and education use, including for instruction at the authors institution
and sharing with colleagues.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.
In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information
regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:
ContentslistsavailableatSciVerseScienceDirect
European
Journal
of
Agronomy
j our na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e j a
As
durum
wheat
productivity
is
affected
by
nitrogen
fertilisation
management
in
Central
Italy
Laura
Ercoli
a,∗,
Alessandro
Masoni
b,
Silvia
Pampana
b,
Marco
Mariotti
c,
Iduna
Arduini
baScuolaSuperioreSant’Anna,p.zzaMartiridellaLibertà33,56127Pisa,Italy
bDipartimentodiScienzeAgrarie,AlimentarieAgroambientali,viadelBorghetto80,56124Pisa,Italy cDipartimentodiScienzeVeterinarie,vialedellePiagge2,56124Pisa,Italy
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:Received8May2012
Receivedinrevisedform26July2012 Accepted13August2012 Keywords: Triticumdurum Nfertilisation Nsplitting Nsource Nleaching
a
b
s
t
r
a
c
t
OptimisationofNfertilisationisacentralissueandgoalofappliedresearchinagriculturalsystems. Site-specificmanagementtechniquesareneededinordertocloselymatchavailabilitywith require-mentthroughoutcropcycleandtoreduceasmuchaspossibleenvironmentaldispersionofN.Lysimeter experimentswereconductedincentralItalyintwosubsequentseasonstoinvestigatetheresponseoftwo commercialdurumwheatcultivarstodifferentNfertilisersappliedbeforeseedingandattopdressing, andtosplitapplicationsofN.Grainyieldandyieldcomponents,NuptakeandNleachingwere deter-mined.Ammoniumsulphate(AS)andureacontainingthenitrificationinhibitor3,4-dimetihylpyrazole phosphate(Entec®46)wereappliedbeforeseeding;AS,ammoniumnitratesulphatecontainingthe
nitrificationinhibitor3,4-dimetihylpyrazolephosphate(Entec®26),andureawereappliedat5thleaf
unfoldedstage.SixN-fertilisertreatmentswithatotalNamountof180kgNha−1weretested,consisting
ofsplittingapplicationbeforeseeding,atGS15andGS30respectivelyof0-180-0,0-90-90,30-150-0, 30-75-75,60-120-0and60-60-60kgNha−1.Inbothyears,fertilisersplittingaffecteddurumwheatgrain yieldandNconcentration;variationsduetosplittingreached1tingrainyieldand7gkg−1inN
concentra-tionofgrain,correspondingto4%increaseinproteincontent.Highestgrainyield,proteinconcentration, nitrogenuseefficiency(NUE),andnitrogenuptakeefficiency(NUpE)wereobtainedwiththeapplication of30kgNha−1beforeseeding.Theyieldadvantagewasrelatedtohighernumberofkernelsperspike,
resultingfromhighernumberoffertilespikeletsperspike.Grainyieldwasnotaffectedbynitrogensource appliedbeforeseeding,butwasmodifiedbytopdressingNfertiliser.Yieldincreasedby0.4tha−1with urea,comparedtoASandEntec®26,owingtoagreaternumberofkernelsperspike.Nitrogenleaching
wascloselyrelatedtorainfall:totalamountofNlostduringwheatcyclewasalmostentirelyaccounted forNleachinginwinter,beforetopdressingNapplication.Asaconsequence,thequantityofNlostby leachingincreasedwiththeincreaseofNrateappliedbeforeseeding,whiletopdressingfertiliserdidnot affectlosses.
© 2012 Elsevier B.V. All rights reserved.
1. Introduction
OptimisationofmineralNfertilisationaimedtoincreaseNuse efficiencyisacentralissueandgoalofappliedresearchin agricul-turalsystems.Nitrogenuseefficiencyofworldwidecerealcrops wasestimatedtobenear33%(RaunandJohnson,1999),ranging from14to59%inwheat(Melajetal.,2003;López-Bellidoetal., 2005);whichsuggeststhatcurrentNstrategiesareextremely inef-ficient.
Nitrogenuseefficiency(NUE)incerealgrainproductionmay belowowingtolossesofNbyvolatilisation,denitrificationand
∗ Correspondingauthor.Tel.:+39050883357;fax:+39050883215. E-mailaddress:[email protected](L.Ercoli).
leaching.Ammonium-basednitrogenfertiliserproductsare sus-ceptibletovolatilisationlossesofnitrogenifsurface-appliedand not incorporated. Bouwman et al. (2002) estimated that NH3 volatilisationlossesfromsyntheticNfertilisersappliedtoboth win-terandsummercropsamountsto7%inindustrialisedcountries. InEurope,fertiliserNlossesviadenitrificationwereestimatedat 0.2–2.9%oftheNappliedtocereals(Kaiseretal.,1996).
Leachinglossesoccurwhenrainfallexceedscrop evapotranspi-rationanddownward watermovement throughthesoilprofile takesplace,whichcorrespondstothefall-winterperiodinhumid Mediterranean climate (Arregui and Quemada, 2006). Leaching N–NO3lossesfromdurumwheatcropwereestimatedincentral Italyat21–32kgNha−1yr−1,correspondingto12–22%ofthetotal Napplied(Ercoliet al.,2012).Nitrate leachingina 3-yearcrop rotationwheat–barley–rapeseedinsimilarconditionsinSpainwas
1161-0301/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.eja.2012.08.005
estimatedat31–35kgNha−1y−1,or25–29%ofthetotalNapplied (ArreguiandQuemada,2006).Thus,asageneralrule,Nleachingin MediterraneanclimatecanberegardedasthegreatestsourceofN lossandthemajordeterminantoflowNutilisationefficiency.
Durumwheat is widely cultivated throughout the Mediter-raneanregion,wherethecropistypically plantedinNovember andharvestedatthebeginningofJuly.Heavyrainfallandlowcrop evapotranspirationratescanbeexpectedbetweenNovemberand March,resultinginhigherriskofNleachinglosses.Toreduce leach-inglosses,fertiliserapplicationshouldaimtomatchasmuchas possibletherequirementofplantNwiththeavailablenitrogenin soil,minimisingtheexcessofNinsoiluselesstotheplant.Thus, applicationshouldbethelatestpossiblecompatiblewiththestage ofdevelopmentthatstillpermitsrapidNuptake,inordertoreduce theopportunitiesforNlossesofunusedN(Raunetal.,2008).
Anumberofexperimentsinwintercerealhaveshownthatsplit applicationsofNfertiliserinvolvingequalquantitiesofNapplied beforeandafterseedingareagronomicalstrategiestoimproveN utilisationefficiency(Alcozetal.,1993;Deloguetal.,1998; López-Bellidoetal., 2005,2012;Dilz, 1988).Sowers etal. (1994)and
Strong(1995)foundthattheNfertiliserappliedinautumn,owing toincreasedNleaching,hadalowerefficiencythanwhenthe nitro-genwassplittedinfallandspring.Garrido-Lestacheetal.(2004)
observedthattimingandsplittingofNfertiliserinfluencedgrain proteincontent,whichpeakedwhenhalforone-thirdoftheNrate (150kgNha−1)wasappliedatstemelongation,andinsomecases whenNwasappliedonlyattillering.However,theeffectof split-tingNrateongrainqualitywasunclearinotherstudies(Ayoub etal.,1994;Garrido-Lestacheetal.,2005).Fuertes-Mendizábaletal. (2010)foundthatthesplittingofthesameNrateinthree amend-ments(stagesGS20,GS30,andGS37,accordingtoZadoksscale) insteadoftwo(stagesGS20andGS30)didnotmodifygrainyield butimprovedgrainproteincontent,indicatingthatalateN applica-tionmayhavemoreimpactonNmetabolismandNremobilisation thanonbiomassaccumulationandgrainyield.Ottmanetal.(2000)
showedhighergrainproteincontentswiththeapplicationofhigh Nratesatanthesis.
AnotherstrategytoreduceNleachinglossesandtoincreaseN utilisationefficiencyistheuseoffertilisersreleasingreducedand controlledamountofnitricN.Severalstudieshaveshown bene-ficialeffectsoftheuseofslowandcontrolled-releasefertilisers, stabilisedfertilisers and/ornitrificationand ureaseinhibitorsto enhanceproductivityofagriculturalandhorticulturalcrops(Prasad andPower,1995;Pasdaetal.,2001;Carreresetal.,2003).Inother studies,however,nopositiveresultshavebeenreported follow-ing theapplication of fertilisers that delay nutrient availability (Cartagena etal.,1995;Diezetal.,1997;ArreguiandQuemada, 2008).Inconsistenciesinresultsmayappearsincesoilproperties and/orclimaticconditionsaffectbothnutrient-releaseratesfrom fertilisers and processes leading toleaching and denitrification lossesandimmobilisationinsoil.
The present work was undertaken to determine the effects ofdifferentsourcesofNfertiliserdistributedbeforeseedingand topdressingandsplitapplicationsofNongrainyield,yield compo-nents,NuptakeandNleachingofdurumwheat,andtoidentifyN fertiliserandtypeofsplittingthatoptimisedNuptakeandretention inMediterraneanenvironments.
2. Materialandmethods
Lysimeterexperimentswereconductedintwosuccessive grow-ingseasons,2008–2009and2009–2010attheexperimentalstation oftheDepartmentofScienzeAgrarie,AlimentarieAgroambientali oftheUniversityofPisa,Italy,thatislocatedatadistanceof approx-imately10kmfromthesea(43◦40N,10◦19E)and3mabovesea
level.Theclimateofthesiteiscold,humidMediterraneanwith meanannualmaximumandminimumdailyairtemperaturesof 20.2and9.5◦C,respectively(Moonenetal.,2001).Forbothyears, dailyweatherdatawereobtainedfromameteorologicalstation locatedwithin100mfromtheexperimentalfields.
Inbothyearsafullfactorialoftwodurumwheatvarieties,two Nfertilisersbeforesowing,threetopdressingNfertilisersandsix splitapplicationsofNwasreplicatedtwotimesandarrangedina randomised,complete-block design.Thedurumwheat(Triticum durum Desf.) varieties were Latinur and Svevo, currently used in local production. The two N fertilisers before sowing were ammonium sulphate (AS), and ureacontaining thenitrification inhibitor3,4-dimetihylpyrazolephosphate(Entec®46).Thethree topdressing N fertilisers were AS, ammonium nitrate sulphate containingthenitrificationinhibitor3,4-dimetihylpyrazole phos-phate (Entec® 26), and urea, and were applied at the 5th leaf unfolded stage.TotalNamountof180kgha−1 wassplit among pre-seeding,at5thleafunfoldedstageandatpseudostem erec-tionasfollows:0-180-0,0-90-90,30-150-0,30-75-75,60-120-0 and 60-60-60kgNha−1.Growthstages of5thleafunfolded and pseudo stem erection wereindividuated following the scale of Zadoks(Zadoksetal.,1974),correspondingrespectivelytoGS15 andGS30.
Open-air lysimeter installation consisted of 144 lysimeters of 0.50-m length, 0.50-m width and 0.4-m height (100-L vol-ume),arrangedinfourrowsof36,spaced20cmandembedded in expanded clay tosmooth daily fluctuations in soil tempera-ture.Lysimeterswerefilledwithasoiltampedtoaboutoriginal soil bulk density,and wereattachedtoa 3-cmrigid PVCdrain thatendedinacentralcollectionfacility.Soilchemical–physical properties were: 68.5% sand (2mm>Ø>0.05mm); 25.9% silt (0.05m>Ø>0.002mm); 5.6% clay; 7.0 pH; 2.0% organic matter (Walkley andBlackmethod); 0.8gkg−1 totalnitrogen(Kjeldahl method);26.0mgkg−1 availableP(Olsenmethod);76.3mgkg−1 availableK(BaCl2+TEAmethod).
Phosphorusandpotassiumwerehandappliedpreplantingas triple mineral phosphate and potassium sulphate at a rate of 150kgha−1P2O5and150kgha−1K2O.Nitrogenwashandapplied beforeseedingandatGS15accordingtothetreatmentsandatGS30 asurea.
Thedurumwheatvarieties,LatinurandSvevo,weresownon 18November2008and25November2009,withintheoptimum plantingtimeforwheatproductioninCentralItaly.Arateof100 viableseedspercontainer,correspondingto400viableseedsm−2, in rows spaced15cm apart,wasapplied.Plant emergencewas recordedon5December2008and9December2009.Weedcontrol wasperformedthroughoutwheatcyclebyhandhoeing.
Leachatesfromeachlysimeterwerecollectedduringtheentire researchperiodinbothyearsaftereachmajorrainfalleventina 20-LPVCtank.LeachatevolumesweremeasuredandtheirN–NO3 concentrationsweredeterminedwithanOrionionanalysermodel 502A(OrionResearchInc.,Boston,MA,USA).Accumulatedmonthly leachatevolumeswerecalculatedandthemonthlyflow-weighted N–NO3 concentrationsweredeterminedbysummingupN–NO3 masscollectedforeachrainfalleventinamonthdividedbythe totalleachatevolumecollectedinthemonth.Averagely,a con-centrationof2.4mgN–NO3L−1wasdeterminedinrainfall.Forall treatments,timingofstageof1stleafemergence(GS10),5thleaf unfolded(GS15),pseudostemerection(GS30),inflorescence emer-gence (GS50),andphysiologicalripening(GS90)wererecorded, expressinginthermaltimethedurationoftheperiodsbetween stages(Table1).ThermaltimewascalculatedfollowingMcMaster and Wilhelm(1997),assuming2◦Casbasetemperature(Porter and Gawith,1999).At GS90 (22 June 2009 and 30 June 2010) plantsfromeachcontainerweremanuallycutatgroundleveland werepartitionedintoculms,leaves,chaffandgrain.Fordryweight
Table1
Accumulatedgrowingdegreedaysandrainfallduringthewholewheatcycleand maingrowthperiods.GrowthstagesaredefinedfollowingZadok’sscale(GS00 seed-ing,GS10emergence,GS155thleafunfoldedstage,GS30pseudostemerection,GS50 anthesis,GS90physiologicalmaturity).
Period GDD(◦C) Rainfall(mm) 2008–2009 2009–2010 2008–2009 2009–2010 GS00–GS10 131.9 130.8 169.2 52.4 GS10–GS15 408.9 346.9 206.4 254.8 GS15–GS30 144.4 184.4 80.0 58.8 GS30–GS50 671.9 573.4 220.6 100.0 GS50–GS90 1048.7 1123.6 69.6 259.8 Wholecycle 2405.7 2358.9 745.8 725.8
determination,samplesfromallplantparts wereovendriedat 65◦Cuptoconstantweight.Meankerneldryweightwasalso mea-suredandnumberofkernelsperunitareaandharvestindex(HI) werecalculated.Samplesofeachplantpartwereanalysedfor nitro-genconcentration(Kjeldahlmethod);Ncontentswerecalculated bymultiplyingNconcentrationbydryweight.
Nitrogenefficiencyparameterswerecalculatedforeach treat-ment according to Moll et al. (1982) and López-Bellido et al. (2005).Nitrogenuseefficiency(kgkg−1)wastheratioofgrainyield biomasstoNfertiliser.Nitrogenuptakeefficiency(NUpE,kgkg−1) wastheratiooftotalaerialplantpartNuptaketoNfertiliser. Nitro-genutilisationefficiency(NUtE,kgkg−1)wastheratioofgrainyield biomasstototalNuptake.Nitrogenharvestindex(NHI)wasthe ratioofNingraintototalNuptake.
ResultsweretreatedbyANOVA.Themaineffectsofyear, vari-ety,Nfertiliserbeforeseeding,Nfertilisertopdressing,Nsplitting, andtheirinteractionsweretestedfordryweightofplantpartsand relativeNconcentrationandcontentandtotalNleached.Themain effectsofvariety,Nfertiliserbeforeseeding,Nfertilisertopdressing, Nsplitting,andtheirinteractionsweretestedfordrainagewater, NconcentrationandNleachinginthemonthsfromNovemberto Aprilin thetwoseasons. TheCoHortsoftwarepackagever. 6.4 (CoHortsoftware,Monterey,CA,USA)wasused.Significantly dif-ferentmeanswereseparatedatthe0.05probabilitylevelbythe leastsignificantdifferencetest(Steeletal.,1997).
3. Results
3.1. Weatherconditions
Total rainfallduringwheatgrowingcyclewassimilarinthe 2008–2009and2009–2010growingseasons(Fig.1andTable1) andwasby42%highercomparedtothemeanrainfallforthearea overthelast 10 years(515mm).Rainfall fromseeding toGS30 wassimilarinbothyears,accountingforover50%oftotal rain-fallduringwheatcycle, whereasit differedduring jointingand grainfilling.Duringjointing,rainfallwasabout3-foldin2008–2009 comparedto2009–2010,whileduringgrainfilling itwasabout 3-foldin2009–2010compared to2008–2009.Temperaturewas lowerthanthelong-term averagein both seasons,asthe ther-maltimeuptomaturitywas2574◦Cinthelong-termaverage,vs. 2406◦Cin2008–2009and2359◦Cin2009–2010(Table1). Differ-encesbetweenseasonsinaccumulatedgrowingdegreedayswere recordedonlyintheperiodfromGS10toGS50.Thehighest differ-encebetweenseasonswasrecordedfromGS15toGS30,with28% highervaluein2009–2010comparedto2008–2009.
3.2. Grainyieldandyieldcomponents
Grain yields were always higher in 2009–2010 cropseason withallsplittings.Inbothgrowingseasonsthehighestyieldwas
Fig.1.Rainfall(bars),maximum(closedsymbol)andminimum(opensymbol) tem-peraturein2008–2009(up)and2009–2010(down)seasons.
obtainedwiththe30-150-0splitting,whiletheapplicationof 0-180-0in2008–2009and60-120-0in2009–2010resultedinthe lowestgrainyield(Fig.2).Differencesingrainyieldbetweenyears andsplittingswereduetovariationsinnumberofspikesperunit area,number ofkernelsperspikeandmeankernelweight.The averagenumberofspikesm−2was559in2009–2010seasonand 484in2008–2009(resultsnotshown)andwashigherwith 0-180-0andlowestwith60-60-60(Table2).Thenumberofkernelsper spikewashigherin2009–2010onlyfortheapplicationswithout Nbeforeseeding(0-180-0and0-90-90),whilefortheotherfour splittingsitwasthesameinthetwogrowingseasons(Fig.2).In bothyearsthehighestvalueswererecordedwith30-150-0, 60-60-60and30-75-75splittings,andlowestwith0-180-0.Maximum variationsduetodifferentsplittingswere8.4kernelsperspikein 2008–2009and6.1kernelsperspikein2009–2010.Meankernel weightdidnotvarybetweenyearswhilethehighestvaluesamong nitrogensplittingswereobtainedby30-75-75,60-60-60and 0-90-90treatments,andthelowestby60-120-0(Table2).Insummary, thehighestgrainyieldobtainedwiththetreatments30-150-0and 30-75-75derivedfromthecombinationoflownumberofspikes, highnumberofkernelsperspikeandmedium-highmeankernel weight.Conversely,thelowestgrainyieldrecordedinthe treat-ments0-180-0in2008–2009and60-120-0in2009–2010weredue
Table2
Harvestindex,spikenumber,andmeankernelweight.Nitrogensplittingmean values.
Nitrogensplitting Harvest index(%) Spikenumber (nm−2) Meankernel weight(mg) 0-180-0 33.3ab 595.6d 40.3b 0-90-90 37.2c 549.5c 41.4c 30-150-0 35.8bc 508.9b 40.2b 30-75-75 37.6c 494.9ab 41.8c 60-120-0 31.9a 509.4b 38.9a 60-60-60 36.3bc 468.8a 41.5c
Withincolumns,numbersfollowedbythesameletterarenotsignificantlydifferent atP≤0.05.
Table3
Grainyield,vegetativedryweight,harvestindex,spikenumber,kernelnumberandmeankernelweight.Varietyandtopdressingnitrogenfertilisersmeanvalues. Treatments Grainyield(tha−1) Vegetatived.w.
(tha−1) Harvest index(%) Spikenumber (nm−2) Kernelnumber (nspike−1) Meankernel weight(mg) Variety Latinur 4.6b 8.2b 35.7a 555.9b 20.2a 41.9b Svevo 4.3a 7.9a 35.2a 486.5a 22.9b 39.4a
TopdressingNfertiliser
Ammoniumsulphate 4.4a 7.8a 36.0a 531b 20.6a 40.5a
Entec®26 4.2a 8.1b 33.9a 517a 21.2ab 40.6a
Urea 4.7b 8.2b 36.4a 516a 22.8b 41.0a
WithintreatmentsvarietyandtopdressingNfertiliser,numbersfollowedbythesameletterarenotsignificantlydifferentatP≤0.05.
tothenumberofspikesthatwasmedium,thenumberofkernels perspikeandthemeankernelweightthatwerelow-medium.
GrainyieldofLatinurwas,onaverage,by7%higherthanthat ofSvevo(Table3).Theincreasewasattributedtoahighernumber ofspikesperunitarea(+14%),owingtoagreatertilleringrate,and meankernelweight(+6%).Conversely,numberofkernelsperspike ofSvevowasby13%higher.
Fig.2. Grainyield,vegetativedryweightandnumberofkernelsperspikeasaffected bycropseason×nitrogensplittinginteraction.Intheseandinthefollowingfigures, errorbarsindicateLDS.
Grainyieldwasnotaffectedbynitrogensourceappliedbefore seeding,butwasmainlymodifiedbytopdressingNfertiliser.Yield increasedby0.4tha−1 withurea,comparedtoASandEntec® 26 averagevalue,owingtoagreaternumberofkernelsperspike(+9%) (Table3).
The response of thevegetative plant partto theinteraction year× splitting wasdifferentthan theoneof grain:dry weight washigherwith60-120-0and30-150-0splittingsandlowerwith 0-90-90 and 30-75-75 (Fig. 2).Differencesbetweenyears were detectedonlywithnoNfertiliserbeforeseeding,withhigher val-uesin2009–2010season.Dryweightofvegetativeplantpartwas higherinLatinurthaninSvevoandincreasedfromAStoEntec®26 andurea(Table3).
HarvestIndexwasby17%higherin2009–2010comparedto 2008–2009seasonandwasmodifiedbyNsplitting,beinghighest with0-90-90and30-75-75andlowestwith60-120-0(Table2). DifferencesinHIbetweenvarietiesandtopdressingNfertiliser werenotstatisticallysignificant(Table3).
3.3. Nitrogenuptake
Nitrogenconcentrationofgrainandvegetativeplantpartwere significantlyaffectedonlybytheinteractionyear×Nsplitting.The highest values were foundwith 0-90-90and 30-75-75 in both seasonsandwith0-180-0in2008–2009,andthelowestwith 0-180-0,30-150-0inbothseasonsandwith60-120-0in2009–2010 (Fig.3).FollowingthepatternsofdryweightandNconcentration, Ncontentofgrainandvegetativeplantpartwereaffectedbythe interactionyear×Nsplittingandbythemeaneffectof topdress-ingNfertiliser.Excludingthe60-120-0split,thehighestvaluesof grainNcontentwererecordedin2009–2010seasonatall split-tings,butwhilein2008–2009differencesamongsplittingswere low(max.18kgNha−1),in2009–2010thesplittings0-90-90, 30-75-75and60-60-60gavevaluesby28kgNha−1highercompared totheothersplittings(Fig.3).GrainNcontentincreasedfromAS to Entec® 26 (8.0%) and tourea (13.6%), even thoughbetween theselasttwothenon-significantincreaseduetotheureawasof 5.1kgNha−1(Table4).DifferencesforNcontentinvegetativeplant partwerealsodetected(Fig.3andTable4).Asaconsequence,total Nuptakebyaerialplantpartwasby34kgNha−1higherwith 0-90-90,30-75-75and60-60-60in2009–2010comparedtotheother
Table4
Nitrogencontentofgrainandvegetativeplantpart.Topdressingnitrogenfertiliser meanvalues.
TopdressingNfertiliser Nitrogencontent(kgha−1)
Grain Vegetativeplantpart
Ammoniumsulphate 92.1a 36.9ab
Entec®26 99.5ab 34.8a
Urea 104.6b 37.8b
Withincolumns,numbersfollowedbythesameletterarenotsignificantlydifferent atP≤0.05.
Fig.3.Nitrogenconcentrationandcontentofgrainandvegetativeplantpartasaffectedbycropseason× nitrogensplittinginteraction.
splittings(Fig.3)andby13kgNha−1higherwithureacompared toAS(Table4).NUEwasaffectedbytheinteractionyear×splitting, andhadthesamepatternofgrainyield,beingtherateoffertiliser Nthesameforalltreatments(Table5).Similarlytograinyield, highestNUEwasachievedinbothyearwiththe30-150-0and 30-75-75splittings.Theseasoninfluenced alsoNUpEand NUtE.In 2008–2009variationsduetosplittreatmentsonbothindiceswere inconsistent,whilein2009–2010NUpEincreasedappreciablywith treatmentsinvolvinghigherNratesatGS30(0-90-90,30-75-75 and60-60-60),whileNUtEwashigherwhenhigherNrateswere appliedatGS15(0-180-0,30-150-0and60-120-0)(Table5).The proportionoftotalplantNintheseedsatmaturity(NHI)waslowest whenthesecondtopdressingfertilisationwasnotapplied(Fig.4).
3.4. Nitrogenleaching
The amountofdrainagewater recordedinthemonthsfrom NovembertoAprilwasnotaffectedbyanyofthetestedtreatments, but washigher during the 2008–2009crop season(430.3mm) comparedtothe2009–2010season(389.9mm).Highest percola-tionsoccurredin December2009and inDecemberandJanuary
Table5
Nitrogenuseefficiency(NUE),nitrogenuptakeefficiency(NUpE)andnitrogen util-isationefficiency(NUtE).Season×nitrogensplittinginteraction.
Season Nsplitting NUE
(kgkg−1) NUpE (kgkg−1) NUtE (kgkg−1) 2008–2009 0-180-0 18.1a 0.64a 28.4ab 0-90-90 20.6b 0.74bc 27.7a 30-150-0 23.6cd 0.73bc 32.3cd 30-75-75 22.5bc 0.75c 30.1abc 60-120-0 21.6bc 0.67abc 32.4cd 60-60-60 22.3bc 0.66ab 34.0d 2009–2010 0-180-0 27.1f 0.73bc 37.4e 0-90-90 27.0ef 0.91d 29.7abc 30-150-0 30.1g 0.76c 39.6e 30-75-75 28.6fg 0.91d 31.2bcd 60-120-0 24.9de 0.65ab 38.3e 60-60-60 27.8f 0.87d 31.8cd
Withincolumns,numbersfollowedbythesameletterarenotsignificantlydifferent atP≤0.05.
Fig.4. Nitrogenharvestindexasaffectedbynitrogensplittingmeaneffect.
2010 (Fig. 5).High rainfall determinedhigh drainagefew days following pre seeding N application in the 2008–2009 season, while in 2009–2010drainage started aboutone month follow-ingNapplication.InNovember,DecemberandJanuary,drainage wateraccountedfor61%and80%oftotaldrainage,respectivelyin
Fig.6.Nitrogenconcentrationindrainageandnitrogenleachedduring2008–2009and2009–2010seasonsasaffectedbynitrogensplittingmeaneffect.
2008–2009and2009–2010seasons.Theamountofdrainagewater wasclosetozerofollowingthesecondtopdressingfertilisation.
Inbothseasons,nitrogenconcentrationindrainagewaterand leachedNwereaffectedonlybyNsplitting.Nitrogenconcentration inwaterwashigherfollowingseedinganddecreaseduntilJanuary inbothyearsatallsplittings(Fig.6).Inthisperiod,Nconcentration increasedwiththeincreaseofNratebeforeseeding.Thereafter, valueswerelowerthan4mgNL−1andunaffectedbyNsplitting.
Averaged over all treatments, total amount of N lost with drainagewaterduringwheatcyclewasalmostentirelyaccounted forNleachinginDecember(63%and74%ofthetotalleachedN, respectivelyinthe2008–2009and2009–2010seasons)(Fig.6). IntheperiodfollowingfirsttopdressingNdistribution,Nleached accountedfor17%and4%oftotalNlostrespectivelyfor2008–2009 and 2009–2010 seasons. The quantity of N lost in both years increasedwiththeincreaseofNrateappliedbeforeseeding,while topdressingfertiliserdidnotaffectlosses(Fig.7).WhenNwasnot appliedbeforeseeding,Nlostwaslowandsimilarinthetwo sea-sons,whilewiththeothersplittingsNlostwashigherin2008–2009 comparedto2009–2010season.
Fig.7. TotalNleachedduring2008–2009and2009–2010seasonsasaffectedby nitrogensplittingmeaneffect.
4. Discussion
4.1. Nitrogenfertiliseratsowing
The applicationof SAand Entec® 46 beforeseeding didnot modifyeithergrainyieldandyieldcomponentsorNuptakeand leaching,indicatingthatinthisresearchtheinclusionofthe nitri-ficationinhibitordidnotshowanyadvantageincomparisonwith ammoniumfertiliser.Nitrificationinhibitorshavebeenshownto increaseyieldwhenthefertiliserisappliedinconditionsthatfavour nitratelossesbyleaching,thatis,inperiodsofhighrainfallor irriga-tion,orinsandyorhighlypermeablesoils(PrasadandPower,1995; Barthetal.,2001).Conversely,inotherstudiestheyieldadvantage wasnullorsmall,averagingjust5%,duetotheapplicationofN whenleachingwaslowandwhencropdemandwashigh(Hergert andWiese,1980;Pasdaetal.,2001;ArreguiandQuemada,2006, 2008).Inthisresearch,theapplicationofthenitrificationinhibitor wasperformedwhenleachingwashighandcropdemandwaslow, whichareconditionsthatwouldfavourtheinclusionof nitrifica-tioninhibitorsinfertiliser.Neverthelessnitrificationinhibitorwas notsuccessfultocontrolnitrateleachingduringtheperiodofhigh rainfall.
4.2. Nitrogensplitting
Climatic conditionsduring growingseasoninfluenced wheat grainyield,asinthe2008–2009theaveragegrainyieldwasby22% lowerthanin2009–2010.Thehighyieldin2009–2010wasdueto highernumberofspikesandgreaterspikesize,probablybecause ofgoodgrowingconditionsduringinitialstagesofcrop develop-mentthatfavouredthedevelopmentoftillersandpromotedthe floretfecundation,resultinginhighernumberofkernelsperspike. Fertilisersplittinginbothyearshadaconsiderableimpactongrain yieldandyieldcomponents.Theobserveddifferencesingrainyield andyieldcomponentscausedbytheinteractiveeffectsofdifferent Nsplittingsandweatherconditionsmaybeduetoprocessesinsoil andinplantaffectingNavailabilityincriticalphasesof determina-tionofyieldcomponents.Owingtotheschemeoftreatments(equal
totalNrate,butdifferentsplittings)theeffectofthedifferentrates indifferentphasescannotbeseparatedinourresults,andattempts toclarifycausescanonlybeconsideredaspossiblereasons. Nev-ertheless,itwasdemonstratedthatitispossibletoimprovegrain yieldandNconcentrationbyvariationsinsplitapplicationsof fer-tiliserN:thevariationsduetosplittingreached1tingrainyield whiletheproteingraincontentincreasedby4%,correspondingto 7gkg−1 in Nconcentrationofgrain.Comparingtheeffectofall splittings,thehighestgrainyield(andNUE)andthehighest pro-teinconcentration(andNUpE)wereobtainedwith30-150-0and 30-75-75treatments,respectively.Theyieldadvantagewasrelated tothehighernumberofkernelsperspikeresultingfromthehigher numberofdifferentiatedspikeletsperspike.Thus,theapplication of30kgNha−1beforeseedingisrequiredtohavehighgrainyield, asmineralNinsoilderivingfrommineralisationofsoilorganic matterandnotleachedprobablywasnotsufficienttoensurehigh yield.Theothercharactersweredifferentlyaffectedby differen-tialNavailabilityduringcropgrowth,asyieldcomponentsvaried amongsplittreatmentsinthetwoseasons.TheapplicationofNonly topdressing(0-180-0and0-90-90)greatlyreducedgrainyieldby thereductionofthenumberofkernelsperspike.Theeffectwas par-ticularlyheavyintheseasonwithhighrainfallbeforeseeding,when themineralNamountpresentinthesoilatthetimeoffertiliser applicationwasverylowowingtoNleaching.Inthetreatment 0-180-0highNrateatGS15stimulatedtillering,butNdeficiency occurredduringthelastpartofwheatcycle(NappliedatGS15 wasprobablyimmobilisedintosoilandnotavailablethereafter). Nitrogenrestrictionduringthelastpartofwheatcycle(0-180-0, 30-150-0,60-120-0)leadtoareducedNaccumulationintograin, andfor60-120-0alsoareductionofcarbohydrateaccumulation intograin.Thismeansthatgraingrowthwasprobablyconstrained byNshortageduringgrainfilling.SinceNleachingincreasedwith theincreaseoftherateofNappliedbeforeseeding,itislikelythat theloweryieldwith60-120-0comparedto0-180-0isduetolower NavailabilityduetoNleached.
Insummary,theapplicationofNonlytopdressingisnotavalid optionsincesoilmineralNisnotsufficienttosustainNuptake inthefirstthreemonthsofcropgrowth,whenrainfalland con-sequentlyNleachingarehigh.Conversely,theapplicationofthe highest rate (60kgNha−1) before seeding is not to be recom-mended,sinceitposesseriousenvironmentalconcernsowingto highriskofleachinglosses.Moreover,theapplicationofNintwo ratesbeforeseedingandtopdressingatearlycropstagesisalso notadvisable,sincedrymatterandNaccumulationintograinis reduced.ThesplittingoftheNrateinthreeamendmentsinstead oftwo withthethirdapplication atlater cropstageleadtoan increaseofgrainproteincontent,suggestinganimprovementof grainqualityparameters.
4.3. Topdressingnitrogenfertilisers
NsourceappliedtopdressingatGS15affectedgrainyieldand yieldcomponents,aswellasdryweightofvegetativeplantpart and N uptake. Conversely, N leaching was not affected as the weatherconditionsandthecropevapotranspirationfollowing fer-tiliserapplicationdidnotpromoteNO3−leaching.Indeed,water drainagewascloselyrelated torainfall,whichwasnegligiblein theperiodfollowingtopdressingNapplication.Theapplicationof urearesultedinthehighestgrainyield,owingtoagreaternumber ofkernelsperspikethatcompensatedthelowernumberofspikes perunitarea.Indurumwheat,spikeinitiationoccursintheperiod fromthedevelopmentofthe4thleaf,GS14,tostemelongation, GS(Arduinietal.,2009)andthenumberofinitiatedspikeletsis enhancedinpresenceofagoodNavailabilityinsoil(Masonietal., 2001).OurresultssuggestthattheprompterreleaseofNfromurea comparedtoASandEntec®26increasedNavailableintheperiodof
floretinitiationanddifferentiation.Mulvaney(1994)showedthat nitrificationoccurredintheorderurea>AS.Likewise,EnoandBlue (1957)andMartikainen(1985)reportedthatureanitrifiesfaster thanAS.Thisdifferentialinnitrificationratehasbeenattributedin parttotheincreaseinsoilpHassociatedwiththehydrolysisofurea soonafterapplication,incontrasttothedeclineinsoilpH associ-atedwiththeapplicationofAS(Lindsayetal.,1962;Allredand Ohlrogge,1964).TheeffectofEntec® 26ongrainyieldandyield componentswassimilartothatofAS,thusthedelayedeffectofthe nitrificationinhibitorDMPPonNH4+nitrificationdidnotbenefit wheatgrowth.Entec®26contains7.5%NO
3–Nand18.5%NH4–N, whileAScontainsallnitrogeninNH4+form.Theprobablehigher persistenceofNH4+insoilinEntec®26thaninASplotshadnotany advantageforcropgrowthandthereductionofN–NO3duetothe inhibitionofnitrificationinEntec®26comparedtoASisprobably compensatedbythepresenceofnitricN.Inaddition,wecannot excludethatpartofNH4+maybefixedinclayminerals(Gioacchini
etal.,2006),thusreducingNavailabilitytoplants.
5. Conclusions
Ourresultsevidencednoclearadvantageofthedistributionto durumwheatofEntec®46beforeseeding,andEntec®26 topdress-ing,neitherintermsofincreasedgrainquantityandquality,nor intermsofhigherNutilisationefficiencyanddecreasedN leach-ing.SinceNfertiliserapplicationrepresentsanimportantcostin cropproductionandfertiliserscontainingthenitrificationinhibitor DMPPhavehigherpricesthanSAorurea,theiruseisnot advis-able in Central Italy. Further researches should investigate the applicationtodurumwheatofotherdelayed-releaseNfertilisers, focussingonthemechanismsofNreleaseinfieldconditions,in ordertosynchroniseitwithplantdemand.
ThesplittingofNfertiliseriscrucialtoimprovefertiliseruse effi-ciencyandtoincreasegrainyieldandgrainproteinconcentration. Theapplicationof30kgNha−1 beforeseedingis recommended, sincemineralisationofsoilorganicmattercouldnotensure ade-quatemineralNavailabilityforinitialcropdevelopment,resulting inagreatreductionofkernelnumberperspikeandconsequently grain yield. Conversely, 60kgNha−1 before seeding proved to exceedcropneeds,resultinginincreasedNleachingduringinitial cropstageandNdeficiencyatlatercropdevelopment.Topdressing distributioncanberecommendedbothentirelyat5thleafor split-tedhalfat5thleafandhalfatstemelongation.Inourresearch,the firstsplitting,i.e.30-150-0,gavethehighestgrainyieldwhilethe second,30-75-75,gavethehighestNconcentrationingrain.Finally, thedistributionofureaat5thleafisadvisablebecause,compared toammoniumsulphateandEntec®26,itturnedintohighergrain yieldwithlowerdistributioncosts.
References
Alcoz,M.M.,Hons,F.M.,Haby,V.A.,1993.Nitrogenfertilizationtimingeffecton wheatproduction,nitrogenuptakeefficiency,andresidualsoilnitrogen. Agron-omyJournal85,1198–1203.
Allred,S.E.,Ohlrogge,A.J.,1964.Principlesofnutrientuptakefrombands.VI. Ger-minationandemergenceofcornasaffectedbyammoniaandammonium phosphate.AgronomyJournal56,309–313.
Arduini,I.,Ercoli,L.,Mariotti,M.,Masoni,A.,2009.Sowingdateaffectspikelet numberandgrainyieldofdurumwheat.CerealResearchCommunications37, 469–478.
Arregui,L.M.,Quemada,M.,2006.Drainageandnitrateleachinginacroprotation underdifferentN-fertilizerstrategies:applicationofcapacitanceprobes.Plant andSoil288,57–69.
Arregui,L.M.,Quemada,M.,2008.Strategiestoimprovenitrogenuseefficiencyin wintercerealcropsunderrainfedconditions.AgronomyJournal100,277–284. Ayoub,M.,Guertin,S.,Fregeau-Reid,J.,Smith,D.L.,1994.Nitrogenfertilizereffecton breadmakingqualityofhardredspringwheatineasternCanada.CropScience 34,1346–1352.
Barth,G.,vonTucher,S.,Schmidhalter,U.,2001.Influenceofsoilparameterson theeffectof3,4-dimethylpyrazole-phosphateasanitrificationinhibitor.Biology andFertilityofSoils34,98–102.
Bouwman,A.F.,Boumans, L.J.M.,Batjes, N.H.,2002. Estimationofglobal NH3
volatilizationlossfromsyntheticfertilizersandanimalmanureappliedtoarable landsandgrasslands.GlobalBiogeochemicalCycles16,1024–1037.
Carreres,R.,Sendra,J.,Ballesteros,R.,Valiente,E.F.,Quesada,A.,Carrasco,D.,Leganés, F.,Cuadra,J.G.,2003.Assessmentofslowreleasefertilizersandnitrification inhibitorsinfloodedrice.BiologyandFertilityofSoils39,80–87.
Cartagena,M.C.,Vallejo,A.,Diez,J.A.,Bustos,A.,Caballero,R.,Roman,R.,1995.Effect ofthetypeoffertilizerandsourceofirrigationwateronNuseinamaizecrop. FieldCropsResearch44,33–39.
Delogu,G.,Cattivelli,L.,Pecchioni,N.,DeFalcis,D.,Maggiore,T.,Stanca,A.M.,1998. Uptakeandagronomicefficiencyofnitrogeninwinterbarleyandwinterwheat. EuropeanJournalofAgronomy9,11–20.
Diez,J.A.,Roman,R.,Caballero,R.,Caballero,A.,1997.Nitrateleachingfromsoils underamaize–wheat–maizesequence,twoirrigationschedulesandthreetypes offertilisers.Agriculture,Ecosystems&Environment65,189–199.
Dilz,K.,1988.Efficiencyofuptakeandutilizationoffertilizernitrogenbyplants.In: Jekinson,D.S.,Smith,K.A.(Eds.),NitrogenEfficiencyInAgriculturalSoils.Elsevier AppliedScience,London,pp.1–26.
Eno,C.F.,Blue,W.G.,1957.Thecomparativerateofnitrificationofanhydrous ammo-nia,urea,andammoniumsulfateinsandysoils.SoilScienceSocietyofAmerica Proceedings21,392–396.
Ercoli,L.,Arduini,I.,Mariotti,M.,Lulli,L.,Masoni,A.,2012.Managementof sul-phurfertilisertoimprovedurumwheatproductionandminimiseSleaching. EuropeanJournalofAgronomy38,74–82.
Fuertes-Mendizábal,T.,Aizpurua,A.,González-Moro,M.B.,Estavillo,J.M.,2010. ImprovingwheatbreadmakingqualitybysplittingtheNfertilizerrate.European JournalofAgronomy33,52–61.
Garrido-Lestache,E.,López-Bellido,R.J.,López-Bellido,L.,2004.EffectofNrate, tim-ingandsplittingandNtypeonbread-makingqualityinhardredspringwheat underMediterraneanconditions.FieldCropsResearch85,213–236.
Garrido-Lestache,E.,López-Bellido,R.J.,López-Bellido,L.,2005.Durumwheat qual-ityunderMediterraneanconditionsasaffectedbyNrate,timingandsplitting, NformandSfertilization.EuropeanJournalofAgronomy23,265–278. Gioacchini,P.,Ramieri, N.A.,Montecchio, D.,Marzadori,C.,Ciavatta,C.,2006.
Dynamicsofmineralnitrogeninsoilstreatedwithslow-releasefertilizers. Com-municationsinSoilScienceandPlantAnalysis37,1–12.
Hergert,G.W.,Wiese,R.A.,1980.Performanceofnitrificationinhibitorsinthe Mid-west(west).In:Meisinger,J.J.,Randall,G.W.,Vitosh,M.L.(Eds.),Nitrification Inhibitors:PotentialsandLimitations,vol.38.Am.Soc.Agron.,Madison,WI,pp. 89–105(Spec.Publ.).
Kaiser,E.A.,Eiland,F.,Germon,J.C.,Heinermeyer,R.O.,Henault,C.,Lind,A.M.,Maag, M.,Saguer,E.,VanCleemput,O.,Vermoesen,A.,Webster,C.,1996.What pre-dictsnitrousoxideemissionsanddenitrificationN-lossfromEuropeansoils? ZeitschriftfürPflanzenernahrungundBodenkunde159,541–547.
Lindsay, W.L., Frazier,A.W., Stephenson, H.F., 1962. Identification of reaction productsfromphosphatefertilizersinsoils.SoilScienceSocietyofAmerica Proceedings26,446–452.
López-Bellido,L.,López-Bellido,R.J.,Redondo,R.,2005.Nitrogenefficiencyinwheat underrainfedMediterraneanconditionsasaffectedbysplitnitrogenapplication. FieldCropsResearch94,86–97.
López-Bellido, L., Mu ˜noz-Romero, V., Benítez-Vega, J., Fernández-García, P., Redondo,R.,López-Bellido,R.J.,2012.Wheatresponsetonitrogensplitting appliedtoavertisolsindifferenttillagesystemsandcroppingrotationsunder typicalMediterraneanconditions.EuropeanJournalofAgronomy43,24–32. Martikainen,P.J.,1985.NitrificationinforestsoilofdifferentpHasaffectedbyurea,
ammoniumsulphateandpotassiumsulphate.SoilBiologyandBiochemistry17, 363–367.
Masoni,A.,Arduini,I.,Mariotti,M.,Ercoli,L.,Bonari,E.,2001.Numberofspikelets andleafappearancerateindurumwheatasaffectedbytemperature,daylength andnitrogenavailability.AgricolturaMediterranea130,57–65.
McMaster,G.S.,Wilhelm,W.W.,1997.Growingdegree-days:oneequation,two interpretations.AgriculturalandForestMeteorology87,291–300.
Melaj,M.A.,Echeverría,H.E.,López,S.C.,Studdert,G.,Andrade,F.,Bárbaro,N.O., 2003.Timingofnitrogenfertilizationinwheatunderconventionalandno-tillage system.AgronomyJournal95,1525–1531.
Moll,R.H.,Kamprath,E.J.,Jackson,W.A.,1982.Analysisandinterpretationofis fac-torswhichcontributetoefficiencyofnitrogenutilization.AgronomyJournal74, 562–564.
Moonen,C.,Masoni,A.,Ercoli,L.,Mariotti,M.,Bonari,E.,2001.Long-termchanges inrainfallandtemperatureinPisa,Italy.AgricolturaMediterranea131,11–22. Mulvaney,R.L.,1994.Nitrificationofdifferentnitrogenfertilizers.In:Hoeft,R.G. (Ed.),IllinoisFertilizerConferenceProceedings.CooperativeExtensionService, UniversityofIllinois,Urbana,IL,pp.83–96.
Ottman,M.J.,Doerge,T.A.,Martin,E.,2000.Durumgrainqualityasaffectedby nitro-genfertilizationnearanthesisandirrigationduringgrainfill.AgronomyJournal 92,1035–1041.
Pasda,G.,Hahndel,R.,Zerulla,W.,2001.Effectoffertilizerswiththenew nitrifica-tioninhibitorDMPP(3,4-dimethylpyrazolephosphate)onyieldandqualityof agriculturalandhorticulturalcrops.BiologyandFertilityofSoils34,85–97. Porter,J.R.,Gawith,M.,1999.Temperaturesandthegrowthanddevelopmentof
wheat:areview.EuropeanJournalofAgronomy10,23–36.
Prasad,R.,Power,J.F.,1995.Nitrificationinhibitorsforagriculture,health,andthe environment.AdvancesinAgronomy54,233–281.
Raun,W.R.,Solie,J.B.,Taylor,R.K.,Arnall,D.B.,Mack,C.J.,Edmonds,D.E.,2008.Ramp calibrationstriptechnologyfordeterminingmidseasonnitrogenratesincorn andwheat.AgronomyJournal100,1088–1093.
Raun,W.R.,Johnson,G.V.,1999.Improvingnitrogenuseefficiencyforcereal pro-duction.AgronomyJournal91,357–363.
Sowers,K.E.,Miller,B.C.,Pan,W.L.,1994.Optimizingyieldandgrainproteinin softwhitewinterwheatwithsplitnitrogenapplications.AgronomyJournal86, 1020–1025.
Steel,R.G.D.,Torrie,J.H.,Dickey,D.A.,1997.PrinciplesandProceduresofStatistics: ABiometricalApproach.McGraw-Hill,NewYork.
Strong,W.M.,1995.Nitrogenfertilizationofuplandcrops.In:Bacon,P.E.(Ed.), Nitro-genFertilizationintheEnvironment.MarcelDekker,NewYork,pp.129–169. Zadoks,J.C.,Chang,T.T.,Konzak,C.F.,1974.Adecimalcodeforthegrowthstagesof