• Non ci sono risultati.

As durum wheat productivity is affected by nitrogen fertilisation management in Central Italy

N/A
N/A
Protected

Academic year: 2021

Condividi "As durum wheat productivity is affected by nitrogen fertilisation management in Central Italy"

Copied!
9
0
0

Testo completo

(1)

and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

(2)

ContentslistsavailableatSciVerseScienceDirect

European

Journal

of

Agronomy

j our na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e j a

As

durum

wheat

productivity

is

affected

by

nitrogen

fertilisation

management

in

Central

Italy

Laura

Ercoli

a,∗

,

Alessandro

Masoni

b

,

Silvia

Pampana

b

,

Marco

Mariotti

c

,

Iduna

Arduini

b

aScuolaSuperioreSant’Anna,p.zzaMartiridellaLibertà33,56127Pisa,Italy

bDipartimentodiScienzeAgrarie,AlimentarieAgroambientali,viadelBorghetto80,56124Pisa,Italy cDipartimentodiScienzeVeterinarie,vialedellePiagge2,56124Pisa,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received8May2012

Receivedinrevisedform26July2012 Accepted13August2012 Keywords: Triticumdurum Nfertilisation Nsplitting Nsource Nleaching

a

b

s

t

r

a

c

t

OptimisationofNfertilisationisacentralissueandgoalofappliedresearchinagriculturalsystems. Site-specificmanagementtechniquesareneededinordertocloselymatchavailabilitywith require-mentthroughoutcropcycleandtoreduceasmuchaspossibleenvironmentaldispersionofN.Lysimeter experimentswereconductedincentralItalyintwosubsequentseasonstoinvestigatetheresponseoftwo commercialdurumwheatcultivarstodifferentNfertilisersappliedbeforeseedingandattopdressing, andtosplitapplicationsofN.Grainyieldandyieldcomponents,NuptakeandNleachingwere deter-mined.Ammoniumsulphate(AS)andureacontainingthenitrificationinhibitor3,4-dimetihylpyrazole phosphate(Entec®46)wereappliedbeforeseeding;AS,ammoniumnitratesulphatecontainingthe

nitrificationinhibitor3,4-dimetihylpyrazolephosphate(Entec®26),andureawereappliedat5thleaf

unfoldedstage.SixN-fertilisertreatmentswithatotalNamountof180kgNha−1weretested,consisting

ofsplittingapplicationbeforeseeding,atGS15andGS30respectivelyof0-180-0,0-90-90,30-150-0, 30-75-75,60-120-0and60-60-60kgNha−1.Inbothyears,fertilisersplittingaffecteddurumwheatgrain yieldandNconcentration;variationsduetosplittingreached1tingrainyieldand7gkg−1inN

concentra-tionofgrain,correspondingto4%increaseinproteincontent.Highestgrainyield,proteinconcentration, nitrogenuseefficiency(NUE),andnitrogenuptakeefficiency(NUpE)wereobtainedwiththeapplication of30kgNha−1beforeseeding.Theyieldadvantagewasrelatedtohighernumberofkernelsperspike,

resultingfromhighernumberoffertilespikeletsperspike.Grainyieldwasnotaffectedbynitrogensource appliedbeforeseeding,butwasmodifiedbytopdressingNfertiliser.Yieldincreasedby0.4tha−1with urea,comparedtoASandEntec®26,owingtoagreaternumberofkernelsperspike.Nitrogenleaching

wascloselyrelatedtorainfall:totalamountofNlostduringwheatcyclewasalmostentirelyaccounted forNleachinginwinter,beforetopdressingNapplication.Asaconsequence,thequantityofNlostby leachingincreasedwiththeincreaseofNrateappliedbeforeseeding,whiletopdressingfertiliserdidnot affectlosses.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

OptimisationofmineralNfertilisationaimedtoincreaseNuse efficiencyisacentralissueandgoalofappliedresearchin agricul-turalsystems.Nitrogenuseefficiencyofworldwidecerealcrops wasestimatedtobenear33%(RaunandJohnson,1999),ranging from14to59%inwheat(Melajetal.,2003;López-Bellidoetal., 2005);whichsuggeststhatcurrentNstrategiesareextremely inef-ficient.

Nitrogenuseefficiency(NUE)incerealgrainproductionmay belowowingtolossesofNbyvolatilisation,denitrificationand

∗ Correspondingauthor.Tel.:+39050883357;fax:+39050883215. E-mailaddress:[email protected](L.Ercoli).

leaching.Ammonium-basednitrogenfertiliserproductsare sus-ceptibletovolatilisationlossesofnitrogenifsurface-appliedand not incorporated. Bouwman et al. (2002) estimated that NH3 volatilisationlossesfromsyntheticNfertilisersappliedtoboth win-terandsummercropsamountsto7%inindustrialisedcountries. InEurope,fertiliserNlossesviadenitrificationwereestimatedat 0.2–2.9%oftheNappliedtocereals(Kaiseretal.,1996).

Leachinglossesoccurwhenrainfallexceedscrop evapotranspi-rationanddownward watermovement throughthesoilprofile takesplace,whichcorrespondstothefall-winterperiodinhumid Mediterranean climate (Arregui and Quemada, 2006). Leaching N–NO3lossesfromdurumwheatcropwereestimatedincentral Italyat21–32kgNha−1yr−1,correspondingto12–22%ofthetotal Napplied(Ercoliet al.,2012).Nitrate leachingina 3-yearcrop rotationwheat–barley–rapeseedinsimilarconditionsinSpainwas

1161-0301/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.eja.2012.08.005

(3)

estimatedat31–35kgNha−1y−1,or25–29%ofthetotalNapplied (ArreguiandQuemada,2006).Thus,asageneralrule,Nleachingin MediterraneanclimatecanberegardedasthegreatestsourceofN lossandthemajordeterminantoflowNutilisationefficiency.

Durumwheat is widely cultivated throughout the Mediter-raneanregion,wherethecropistypically plantedinNovember andharvestedatthebeginningofJuly.Heavyrainfallandlowcrop evapotranspirationratescanbeexpectedbetweenNovemberand March,resultinginhigherriskofNleachinglosses.Toreduce leach-inglosses,fertiliserapplicationshouldaimtomatchasmuchas possibletherequirementofplantNwiththeavailablenitrogenin soil,minimisingtheexcessofNinsoiluselesstotheplant.Thus, applicationshouldbethelatestpossiblecompatiblewiththestage ofdevelopmentthatstillpermitsrapidNuptake,inordertoreduce theopportunitiesforNlossesofunusedN(Raunetal.,2008).

Anumberofexperimentsinwintercerealhaveshownthatsplit applicationsofNfertiliserinvolvingequalquantitiesofNapplied beforeandafterseedingareagronomicalstrategiestoimproveN utilisationefficiency(Alcozetal.,1993;Deloguetal.,1998; López-Bellidoetal., 2005,2012;Dilz, 1988).Sowers etal. (1994)and

Strong(1995)foundthattheNfertiliserappliedinautumn,owing toincreasedNleaching,hadalowerefficiencythanwhenthe nitro-genwassplittedinfallandspring.Garrido-Lestacheetal.(2004)

observedthattimingandsplittingofNfertiliserinfluencedgrain proteincontent,whichpeakedwhenhalforone-thirdoftheNrate (150kgNha−1)wasappliedatstemelongation,andinsomecases whenNwasappliedonlyattillering.However,theeffectof split-tingNrateongrainqualitywasunclearinotherstudies(Ayoub etal.,1994;Garrido-Lestacheetal.,2005).Fuertes-Mendizábaletal. (2010)foundthatthesplittingofthesameNrateinthree amend-ments(stagesGS20,GS30,andGS37,accordingtoZadoksscale) insteadoftwo(stagesGS20andGS30)didnotmodifygrainyield butimprovedgrainproteincontent,indicatingthatalateN applica-tionmayhavemoreimpactonNmetabolismandNremobilisation thanonbiomassaccumulationandgrainyield.Ottmanetal.(2000)

showedhighergrainproteincontentswiththeapplicationofhigh Nratesatanthesis.

AnotherstrategytoreduceNleachinglossesandtoincreaseN utilisationefficiencyistheuseoffertilisersreleasingreducedand controlledamountofnitricN.Severalstudieshaveshown bene-ficialeffectsoftheuseofslowandcontrolled-releasefertilisers, stabilisedfertilisers and/ornitrificationand ureaseinhibitorsto enhanceproductivityofagriculturalandhorticulturalcrops(Prasad andPower,1995;Pasdaetal.,2001;Carreresetal.,2003).Inother studies,however,nopositiveresultshavebeenreported follow-ing theapplication of fertilisers that delay nutrient availability (Cartagena etal.,1995;Diezetal.,1997;ArreguiandQuemada, 2008).Inconsistenciesinresultsmayappearsincesoilproperties and/orclimaticconditionsaffectbothnutrient-releaseratesfrom fertilisers and processes leading toleaching and denitrification lossesandimmobilisationinsoil.

The present work was undertaken to determine the effects ofdifferentsourcesofNfertiliserdistributedbeforeseedingand topdressingandsplitapplicationsofNongrainyield,yield compo-nents,NuptakeandNleachingofdurumwheat,andtoidentifyN fertiliserandtypeofsplittingthatoptimisedNuptakeandretention inMediterraneanenvironments.

2. Materialandmethods

Lysimeterexperimentswereconductedintwosuccessive grow-ingseasons,2008–2009and2009–2010attheexperimentalstation oftheDepartmentofScienzeAgrarie,AlimentarieAgroambientali oftheUniversityofPisa,Italy,thatislocatedatadistanceof approx-imately10kmfromthesea(43◦40N,10◦19E)and3mabovesea

level.Theclimateofthesiteiscold,humidMediterraneanwith meanannualmaximumandminimumdailyairtemperaturesof 20.2and9.5◦C,respectively(Moonenetal.,2001).Forbothyears, dailyweatherdatawereobtainedfromameteorologicalstation locatedwithin100mfromtheexperimentalfields.

Inbothyearsafullfactorialoftwodurumwheatvarieties,two Nfertilisersbeforesowing,threetopdressingNfertilisersandsix splitapplicationsofNwasreplicatedtwotimesandarrangedina randomised,complete-block design.Thedurumwheat(Triticum durum Desf.) varieties were Latinur and Svevo, currently used in local production. The two N fertilisers before sowing were ammonium sulphate (AS), and ureacontaining thenitrification inhibitor3,4-dimetihylpyrazolephosphate(Entec®46).Thethree topdressing N fertilisers were AS, ammonium nitrate sulphate containingthenitrificationinhibitor3,4-dimetihylpyrazole phos-phate (Entec® 26), and urea, and were applied at the 5th leaf unfolded stage.TotalNamountof180kgha−1 wassplit among pre-seeding,at5thleafunfoldedstageandatpseudostem erec-tionasfollows:0-180-0,0-90-90,30-150-0,30-75-75,60-120-0 and 60-60-60kgNha−1.Growthstages of5thleafunfolded and pseudo stem erection wereindividuated following the scale of Zadoks(Zadoksetal.,1974),correspondingrespectivelytoGS15 andGS30.

Open-air lysimeter installation consisted of 144 lysimeters of 0.50-m length, 0.50-m width and 0.4-m height (100-L vol-ume),arrangedinfourrowsof36,spaced20cmandembedded in expanded clay tosmooth daily fluctuations in soil tempera-ture.Lysimeterswerefilledwithasoiltampedtoaboutoriginal soil bulk density,and wereattachedtoa 3-cmrigid PVCdrain thatendedinacentralcollectionfacility.Soilchemical–physical properties were: 68.5% sand (2mm>Ø>0.05mm); 25.9% silt (0.05m>Ø>0.002mm); 5.6% clay; 7.0 pH; 2.0% organic matter (Walkley andBlackmethod); 0.8gkg−1 totalnitrogen(Kjeldahl method);26.0mgkg−1 availableP(Olsenmethod);76.3mgkg−1 availableK(BaCl2+TEAmethod).

Phosphorusandpotassiumwerehandappliedpreplantingas triple mineral phosphate and potassium sulphate at a rate of 150kgha−1P2O5and150kgha−1K2O.Nitrogenwashandapplied beforeseedingandatGS15accordingtothetreatmentsandatGS30 asurea.

Thedurumwheatvarieties,LatinurandSvevo,weresownon 18November2008and25November2009,withintheoptimum plantingtimeforwheatproductioninCentralItaly.Arateof100 viableseedspercontainer,correspondingto400viableseedsm−2, in rows spaced15cm apart,wasapplied.Plant emergencewas recordedon5December2008and9December2009.Weedcontrol wasperformedthroughoutwheatcyclebyhandhoeing.

Leachatesfromeachlysimeterwerecollectedduringtheentire researchperiodinbothyearsaftereachmajorrainfalleventina 20-LPVCtank.LeachatevolumesweremeasuredandtheirN–NO3 concentrationsweredeterminedwithanOrionionanalysermodel 502A(OrionResearchInc.,Boston,MA,USA).Accumulatedmonthly leachatevolumeswerecalculatedandthemonthlyflow-weighted N–NO3 concentrationsweredeterminedbysummingupN–NO3 masscollectedforeachrainfalleventinamonthdividedbythe totalleachatevolumecollectedinthemonth.Averagely,a con-centrationof2.4mgN–NO3L−1wasdeterminedinrainfall.Forall treatments,timingofstageof1stleafemergence(GS10),5thleaf unfolded(GS15),pseudostemerection(GS30),inflorescence emer-gence (GS50),andphysiologicalripening(GS90)wererecorded, expressinginthermaltimethedurationoftheperiodsbetween stages(Table1).ThermaltimewascalculatedfollowingMcMaster and Wilhelm(1997),assuming2◦Casbasetemperature(Porter and Gawith,1999).At GS90 (22 June 2009 and 30 June 2010) plantsfromeachcontainerweremanuallycutatgroundleveland werepartitionedintoculms,leaves,chaffandgrain.Fordryweight

(4)

Table1

Accumulatedgrowingdegreedaysandrainfallduringthewholewheatcycleand maingrowthperiods.GrowthstagesaredefinedfollowingZadok’sscale(GS00 seed-ing,GS10emergence,GS155thleafunfoldedstage,GS30pseudostemerection,GS50 anthesis,GS90physiologicalmaturity).

Period GDD(◦C) Rainfall(mm) 2008–2009 2009–2010 2008–2009 2009–2010 GS00–GS10 131.9 130.8 169.2 52.4 GS10–GS15 408.9 346.9 206.4 254.8 GS15–GS30 144.4 184.4 80.0 58.8 GS30–GS50 671.9 573.4 220.6 100.0 GS50–GS90 1048.7 1123.6 69.6 259.8 Wholecycle 2405.7 2358.9 745.8 725.8

determination,samplesfromallplantparts wereovendriedat 65◦Cuptoconstantweight.Meankerneldryweightwasalso mea-suredandnumberofkernelsperunitareaandharvestindex(HI) werecalculated.Samplesofeachplantpartwereanalysedfor nitro-genconcentration(Kjeldahlmethod);Ncontentswerecalculated bymultiplyingNconcentrationbydryweight.

Nitrogenefficiencyparameterswerecalculatedforeach treat-ment according to Moll et al. (1982) and López-Bellido et al. (2005).Nitrogenuseefficiency(kgkg−1)wastheratioofgrainyield biomasstoNfertiliser.Nitrogenuptakeefficiency(NUpE,kgkg−1) wastheratiooftotalaerialplantpartNuptaketoNfertiliser. Nitro-genutilisationefficiency(NUtE,kgkg−1)wastheratioofgrainyield biomasstototalNuptake.Nitrogenharvestindex(NHI)wasthe ratioofNingraintototalNuptake.

ResultsweretreatedbyANOVA.Themaineffectsofyear, vari-ety,Nfertiliserbeforeseeding,Nfertilisertopdressing,Nsplitting, andtheirinteractionsweretestedfordryweightofplantpartsand relativeNconcentrationandcontentandtotalNleached.Themain effectsofvariety,Nfertiliserbeforeseeding,Nfertilisertopdressing, Nsplitting,andtheirinteractionsweretestedfordrainagewater, NconcentrationandNleachinginthemonthsfromNovemberto Aprilin thetwoseasons. TheCoHortsoftwarepackagever. 6.4 (CoHortsoftware,Monterey,CA,USA)wasused.Significantly dif-ferentmeanswereseparatedatthe0.05probabilitylevelbythe leastsignificantdifferencetest(Steeletal.,1997).

3. Results

3.1. Weatherconditions

Total rainfallduringwheatgrowingcyclewassimilarinthe 2008–2009and2009–2010growingseasons(Fig.1andTable1) andwasby42%highercomparedtothemeanrainfallforthearea overthelast 10 years(515mm).Rainfall fromseeding toGS30 wassimilarinbothyears,accountingforover50%oftotal rain-fallduringwheatcycle, whereasit differedduring jointingand grainfilling.Duringjointing,rainfallwasabout3-foldin2008–2009 comparedto2009–2010,whileduringgrainfilling itwasabout 3-foldin2009–2010compared to2008–2009.Temperaturewas lowerthanthelong-term averagein both seasons,asthe ther-maltimeuptomaturitywas2574◦Cinthelong-termaverage,vs. 2406◦Cin2008–2009and2359◦Cin2009–2010(Table1). Differ-encesbetweenseasonsinaccumulatedgrowingdegreedayswere recordedonlyintheperiodfromGS10toGS50.Thehighest differ-encebetweenseasonswasrecordedfromGS15toGS30,with28% highervaluein2009–2010comparedto2008–2009.

3.2. Grainyieldandyieldcomponents

Grain yields were always higher in 2009–2010 cropseason withallsplittings.Inbothgrowingseasonsthehighestyieldwas

Fig.1.Rainfall(bars),maximum(closedsymbol)andminimum(opensymbol) tem-peraturein2008–2009(up)and2009–2010(down)seasons.

obtainedwiththe30-150-0splitting,whiletheapplicationof 0-180-0in2008–2009and60-120-0in2009–2010resultedinthe lowestgrainyield(Fig.2).Differencesingrainyieldbetweenyears andsplittingswereduetovariationsinnumberofspikesperunit area,number ofkernelsperspikeandmeankernelweight.The averagenumberofspikesm−2was559in2009–2010seasonand 484in2008–2009(resultsnotshown)andwashigherwith 0-180-0andlowestwith60-60-60(Table2).Thenumberofkernelsper spikewashigherin2009–2010onlyfortheapplicationswithout Nbeforeseeding(0-180-0and0-90-90),whilefortheotherfour splittingsitwasthesameinthetwogrowingseasons(Fig.2).In bothyearsthehighestvalueswererecordedwith30-150-0, 60-60-60and30-75-75splittings,andlowestwith0-180-0.Maximum variationsduetodifferentsplittingswere8.4kernelsperspikein 2008–2009and6.1kernelsperspikein2009–2010.Meankernel weightdidnotvarybetweenyearswhilethehighestvaluesamong nitrogensplittingswereobtainedby30-75-75,60-60-60and 0-90-90treatments,andthelowestby60-120-0(Table2).Insummary, thehighestgrainyieldobtainedwiththetreatments30-150-0and 30-75-75derivedfromthecombinationoflownumberofspikes, highnumberofkernelsperspikeandmedium-highmeankernel weight.Conversely,thelowestgrainyieldrecordedinthe treat-ments0-180-0in2008–2009and60-120-0in2009–2010weredue

Table2

Harvestindex,spikenumber,andmeankernelweight.Nitrogensplittingmean values.

Nitrogensplitting Harvest index(%) Spikenumber (nm−2) Meankernel weight(mg) 0-180-0 33.3ab 595.6d 40.3b 0-90-90 37.2c 549.5c 41.4c 30-150-0 35.8bc 508.9b 40.2b 30-75-75 37.6c 494.9ab 41.8c 60-120-0 31.9a 509.4b 38.9a 60-60-60 36.3bc 468.8a 41.5c

Withincolumns,numbersfollowedbythesameletterarenotsignificantlydifferent atP≤0.05.

(5)

Table3

Grainyield,vegetativedryweight,harvestindex,spikenumber,kernelnumberandmeankernelweight.Varietyandtopdressingnitrogenfertilisersmeanvalues. Treatments Grainyield(tha−1) Vegetatived.w.

(tha−1) Harvest index(%) Spikenumber (nm−2) Kernelnumber (nspike−1) Meankernel weight(mg) Variety Latinur 4.6b 8.2b 35.7a 555.9b 20.2a 41.9b Svevo 4.3a 7.9a 35.2a 486.5a 22.9b 39.4a

TopdressingNfertiliser

Ammoniumsulphate 4.4a 7.8a 36.0a 531b 20.6a 40.5a

Entec®26 4.2a 8.1b 33.9a 517a 21.2ab 40.6a

Urea 4.7b 8.2b 36.4a 516a 22.8b 41.0a

WithintreatmentsvarietyandtopdressingNfertiliser,numbersfollowedbythesameletterarenotsignificantlydifferentatP≤0.05.

tothenumberofspikesthatwasmedium,thenumberofkernels perspikeandthemeankernelweightthatwerelow-medium.

GrainyieldofLatinurwas,onaverage,by7%higherthanthat ofSvevo(Table3).Theincreasewasattributedtoahighernumber ofspikesperunitarea(+14%),owingtoagreatertilleringrate,and meankernelweight(+6%).Conversely,numberofkernelsperspike ofSvevowasby13%higher.

Fig.2. Grainyield,vegetativedryweightandnumberofkernelsperspikeasaffected bycropseason×nitrogensplittinginteraction.Intheseandinthefollowingfigures, errorbarsindicateLDS.

Grainyieldwasnotaffectedbynitrogensourceappliedbefore seeding,butwasmainlymodifiedbytopdressingNfertiliser.Yield increasedby0.4tha−1 withurea,comparedtoASandEntec® 26 averagevalue,owingtoagreaternumberofkernelsperspike(+9%) (Table3).

The response of thevegetative plant partto theinteraction year× splitting wasdifferentthan theoneof grain:dry weight washigherwith60-120-0and30-150-0splittingsandlowerwith 0-90-90 and 30-75-75 (Fig. 2).Differencesbetweenyears were detectedonlywithnoNfertiliserbeforeseeding,withhigher val-uesin2009–2010season.Dryweightofvegetativeplantpartwas higherinLatinurthaninSvevoandincreasedfromAStoEntec®26 andurea(Table3).

HarvestIndexwasby17%higherin2009–2010comparedto 2008–2009seasonandwasmodifiedbyNsplitting,beinghighest with0-90-90and30-75-75andlowestwith60-120-0(Table2). DifferencesinHIbetweenvarietiesandtopdressingNfertiliser werenotstatisticallysignificant(Table3).

3.3. Nitrogenuptake

Nitrogenconcentrationofgrainandvegetativeplantpartwere significantlyaffectedonlybytheinteractionyear×Nsplitting.The highest values were foundwith 0-90-90and 30-75-75 in both seasonsandwith0-180-0in2008–2009,andthelowestwith 0-180-0,30-150-0inbothseasonsandwith60-120-0in2009–2010 (Fig.3).FollowingthepatternsofdryweightandNconcentration, Ncontentofgrainandvegetativeplantpartwereaffectedbythe interactionyear×Nsplittingandbythemeaneffectof topdress-ingNfertiliser.Excludingthe60-120-0split,thehighestvaluesof grainNcontentwererecordedin2009–2010seasonatall split-tings,butwhilein2008–2009differencesamongsplittingswere low(max.18kgNha−1),in2009–2010thesplittings0-90-90, 30-75-75and60-60-60gavevaluesby28kgNha−1highercompared totheothersplittings(Fig.3).GrainNcontentincreasedfromAS to Entec® 26 (8.0%) and tourea (13.6%), even thoughbetween theselasttwothenon-significantincreaseduetotheureawasof 5.1kgNha−1(Table4).DifferencesforNcontentinvegetativeplant partwerealsodetected(Fig.3andTable4).Asaconsequence,total Nuptakebyaerialplantpartwasby34kgNha−1higherwith 0-90-90,30-75-75and60-60-60in2009–2010comparedtotheother

Table4

Nitrogencontentofgrainandvegetativeplantpart.Topdressingnitrogenfertiliser meanvalues.

TopdressingNfertiliser Nitrogencontent(kgha−1)

Grain Vegetativeplantpart

Ammoniumsulphate 92.1a 36.9ab

Entec®26 99.5ab 34.8a

Urea 104.6b 37.8b

Withincolumns,numbersfollowedbythesameletterarenotsignificantlydifferent atP≤0.05.

(6)

Fig.3.Nitrogenconcentrationandcontentofgrainandvegetativeplantpartasaffectedbycropseason× nitrogensplittinginteraction.

splittings(Fig.3)andby13kgNha−1higherwithureacompared toAS(Table4).NUEwasaffectedbytheinteractionyear×splitting, andhadthesamepatternofgrainyield,beingtherateoffertiliser Nthesameforalltreatments(Table5).Similarlytograinyield, highestNUEwasachievedinbothyearwiththe30-150-0and 30-75-75splittings.Theseasoninfluenced alsoNUpEand NUtE.In 2008–2009variationsduetosplittreatmentsonbothindiceswere inconsistent,whilein2009–2010NUpEincreasedappreciablywith treatmentsinvolvinghigherNratesatGS30(0-90-90,30-75-75 and60-60-60),whileNUtEwashigherwhenhigherNrateswere appliedatGS15(0-180-0,30-150-0and60-120-0)(Table5).The proportionoftotalplantNintheseedsatmaturity(NHI)waslowest whenthesecondtopdressingfertilisationwasnotapplied(Fig.4).

3.4. Nitrogenleaching

The amountofdrainagewater recordedinthemonthsfrom NovembertoAprilwasnotaffectedbyanyofthetestedtreatments, but washigher during the 2008–2009crop season(430.3mm) comparedtothe2009–2010season(389.9mm).Highest percola-tionsoccurredin December2009and inDecemberandJanuary

Table5

Nitrogenuseefficiency(NUE),nitrogenuptakeefficiency(NUpE)andnitrogen util-isationefficiency(NUtE).Season×nitrogensplittinginteraction.

Season Nsplitting NUE

(kgkg−1) NUpE (kgkg−1) NUtE (kgkg−1) 2008–2009 0-180-0 18.1a 0.64a 28.4ab 0-90-90 20.6b 0.74bc 27.7a 30-150-0 23.6cd 0.73bc 32.3cd 30-75-75 22.5bc 0.75c 30.1abc 60-120-0 21.6bc 0.67abc 32.4cd 60-60-60 22.3bc 0.66ab 34.0d 2009–2010 0-180-0 27.1f 0.73bc 37.4e 0-90-90 27.0ef 0.91d 29.7abc 30-150-0 30.1g 0.76c 39.6e 30-75-75 28.6fg 0.91d 31.2bcd 60-120-0 24.9de 0.65ab 38.3e 60-60-60 27.8f 0.87d 31.8cd

Withincolumns,numbersfollowedbythesameletterarenotsignificantlydifferent atP≤0.05.

Fig.4. Nitrogenharvestindexasaffectedbynitrogensplittingmeaneffect.

2010 (Fig. 5).High rainfall determinedhigh drainagefew days following pre seeding N application in the 2008–2009 season, while in 2009–2010drainage started aboutone month follow-ingNapplication.InNovember,DecemberandJanuary,drainage wateraccountedfor61%and80%oftotaldrainage,respectivelyin

(7)

Fig.6.Nitrogenconcentrationindrainageandnitrogenleachedduring2008–2009and2009–2010seasonsasaffectedbynitrogensplittingmeaneffect.

2008–2009and2009–2010seasons.Theamountofdrainagewater wasclosetozerofollowingthesecondtopdressingfertilisation.

Inbothseasons,nitrogenconcentrationindrainagewaterand leachedNwereaffectedonlybyNsplitting.Nitrogenconcentration inwaterwashigherfollowingseedinganddecreaseduntilJanuary inbothyearsatallsplittings(Fig.6).Inthisperiod,Nconcentration increasedwiththeincreaseofNratebeforeseeding.Thereafter, valueswerelowerthan4mgNL−1andunaffectedbyNsplitting.

Averaged over all treatments, total amount of N lost with drainagewaterduringwheatcyclewasalmostentirelyaccounted forNleachinginDecember(63%and74%ofthetotalleachedN, respectivelyinthe2008–2009and2009–2010seasons)(Fig.6). IntheperiodfollowingfirsttopdressingNdistribution,Nleached accountedfor17%and4%oftotalNlostrespectivelyfor2008–2009 and 2009–2010 seasons. The quantity of N lost in both years increasedwiththeincreaseofNrateappliedbeforeseeding,while topdressingfertiliserdidnotaffectlosses(Fig.7).WhenNwasnot appliedbeforeseeding,Nlostwaslowandsimilarinthetwo sea-sons,whilewiththeothersplittingsNlostwashigherin2008–2009 comparedto2009–2010season.

Fig.7. TotalNleachedduring2008–2009and2009–2010seasonsasaffectedby nitrogensplittingmeaneffect.

4. Discussion

4.1. Nitrogenfertiliseratsowing

The applicationof SAand Entec® 46 beforeseeding didnot modifyeithergrainyieldandyieldcomponentsorNuptakeand leaching,indicatingthatinthisresearchtheinclusionofthe nitri-ficationinhibitordidnotshowanyadvantageincomparisonwith ammoniumfertiliser.Nitrificationinhibitorshavebeenshownto increaseyieldwhenthefertiliserisappliedinconditionsthatfavour nitratelossesbyleaching,thatis,inperiodsofhighrainfallor irriga-tion,orinsandyorhighlypermeablesoils(PrasadandPower,1995; Barthetal.,2001).Conversely,inotherstudiestheyieldadvantage wasnullorsmall,averagingjust5%,duetotheapplicationofN whenleachingwaslowandwhencropdemandwashigh(Hergert andWiese,1980;Pasdaetal.,2001;ArreguiandQuemada,2006, 2008).Inthisresearch,theapplicationofthenitrificationinhibitor wasperformedwhenleachingwashighandcropdemandwaslow, whichareconditionsthatwouldfavourtheinclusionof nitrifica-tioninhibitorsinfertiliser.Neverthelessnitrificationinhibitorwas notsuccessfultocontrolnitrateleachingduringtheperiodofhigh rainfall.

4.2. Nitrogensplitting

Climatic conditionsduring growingseasoninfluenced wheat grainyield,asinthe2008–2009theaveragegrainyieldwasby22% lowerthanin2009–2010.Thehighyieldin2009–2010wasdueto highernumberofspikesandgreaterspikesize,probablybecause ofgoodgrowingconditionsduringinitialstagesofcrop develop-mentthatfavouredthedevelopmentoftillersandpromotedthe floretfecundation,resultinginhighernumberofkernelsperspike. Fertilisersplittinginbothyearshadaconsiderableimpactongrain yieldandyieldcomponents.Theobserveddifferencesingrainyield andyieldcomponentscausedbytheinteractiveeffectsofdifferent Nsplittingsandweatherconditionsmaybeduetoprocessesinsoil andinplantaffectingNavailabilityincriticalphasesof determina-tionofyieldcomponents.Owingtotheschemeoftreatments(equal

(8)

totalNrate,butdifferentsplittings)theeffectofthedifferentrates indifferentphasescannotbeseparatedinourresults,andattempts toclarifycausescanonlybeconsideredaspossiblereasons. Nev-ertheless,itwasdemonstratedthatitispossibletoimprovegrain yieldandNconcentrationbyvariationsinsplitapplicationsof fer-tiliserN:thevariationsduetosplittingreached1tingrainyield whiletheproteingraincontentincreasedby4%,correspondingto 7gkg−1 in Nconcentrationofgrain.Comparingtheeffectofall splittings,thehighestgrainyield(andNUE)andthehighest pro-teinconcentration(andNUpE)wereobtainedwith30-150-0and 30-75-75treatments,respectively.Theyieldadvantagewasrelated tothehighernumberofkernelsperspikeresultingfromthehigher numberofdifferentiatedspikeletsperspike.Thus,theapplication of30kgNha−1beforeseedingisrequiredtohavehighgrainyield, asmineralNinsoilderivingfrommineralisationofsoilorganic matterandnotleachedprobablywasnotsufficienttoensurehigh yield.Theothercharactersweredifferentlyaffectedby differen-tialNavailabilityduringcropgrowth,asyieldcomponentsvaried amongsplittreatmentsinthetwoseasons.TheapplicationofNonly topdressing(0-180-0and0-90-90)greatlyreducedgrainyieldby thereductionofthenumberofkernelsperspike.Theeffectwas par-ticularlyheavyintheseasonwithhighrainfallbeforeseeding,when themineralNamountpresentinthesoilatthetimeoffertiliser applicationwasverylowowingtoNleaching.Inthetreatment 0-180-0highNrateatGS15stimulatedtillering,butNdeficiency occurredduringthelastpartofwheatcycle(NappliedatGS15 wasprobablyimmobilisedintosoilandnotavailablethereafter). Nitrogenrestrictionduringthelastpartofwheatcycle(0-180-0, 30-150-0,60-120-0)leadtoareducedNaccumulationintograin, andfor60-120-0alsoareductionofcarbohydrateaccumulation intograin.Thismeansthatgraingrowthwasprobablyconstrained byNshortageduringgrainfilling.SinceNleachingincreasedwith theincreaseoftherateofNappliedbeforeseeding,itislikelythat theloweryieldwith60-120-0comparedto0-180-0isduetolower NavailabilityduetoNleached.

Insummary,theapplicationofNonlytopdressingisnotavalid optionsincesoilmineralNisnotsufficienttosustainNuptake inthefirstthreemonthsofcropgrowth,whenrainfalland con-sequentlyNleachingarehigh.Conversely,theapplicationofthe highest rate (60kgNha−1) before seeding is not to be recom-mended,sinceitposesseriousenvironmentalconcernsowingto highriskofleachinglosses.Moreover,theapplicationofNintwo ratesbeforeseedingandtopdressingatearlycropstagesisalso notadvisable,sincedrymatterandNaccumulationintograinis reduced.ThesplittingoftheNrateinthreeamendmentsinstead oftwo withthethirdapplication atlater cropstageleadtoan increaseofgrainproteincontent,suggestinganimprovementof grainqualityparameters.

4.3. Topdressingnitrogenfertilisers

NsourceappliedtopdressingatGS15affectedgrainyieldand yieldcomponents,aswellasdryweightofvegetativeplantpart and N uptake. Conversely, N leaching was not affected as the weatherconditionsandthecropevapotranspirationfollowing fer-tiliserapplicationdidnotpromoteNO3−leaching.Indeed,water drainagewascloselyrelated torainfall,whichwasnegligiblein theperiodfollowingtopdressingNapplication.Theapplicationof urearesultedinthehighestgrainyield,owingtoagreaternumber ofkernelsperspikethatcompensatedthelowernumberofspikes perunitarea.Indurumwheat,spikeinitiationoccursintheperiod fromthedevelopmentofthe4thleaf,GS14,tostemelongation, GS(Arduinietal.,2009)andthenumberofinitiatedspikeletsis enhancedinpresenceofagoodNavailabilityinsoil(Masonietal., 2001).OurresultssuggestthattheprompterreleaseofNfromurea comparedtoASandEntec®26increasedNavailableintheperiodof

floretinitiationanddifferentiation.Mulvaney(1994)showedthat nitrificationoccurredintheorderurea>AS.Likewise,EnoandBlue (1957)andMartikainen(1985)reportedthatureanitrifiesfaster thanAS.Thisdifferentialinnitrificationratehasbeenattributedin parttotheincreaseinsoilpHassociatedwiththehydrolysisofurea soonafterapplication,incontrasttothedeclineinsoilpH associ-atedwiththeapplicationofAS(Lindsayetal.,1962;Allredand Ohlrogge,1964).TheeffectofEntec® 26ongrainyieldandyield componentswassimilartothatofAS,thusthedelayedeffectofthe nitrificationinhibitorDMPPonNH4+nitrificationdidnotbenefit wheatgrowth.Entec®26contains7.5%NO

3–Nand18.5%NH4–N, whileAScontainsallnitrogeninNH4+form.Theprobablehigher persistenceofNH4+insoilinEntec®26thaninASplotshadnotany advantageforcropgrowthandthereductionofN–NO3duetothe inhibitionofnitrificationinEntec®26comparedtoASisprobably compensatedbythepresenceofnitricN.Inaddition,wecannot excludethatpartofNH4+maybefixedinclayminerals(Gioacchini

etal.,2006),thusreducingNavailabilitytoplants.

5. Conclusions

Ourresultsevidencednoclearadvantageofthedistributionto durumwheatofEntec®46beforeseeding,andEntec®26 topdress-ing,neitherintermsofincreasedgrainquantityandquality,nor intermsofhigherNutilisationefficiencyanddecreasedN leach-ing.SinceNfertiliserapplicationrepresentsanimportantcostin cropproductionandfertiliserscontainingthenitrificationinhibitor DMPPhavehigherpricesthanSAorurea,theiruseisnot advis-able in Central Italy. Further researches should investigate the applicationtodurumwheatofotherdelayed-releaseNfertilisers, focussingonthemechanismsofNreleaseinfieldconditions,in ordertosynchroniseitwithplantdemand.

ThesplittingofNfertiliseriscrucialtoimprovefertiliseruse effi-ciencyandtoincreasegrainyieldandgrainproteinconcentration. Theapplicationof30kgNha−1 beforeseedingis recommended, sincemineralisationofsoilorganicmattercouldnotensure ade-quatemineralNavailabilityforinitialcropdevelopment,resulting inagreatreductionofkernelnumberperspikeandconsequently grain yield. Conversely, 60kgNha−1 before seeding proved to exceedcropneeds,resultinginincreasedNleachingduringinitial cropstageandNdeficiencyatlatercropdevelopment.Topdressing distributioncanberecommendedbothentirelyat5thleafor split-tedhalfat5thleafandhalfatstemelongation.Inourresearch,the firstsplitting,i.e.30-150-0,gavethehighestgrainyieldwhilethe second,30-75-75,gavethehighestNconcentrationingrain.Finally, thedistributionofureaat5thleafisadvisablebecause,compared toammoniumsulphateandEntec®26,itturnedintohighergrain yieldwithlowerdistributioncosts.

References

Alcoz,M.M.,Hons,F.M.,Haby,V.A.,1993.Nitrogenfertilizationtimingeffecton wheatproduction,nitrogenuptakeefficiency,andresidualsoilnitrogen. Agron-omyJournal85,1198–1203.

Allred,S.E.,Ohlrogge,A.J.,1964.Principlesofnutrientuptakefrombands.VI. Ger-minationandemergenceofcornasaffectedbyammoniaandammonium phosphate.AgronomyJournal56,309–313.

Arduini,I.,Ercoli,L.,Mariotti,M.,Masoni,A.,2009.Sowingdateaffectspikelet numberandgrainyieldofdurumwheat.CerealResearchCommunications37, 469–478.

Arregui,L.M.,Quemada,M.,2006.Drainageandnitrateleachinginacroprotation underdifferentN-fertilizerstrategies:applicationofcapacitanceprobes.Plant andSoil288,57–69.

Arregui,L.M.,Quemada,M.,2008.Strategiestoimprovenitrogenuseefficiencyin wintercerealcropsunderrainfedconditions.AgronomyJournal100,277–284. Ayoub,M.,Guertin,S.,Fregeau-Reid,J.,Smith,D.L.,1994.Nitrogenfertilizereffecton breadmakingqualityofhardredspringwheatineasternCanada.CropScience 34,1346–1352.

(9)

Barth,G.,vonTucher,S.,Schmidhalter,U.,2001.Influenceofsoilparameterson theeffectof3,4-dimethylpyrazole-phosphateasanitrificationinhibitor.Biology andFertilityofSoils34,98–102.

Bouwman,A.F.,Boumans, L.J.M.,Batjes, N.H.,2002. Estimationofglobal NH3

volatilizationlossfromsyntheticfertilizersandanimalmanureappliedtoarable landsandgrasslands.GlobalBiogeochemicalCycles16,1024–1037.

Carreres,R.,Sendra,J.,Ballesteros,R.,Valiente,E.F.,Quesada,A.,Carrasco,D.,Leganés, F.,Cuadra,J.G.,2003.Assessmentofslowreleasefertilizersandnitrification inhibitorsinfloodedrice.BiologyandFertilityofSoils39,80–87.

Cartagena,M.C.,Vallejo,A.,Diez,J.A.,Bustos,A.,Caballero,R.,Roman,R.,1995.Effect ofthetypeoffertilizerandsourceofirrigationwateronNuseinamaizecrop. FieldCropsResearch44,33–39.

Delogu,G.,Cattivelli,L.,Pecchioni,N.,DeFalcis,D.,Maggiore,T.,Stanca,A.M.,1998. Uptakeandagronomicefficiencyofnitrogeninwinterbarleyandwinterwheat. EuropeanJournalofAgronomy9,11–20.

Diez,J.A.,Roman,R.,Caballero,R.,Caballero,A.,1997.Nitrateleachingfromsoils underamaize–wheat–maizesequence,twoirrigationschedulesandthreetypes offertilisers.Agriculture,Ecosystems&Environment65,189–199.

Dilz,K.,1988.Efficiencyofuptakeandutilizationoffertilizernitrogenbyplants.In: Jekinson,D.S.,Smith,K.A.(Eds.),NitrogenEfficiencyInAgriculturalSoils.Elsevier AppliedScience,London,pp.1–26.

Eno,C.F.,Blue,W.G.,1957.Thecomparativerateofnitrificationofanhydrous ammo-nia,urea,andammoniumsulfateinsandysoils.SoilScienceSocietyofAmerica Proceedings21,392–396.

Ercoli,L.,Arduini,I.,Mariotti,M.,Lulli,L.,Masoni,A.,2012.Managementof sul-phurfertilisertoimprovedurumwheatproductionandminimiseSleaching. EuropeanJournalofAgronomy38,74–82.

Fuertes-Mendizábal,T.,Aizpurua,A.,González-Moro,M.B.,Estavillo,J.M.,2010. ImprovingwheatbreadmakingqualitybysplittingtheNfertilizerrate.European JournalofAgronomy33,52–61.

Garrido-Lestache,E.,López-Bellido,R.J.,López-Bellido,L.,2004.EffectofNrate, tim-ingandsplittingandNtypeonbread-makingqualityinhardredspringwheat underMediterraneanconditions.FieldCropsResearch85,213–236.

Garrido-Lestache,E.,López-Bellido,R.J.,López-Bellido,L.,2005.Durumwheat qual-ityunderMediterraneanconditionsasaffectedbyNrate,timingandsplitting, NformandSfertilization.EuropeanJournalofAgronomy23,265–278. Gioacchini,P.,Ramieri, N.A.,Montecchio, D.,Marzadori,C.,Ciavatta,C.,2006.

Dynamicsofmineralnitrogeninsoilstreatedwithslow-releasefertilizers. Com-municationsinSoilScienceandPlantAnalysis37,1–12.

Hergert,G.W.,Wiese,R.A.,1980.Performanceofnitrificationinhibitorsinthe Mid-west(west).In:Meisinger,J.J.,Randall,G.W.,Vitosh,M.L.(Eds.),Nitrification Inhibitors:PotentialsandLimitations,vol.38.Am.Soc.Agron.,Madison,WI,pp. 89–105(Spec.Publ.).

Kaiser,E.A.,Eiland,F.,Germon,J.C.,Heinermeyer,R.O.,Henault,C.,Lind,A.M.,Maag, M.,Saguer,E.,VanCleemput,O.,Vermoesen,A.,Webster,C.,1996.What pre-dictsnitrousoxideemissionsanddenitrificationN-lossfromEuropeansoils? ZeitschriftfürPflanzenernahrungundBodenkunde159,541–547.

Lindsay, W.L., Frazier,A.W., Stephenson, H.F., 1962. Identification of reaction productsfromphosphatefertilizersinsoils.SoilScienceSocietyofAmerica Proceedings26,446–452.

López-Bellido,L.,López-Bellido,R.J.,Redondo,R.,2005.Nitrogenefficiencyinwheat underrainfedMediterraneanconditionsasaffectedbysplitnitrogenapplication. FieldCropsResearch94,86–97.

López-Bellido, L., Mu ˜noz-Romero, V., Benítez-Vega, J., Fernández-García, P., Redondo,R.,López-Bellido,R.J.,2012.Wheatresponsetonitrogensplitting appliedtoavertisolsindifferenttillagesystemsandcroppingrotationsunder typicalMediterraneanconditions.EuropeanJournalofAgronomy43,24–32. Martikainen,P.J.,1985.NitrificationinforestsoilofdifferentpHasaffectedbyurea,

ammoniumsulphateandpotassiumsulphate.SoilBiologyandBiochemistry17, 363–367.

Masoni,A.,Arduini,I.,Mariotti,M.,Ercoli,L.,Bonari,E.,2001.Numberofspikelets andleafappearancerateindurumwheatasaffectedbytemperature,daylength andnitrogenavailability.AgricolturaMediterranea130,57–65.

McMaster,G.S.,Wilhelm,W.W.,1997.Growingdegree-days:oneequation,two interpretations.AgriculturalandForestMeteorology87,291–300.

Melaj,M.A.,Echeverría,H.E.,López,S.C.,Studdert,G.,Andrade,F.,Bárbaro,N.O., 2003.Timingofnitrogenfertilizationinwheatunderconventionalandno-tillage system.AgronomyJournal95,1525–1531.

Moll,R.H.,Kamprath,E.J.,Jackson,W.A.,1982.Analysisandinterpretationofis fac-torswhichcontributetoefficiencyofnitrogenutilization.AgronomyJournal74, 562–564.

Moonen,C.,Masoni,A.,Ercoli,L.,Mariotti,M.,Bonari,E.,2001.Long-termchanges inrainfallandtemperatureinPisa,Italy.AgricolturaMediterranea131,11–22. Mulvaney,R.L.,1994.Nitrificationofdifferentnitrogenfertilizers.In:Hoeft,R.G. (Ed.),IllinoisFertilizerConferenceProceedings.CooperativeExtensionService, UniversityofIllinois,Urbana,IL,pp.83–96.

Ottman,M.J.,Doerge,T.A.,Martin,E.,2000.Durumgrainqualityasaffectedby nitro-genfertilizationnearanthesisandirrigationduringgrainfill.AgronomyJournal 92,1035–1041.

Pasda,G.,Hahndel,R.,Zerulla,W.,2001.Effectoffertilizerswiththenew nitrifica-tioninhibitorDMPP(3,4-dimethylpyrazolephosphate)onyieldandqualityof agriculturalandhorticulturalcrops.BiologyandFertilityofSoils34,85–97. Porter,J.R.,Gawith,M.,1999.Temperaturesandthegrowthanddevelopmentof

wheat:areview.EuropeanJournalofAgronomy10,23–36.

Prasad,R.,Power,J.F.,1995.Nitrificationinhibitorsforagriculture,health,andthe environment.AdvancesinAgronomy54,233–281.

Raun,W.R.,Solie,J.B.,Taylor,R.K.,Arnall,D.B.,Mack,C.J.,Edmonds,D.E.,2008.Ramp calibrationstriptechnologyfordeterminingmidseasonnitrogenratesincorn andwheat.AgronomyJournal100,1088–1093.

Raun,W.R.,Johnson,G.V.,1999.Improvingnitrogenuseefficiencyforcereal pro-duction.AgronomyJournal91,357–363.

Sowers,K.E.,Miller,B.C.,Pan,W.L.,1994.Optimizingyieldandgrainproteinin softwhitewinterwheatwithsplitnitrogenapplications.AgronomyJournal86, 1020–1025.

Steel,R.G.D.,Torrie,J.H.,Dickey,D.A.,1997.PrinciplesandProceduresofStatistics: ABiometricalApproach.McGraw-Hill,NewYork.

Strong,W.M.,1995.Nitrogenfertilizationofuplandcrops.In:Bacon,P.E.(Ed.), Nitro-genFertilizationintheEnvironment.MarcelDekker,NewYork,pp.129–169. Zadoks,J.C.,Chang,T.T.,Konzak,C.F.,1974.Adecimalcodeforthegrowthstagesof

Figura

Fig. 1. Rainfall (bars), maximum (closed symbol) and minimum (open symbol) tem- tem-perature in 2008–2009 (up) and 2009–2010 (down) seasons.
Fig. 2. Grain yield, vegetative dry weight and number of kernels per spike as affected by crop season × nitrogen splitting interaction
Fig. 3. Nitrogen concentration and content of grain and vegetative plant part as affected by crop season × nitrogen splitting interaction.
Fig. 6. Nitrogen concentration in drainage and nitrogen leached during 2008–2009 and 2009–2010 seasons as affected by nitrogen splitting mean effect.

Riferimenti

Documenti correlati

Title Proceedings of the First International Conference of the Journal “Scuola Democratica” - Education and Post-Democracy VOLUME II Teaching, Learning, Evaluation

Anche quando quasi tutta la collezione imperiale di reliquie tra il 1239 e il 1247 finì a Parigi, dove fino alla Rivoluzione Francese fu custodita nella Sainte Chapelle, all’interno

By taking under consideration changes in land use, improvements to mobility and connectivity, strengthening of infrastructures, the allo- cation of green public spaces,

The female rejective behavior occurred in different modalities (Table  3 ): the female either walked away during the courtship or repelled the approaching male by wing flicking;

Even though the whole wore adequate personal protection equipment the swab test was repeated for those involved in aerosol-producing procedures with COVID-19 positive patients (such

From the physical point of view, the explanation is that the bridging of the soft inclusions, being energetically favorable when the opening of the macroscopic crack is

Distribution and generation of cortical GABAergic cells In the mouse, GABAergic neurons are generated within ventral forebrain and reach the cortex by tangential migration, according

Although a thorough interpretation of the current data would require more detailed information than the one currently made public by the experimental collaborations, we have designed