM. A. Ciocci,66aR. T. D’Agnolo,66a,66c,cR. Dell’Orso,66aF. Fiori,66a,66cL. Foa`,66a,66cA. Giassi,66a M. T. Grippo,66a,ffA. Kraan,66aF. Ligabue,66a,66cT. Lomtadze,66aL. Martini,66a,ffA. Messineo,66a,66bC. S. Moon,66a F. Palla,66aA. Rizzi,66a,66bA. Savoy-Navarro,66a,ggA. T. Serban,66aP. Spagnolo,66aP. Squillacioti,66aR. Tenchini,66a G. Tonelli,66a,66bA. Venturi,66aP. G. Verdini,66aC. Vernieri,66a,66cL. Barone,67a,67bF. Cavallari,67aD. Del Re,67a,67b

M. Diemoz,67aM. Grassi,67a,67bE. Longo,67a,67bF. Margaroli,67a,67bP. Meridiani,67aF. Micheli,67a,67b S. Nourbakhsh,67a,67bG. Organtini,67a,67bR. Paramatti,67aS. Rahatlou,67a,67bC. Rovelli,67aL. Soffi,67a,67b N. Amapane,68a,68bR. Arcidiacono,68a,68cS. Argiro,68a,68bM. Arneodo,68a,68cR. Bellan,68a,68bC. Biino,68a N. Cartiglia,68aS. Casasso,68a,68bM. Costa,68a,68bA. Degano,68a,68bN. Demaria,68aC. Mariotti,68aS. Maselli,68a

E. Migliore,68a,68bV. Monaco,68a,68bM. Musich,68aM. M. Obertino,68a,68cN. Pastrone,68aM. Pelliccioni,68a,c A. Potenza,68a,68bA. Romero,68a,68bM. Ruspa,68a,68cR. Sacchi,68a,68bA. Solano,68a,68bA. Staiano,68aU. Tamponi,68a

S. Belforte,69aV. Candelise,69a,69bM. Casarsa,69aF. Cossutti,69a,cG. Della Ricca,69a,69bB. Gobbo,69a C. La Licata,69a,69bM. Marone,69a,69bD. Montanino,69a,69bA. Penzo,69aA. Schizzi,69a,69bA. Zanetti,69aS. Chang,70

T. Y. Kim,70S. K. Nam,70D. H. Kim,71G. N. Kim,71J. E. Kim,71D. J. Kong,71S. Lee,71Y. D. Oh,71H. Park,71 D. C. Son,71J. Y. Kim,72Zero J. Kim,72S. Song,72S. Choi,73D. Gyun,73B. Hong,73M. Jo,73H. Kim,73T. J. Kim,73 K. S. Lee,73S. K. Park,73Y. Roh,73M. Choi,74J. H. Kim,74C. Park,74I. C. Park,74S. Park,74G. Ryu,74Y. Choi,75 Y. K. Choi,75J. Goh,75M. S. Kim,75E. Kwon,75B. Lee,75J. Lee,75S. Lee,75H. Seo,75I. Yu,75I. Grigelionis,76 A. Juodagalvis,76H. Castilla-Valdez,77E. De La Cruz-Burelo,77I. Heredia-de La Cruz,77,hhR. Lopez-Fernandez,77

(9)

F. Vazquez Valencia,78H. A. Salazar Ibarguen,79E. Casimiro Linares,80A. Morelos Pineda,80M. A. Reyes-Santos,80 D. Krofcheck,81P. H. Butler,82R. Doesburg,82S. Reucroft,82H. Silverwood,82M. Ahmad,83M. I. Asghar,83J. Butt,83 H. R. Hoorani,83S. Khalid,83W. A. Khan,83T. Khurshid,83S. Qazi,83M. A. Shah,83M. Shoaib,83H. Bialkowska,84 B. Boimska,84T. Frueboes,84M. Go´rski,84M. Kazana,84K. Nawrocki,84K. Romanowska-Rybinska,84M. Szleper,84

G. Wrochna,84P. Zalewski,84G. Brona,85K. Bunkowski,85M. Cwiok,85W. Dominik,85K. Doroba,85 A. Kalinowski,85M. Konecki,85J. Krolikowski,85M. Misiura,85W. Wolszczak,85N. Almeida,86P. Bargassa,86

C. Beira˜o Da Cruz E Silva,86P. Faccioli,86P. G. Ferreira Parracho,86M. Gallinaro,86F. Nguyen,86 J. Rodrigues Antunes,86J. Seixas,86,cJ. Varela,86P. Vischia,86S. Afanasiev,87P. Bunin,87M. Gavrilenko,87 I. Golutvin,87I. Gorbunov,87A. Kamenev,87V. Karjavin,87V. Konoplyanikov,87A. Lanev,87A. Malakhov,87 V. Matveev,87P. Moisenz,87V. Palichik,87V. Perelygin,87S. Shmatov,87N. Skatchkov,87V. Smirnov,87A. Zarubin,87 S. Evstyukhin,88V. Golovtsov,88Y. Ivanov,88V. Kim,88P. Levchenko,88V. Murzin,88V. Oreshkin,88I. Smirnov,88

V. Sulimov,88L. Uvarov,88S. Vavilov,88A. Vorobyev,88An. Vorobyev,88Yu. Andreev,89A. Dermenev,89 S. Gninenko,89N. Golubev,89M. Kirsanov,89N. Krasnikov,89A. Pashenkov,89D. Tlisov,89A. Toropin,89 V. Epshteyn,90M. Erofeeva,90V. Gavrilov,90N. Lychkovskaya,90V. Popov,90G. Safronov,90S. Semenov,90 A. Spiridonov,90V. Stolin,90E. Vlasov,90A. Zhokin,90V. Andreev,91M. Azarkin,91I. Dremin,91M. Kirakosyan,91

A. Leonidov,91G. Mesyats,91S. V. Rusakov,91A. Vinogradov,91A. Belyaev,92E. Boos,92V. Bunichev,92 M. Dubinin,92,hL. Dudko,92A. Ershov,92V. Klyukhin,92I. Lokhtin,92A. Markina,92S. Obraztsov,92M. Perfilov,92 S. Petrushanko,92V. Savrin,92N. Tsirova,92I. Azhgirey,93I. Bayshev,93S. Bitioukov,93V. Kachanov,93A. Kalinin,93

D. Konstantinov,93V. Krychkine,93V. Petrov,93R. Ryutin,93A. Sobol,93L. Tourtchanovitch,93S. Troshin,93 N. Tyurin,93A. Uzunian,93A. Volkov,93P. Adzic,94,iiM. Djordjevic,94M. Ekmedzic,94D. Krpic,94,iiJ. Milosevic,94

M. Aguilar-Benitez,95J. Alcaraz Maestre,95C. Battilana,95E. Calvo,95M. Cerrada,95M. Chamizo Llatas,95,c N. Colino,95B. De La Cruz,95A. Delgado Peris,95D. Domı´nguez Va´zquez,95C. Fernandez Bedoya,95 J. P. Ferna´ndez Ramos,95A. Ferrando,95J. Flix,95M. C. Fouz,95P. Garcia-Abia,95O. Gonzalez Lopez,95 S. Goy Lopez,95J. M. Hernandez,95M. I. Josa,95G. Merino,95E. Navarro De Martino,95J. Puerta Pelayo,95 A. Quintario Olmeda,95I. Redondo,95L. Romero,95J. Santaolalla,95M. S. Soares,95C. Willmott,95C. Albajar,96

J. F. de Troco´niz,96H. Brun,97J. Cuevas,97J. Fernandez Menendez,97S. Folgueras,97I. Gonzalez Caballero,97 L. Lloret Iglesias,97J. Piedra Gomez,97J. A. Brochero Cifuentes,98I. J. Cabrillo,98A. Calderon,98S. H. Chuang,98

J. Duarte Campderros,98M. Fernandez,98G. Gomez,98J. Gonzalez Sanchez,98A. Graziano,98C. Jorda,98 A. Lopez Virto,98J. Marco,98R. Marco,98C. Martinez Rivero,98F. Matorras,98F. J. Munoz Sanchez,98T. Rodrigo,98

A. Y. Rodrı´guez-Marrero,98A. Ruiz-Jimeno,98L. Scodellaro,98I. Vila,98R. Vilar Cortabitarte,98D. Abbaneo,99 E. Auffray,99G. Auzinger,99M. Bachtis,99P. Baillon,99A. H. Ball,99D. Barney,99J. Bendavid,99J. F. Benitez,99

C. Bernet,99,iG. Bianchi,99P. Bloch,99A. Bocci,99A. Bonato,99O. Bondu,99C. Botta,99H. Breuker,99 T. Camporesi,99G. Cerminara,99T. Christiansen,99J. A. Coarasa Perez,99S. Colafranceschi,99,jjM. D’Alfonso,99

D. d’Enterria,99A. Dabrowski,99A. David,99F. De Guio,99A. De Roeck,99S. De Visscher,99S. Di Guida,99 M. Dobson,99N. Dupont-Sagorin,99A. Elliott-Peisert,99J. Eugster,99G. Franzoni,99W. Funk,99G. Georgiou,99 M. Giffels,99D. Gigi,99K. Gill,99D. Giordano,99M. Girone,99M. Giunta,99F. Glege,99R. Gomez-Reino Garrido,99

S. Gowdy,99R. Guida,99J. Hammer,99M. Hansen,99P. Harris,99C. Hartl,99A. Hinzmann,99V. Innocente,99 P. Janot,99E. Karavakis,99K. Kousouris,99K. Krajczar,99P. Lecoq,99Y.-J. Lee,99C. Lourenc¸o,99N. Magini,99

L. Malgeri,99M. Mannelli,99L. Masetti,99F. Meijers,99S. Mersi,99E. Meschi,99R. Moser,99M. Mulders,99 P. Musella,99E. Nesvold,99L. Orsini,99E. Palencia Cortezon,99E. Perez,99L. Perrozzi,99A. Petrilli,99A. Pfeiffer,99

M. Pierini,99M. Pimia¨,99D. Piparo,99M. Plagge,99L. Quertenmont,99A. Racz,99W. Reece,99G. Rolandi,99,kk M. Rovere,99H. Sakulin,99F. Santanastasio,99C. Scha¨fer,99C. Schwick,99S. Sekmen,99A. Sharma,99P. Siegrist,99

P. Silva,99M. Simon,99P. Sphicas,99,llD. Spiga,99M. Stoye,99A. Tsirou,99G. I. Veres,99,vJ. R. Vlimant,99 H. K. Wo¨hri,99S. D. Worm,99,mmW. D. Zeuner,99W. Bertl,100K. Deiters,100W. Erdmann,100K. Gabathuler,100 R. Horisberger,100Q. Ingram,100H. C. Kaestli,100S. Ko¨nig,100D. Kotlinski,100U. Langenegger,100D. Renker,100

T. Rohe,100F. Bachmair,101L. Ba¨ni,101L. Bianchini,101P. Bortignon,101M. A. Buchmann,101B. Casal,101 N. Chanon,101A. Deisher,101G. Dissertori,101M. Dittmar,101M. Donega`,101M. Du¨nser,101P. Eller,101 K. Freudenreich,101C. Grab,101D. Hits,101P. Lecomte,101W. Lustermann,101B. Mangano,101A. C. Marini,101

P. Martinez Ruiz del Arbol,101D. Meister,101N. Mohr,101F. Moortgat,101C. Na¨geli,101,nnP. Nef,101 F. Nessi-Tedaldi,101F. Pandolfi,101L. Pape,101F. Pauss,101M. Peruzzi,101M. Quittnat,101F. J. Ronga,101 M. Rossini,101L. Sala,101A. K. Sanchez,101A. Starodumov,101,ooB. Stieger,101M. Takahashi,101L. Tauscher,101,a

(10)

A. Thea,101K. Theofilatos,101D. Treille,101C. Urscheler,101R. Wallny,101H. A. Weber,101C. Amsler,102,pp V. Chiochia,102C. Favaro,102M. Ivova Rikova,102B. Kilminster,102B. Millan Mejias,102P. Robmann,102 H. Snoek,102S. Taroni,102M. Verzetti,102Y. Yang,102M. Cardaci,103K. H. Chen,103C. Ferro,103C. M. Kuo,103

S. W. Li,103W. Lin,103Y. J. Lu,103R. Volpe,103S. S. Yu,103P. Bartalini,104P. Chang,104Y. H. Chang,104 Y. W. Chang,104Y. Chao,104K. F. Chen,104C. Dietz,104U. Grundler,104W.-S. Hou,104Y. Hsiung,104K. Y. Kao,104

Y. J. Lei,104R.-S. Lu,104D. Majumder,104E. Petrakou,104X. Shi,104J. G. Shiu,104Y. M. Tzeng,104M. Wang,104 B. Asavapibhop,105N. Suwonjandee,105A. Adiguzel,106M. N. Bakirci,106,qqS. Cerci,106,rrC. Dozen,106

I. Dumanoglu,106E. Eskut,106S. Girgis,106G. Gokbulut,106E. Gurpinar,106I. Hos,106E. E. Kangal,106 A. Kayis Topaksu,106G. Onengut,106,ssK. Ozdemir,106S. Ozturk,106,qqA. Polatoz,106K. Sogut,106,tt D. Sunar Cerci,106,rrB. Tali,106,rrH. Topakli,106,qqM. Vergili,106I. V. Akin,107T. Aliev,107B. Bilin,107S. Bilmis,107

M. Deniz,107H. Gamsizkan,107A. M. Guler,107G. Karapinar,107,uuK. Ocalan,107A. Ozpineci,107M. Serin,107 R. Sever,107U. E. Surat,107M. Yalvac,107M. Zeyrek,107E. Gu¨lmez,108B. Isildak,108,vvM. Kaya,108,ww O. Kaya,108,wwS. Ozkorucuklu,108,xxN. Sonmez,108,yyH. Bahtiyar,109,zzE. Barlas,109K. Cankocak,109 Y. O. Gu¨naydin,109,aaaF. I. Vardar,109M. Yu¨cel,109L. Levchuk,110P. Sorokin,110J. J. Brooke,111E. Clement,111

D. Cussans,111H. Flacher,111R. Frazier,111J. Goldstein,111M. Grimes,111G. P. Heath,111H. F. Heath,111 L. Kreczko,111C. Lucas,111Z. Meng,111S. Metson,111D. M. Newbold,111,mmK. Nirunpong,111S. Paramesvaran,111 A. Poll,111S. Senkin,111V. J. Smith,111T. Williams,111K. W. Bell,112A. Belyaev,112,bbbC. Brew,112R. M. Brown,112

D. J. A. Cockerill,112J. A. Coughlan,112K. Harder,112S. Harper,112J. Ilic,112E. Olaiya,112D. Petyt,112 B. C. Radburn-Smith,112C. H. Shepherd-Themistocleous,112I. R. Tomalin,112W. J. Womersley,112R. Bainbridge,113

O. Buchmuller,113D. Burton,113D. Colling,113N. Cripps,113M. Cutajar,113P. Dauncey,113G. Davies,113 M. Della Negra,113W. Ferguson,113J. Fulcher,113D. Futyan,113A. Gilbert,113A. Guneratne Bryer,113G. Hall,113 Z. Hatherell,113J. Hays,113G. Iles,113M. Jarvis,113G. Karapostoli,113M. Kenzie,113R. Lane,113R. Lucas,113,mm

L. Lyons,113A.-M. Magnan,113J. Marrouche,113B. Mathias,113R. Nandi,113J. Nash,113A. Nikitenko,113,oo J. Pela,113M. Pesaresi,113K. Petridis,113M. Pioppi,113,cccD. M. Raymond,113S. Rogerson,113A. Rose,113C. Seez,113

P. Sharp,113,aA. Sparrow,113A. Tapper,113M. Vazquez Acosta,113T. Virdee,113S. Wakefield,113N. Wardle,113 M. Chadwick,114J. E. Cole,114P. R. Hobson,114A. Khan,114P. Kyberd,114D. Leggat,114D. Leslie,114W. Martin,114

I. D. Reid,114P. Symonds,114L. Teodorescu,114M. Turner,114J. Dittmann,115K. Hatakeyama,115A. Kasmi,115 H. Liu,115T. Scarborough,115O. Charaf,116S. I. Cooper,116C. Henderson,116P. Rumerio,116A. Avetisyan,117

T. Bose,117C. Fantasia,117A. Heister,117P. Lawson,117D. Lazic,117J. Rohlf,117D. Sperka,117J. St. John,117 L. Sulak,117J. Alimena,118S. Bhattacharya,118G. Christopher,118D. Cutts,118Z. Demiragli,118A. Ferapontov,118

A. Garabedian,118U. Heintz,118S. Jabeen,118G. Kukartsev,118E. Laird,118G. Landsberg,118M. Luk,118 M. Narain,118M. Segala,118T. Sinthuprasith,118T. Speer,118R. Breedon,119G. Breto,119

M. Calderon De La Barca Sanchez,119S. Chauhan,119M. Chertok,119J. Conway,119R. Conway,119P. T. Cox,119 R. Erbacher,119M. Gardner,119R. Houtz,119W. Ko,119A. Kopecky,119R. Lander,119T. Miceli,119D. Pellett,119 J. Pilot,119F. Ricci-Tam,119B. Rutherford,119M. Searle,119J. Smith,119M. Squires,119M. Tripathi,119S. Wilbur,119

R. Yohay,119V. Andreev,120D. Cline,120R. Cousins,120S. Erhan,120P. Everaerts,120C. Farrell,120M. Felcini,120 J. Hauser,120M. Ignatenko,120C. Jarvis,120G. Rakness,120P. Schlein,120,aE. Takasugi,120P. Traczyk,120V. Valuev,120 M. Weber,120J. Babb,121R. Clare,121J. Ellison,121J. W. Gary,121G. Hanson,121J. Heilman,121P. Jandir,121H. Liu,121

O. R. Long,121A. Luthra,121M. Malberti,121H. Nguyen,121A. Shrinivas,121J. Sturdy,121S. Sumowidagdo,121 R. Wilken,121S. Wimpenny,121W. Andrews,122J. G. Branson,122G. B. Cerati,122S. Cittolin,122D. Evans,122

A. Holzner,122R. Kelley,122M. Lebourgeois,122J. Letts,122I. Macneill,122S. Padhi,122C. Palmer,122 G. Petrucciani,122M. Pieri,122M. Sani,122V. Sharma,122S. Simon,122E. Sudano,122M. Tadel,122Y. Tu,122 A. Vartak,122S. Wasserbaech,122,dddF. Wu¨rthwein,122A. Yagil,122J. Yoo,122D. Barge,123C. Campagnari,123 T. Danielson,123K. Flowers,123P. Geffert,123C. George,123F. Golf,123J. Incandela,123C. Justus,123D. Kovalskyi,123

V. Krutelyov,123S. Lowette,123R. Magan˜a Villalba,123N. Mccoll,123V. Pavlunin,123J. Richman,123R. Rossin,123 D. Stuart,123W. To,123C. West,123A. Apresyan,124A. Bornheim,124J. Bunn,124Y. Chen,124E. Di Marco,124 J. Duarte,124D. Kcira,124Y. Ma,124A. Mott,124H. B. Newman,124C. Pena,124C. Rogan,124M. Spiropulu,124 V. Timciuc,124J. Veverka,124R. Wilkinson,124S. Xie,124R. Y. Zhu,124V. Azzolini,125A. Calamba,125R. Carroll,125

T. Ferguson,125Y. Iiyama,125D. W. Jang,125Y. F. Liu,125M. Paulini,125J. Russ,125H. Vogel,125I. Vorobiev,125 J. P. Cumalat,126B. R. Drell,126W. T. Ford,126A. Gaz,126E. Luiggi Lopez,126U. Nauenberg,126J. G. Smith,126 K. Stenson,126K. A. Ulmer,126S. R. Wagner,126J. Alexander,127A. Chatterjee,127N. Eggert,127L. K. Gibbons,127

(11)

W. Hopkins,127A. Khukhunaishvili,127B. Kreis,127N. Mirman,127G. Nicolas Kaufman,127J. R. Patterson,127 A. Ryd,127E. Salvati,127W. Sun,127W. D. Teo,127J. Thom,127J. Thompson,127J. Tucker,127Y. Weng,127 L. Winstrom,127P. Wittich,127D. Winn,128S. Abdullin,129M. Albrow,129J. Anderson,129G. Apollinari,129 L. A. T. Bauerdick,129A. Beretvas,129J. Berryhill,129P. C. Bhat,129K. Burkett,129J. N. Butler,129V. Chetluru,129

H. W. K. Cheung,129F. Chlebana,129S. Cihangir,129V. D. Elvira,129I. Fisk,129J. Freeman,129Y. Gao,129 E. Gottschalk,129L. Gray,129D. Green,129O. Gutsche,129D. Hare,129R. M. Harris,129J. Hirschauer,129 B. Hooberman,129S. Jindariani,129M. Johnson,129U. Joshi,129K. Kaadze,129B. Klima,129S. Kunori,129S. Kwan,129

J. Linacre,129D. Lincoln,129R. Lipton,129J. Lykken,129K. Maeshima,129J. M. Marraffino,129 V. I. Martinez Outschoorn,129S. Maruyama,129D. Mason,129P. McBride,129K. Mishra,129S. Mrenna,129 Y. Musienko,129,eeeC. Newman-Holmes,129V. O’Dell,129O. Prokofyev,129N. Ratnikova,129E. Sexton-Kennedy,129

S. Sharma,129W. J. Spalding,129L. Spiegel,129L. Taylor,129S. Tkaczyk,129N. V. Tran,129L. Uplegger,129 E. W. Vaandering,129R. Vidal,129J. Whitmore,129W. Wu,129F. Yang,129J. C. Yun,129D. Acosta,130P. Avery,130

D. Bourilkov,130M. Chen,130T. Cheng,130S. Das,130M. De Gruttola,130G. P. Di Giovanni,130D. Dobur,130 A. Drozdetskiy,130R. D. Field,130M. Fisher,130Y. Fu,130I. K. Furic,130J. Hugon,130B. Kim,130J. Konigsberg,130

A. Korytov,130A. Kropivnitskaya,130T. Kypreos,130J. F. Low,130K. Matchev,130P. Milenovic,130,fff G. Mitselmakher,130L. Muniz,130R. Remington,130A. Rinkevicius,130N. Skhirtladze,130M. Snowball,130 J. Yelton,130M. Zakaria,130V. Gaultney,131S. Hewamanage,131S. Linn,131P. Markowitz,131G. Martinez,131

J. L. Rodriguez,131T. Adams,132A. Askew,132J. Bochenek,132J. Chen,132B. Diamond,132J. Haas,132 S. Hagopian,132V. Hagopian,132K. F. Johnson,132H. Prosper,132V. Veeraraghavan,132M. Weinberg,132 M. M. Baarmand,133B. Dorney,133M. Hohlmann,133H. Kalakhety,133F. Yumiceva,133M. R. Adams,134 L. Apanasevich,134V. E. Bazterra,134R. R. Betts,134I. Bucinskaite,134J. Callner,134R. Cavanaugh,134 O. Evdokimov,134L. Gauthier,134C. E. Gerber,134D. J. Hofman,134S. Khalatyan,134P. Kurt,134F. Lacroix,134

D. H. Moon,134C. O’Brien,134C. Silkworth,134D. Strom,134P. Turner,134N. Varelas,134U. Akgun,135 E. A. Albayrak,135,zzB. Bilki,135,gggW. Clarida,135K. Dilsiz,135F. Duru,135S. Griffiths,135J.-P. Merlo,135 H. Mermerkaya,135,hhhA. Mestvirishvili,135A. Moeller,135J. Nachtman,135C. R. Newsom,135H. Ogul,135Y. Onel,135

F. Ozok,135,zzS. Sen,135P. Tan,135E. Tiras,135J. Wetzel,135T. Yetkin,135,iiiK. Yi,135B. A. Barnett,136 B. Blumenfeld,136S. Bolognesi,136G. Giurgiu,136A. V. Gritsan,136G. Hu,136P. Maksimovic,136C. Martin,136

M. Swartz,136A. Whitbeck,136P. Baringer,137A. Bean,137G. Benelli,137R. P. Kenny III,137M. Murray,137 D. Noonan,137S. Sanders,137R. Stringer,137J. S. Wood,137A. F. Barfuss,138I. Chakaberia,138A. Ivanov,138 S. Khalil,138M. Makouski,138Y. Maravin,138L. K. Saini,138S. Shrestha,138I. Svintradze,138J. Gronberg,139 D. Lange,139F. Rebassoo,139D. Wright,139A. Baden,140B. Calvert,140S. C. Eno,140J. A. Gomez,140N. J. Hadley,140

R. G. Kellogg,140T. Kolberg,140Y. Lu,140M. Marionneau,140A. C. Mignerey,140K. Pedro,140A. Peterman,140 A. Skuja,140J. Temple,140M. B. Tonjes,140S. C. Tonwar,140A. Apyan,141G. Bauer,141W. Busza,141I. A. Cali,141

M. Chan,141L. Di Matteo,141V. Dutta,141G. Gomez Ceballos,141M. Goncharov,141D. Gulhan,141Y. Kim,141 M. Klute,141Y. S. Lai,141A. Levin,141P. D. Luckey,141T. Ma,141S. Nahn,141C. Paus,141D. Ralph,141C. Roland,141

G. Roland,141G. S. F. Stephans,141F. Sto¨ckli,141K. Sumorok,141D. Velicanu,141R. Wolf,141B. Wyslouch,141 M. Yang,141Y. Yilmaz,141A. S. Yoon,141M. Zanetti,141V. Zhukova,141B. Dahmes,142A. De Benedetti,142 A. Gude,142J. Haupt,142S. C. Kao,142K. Klapoetke,142Y. Kubota,142J. Mans,142N. Pastika,142R. Rusack,142 M. Sasseville,142A. Singovsky,142N. Tambe,142J. Turkewitz,142J. G. Acosta,143L. M. Cremaldi,143R. Kroeger,143

S. Oliveros,143L. Perera,143R. Rahmat,143D. A. Sanders,143D. Summers,143E. Avdeeva,144K. Bloom,144 S. Bose,144D. R. Claes,144A. Dominguez,144M. Eads,144R. Gonzalez Suarez,144J. Keller,144I. Kravchenko,144

J. Lazo-Flores,144S. Malik,144F. Meier,144G. R. Snow,144J. Dolen,145A. Godshalk,145I. Iashvili,145S. Jain,145 A. Kharchilava,145A. Kumar,145S. Rappoccio,145Z. Wan,145G. Alverson,146E. Barberis,146D. Baumgartel,146 M. Chasco,146J. Haley,146A. Massironi,146D. Nash,146T. Orimoto,146D. Trocino,146D. Wood,146J. Zhang,146

A. Anastassov,147K. A. Hahn,147A. Kubik,147L. Lusito,147N. Mucia,147N. Odell,147B. Pollack,147 A. Pozdnyakov,147M. Schmitt,147S. Stoynev,147K. Sung,147M. Velasco,147S. Won,147D. Berry,148 A. Brinkerhoff,148K. M. Chan,148M. Hildreth,148C. Jessop,148D. J. Karmgard,148J. Kolb,148K. Lannon,148 W. Luo,148S. Lynch,148N. Marinelli,148D. M. Morse,148T. Pearson,148M. Planer,148R. Ruchti,148J. Slaunwhite,148

N. Valls,148M. Wayne,148M. Wolf,148L. Antonelli,149B. Bylsma,149L. S. Durkin,149C. Hill,149R. Hughes,149 K. Kotov,149T. Y. Ling,149D. Puigh,149M. Rodenburg,149G. Smith,149C. Vuosalo,149B. L. Winer,149H. Wolfe,149 E. Berry,150P. Elmer,150V. Halyo,150P. Hebda,150J. Hegeman,150A. Hunt,150P. Jindal,150S. A. Koay,150P. Lujan,150

(12)

D. Marlow,150T. Medvedeva,150M. Mooney,150J. Olsen,150P. Piroue´,150X. Quan,150A. Raval,150H. Saka,150 D. Stickland,150C. Tully,150J. S. Werner,150S. C. Zenz,150A. Zuranski,150E. Brownson,151A. Lopez,151 H. Mendez,151J. E. Ramirez Vargas,151E. Alagoz,152D. Benedetti,152G. Bolla,152D. Bortoletto,152M. De Mattia,152 A. Everett,152Z. Hu,152M. Jones,152K. Jung,152O. Koybasi,152M. Kress,152N. Leonardo,152D. Lopes Pegna,152 V. Maroussov,152P. Merkel,152D. H. Miller,152N. Neumeister,152I. Shipsey,152D. Silvers,152A. Svyatkovskiy,152 F. Wang,152W. Xie,152L. Xu,152H. D. Yoo,152J. Zablocki,152Y. Zheng,152N. Parashar,153A. Adair,154B. Akgun,154

K. M. Ecklund,154F. J. M. Geurts,154W. Li,154B. Michlin,154B. P. Padley,154R. Redjimi,154J. Roberts,154 J. Zabel,154B. Betchart,155A. Bodek,155R. Covarelli,155P. de Barbaro,155R. Demina,155Y. Eshaq,155T. Ferbel,155

A. Garcia-Bellido,155P. Goldenzweig,155J. Han,155A. Harel,155D. C. Miner,155G. Petrillo,155D. Vishnevskiy,155 M. Zielinski,155A. Bhatti,156R. Ciesielski,156L. Demortier,156K. Goulianos,156G. Lungu,156S. Malik,156 C. Mesropian,156S. Arora,157A. Barker,157J. P. Chou,157C. Contreras-Campana,157E. Contreras-Campana,157

D. Duggan,157D. Ferencek,157Y. Gershtein,157R. Gray,157E. Halkiadakis,157D. Hidas,157A. Lath,157 S. Panwalkar,157M. Park,157R. Patel,157V. Rekovic,157J. Robles,157S. Salur,157S. Schnetzer,157C. Seitz,157 S. Somalwar,157R. Stone,157S. Thomas,157P. Thomassen,157M. Walker,157G. Cerizza,158M. Hollingsworth,158 K. Rose,158S. Spanier,158Z. C. Yang,158A. York,158O. Bouhali,159,jjjR. Eusebi,159W. Flanagan,159J. Gilmore,159

T. Kamon,159,kkkV. Khotilovich,159R. Montalvo,159I. Osipenkov,159Y. Pakhotin,159A. Perloff,159J. Roe,159 A. Safonov,159T. Sakuma,159I. Suarez,159A. Tatarinov,159D. Toback,159N. Akchurin,160C. Cowden,160 J. Damgov,160C. Dragoiu,160P. R. Dudero,160K. Kovitanggoon,160S. W. Lee,160T. Libeiro,160I. Volobouev,160 E. Appelt,161A. G. Delannoy,161S. Greene,161A. Gurrola,161W. Johns,161C. Maguire,161Y. Mao,161A. Melo,161

M. Sharma,161P. Sheldon,161B. Snook,161S. Tuo,161J. Velkovska,161M. W. Arenton,162S. Boutle,162B. Cox,162 B. Francis,162J. Goodell,162R. Hirosky,162A. Ledovskoy,162C. Lin,162C. Neu,162J. Wood,162S. Gollapinni,163

R. Harr,163P. E. Karchin,163C. Kottachchi Kankanamge Don,163P. Lamichhane,163A. Sakharov,163 D. A. Belknap,164L. Borrello,164D. Carlsmith,164M. Cepeda,164S. Dasu,164S. Duric,164E. Friis,164M. Grothe,164

R. Hall-Wilton,164M. Herndon,164A. Herve´,164P. Klabbers,164J. Klukas,164A. Lanaro,164R. Loveless,164 A. Mohapatra,164I. Ojalvo,164T. Perry,164G. A. Pierro,164G. Polese,164I. Ross,164T. Sarangi,164A. Savin,164

W. H. Smith,164and J. Swanson164 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

12a

Universidade Estadual Paulista, Sa˜o Paulo, Brazil

12bUniversidade Federal do ABC, Sa˜o Paulo, Brazil 13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18

Technical University of Split, Split, Croatia

19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics,

Cairo, Egypt

(13)

25Department of Physics, University of Helsinki, Helsinki, Finland 26Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France 32

Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany

40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 41University of Athens, Athens, Greece

42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary

46National Institute of Science Education and Research, Bhubaneswar, India 47Panjab University, Chandigarh, India

48

University of Delhi, Delhi, India

49Saha Institute of Nuclear Physics, Kolkata, India 50Bhabha Atomic Research Centre, Mumbai, India 51Tata Institute of Fundamental Research-EHEP, Mumbai, India 52Tata Institute of Fundamental Research-HECR, Mumbai, India 53Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

54University College Dublin, Dublin, Ireland 55aINFN Sezione di Bari, Bari, Italy

55bUniversita` di Bari, Bari, Italy 55cPolitecnico di Bari, Bari, Italy 56aINFN Sezione di Bologna, Bologna, Italy

56bUniversita` di Bologna, Bologna, Italy 57aINFN Sezione di Catania, Catania, Italy

57bUniversita` di Catania, Catania, Italy 58aINFN Sezione di Firenze, Firenze, Italy

58bUniversita` di Firenze, Firenze, Italy

59INFN Laboratori Nazionali di Frascati, Frascati, Italy 60aINFN Sezione di Genova, Genova, Italy

60bUniversita` di Genova, Genova, Italy 61aINFN Sezione di Milano-Bicocca, Milano, Italy

61bUniversita` di Milano-Bicocca, Milano, Italy 62aINFN Sezione di Napoli, Napoli, Italy 62bUniversita` di Napoli ’Federico II’, Napoli, Italy 62c

Universita` della Basilicata (Potenza), Napoli, Italy

62dUniversita` G. Marconi (Roma), Napoli, Italy 63aINFN Sezione di Padova, Padova, Italy

63bUniversita` di Padova, Padova, Italy 63cUniversita` di Trento (Trento), Padova, Italy

64aINFN Sezione di Pavia, Pavia, Italy 64bUniversita` di Pavia, Pavia, Italy 65aINFN Sezione di Perugia, Perugia, Italy

65bUniversita` di Perugia, Perugia, Italy 66a

INFN Sezione di Pisa, Pisa, Italy

66bUniversita` di Pisa, Pisa, Italy 66cScuola Normale Superiore di Pisa, Pisa, Italy

67aINFN Sezione di Roma, Roma, Italy 67bUniversita` di Roma, Roma, Italy

(14)

68aINFN Sezione di Torino, Torino, Italy 68bUniversita` di Torino, Torino, Italy

68cUniversita` del Piemonte Orientale (Novara), Torino, Italy 69aINFN Sezione di Trieste, Trieste, Italy

69bUniversita` di Trieste, Trieste, Italy 70Kangwon National University, Chunchon, Korea

71Kyungpook National University, Daegu, Korea

72Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 73

Korea University, Seoul, Korea

74University of Seoul, Seoul, Korea 75Sungkyunkwan University, Suwon, Korea

76Vilnius University, Vilnius, Lithuania

77Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 78Universidad Iberoamericana, Mexico City, Mexico

79Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 80Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

81University of Auckland, Auckland, New Zealand 82University of Canterbury, Christchurch, New Zealand

83National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 84National Centre for Nuclear Research, Swierk, Poland

85Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 86Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal

87Joint Institute for Nuclear Research, Dubna, Russia

88Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 89

Institute for Nuclear Research, Moscow, Russia

90Institute for Theoretical and Experimental Physics, Moscow, Russia 91P. N. Lebedev Physical Institute, Moscow, Russia

92Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 93State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 94University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

95Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 96Universidad Auto´noma de Madrid, Madrid, Spain

97Universidad de Oviedo, Oviedo, Spain

98Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 99CERN, European Organization for Nuclear Research, Geneva, Switzerland

100Paul Scherrer Institut, Villigen, Switzerland

101Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 102Universita¨t Zu¨rich, Zurich, Switzerland

103National Central University, Chung-Li, Taiwan 104National Taiwan University (NTU), Taipei, Taiwan

105Chulalongkorn University, Bangkok, Thailand 106Cukurova University, Adana, Turkey

107Middle East Technical University, Physics Department, Ankara, Turkey 108Bogazici University, Istanbul, Turkey

109Istanbul Technical University, Istanbul, Turkey

110National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 111University of Bristol, Bristol, United Kingdom

112

Rutherford Appleton Laboratory, Didcot, United Kingdom

113Imperial College, London, United Kingdom 114Brunel University, Uxbridge, United Kingdom

115Baylor University, Waco, Texas, USA

116The University of Alabama, Tuscaloosa, Alabama, USA 117Boston University, Boston, Massachusetts, USA 118Brown University, Providence, Rhode Island, USA 119University of California, Davis, Davis, California, USA 120University of California, Los Angeles, Los Angeles, California, USA

121

University of California, Riverside, Riverside, California, USA

122University of California, San Diego, La Jolla, California, USA 123University of California, Santa Barbara, Santa Barbara, California, USA

124California Institute of Technology, Pasadena, California, USA 125Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

(15)

126University of Colorado at Boulder, Boulder, Colorado, USA 127Cornell University, Ithaca, New York, USA 128Fairfield University, Fairfield, Connecticut, USA 129Fermi National Accelerator Laboratory, Batavia, Illinois, USA

130University of Florida, Gainesville, Florida, USA 131Florida International University, Miami, Florida, USA

132Florida State University, Tallahassee, Florida, USA 133Florida Institute of Technology, Melbourne, Florida, USA 134

University of Illinois at Chicago (UIC), Chicago, Illinois, USA

135The University of Iowa, Iowa City, Iowa, USA 136Johns Hopkins University, Baltimore, Maryland, USA

137The University of Kansas, Lawrence, Kansas, USA 138Kansas State University, Manhattan, Kansas, USA

139Lawrence Livermore National Laboratory, Livermore, California, USA 140University of Maryland, College Park, Maryland, USA 141Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

142University of Minnesota, Minneapolis, Minnesota, USA 143University of Mississippi, Oxford, Mississippi, USA 144University of Nebraska-Lincoln, Lincoln, Nebraska, USA 145State University of New York at Buffalo, Buffalo, New York, USA

146Northeastern University, Boston, Massachusetts, USA 147Northwestern University, Evanston, Illinois, USA 148University of Notre Dame, Notre Dame, Indiana, USA

149The Ohio State University, Columbus, Ohio, USA 150

Princeton University, Princeton, New Jersey, USA

151University of Puerto Rico, Mayaguez, Puerto Rico 152Purdue University, West Lafayette, Indiana, USA 153Purdue University Calumet, Hammond, Indiana, USA

154Rice University, Houston, Texas, USA 155University of Rochester, Rochester, New York, USA 156The Rockefeller University, New York, New York, USA

157Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA 158University of Tennessee, Knoxville, Tennessee, USA

159Texas A&M University, College Station, Texas, USA 160Texas Tech University, Lubbock, Texas, USA 161Vanderbilt University, Nashville, Tennessee, USA 162University of Virginia, Charlottesville, Virginia, USA

163Wayne State University, Detroit, Michigan, USA 164University of Wisconsin, Madison, Wisconsin, USA a

Deceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

dAlso at Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3,

Strasbourg, France.

eAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.

fAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia. gAlso at Universidade Estadual de Campinas, Campinas, Brazil.

hAlso at California Institute of Technology, Pasadena, CA, USA.

iAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. jAlso at Zewail City of Science and Technology, Zewail, Egypt.

kAlso at Suez Canal University, Suez, Egypt. lAlso at Cairo University, Cairo, Egypt. m

Also at Fayoum University, El-Fayoum, Egypt.

nAlso at British University in Egypt, Cairo, Egypt. oAlso at Ain Shams University, Cairo, Egypt.

pAlso at National Centre for Nuclear Research, Swierk, Poland. qAlso at Universite´ de Haute Alsace, Mulhouse, France. rAlso at Joint Institute for Nuclear Research, Dubna, Russia.

Figura

TABLE I. Constraints used in the likelihood maximization. The M tt distributions of the boosted channels are combined into a single joint likelihood, imposing consistency of the various background and signal components.
FIG. 1 (color online). Comparison between data and SM pre- pre-diction for reconstructed M tt distributions for the boosted  semi-leptonic analysis with 0 b-tagged jets (a) and 1 b-tagged jets (b), as well as for the all-hadronic analysis (c)

Riferimenti

Documenti correlati

Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design.. A review of computational optimisation methods applied

Benché non direttamente allievo, tutta- via legato a Rogers anche tramite «Casa- bella» che più volte lo pubblica, Polesello riconosce quanto il suo pensiero debba al Maestro

Il mio incontro con Crimp, il cui esito propongo in forma di intervista, ha se- gnato la mia ricerca di ricostruzione del dibattito critico avvenuto sulle pagine della

While acknowledging that some exceptions in the convergence process emerged in terms of the mean values of the parameters, the authors emphasized the strong link between

Nicola Barbuti, ha curato sia la progettazione e realizzazione del tracciato in open data utilizzato per indicizzare e pubblicare on line una selezione di volumi a stampa

Anche altrove la memoria del Pluto è, per lo più, limitata alla ripresa di singole espressioni: è il caso della già citata epistola 104 al fratello, dove, a proposito di un

Keywords: Endocrine disruptor, humic substances, natural organic matter, organic contaminant, phytoremediation,

In una situazione, come quella attuale, in cui il lavoro di riproduzione (femminile e non) si sovrappone sempre più al lavoro produttivo classicamente inteso, è possibile pensare