• Non ci sono risultati.

Photons to axion-like particles conversion in Active Galactic Nuclei

N/A
N/A
Protected

Academic year: 2021

Condividi "Photons to axion-like particles conversion in Active Galactic Nuclei"

Copied!
6
0
0

Testo completo

(1)

2015

Publication Year

2020-03-10T10:48:05Z

Acceptance in OA@INAF

Photons to axion-like particles conversion in Active Galactic Nuclei

Title

TAVECCHIO, Fabrizio; RONCADELLI, MARCO; GALANTI, GIORGIO

Authors

10.1016/j.physletb.2015.04.017

DOI

http://hdl.handle.net/20.500.12386/23191

Handle

PHYSICS LETTERS. SECTION B

Journal

744

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Photons

to

axion-like

particles

conversion

in

Active

Galactic

Nuclei

Fabrizio Tavecchio

a

,

Marco Roncadelli

b

,

Giorgio Galanti

c

,

aINAFOsservatorioAstronomicodiBrera,ViaE.Bianchi46,I-23807Merate,Italy

bINFN,SezionediPavia,ViaA.Bassi6,I-27100Pavia,Italy

cDipartimentodiFisica,Universitàdell’Insubria,ViaValleggio11,I-22100Como,Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received19January2015

Receivedinrevisedform8April2015 Accepted9April2015

Availableonline14April2015 Editor: A.Ringwald

Keywords:

Axion

Photonpropagation

Theideathatphotonscanconverttoaxion-likeparticles(ALPs)

γ

a inoraroundanAGNandreconvert backtophotonsa

γ

intheMilkyWaymagneticfieldhasbeenputforwardin2008andhasrecently attractedgrowinginterest.Yet,sofarnobodyhasestimatedtheconversionprobability

γ

a ascarefully asallowedbypresent-dayknowledge.Ouraimistofillthisgap.WefirstremarkthatAGNwhichcan bedetectedabove100 GeVareblazars,namelyAGNwithjets,withone ofthempointingtowardsus. Moreover,blazarsfallintotwowelldefined classes:BLLacobjects(BLLacs)and FlatSpectrumRadio Quasars(FSRQs),withdrasticallydifferentproperties.InthisLetterwereportapreliminaryevaluationof the

γ

a conversionprobabilityinsidethesetwoclassesofblazars.Ourfindingsaresurprising.Indeed, whileinthecaseofBLLacstheconversionprobabilityturnsouttobetotallyunpredictable duetothe strongdependenceonthevaluesofthesomewhatuncertainpositionoftheemissionregionalongthe jetandstrengthofthemagneticfieldtherein,forFSRQsweareabletomakeaclear-cut prediction.Our resultsareofparamountimportanceinviewoftheplannedvery-high-energyphotondetectorslikethe CTA,HAWK,GAMMA-400andHISCORE.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Many extensions of the Standard Model of particle physics – and chiefly among them superstring theories – generically pre-dicttheexistence ofaxion-like particles (ALPs)(fora review,see [1,2]), which arespin-zero, neutraland extremelylight bosons – tobe denoted by

a –

closelyresembling theaxion (for areview, see[3])apartfromtwofacts thatmakesthemasmuchas model-independentaspossible.

Possible couplings tofermions and gluonsare discarded and onlytheirtwo-photoncoupling

a

γ γ

istakenintoaccount.

The ALP mass m is totally unrelated to their a

γ γ

coupling constant 1

/

M. The most robust lower bound on M is set by the CASTexperimentCERN whichyields M

>

1

.

14

·

1010 GeV for

m

<

0

.

02 eV [4].Somewhat weakerboundsare M

>

1

.

5

·

1010GeV for

m

<

1 keV fromtheanalysisofevolutionof

glob-ularclusters[5]and

M

>

1

.

9

·

1011GeV for

m

<

4

.

4

·

10−10eV

*

Correspondingauthor.

E-mailaddresses:fabrizio.tavecchio@brera.inaf.it(F. Tavecchio),

marco.roncadelli@pv.infn.it(M. Roncadelli),gam.galanti@gmail.com(G. Galanti).

fromthelack ofALPdetectionsupposedly emitted by super-nova1987A[6].

Asaconsequence,ALPsaredescribedbytheLagrangian

L

0 ALP

=

1 2

μa

μa

1 2m 2a2

+

1 ME

·

B a

,

(1)

where E and B denotethe electric andmagnetic components of thefieldstrength F μν . ObservethatbecauseE isperpendicularto the

γ

momentum, the structure of the last term in Eq. (1) im-pliesthatonlythecomponentBT transversetothe

γ

momentum couples to a. Throughout this Letter, E is the electric field of a propagating photonwhileB isan external magnetic field. Accord-ingly, the massmatrix of the a

γ

system is off-diagonal, thereby implyingthat thepropagationeigenstates differfromthe interac-tion eigenstates.Therefore

γ

a oscillations take placemuch in the same waythat occursfor massive neutrinos ofdifferent fla-vor,apartfromtheneedofB in ordertocompensateforthespin mismatch[7,8].However,inthesituations tobeaddressedbelow also theone-loop QED vacuumpolarization in the presenceof B hastobetakenintoaccountandisdescribed bytheeffective La-grangian[9–11]

LHEW

=

2

α

2 45m4e



E2

B2



2

+

7



E

·

B



2



,

(2) http://dx.doi.org/10.1016/j.physletb.2015.04.017

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

376 F. Tavecchio et al. / Physics Letters B 744 (2015) 375–379

where

α

isthefine-structureconstantand

m

e istheelectronmass. So,throughoutthisLettertheconsideredALPLagrangianis

LALP

=

L

0

ALP

+

LHEW

.

Inordertoavoidanymisunderstanding,thesymbol E denotes

henceforththe

energy rather

thantheelectricfield.

Letusnowturnourattentiontovery-high-energy(VHE) astro-physics, namely to observed photons with energies in the range 100 GeV

<

E

<

100 TeV andtotheirextragalacticsources,the ma-jorityofwhichare ActiveGalacticNuclei(AGN). Generally speak-ing,AGNarepowered bya supermassiveblackhole(SMBH) with

MSMBH

108–109Mlyingatthecentreofabrightgalaxyand ac-cretingmatterfromthesurrounding,which–beforedisappearing into the SMBH –heats up emitting an enormous amount of ra-diation.Nearly10% ofAGNsupports twoopposite relativisticjets (withabulkLorentzfactor

γ



10–20)propagatingfromthe cen-tralregionsouttodistancesthat,inthemostpowerfulsources,can reach1 Mpc.Ultra-relativisticparticles(leptonsand/orhadrons)in the plasma carriedby these jetsemit non-thermal radiation ex-tending from the radio up to the VHE band. Aberration caused bytherelativisticmotionmakestheemissionstronglyanisotropic, mainly boosted in the direction of the motion. Blazars are AGN withonejetpointing–merelybychance–almostexactlytowards the Earth. Blazars fall into two broad classes: BL Lac objects (BL Lacs)–whichrepresentthegreatmajorityofextragalacticsources detected intheVHEband – andflatspectrum radioquasars (FS-RQs)[12].As arule, theblazarspectral energydistribution(SED) showstwobroadhumps,thefirstonepeakingatlowfrequency– fromIR to softX-rays, depending on the specific source –while thesecondoneinthe

γ

-rayband.InBLLacsthelattercomponent extendsto VHE, oftenreaching multi-TeV energies. In thewidely assumedleptonic models,theVHE

γ

-rayemissionistheresultof theinverseCompton (IC)scatteringofsoftphotonsby relativistic electronsinthejet.Moreover,itiswidelyacceptedthatthe dom-inant soft photon population derives – through the synchrotron mechanism–bythesameelectronsthatscatterthemintotheVHE band. Thisis thescheme whichlies atthe basis ofthe so-called synchrotronselfCompton(SSC)model[13,14].

Yet,theVHEbandisplaguedbytheexistenceofthe

extragalac-tic background light (EBL) which is the light emitted by galaxies duringthewholecosmichistoryandextendsfromthefar-infrared to the near-ultraviolet (for a review, see [15]). What happens is thatwhenaVHE

γ

emittedbyadistantblazarscattersoffanEBL

γ

it has a good chance to disappear into an e+e− pair [16,17]. Indeed,accordingtoconventionalphysicsthiseffectbecomes dra-maticevenfor E above afew TeV(see Fig. 1of[18]),a factthat drasticallyreducesthe

γ

-rayhorizonatincreasing E.

A breakthroughcame in2007 when it was first realized [19] (see also[20]) that

γ

a

γ

oscillationstakingplace in inter-galacticspacecangreatlydecreasetheEBLdimmingforsufficiently far-away blazars and high enough E provided that a large-scale magnetic field in the 0.1–1 nG range exists with a domain-like structure, which is consistent with all presently available upper bounds(fora review,see[21]). Whythishappenscan be under-stood in an intuitive fashion (discardingcosmological effects for simplicity).Photon–ALPoscillationsgiveaphotonasplit personal-ity:asitpropagatesfromtheblazartous,itbehavessometimesas a

true photon

andsometimesasan ALP.When itpropagatesasa photonitundergoesEBLabsorption,butwhenitpropagatesasan ALPitdoes

not.

Therefore,theeffectivephoton meanfree pathin extragalacticspace

λ

γ,eff(E

)

is

larger than

λ

γ

(

E

)

aspredictedby

conventional physics. Correspondingly, the photon survival prob-abilitybecomes γ

(

E

)

=

exp



Ds

γ,eff(E

)



,where Ds isthe blazardistance.So,becauseoftheexponentialdependenceonthe meanfreepatheven asmallincreaseof

λ

γ,eff(E

)

withrespectto

λ

γ

(

E

)

producesa largeenhancementof γ

(

E

)

,therebygiving

risetoadrasticreductionoftheEBLdimming.

Before proceeding further, a remarkis in order.From time to timeatensionbetweenthepredictedEBLlevelcausingphoton ab-sorptionandobservationsintheVHErangehasbeenclaimed[22, 23], buta subsequentbetter determination oftheEBL properties hasshownthatnoproblemexists.Actually,afteralongperiodof uncertaintyontheEBLpreciseproperties,nowadaysaconvergence seems tobe reached[15],well representede.g. bythe modelsof Franceschini,RodighieroandVaccari(FRV)[24]andofDomínguez

et al. [25]. Nevertheless, it has been claimed that VHE observa-tions requirean EBL level evenlower than that predictedby the minimal EBL model normalized to the galaxy counts only [26]. This is the so-called pair-production anomaly, which is based on the Kolmogorov test and so does not rely upon the estimated errors. It has thoroughly been quantified by a global statistical analysisofalargesampleofobservedblazars,showingthat mea-surements in theregime oflarge optical depthdeviate by 4.2

σ

from measurements in theoptically thinregime [27].Systematic effectshavebeenshowntobeinsufficienttoaccountforsuchthe pair-productionanomaly,which lookstherefore real.Actually,the discovery of newblazars atlarge redshift likethe observationof PKS1424

+

240 havestrengthenedthecaseforthepair-production anomaly [28].Quiterecently,theexistence ofthepair-production anomalyhasbeenquestionedbyusinganewEBLmodelanda

χ

2

test, inwhicherrorsplay insteadanimportantrole [29].Because the Kolmogorov test looks more robust in that it avoids taking errors into account, we tend to believe that the pair-production anomaly is indeed atthe levelof 4.2

σ

. It looks tantalizingthat forasuitablechoiceofthefreeparametersithasbeenshownthat the mechanismdiscussed above provides a solution to the pair-productionanomaly[27,30].Anevenmoreamazingfactisthatfor the

same choice

ofthefree parameteralsotheobserved redshift-dependenceoftheblazarspectraisnaturallyexplained[31].

Comingbacktoourmainlineofdevelopment,asafollow-upof the previousproposalsthat

γ

a conversions occurinAGN[32, 33], a complementary scenario was put forward in 2008 [34]. Schematically,VHEphotonsaresimply

assumed to

substantiallyor evenmaximally convertto ALPsinsideablazar,sothat the emit-ted fluxcan consist inup to 1

/

3 of ALPsandin2

/

3 ofphotons. ALPstravelunaffected bytheEBLandwhentheyreachtheMilky Way(MW)canconvertbacktophotonsintheMWmagneticfield. Clearly, the amount of back-conversion strongly depends on the galacticcoordinatesoftheblazar,sincethemorphologyoftheMW magneticfieldisquitecomplicatedandbynomeansisotropic. Ev-idently also in thiscase the EBLdimming isdrastically reduced. Basically the same idea hasbeen taken up subsequently [35,36]. Unfortunately, eitherthe blazarhasnot been modeled atall [32, 34] oran incorrectdomain-like structuremodel forthejet mag-neticfieldisassumed[35,36].

Prompted by the appearance of very recent papers address-ing the considered scenario in connection with the upcoming CherenkovTelescopeArray (CTA)[37–40],we havedecided to re-porta preliminaryevaluationofthe

γ

a conversion probability

a

(

E

)

insidethetwo classesofblazarsascarefullyaspossible consistentlywiththepresentlyavailableknowledge.So,theaimof thisLetterisbasically tospeedupthepresentationofourresults. Amorethoroughanalysisalongwithallrelevantcalculationswill bethesubjectofafuturemuchmoredetailedpaper.

2. BLlacs

They are the simplest blazars, and so we better start from them. Denoting by y the coordinate along the jet axis, in order to achieve our goal two quantities are needed where the

(4)

pho-ton/ALPbeampropagates:thetransversemagneticfieldBT

(

y

)

and theelectron density

n

e

(

y

)

profiles. Becausethe electrons are ac-celerated in shocks generated in the flow, the VHE photons are producedinawell-localizedregion

RVHE

prettyfarfromthe cen-tralengine. So, fourcrucial parameters are: thedistance dVHE of

RVHE

fromthecentre,thesizeof

RVHE

,andthevaluesof BT,VHE

and

n

e,VHE insideit.TheSSCdiagnosticsappliedtotheSEDofBL

Lacs[41] provides themainphysical quantitiesconcerning

RVHE

. Theyare BT,VHE

=

0

.

1–1 G and

n

e,VHE



5

·

104 cm−3,leading to

a plasma frequencyof 8

.

25

·

10−9 eV. The quantity dVHE is

diffi-culttodeterminedirectly,becausethecurrentinstrumentalspatial resolution is still too poor. A common indirect way consists in inferring

d

VHE fromthesize RVHEof

RVHE

,assumedtobea

mea-sureofthejet cross-section,derived inturnfromspectralmodels and the observed variability timescale. Typical values lie in the range1015–1016cm.Wheneverthejetapertureangle

θjet

is

mea-surable – which is certainly the case for BL Lacs at a relatively largedistance–itisgenerallyfound

θjet



0

.

1 rad, sothatunder the assumption of a simple conical geometry for the jet it fol-lowsthat

d

VHE

=

RVHE/θjet



1016–1017cm.Beyond

RVHE

photons

traveloutwardsunimpededuntiltheyleave thejetwithatypical lengthof1 kpc andpropagateintothehostgalaxy.Giventhefact that dVHE is a fairly large quantity,the component ofB relevant

forusis thetoroidal partwhichistransverse tothe jetaxis and goeslike

y

−1[42].Thesameconclusionfollowsfromthe

conserva-tionofthemagneticluminosityifthejetconservesitsspeed[43]. Moreover, recent work has succeeded to observationally charac-terize the B structure over distances in the range 0.1–100 pc in severaljetsof BLLacs through polarimetric studies,showing un-ambiguouslythat inBLLacsB isindeedsubstantially

ordered and

predominantly

traverse to

thejet [44].We stress that in particu-lartheseresults are inconsistent witha domain-likestructure of B inthe jetasassumede.g. in [35,36].Turning nextto the elec-trondensity,undertheusualassumptionthatthejethasaconical shapeweexpectthatitgoeslike y−2.Whence

BT

(

y)

=

BT,VHEdVHE

y

,

ne

(y)

=

nVHEd2VHE

y2

,

(3)

fory

>

dVHE.ObservethatEqs.(3)hold trueinaframeco-moving

withthejet,sothatthetransformationtoafixedframeiseffected by E

γ

E. Weremarkthatthisrelationisstrictly trueifthejet isobservedatanangle

θ

v

=

1

/

γ

withrespecttothejetaxis.More generally,the transformationreads E

E

δ

,where

δ

is the

rela-tivistic Doppler factor (for details,see[12]).Herewehave

γ

=

15. 3. FSRQs

Thesearethemostpowerfulblazarsandareinasenseamore complicated version of BL Lacs. The additional components are: (1) thebroad line region (BLR) consistingin a spherical shell of manyclouds photo-ionizedby the radiation fromthe matter ac-cretingontotheSMBH, locatedatabout

d

BLR



1018 cm fromthe

centreandrapidlyrotatingaboutit;(2) a dustytorusreprocessing partoftheaboveradiationintheinfraredband;(3) theradiolobes consistinginahotnon-thermalplasmainflatedwherethejets col-lidewiththeextragalacticgas.BecauseboththeBLRandthedusty toruslie

beyond

RVHE

andarequiterichofultravioletandinfrared photons,respectively,theygiverisetoahugeabsorptionof

γ

rays with

>

10–20 GeV throughthesame

γ γ

e+e−process con-sideredabove. Onthe other hand, thelobes – beingmagnetized – represents a further conversion region. The jets in FSRQs are longerandlesspronetoinstabilitiesthan thoseoftheweakerBL Lacs. Presently, concerning the VHE

γ

-ray emission region

RVHE

we take dVHE larger by a factor of 3 ascompared to the BL Lac

Fig. 1. Plotofa(E)foraBLLactakingM=5·1010GeV.Thedifferentcurves

correspondto B=0.1 G (solidblue),0.2 G (dashedcyan), 0.5 G (longdashed, green)and1 G (dot-dashed,red).Thethreepanelscorrespondtothreevaluesof thedistanceoftheemittingregion,namelydVHE=1016cm (bottom),3·1016cm

(middle),1017cm (upper).(Forinterpretationofthereferencestocolorinthis

fig-urelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig. 2. Plotofa(E)foraBLLactakingM=5·1011GeV.Thedifferentcurves

correspondto B=0.1 G (solidblue),0.2 G (dashedcyan),0.5 G (long dashed, green)and1 G (dot-dashed,red).Thethreepanelscorrespondtothreevaluesof thedistanceoftheemittingregion,namelydVHE=1016cm (bottom),3·1016cm

(middle),1017cm (upper).(Forinterpretationofthereferencestocolorinthis

fig-urelegend,thereaderisreferredtothewebversionofthisarticle.)

case, based on the larger variability time scales [45]. The mod-eling of the SED with state-of-the-art emission models provides

BT,VHE

=

1–10 G and

n

VHE



104cm−3[45].Thegeometryandthe

intensityofB inthejetbeyond

RVHE

arefarlessclearthaninthe caseofBLLacs.Infact,thereareindicationsthat B hasaglobally ordered structure,butits inclination angle

ϕ

withrespect to the

(5)

378 F. Tavecchio et al. / Physics Letters B 744 (2015) 375–379

Fig. 3. Plotof a(E)foraFSRQtakingM=5·1010 GeV.Thedifferentcurves

correspondtoB=1 G (solidblue),2 G (dashedcyan),5 G (longdashed,green) and10 G (dotred).Thethreepanelscorrespondtothreevaluesofthedistance oftheemittingregion,namelydVHE=3·1016 cm (bottom),1017cm (middle),3·

1017cm (upper).(Forinterpretationofthereferencestocolorinthisfigurelegend,

thereaderisreferredtothewebversionofthisarticle.)

Fig. 4. Plotof a(E)foraFSRQtakingM=5·1011 GeV.Thedifferentcurves

correspondtoB=1 G (solidblue),2 G (dashedcyan),5 G (longdashed,green) and10 G (dotred).Thethreepanelscorrespondtothreevaluesofthedistance oftheemittingregion,namelydVHE=3·1016 cm (bottom),1017cm (middle),3·

1017cm (upper).(Forinterpretationofthereferencestocolorinthisfigurelegend,

thereaderisreferredtothewebversionofthisarticle.)

jetaxisdoesnothaveauniquevalueforallsources,actually cov-eringthe whole interval 0–90◦. Fordefiniteness, we assume the sameprofilesof

B

T

(

y

)

and

n

e

(

y

)

asinEq.(3),taking

ϕ

=

45◦and

γ

=

10.Radiopolarimetricobservationsyieldagoodamountof in-formationaboutthestructure andtheintensityofB in theradio lobes.Specifically, one gets a turbulent B whichcan be modeled

asadomain-like structurewithhomogenousstrength B

=

10 μG, coherencelength10 kpc andrandomorientationineachdomain. 4. Results

Because of lack of space, we cannot report the explicit cal-culation of the

γ

a conversion probability a

(

E

)

which is anywayastraightforwardapplicationofthetechniquediscussedin greatdetailin[20].Weassumeasbenchmarkvalues

m

10−9 eV aswell as M

=

5

·

1010 GeV and M

=

5

·

1011GeV. Basically,our

resultscanbesummarizedasfollows.

Owingtotheleadingrole playedbytheQEDterm,inthecase ofBLLacsa

(

E

)

showsarathercomplexbehavior andastrong dependenceon BT,VHE and

d

VHE,asshowninFigs. 1 and 2.As a

consequence,

a

(

E

)

turnsouttobe

intrinsically unpredictable.

In addition,as

M decreases

onlyforthelargestconsideredvaluesof the magneticfield takestheconversion probability sizablevalues andnooscillatorybehavior showsup.

On thecontrary, forFSRQsdueto the efficient

γ

a

oscilla-tionsintheradiolobes–whichactuallyleadstotheequipartition among the three degrees of freedom – the peculiar features ex-hibited by BL Lacs get smoothed out and below 20 GeV we get

a

(

E

)

=

1

/

3 regardless of the value of M. Above 20 GeV in-steadtheabove-mentionedabsorptionleadstoadrasticreduction oftheemittedALPflux.Altogether,inthecaseofFSRQswemake aclear-cutpredictionwhichisexhibitedinFigs. 3 and 4,whichis againalmostindependentofthevalueof

M.

Ourresultsareofgreatimportancefortheplanned very-high-energydetectors liketheCTA, HAWK,GAMMA-400 andHISCORE, andforthosebasedonthetechniquesdiscussedin[46–48]. More-over, westress thatall analysesofthescenarioof

γ

a

conver-sion in a blazar and a

γ

reconversion in the MW should be properlyrevisedaccordingtothepresentconclusions.

Acknowledgements

We thank Alessandro DeAngelis, Luigina Ferettiand Marcello Girolettiforusefuldiscussions.F.T.acknowledgescontributionfrom a grant PRIN-INAF-2011.The work of M.R. is supported by INFN TAsPandCTAgrants.

References

[1]J.Jaeckel,A.Ringwald,Annu.Rev.Nucl.Part.Sci.60(2010)405–437.

[2]A.Ringwald,Phys.DarkUniverse1(2012)116–135.

[3]J.E.Kim,G.Carosi,Rev.Mod.Phys.82(2010)557–601.

[4]S. Andriamonje,et al.,CAST Collaboration, J. Cosmol.Astropart.Phys. 0704 (2007)010.

[5]A.Ayala,etal.,Phys.Rev.Lett.113(2014)191302.

[6]A.Payez,etal.,J.Cosmol.Astropart.Phys.1502(2015)006.

[7]P.Sikivie,Phys.Rev.Lett.51(1983)1415–1417; P.Sikivie,Phys.Rev.Lett.52(1984)695(Erratum).

[8]G.G.Raffelt,L.Stodolsky,Phys.Rev.D37(1988)1237–1249.

[9]W.Heisenberg,H.Euler,Z.Phys.98(1936)714–732.

[10]V.S.Weisskopf,K.Dan,Vidensk.Selsk.Mat.Fys.Medd.14(1936)6.

[11]J.Schwinger,Phys.Rev.82(1951)664–679.

[12]C.M.Urry,P.Padovani,Publ.Astron.Soc.Pac.107(1995)803–845.

[13]S.D.Bloom,A.P.Marscher,Astrophys.J.461(1996)657–663.

[14]F.Tavecchio,L.Maraschi,G.Ghisellini,Astrophys.J.509(1998)608–619.

[15]E.Dwek,F.Krennrich,Astropart.Phys.43(2013)112–133.

[16]R.J.Gould,G.P.Schréder,Phys.Rev.155(1967)1408–1411.

[17]G.G.Fazio,F.W.Stecker,Nature226(1970)135–136.

[18]A.DeAngelis,G.Galanti,M.Roncadelli,Mon.Not.R.Astron.Soc.432(2013) 3245–3248.

[19]A.DeAngelis,M.Roncadelli,O.Mansutti,Phys.Rev.D76(2007)123011.

[20]A.DeAngelis,G.Galanti,M.Roncadelli,Phys.Rev.D84(2011)105030; A.DeAngelis,G.Galanti,M.Roncadelli,Phys.Rev.D84(2013)105030 (Erra-tum).

(6)

[22]R.J.Protheroe,H.Meyer,Phys.Lett.B493(2000)1–6.

[23]F.T.Aharonian,etal.,HESSCollaboration,Nature440(2006)1018–1021.

[24]A. Franceschini, G. Rodighiero, E. Vaccari, Astron. Astrophys. 487 (2008) 837–852.

[25]A.Domínguez,etal.,Mon.Not.R.Astron.Soc.410(2011)2556–2578.

[26]T.M.Kneiske,H.Dole,Astron.Astrophys.515(2010)A19.

[27]D.Horns,M.Meyer,J.Cosmol.Astropart.Phys.1202(2012)033.

[28]M.Meyer,D.Horns,arXiv:1310.2058.

[29]J.Biteau,D.A.Williams,arXiv:1502.04166.

[30]M.Meyer,D.Horns,M.Raue,Phys.Rev.D87(2013)035027.

[31]G.Galanti,M.Roncadelli,A.DeAngelis,G.F.Bignami,arXiv:1503.04436.

[32]D.Hooper,P.D.Serpico,Phys.Rev.Lett.99(2007)231102.

[33]K.A.Hochmuth,G.Sigl,Phys.Rev.76(2007)123011.

[34]M.Simet,D.Hooper,P.D.Serpico,Phys.Rev.D77(2008)063001.

[35]M.A.Sanchez-Conde,etal.,Phys.Rev.D79(2009)123511.

[36]J.Harris,P.M.Chadwick,J.Cosmol.Astropart.Phys.1410(2014)018.

[37]D.Wouters,P.Brun,J.Cosmol.Astropart.Phys.1401(2014)016.

[38]G.I.Rubtsov,S.V.Troitsky,JETPLett.100(2014)355–359.

[39]M.Meyer,D.Montanino,J.Conrad,J.Cosmol.Astropart.Phys.1409(2014)003.

[40]M.Meyer,J.Conrad,J.Cosmol.Astropart.Phys.1412(2014)016.

[41]F.Tavecchio,etal.,Mon.Not.R.Astron.Soc.401(2010)1570–1586.

[42]M.C.Begelman,R.D.Blandford,M.J.Rees,Rev.Mod.Phys.56(1984)255–351.

[43]G.Ghisellini,F.Tavecchio,Mon.Not.R.Astron.Soc.397(2009)985–1002.

[44]R.E.Pudritz,M.J.Hardcastle,D.C.Gabuzda,SpaceSci.Rev.169(2012)27–72.

[45]G.Ghisellini,etal.,Mon.Not.R.Astron.Soc.402(2010)497–518.

[46]F.T.AvignoneIII,Phys.Rev.D79(2009)035015.

[47]F.T.AvignoneIII,R.J.Crewick,S.Nussinov,Phys.Lett.B681(2009)122–124.

Riferimenti

Documenti correlati

The objectives of the Agrarian Reform are to reduce poverty, create jobs, improve people's access to economic resources especially land, rearrange the inequality of ownership, use

terms of acquired land [Land Matrix, 2015], acquired water [Rulli and D’Odorico, 2013], the number of people who could potentially be fed by crop production on acquired lands [Rulli

The irony detection task is a very recent chal- lenge in NLP community and in 2014 and 2016 EVALITA, an evaluation campaign of NLP and speech tools for Italian, proposed a battery

Airway remodeling has been studied systematically only in severe equine asthma, while one recent study reported remodeling of the central airways in horses with mild to

L’efficacia vincolante, per i giudici comuni, delle sentenze della Corte europea dei diritti umani, alla luce della più recente giurisprudenza costituzionale Sartea Claudio

We have selected a complete sample of flat-spectrum radio quasars (FSRQs) from the WMAP 7 yr catalog within the SDSS area, all with measured redshift, and compared the black-hole

The present study explores whether it is useful to refer to opposites in order to model Vietnamese standard (vs. expert) consumers' understanding of the wine descriptors frequently

In Italy, the proportion of women in committees has no significant impact on the success rate of male candidates and it has a significant negative impact on the relative chances