• Non ci sono risultati.

On the small-weight codewords of some Hermitian codes

N/A
N/A
Protected

Academic year: 2021

Condividi "On the small-weight codewords of some Hermitian codes"

Copied!
19
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Journal

of

Symbolic

Computation

www.elsevier.com/locate/jsc

On

the

small-weight codewords

of

some

Hermitian

codes

Chiara Marcolla

a

,

Marco Pellegrini

b

, Massimiliano Sala

a aDepartmentofMathematics,UniversityofTrento,Italy

bDepartmentofMathematics,UniversityofFirenze,Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received28April2014 Accepted19February2015 Availableonline5March2015

Keywords: Affine-varietycode Hammingweight Hermitiancode Hermitiancurve Linearcode Minimum-weightwords

For anyaffine-variety code weshow how to constructan ideal whose solutions correspond to codewords with any assigned weight. We are able to obtain geometric characterizations for small-weightcodewordsforsomefamiliesofHermitiancodesover anyFq2.Fromthesegeometriccharacterizations,weobtainexplicit

formulas.In particular, wedetermine the number of minimum-weight codewords for all Hermitian codes with dq and all second-weightcodewordsfordistance-3,4 codes.

©2015ElsevierLtd.All rights reserved.

1. Introduction

Letq be apowerofa prime,thentheHermitiancurve

H

istheplane curvedefinedover

F

q2 by

theaffineequationxq+1

=

yq

+

y,wherex

,

y

∈ F

q2.

Thiscurvehasgenusg

=

q(q2−1) andhasq3

F

q2-rationalaffinepoints,plusonepointatinfinity,so

ithasq3

+

1 rationalpointsover

F

q2 andthereforeitisamaximalcurve(RuckandStichtenoth,1994).

Thisisthebestknownexampleofmaximalcurveandthereisavastliteratureonitsproperties,see

Hirschfeld et al. (2008) for a recent survey. Moreover, the Goppa code (Goppa, 1981, 1988) con-structedonthiscurveisbyfarthemoststudied,duetothesimplebasisofitsRiemann–Rochspace (Stichtenoth,1993),whichcanbe writtenexplicitly.TheGoppaconstructionhasbeengeneralized in

E-mailaddresses:chiara.marcolla@unitn.it(C. Marcolla),pellegrin@math.unifi.it(M. Pellegrini),maxsalacodes@gmail.com (M. Sala).

http://dx.doi.org/10.1016/j.jsc.2015.03.003 0747-7171/©2015ElsevierLtd.All rights reserved.

(2)

Vl˘adu ¸t andManin (1984)tohigherdimensions.A simplerdescriptioncanbefoundinFitzgeraldand Lax (1998)fortheso-calledaffine-varietycodes.

Inthispaperwe provideanalgebraicandgeometricdescriptionforcodewordsofagivenweight belongingtoanyfixedaffine-varietycode.InAugot (1996)thesolvingofa(multivariate)polynomial equation systemwasproposed forthefirsttime todetermineminimum-weightcodewordsofcyclic codes,whileinSala (2007)amoreefficientsystemwasproposed.Ourproposalcanbeseenasa gen-eralizationtotheaffine-varietycaseofSala (2007).A similarapproachcanbe usedtodecodecodes, asdescribed,forexample, inde BoerandPellikaan (1999) andsurveyedinMoraandOrsini (2009). ThespecializationofourresultstotheHermitiancaseallows ustogiveexplicitformulasforthe num-ber ofsome small-weight codewords.Codesoverthe Hermitian curvehave beenstudiedalong the yearsandinHøholdtet al. (1998),alongwithasurveyofknownresults,a newchallengingapproach asexplicitevaluationcodesisproposed.Weexpandonour2006previousresult,presentedorallyas

SalaandPellegrini (2006),whereweprovedtheintimateconnectionbetweencurveintersectionsand minimum-weightcodewords.

Thepaperisorganizedasfollows:

In Section 2 we provide our notation, our first preliminary results on the algebraic charac-terization of fixed-weight codewords of any affine-variety code and some easy results on the intersectionbetweentheHermitiancurveandanyline.

InthebeginningofSection 3weprovideadivisionofHermitiancodes infourphases,whichis a slightmodificationofthedivision inHøholdtet al. (1998),andwe give ouralgebraic charac-terizationoffixed-weightcodewordsofsomeHermitiancodes.Westudyindepththefirstphase (that is,d

q) inSection 3.2andwe usetheseresultsto completelyclassify geometricallythe minimum-weightcodewordsforallfirst-phasecodesinSection3.3.InSection3.4wecancount some specialconfigurations ofsecond weight codewordsforanyfirst-phasecodeandfinally in Section 3.5 we can count the exact number of second-weight codewords for the special case when d

=

3

,

4.A result inthis sectionrelies onour results(Marcollaet al.,2014) on intersec-tionpropertiesof

H

withsomespecialconics,firstlypresentedatEffectiveMethodinAlgebraic Geometry,MEGA2013.

InSection4wedrawsomeconclusionsandproposesomeopenproblems.

2. Preliminaryresults

2.1. KnownfactsonHermitiancurveandaffine-varietycodes

Fromnowonweconsider

F

qthefinitefieldwithq elements,whereq isapowerofaprimeand

F

q2 thefinitefieldwithq2 elements.Also,

F

q2 willdenotethealgebraicclosureof

F

qand

F

q2.Let

α

be a fixedprimitive elementof

F

q2, andwe consider

β

=

α

q+1 asa primitiveelementof

F

q.From nowonq

,

q2

,

α

and

β

areunderstoodasabove.

TheHermitiancurve

H = H

q isdefinedover

F

q2 bytheaffineequation

xq+1

=

yq

+

y where x

,

y

∈ F

q2

.

(1)

Thiscurvehasgenus g

=

q(q2−1) andhasn

=

q3rationalaffinepoints,denotedby P

1

,

. . . ,

Pn.Forany

x

∈ F

q2,Eq.(1)hasexactly q distinctsolutionsin

F

q2. Thecurve contains alsoone pointatinfinity P,soithasq3

+

1 rationalpointsover

F

q2 (RuckandStichtenoth,1994).

Let t

1. For any ideal I in the polynomial ring

F

q

[

X

]

, where X

= {

x1

,

. . . ,

xt

}

, we denote by

V(

I

)

⊂ (F

q

)

t its variety,thatis,thesetofitscommonroots.Forany Z

⊂ (F

q

)

t wedenoteby

I(

Z

)

F

q

[

X

]

thevanishingidealofZ ,thatis,

I(

Z

)

= {

f

∈ F

q

[

X

]

|

f

(

Z

)

=

0

}

.

Let g1

,

. . . ,

gs

∈ F

q

[

X

]

,wedenoteby I

= 

g1

,

. . . ,

gs



theidealgeneratedbythe gi’s.Let

{

xq1

x1

,

(3)

Wehaveanisomorphismof

F

q-vectorspaces(anevaluationmap):

φ

:

R

= F

q

[

x1

, . . . ,

xt

]/

I

−→ (F

q

)

n

f

−→ (

f

(

P1

), . . . ,

f

(

Pn

)).

(2)

LetL

R bean

F

q-vectorsubspaceofR withdimensionr.

Definition1.The affine-varietycode C

(

I

,

L

)

istheimage

φ (

L

)

andtheaffine-varietycodeC

(

I

,

L

)

is itsdualcode.

Our definition is slightly different from Fitzgerald and Lax (1998) and follows instead that in

Marcollaetal. (2012).LetL belinearlygeneratedbyb1

,

. . . ,

br thenthematrix

H

=

b1

(

P1

)

b1

(

P2

)

. . .

b1

(

Pn

)

..

.

..

.

. .

.

..

.

br

(

P1

)

br

(

P2

)

. . .

br

(

Pn

)

isageneratormatrixforC

(

I

,

L

)

andaparity-checkmatrixforC

(

I

,

L

)

.

Formorerecentresultsonaffine-varietycodesseeGeil (2008),Marcollaetal. (2012),Lax (2012).

2.2. Firstresultsonwordsofgivenweight

Let0

w

n, C bealinearcode andc

C . Werecallthat theweight of c,denotedby w

(

c

)

,is thenumberofcomponentsofc thataredifferentfromzeroand

Aw

(

C

)

= |{

c

C

|

w

(

c

)

=

w

}|.

Letc

∈ (F

q

)

n,c

= (

c1

,

. . . ,

cn

)

.Then c

C

(

I

,

L

)

⇐⇒

HcT

=

0

⇐⇒

n



i=1 cibj

(

Pi

)

=

0

,

j

=

1

, . . . ,

r

.

(3)

Proposition1.Let1

w

n.LetI

= 

g1

,

. . . ,

gs



besuchthat

{

xq1

x1

,

. . . ,

xtq

xt

}

I.LetL bea

sub-spaceof

F

q2

[

x1

,

. . . ,

xt

]/

I ofdimensionr.LetL belinearlygeneratedby

{

b1

,

. . . ,

br

}

.Let Jw betheidealin

F

q

[

x1,1

,

. . . ,

x1,t

,

. . . ,

xw,1

,

. . . ,

xw,t

,

z1

,

. . . ,

zw

]

generatedby w



i=1 zibj

(

xi,1

, . . . ,

xi,t

)

for j

=

1

, . . . ,

r (4) gh

(

xi,1

, . . . ,

xi,t

)

for i

=

1

, . . . ,

w and h

=

1

, . . . ,

s (5) zqi−1

1 for i

=

1

, . . . ,

w (6)



1≤lt

((

xj,l

xi,l

)

q−1

1

)

for 1

j

<

i

w

.

(7)

Thenanysolutionof JwcorrespondstoacodewordofC

(

I

,

L

)

withweightw.Moreover,

Aw

(

C

(

I

,

L

))

=

|

V(

Jw

)

|

w

!

.

Proof. Let

σ

beapermutation,

σ

Sw.Itinducesapermutation

σ

ˆ

actingon

{

x1,1

,

. . . ,

x1,t

, . . . ,

xw,1

,

. . . ,

xw,t

,

z1

,

. . . ,

zw

}

as

σ(

ˆ

xi,l

)

=

xσ(i),l and

σ

ˆ

(

zi

)

=

zσ(i).Itiseasytoshowthat Jw isinvariantw.r.t. any

σ

ˆ

,sinceeachof(4),(5),(6)and(7)isso.

Let Q

= (¯

x1,1

,

. . . ,

x

¯

1,t

,

. . . ,

¯

xw,1

,

. . . ,

¯

xw,t

,

¯

z1

,

. . . ,

z

¯

w

)

V(

Jw

)

.We canassociateacodewordto Q inthe following way. Foreach i

=

1

,

. . . ,

w, Pri

= (¯

xi,1

,

. . . ,

x

¯

i,t

)

isin

V(

I

)

, by (5).We can assume

(4)

r1

<

r2

< . . . <

rw,viaa permutation

σ

ˆ

ifnecessary.Notethat (7)ensures thatforeach

(

i

,

j

)

,with

i

=

j,we have Pri

=

Prj,since thereisanl such thatxi,l

=

xj,l.Sincez

¯

q−1 i

=

1 (6),

¯

zi

∈ F

q

\ {

0

}

.Let c

∈ (F

q

)

nbe c

= (

0

, . . . ,

0

,

¯

z1 ↑ r1

,

0

, . . . ,

0

,

z

¯

iri

,

0

, . . . ,

0

,

¯

zwrw

,

0

, . . . ,

0

).

Wehavethatc

C

(

I

,

L

)

,since(4)isequivalentto(3).

Reversingthepreviousargument,wecanassociatetoanycodewordasolutionof Jw.Byinvariance of Jw,weactuallyhave w

!

distinctsolutionsforanycodeword.So,togetthenumberofcodewords ofweightw,wedivide

|

V(

Jw

)

|

by w

!

.

2

2.3. IntersectionbetweentheHermitiancurve

H

andaline

Weconsiderthenormandthetrace,thetwofunctionsdefinedasfollows.

Definition2.The norm NFqm

Fq andthe trace Tr

Fqm

Fq aretwofunctionsfrom

F

qm to

F

qsuchthat NFFqm

q

(

x

)

=

x

1+q+...+qm−1 and TrFqm

Fq

(

x

)

=

x

+

x

q

+ . . . +

xqm−1

.

We denote by N and Tr, respectively, the norm and the trace from

F

q2 to

F

q. It is clear that

H = {

N

(

x

)

=

Tr

(

y

)

|

x

,

y

∈ F

q2

}

.

Lemma1.Foranyt

∈ F

q,theequationTr

(

y

)

=

yq

+

y

=

t hasexactlyq distinctsolutionsin

F

q2.Theequation

N

(

x

)

=

xq+1

=

t hasexactlyq

+

1 distinctsolutions,ift

=

0,otherwiseithasjustonesolution.

Proof. The trace isa linear surjectivefunctionbetween two

F

q-vector spacesofdimension, respectively, 2 and 1. Thus,dim

(

ker

(

Tr

))

=

1,andthismeansthatforanyt

∈ F

q thesetofsolutionsoftheequation Tr

(

y

)

=

yq

+

y

=

t isnon-emptyandthenithasthesamecardinalityof

F

q,thatis,q.

Theequationxq+1

=

0 hasobviouslyonlythesolutionx

=

0.Ift

=

0,sincet

∈ F

q,wecanwritet

= β

i,so

thatx

=

α

i+j(q−1)areallsolutions.Wecanassignj

=

0

,

. . . ,

q,andsowehaveq

+

1 distinctsolutions.

2

Lemma2.Let

H

betheHermitiancurve.

(i) Everyline

L

of

P

2

(

F

q2

)

eitherintersects

H

inq

+

1 distinctpoints,oritistangentto

H

atapoint P (with contactorderq

+

1).Inthelattercase,

L

doesnotintersect

H

inanyotherpointdifferentfrom P .

(ii) Througheachpointof

H

,thereisonetangentandq2linesof

P

2

(

F

q2

)

thatintersect

H

inq

+

1 points.

Proof. SeeHirschfeld (1998),Lemma 7.3.2atp. 247.

2

Lemma3.Let

L

beanyverticalline

{

x

=

t

}

,witht

∈ F

q2.Then

L

intersects

H

inq affinepoints.

Proof. For anyt

∈ F

q2,tq+1

∈ F

q,andso theequation yq

+

y

=

tq+1 hasexactlyq distinctsolutions byapplyingLemma 1.

2

Lemma4.Let

L

beanyhorizontalline

{

y

=

b

}

,withb

∈ F

q2.ThenifTr

(

b

)

=

0,

L

intersects

H

inoneaffine point,otherwise,ifTr

(

b

)

=

0,

L

intersects

H

inq

+

1 affinepoints.

Proof. ByLemma 1,foranyb

∈ F

q2,theequation xq+1

=

bq

+

b hasexactlyq

+

1 distinctsolutionsif

(5)

Lemma5.Intheaffineplane

A

2

(

F

q2

)

,thetotalnumberofnon-verticallinesisq4.Ofthese,q4

q3intersect

H

inq

+

1 affinepoints,whiletheremainingq3linesaretangentto

H

andtheyintersect

H

inonlyoneaffine point.

Proof. Let

L

beanynon-verticallinein

A

2

(

F

q2

)

,then

L

= {

y

=

ax

+

b

}

,witha

,

b

∈ F

q2.Wehaveq2

choicesforbotha andb,sothetotalnumberis q4.

By(ii) ofLemma 2wehavethatthrougheachpointof

H

thereisonetangent.SincetheHermitian curvehasq3 affinepoints, thenthereexistq3 tangent linesto

H

(thatmeet

H

atasingle pointof order q

+

1).

The linescontaining the point atinfinity are onlythe verticallines. ByLemma 3, their number is q2 (sincetheyare

L

= {

x

=

t

}

wheret

∈ F

q2).

Theremaininglinesareq4

q3.By(i) ofLemma 2theymeetthecurveatq

+

1 affinepoints.

2

3. Small-weightcodewordsofHermitiancodes

Werecallthatanaffine-varietycodeisIm

(φ (

L

))

,where

φ

isas(2).Weconsideraspecialcaseof affine-varietycode,whichistheHermitiancode.

LetI

= 

xq+1

yq

y

,

xq2

x

,

yq2

y



⊂ F

q2

[

x

,

y

]

andletR

= F

q2

[

x

,

y

]/

I.WetakeL

R generated

by

B

m,q

= {

xrys

+

I

|

qr

+ (

q

+

1

)

s

m

,

0

s

q

1

,

0

r

q2

1

},

wherem isanintegersuchthat0

m

q3

+

q2

q

2.Forsimplicity,wealsowritexrysforxrys

+

I.

We have the following affine-variety codes: C

(

I

,

L

)

=

SpanF

q2

φ(

B

m,q

)



where

φ

is the evaluation

map(2)andwedenotebyC

(

m

,

q

)

= (

C

(

I

,

L

))

⊥itsdual.Thentheaffine-varietycodeC

(

m

,

q

)

iscalled

theHermitiancode withparity-checkmatrix H :

H

=

f1

(

P1

)

. . .

f1

(

Pn

)

..

.

. .

.

..

.

fi

(

P1

)

. . .

fi

(

Pn

)

where fj

B

m,q

.

(8)

Remark1.We recallthatthe Riemann–Rochspace associatedtoa divisor E ofa curve

χ

isavector space

L(

E

)

over

F

q

(χ)

definedas

L(

E

)

= {

f

∈ F

q

(

χ

)

| (

f

)

+

E

0

} ∪ {

0

},

where

F

q

)

isa rationalfunctionfield on

χ

. In particular, ifwe consider the Hermitian curve

H

, we knowthat it hasq3

+

1 points ofdegree one, namelya pole Q andq3 distinct affinepoints

Pγ,δ

= (

γ

,

δ)

suchthat

γ

q+1

= δ

q

+ δ

.LetD bethedivisorD

=



γq+1qPγ,δonthecurve

H

.For m

∈ Z

the affine-varietycodeC

(

m

,

q

)

⊥ isthesamecode astheGoppacode C

(

D

,

m Q

)

associated withthedivisors D andm Qas

C

(

D

,

m Q

)

= {(

f

(

P1

), . . . ,

f

(

Pn

))

|

f

L(

m Q

)

} ⊂ (F

q2

)

n

,

where

L(

m Q

)

isavectorspaceover

F

q2

(

H)

.

Notethat

B

m,q isamonomialbasisfor

L(

m Q

)

.

The Hermitian codes can be divided in four phases (Høholdt et al., 1998), any of them having specificexplicitformulaslinkingtheirdimensionandtheirdistance(Marcolla,2013),asinTable 1.

Intheremainder ofthispaperwe focusonthefirstphase.Thiscasecanbecharacterized bythe conditiond

q.

(6)

Table 1

Thefour“phases”ofHermitiancodes(Marcolla,2013).

Phase m Distance d Dimension k

1 0≤mq22 m=aq+b 0≤baq−1 b=q−1 a+1 a>b a+2 a=b ⇐⇒dq q 3a(a+1) 2 − (b+1) 2 q21m4g3 m=2q2qaqb3 1≤aq−2 0≤bq−2 (qa)qb1 ab (qa)q a>b ngq 2+aq+b+2 3 4g−2≤mn−2 m2g+2 nm+g−1 4 n−1≤mn+2g−2 m=n+2g−2−aqb 0≤baq−2, naqb a(a+21)+b+1

3.1. Cornercodesandedgecodes

In Section 5.3 of Høholdt et al. (1998), the first phase denotes case (3) at p. 933, where it is characterized by l

<

g, which is equivalent to consider the first g

1 nongaps in the numerical semigroup

= 

q

,

q

+

1



, that is all nongaps up to the conductor c

=

2g

=

q2

q. With respect tothisdescription,weareabletoextendthisphasetoincludealsonongaps

{

q2

q

+

1

,

. . . ,

q2

2

}

, asfollows.

By analyzingprecisely the monomialsinvolved,we are able topartition this phasein two sets:

the edgecodes andthecornercodes. Whenconsidering nongapsup totheconductor,there are

non-gaps immediatelyprecedinga gap.Thesecorrespond tocornercodes.The othersare edgecodes. For example,if

= 

5

,

6



then g

=

10 andtheconductorc

=

20.Thenon-gaps upto c are

{

0

,

5

,

6

,

10

,

11

,

12

,

15

,

16

,

17

,

18

,

20

}

.Obviously,

{

0

,

6

,

12

,

18

}

arefollowedbythegaps,respectively,

{

1

,

7

,

13

,

19

}

. So

{

0

,

6

,

12

,

18

}

correspondtocornercodes,while

{

5

,

10

,

11

,

15

,

16

,

17

,

20

,

21

,

22

,

23

}

correspondto edgecodes(notethatwehaveincludedouraddition

{

21

,

22

,

23

}

,withq2

2

=

23).

WeobservethatcornercodesarecodesoftheformC

(

m

,

q

)

,withm

= (

q

+

1

)

s and0

s

q

2, whileedgecodesarecodesoftheformC

(

m

,

q

)

,withm

=

qr

+ (

q

+

1

)

s,1

r

q

1 andr

+

s

q

1.

Weprovideaformaldefinitionintermsofmonomials.

Definition3.Let2

d

q andlet1

j

d

1. LetL0 d

= {

1

,

x

,

. . . ,

xd−2

},

Ld1

= {

y

,

xy

,

. . . ,

xd−3y

},

. . . ,

L d−2 d

= {

yd−2

}

. Letl1 d

=

xd−1

,

. . . ,

l j d

=

xdjyj−1.

If

B

m,q

=

Ld0

∪ . . . ∪

Ldd−2,thenwesaythatC

(

m

,

q

)

isa cornercode andwedenoteitbyH0d.

If

B

m,q

=

L0d

∪ . . . ∪

L d−2

d

∪ {

l1d

,

. . . ,

l j

d

}

,thenwesaythatC

(

m

,

q

)

isan edgecode andwedenoteit byHdj.

FromtheformulasinTable 1wehavethefollowingtheorem.

Theorem4.Let2

d

q,1

j

d

1.Then d

(

H0d

)

=

d

(

Hdj

)

=

d

,

dimF q2

(

H 0 d

)

=

n

d

(

d

1

)

2

,

dimFq2

(

H j d

)

=

n

d

(

d

1

)

2

j

In other words, all

φ (

xrys

)

are linearlyindependent (i.e. H has maximal rank) andforany dis-tance d thereareexactlyd Hermitiancodes(onecornercodeandd

1 edgecodes).Wecanrepresent theabovecodesasinthefollowingpicture,whereweconsiderthefivesmallestnon-trivialcodes(for anyq

3).

(7)

H02 isan

[

n

,

n

1

,

2

]

code.

B

m,q

=

L02

= {

1

}

, so theparity-check matrix of H0 2is

(

1

,

. . . ,

1

)

. H12 isan

[

n

,

n

2

,

2

]

code.

B

m,q

=

L02

∪ {

l12

}

= {

1

,

x

}

H03 isan

[

n

,

n

3

,

3

]

code.

B

m,q

=

L03

L13

= {

1

,

x

,

y

}

H13 isan

[

n

,

n

4

,

3

]

code.

B

m,q

=

L03

L13

∪ {

l13

}

= {

1

,

x

,

y

,

x2

}

H23 isan

[

n

,

n

5

,

3

]

code.

B

m,q

=

L03

L13

∪ {

l13

,

l23

}

= {

1

,

x

,

y

,

x2

,

xy

}

3.2. Firstresultsforthefirstphase

Ideal Jw ofProposition 1forC

(

m

,

q

)

is

Jw

=



wi=1zixriysi

xrys∈B m,q

,

xqi+1

yqi

yi

i=1,...,w

,

zqi2−1

1

i=1,...,w

,

xqi2

xi

i=1,...,w

,

yqi2

yi

i=1,...,w

,

((

xi

xj

)

q 21

1

)((

yi

yj

)

q 21

1

)

1≤i<jw

.

(9)

Letw

v

1.Let Q

= (¯

x1

,

. . . ,

x

¯

w

,

¯

y1

,

. . . ,

y

¯

w

,

z

¯

1

,

. . . ,

z

¯

w

)

V(

Jw

)

.Weknow(seeProposition 1) that Q correspondtoacodewordc.Wesaythattheset

{(¯

x1

,

y

¯

1

),

. . . ,

(

¯

xw

,

¯

yw

)

}

isthe support ofc.

Wesay that Q isin v-blockposition if wecan partition

{

1

,

. . . ,

w

}

in v blocks I1

,

. . . ,

Iv such that

¯

xi

= ¯

xj

⇐⇒ ∃

1

h

v such that i

,

j

Ih

.

Thismeans that, inthe support ofc,we have

|

I1

|

points ona vertical line,

|

I2

|

points on another verticalline,andsoon.

W.l.o.g.wecanassume

|

I1

|

≤ . . . ≤ |

Iv

|

andI1

= {

1

,

. . . ,

u

}

. Weneedthefollowingtechnicallemmas.

Lemma6.Wealwayshaveu

+

v

w

+

1.Ifu

2 andv

2,thenv

≤ 

w2



andu

+

v

≤ 

w2



+

2.

Proof. Notethat uv

w since

|

I1

|

+ . . . + |

Iv

|

=

w and

|

I1

|

≤ . . . ≤ |

Iv

|

.Sothe worstcaseis when

w

=

uv. Thisisequivalent to thecasewhen allblocks havethesamesize. Let w

:=

uv,note that wealways have w

w andhence anylower bound for w impliesalower bound for w.If u

=

1, thenwehaveu

+

v

=

1

+

v

=

1

+

w.Ifv

=

1,then u

=

w

=

w andsou

+

v

=

w

+

1.Ifu

2 and

v

2,wehaveu

≤ 

w2



andv

≤ 

w2



,andthenu

+

v

≤ 

w2



+ 

w2



w

<

w

+

1.Sowealwayshave

u

+

v

w

+

1.

Toprove that u

+

v

≤ 

w2



+

2, we studythe real-valued function f

(

v

)

=

u

+

v

=

wv

+

v, with 2

v

w2 (w

4).Wehave f

(

2

)

=

f

(

w2

)

=

w2

+

2 where v

=

w istheminimumpoint.Infact, the derivativeof f (inthevariable v)is f

(

v

)

= (

v2

w

)/

v2,itszerois v

=

w, f ispositive inthe wholeintervalunderconsiderationandwehave2

w

w2.Thus,thefunctiontakesitsmaximum valueattheendpointsoftheinterval.Thenwe haveu

+

v

w2

+

2.Since u and v areintegers,we actuallyhavethatu

+

v

≤ 

w2



+

2.

2

Lemma7.LetusconsidertheedgecodeHdjwith1

j

d

1

q

1 and3

d

w

2d

3.LetQ

=

(

x

¯

1

,

. . . ,

x

¯

w

,

¯

y1

,

. . . ,

¯

yw

,

¯

z1

,

. . . ,

z

¯

w

)

beasolutionofJwinv-blockposition,thenexactlyoneofthefollowing

(8)

(a) u

=

1,v

d

+

1 andw

d

+

1,

or

(b) v

=

1,thatis,x

¯

1

= . . . = ¯

xw.

Proof. Wedefine,forallh suchthat1

h

v: Xh

= ¯

xi if i

Ih

,

Zh

=



iIh

¯

zi

.

(a) u

=

1.Wewanttoprove,bycontradiction,thatv

d

+

1.

Letv

d.Since Q

V(

Jw

)

,forany f

L0d

,

{

l1d

}

wehave f

(

Q

)

=

0 andsowehavethefollowing equations 0

=

w



i=1

¯

xri

¯

zi

=

v



h=1



iIh Xhr

¯

zi

=

v



h=1 XrhZh 0

r

d

1

.

(10)

Since v

d,onecanrestricttothefirstv equationsof(10)togetav

×

v system,thatis,

1

. . .

1 X1

. . .

Xv

..

.

. .

.

..

.

X1v−1

. . .

Xvv−1

Z1

..

.

Zv

⎠ =

0 (11)

TheabovematrixisaVandermondematrixandthe Xi’sarepairwisedistinct,soithasmaximal rank v.Therefore,thesolutionof(11)is

(

Z1

,

. . . ,

Zv

)

= (

0

,

. . . ,

0

)

.Sinceu

=

1,then Z1

= ¯

z1

=

0, whichcontradictsz

¯

i

∈ F

q2

\ {

0

}

.Thus,v

d

+

1;wehavew

+

1

u

+

v

=

v

+

1

>

d

+

1 andhence

w

d

+

1.

(b) u

2.Wesupposebycontradictionthat v

2. Weneedtodefine: Yh,s

=



iIh

¯

ysi

¯

zi with 1

s

u

1

WeconsiderProposition 1.A subsetofequationsofcondition(4)isthefollowingsystem:



w i=1x

¯

ri

¯

zi

=

0



w i=1x

¯

ri

¯

yiz

¯

i

=

0

..

.



w i=1x

¯

ri

¯

y u−1 i

¯

zi

=

0

⇐⇒



v h=1XhrZh

=

0



v h=1XhrYh,1

=

0

..

.



v h=1XhrYh,u−1

=

0 0

r

v

1

.

(12)

Infact, system(12)isa subsetof(4)ifandonly ifdeg

(

x

¯

iv−1y

¯

ui−1

)

d

2 foranyi

=

1

,

. . . ,

w.

Thatis,

(

v

1

)

+ (

u

1

)

d

2

⇐⇒

v

+

u

d.

To verifythis,since v

2, itis sufficientto applyLemma 6 andwe obtainu

+

v

≤ 

w2



+

2



2d−3

2



+

2

=

d.

System (12)can be decomposedin u systems, all withthe sameVandermonde matrix,having rank v:



v h=1Zh

=

0



v h=1XhZh

=

0

..

.



v h=1Xhv−1Zh

=

0

,



v h=1Yh,1

=

0



v h=1XhYh,1

=

0

..

.



v h=1Xhv−1Yh,1

=

0

, . . . ,



v h=1Yh,u−1

=

0



v h=1XhYh,u−1

=

0

..

.



v h=1Xhv−1Yh,u−1

=

0 (13)

(9)

Therefore,thesolutionsofthesesystemsarezero-solutions.So,inparticular,wehaveZ1

=

Y1,1

=

. . .

=

Y1,u−1

=

0,thatis



u i=1

¯

zi

=

0



u i=1

¯

yiz

¯

i

=

0

..

.



u i=1

¯

yui−1

¯

zi

=

0

⇐⇒

1

. . .

1

¯

y1

. . .

¯

yu

..

.

. .

.

..

.

¯

yu1−1

. . .

¯

yuu−1

¯

z1

..

.

¯

zu

⎠ =

0

.

Sincethex

¯

i’sinI1 areallequal,thenthe y

¯

i’sarealldistinct.ThenthelastVandermondematrix hasranku,andsoz

¯

1

= . . . = ¯

zu

=

0,butthisisimpossiblebecauseeveryz

¯

i

∈ F

q2

\ {

0

}

.Therefore v

=

1 andu

=

w.

2

3.3. Minimum-weightcodewords

Corollary1.LetusconsidertheedgecodeHdjwith1

j

d

1

q

1.

IfQ

= (¯

x1

,

. . . ,

x

¯

d

,

y

¯

1

,

. . . ,

y

¯

d

,

z

¯

1

,

. . . ,

z

¯

d

)

V(

Jd

)

,thenx

¯

1

= . . . = ¯

xd.Inotherwords,thesupportofa

minimum-weightwordliesintheintersectionoftheHermitiancurve

H

andaverticalline.

Whereasifd

4 andQ

= (¯

x1

,

. . . ,

x

¯

d+1

,

¯

y1

,

. . . ,

¯

yd+1

,

¯

z1

,

. . . ,

¯

zd+1

)

V(

Jd+1

)

,thenoneofthefollowing casesholds:

(a) x

¯

i

= ¯

xjfori

=

j,1

i

,

j

d

+

1,

or

(b) x

¯

1

= . . . = ¯

xd+1.

Proof. WeareinthehypothesesofLemma 7.Ifw

=

d,thenu

>

1,hencev

=

1.Whereas,ifw

=

d

+

1, we can apply Lemma 7 onlyifd

4. We havetwo possibilities:in case (a) ofLemma 7, we have

v

=

d

+

1,thenall

¯

xi’saredifferent,otherwiseweareincase (b).

2

Nowwecanprovethefollowingtheoremforedgecodes.

Theorem5.Let2

d

q andlet1

j

d

1,thenthenumberofminimumweightwordsofanedgecode

Hdjis Ad

=

q2

(

q2

1

)



q d



.

Proof. ByProposition 1weknowthat Jd representsall thewordsofminimumweight.Thefirstset ofidealbasis (9)hasexactly d(d2−1)

+

j equations,where1

j

d

1.So,if j

=

1,thissetimplies thefollowingsystem:

¯

z1

+ . . . + ¯

zd

=

0

¯

x1

¯

z1

+ . . . + ¯

xd

¯

zd

=

0

¯

y1z

¯

1

+ . . . + ¯

yd

¯

zd

=

0

..

.

¯

yd1−2

¯

z1

+ . . . + ¯

ydd−2z

¯

d

=

0

¯

xd1−1

¯

z1

+ . . . + ¯

xdd−1z

¯

d

=

0 (14)

(10)

Whereas,if j

>

1,thenwehavetoaddthefirst j

1 ofthefollowingequations:

¯

xd1−2y

¯

1z

¯

1

+ . . . + ¯

xdd−2y

¯

dz

¯

d

=

0

¯

xd1−3y

¯

21z

¯

1

+ . . . + ¯

xdd−3y

¯

d2z

¯

d

=

0

..

.

¯

x1

¯

yd1−2z

¯

1

+ . . . + ¯

xd

¯

ydd−2z

¯

d

=

0 (15)

Butx

¯

1

= . . . = ¯

xd,sinceweareinthehypothesesofCorollary 1.So,forany j,thesystembecomes:

¯

z1

+ . . . + ¯

zd

=

0

¯

y1

¯

z1

+ . . . + ¯

ydz

¯

d

=

0

..

.

¯

yd1−2z

¯

1

+ . . . + ¯

ydd−2

¯

zd

=

0 (16)

Wehaveq2 choicesforthecommonvalueofthe

¯

x

i’sand,byLemma 3,wehave



q d



d

!

different

¯

yi’s, sinceforanychoiceof

¯

xi thereareexactlyq possiblevaluesforthe y

¯

i’s,butweneedjustd ofthem, andanypermutationofthesewillbeagainasolution.Nowwehavetocomputethesolutionsforthe

¯

zi’s.

The matrix of thesystem (16)is a Vandermonde matrix,with rankd

1. Thismeans that the solutionspacehaslineardimension1.Sothesolutionsare

(

a1

α,

a2

α,

. . . ,

ad−1

α)

with

α

∈ F

q2,where aj are fixed since they dependon the y

¯

i’s.So the numberofthe

¯

zi’s is

|F

q∗2

|

=

q2

1, then Ad

=

1 d!



q2



qd



d

!(

q2

1

)



.

2

Weconsidernowcornercodes.Wehavethefollowinggeometriccharacterization.

Proposition2.LetusconsiderthecornercodeHd0and2

d

q.Thenthepoints

(

x

¯

1

,

y

¯

1

),

. . . ,

(

x

¯

d

,

y

¯

d

)

cor-respondingtominimum-weightwordslieonasameline.

Proof. The minimum-weight words of a corner code have to verify the first condition set of Jw, whichhas d(d2−1) equations.Thatis,

¯

z1

+ . . . + ¯

zd

=

0

¯

x1

¯

z1

+ . . . + ¯

xdz

¯

d

=

0

¯

y1

¯

z1

+ . . . + ¯

ydz

¯

d

=

0

..

.

¯

yd1−2z

¯

1

+ . . . + ¯

ydd−2

¯

zd

=

0 (17)

Thissystemisthesameas(14),butwithamissingequation.Thismeansthat (17)hasall the solu-tionsofsystem(14)andothersolutions.

We claimthatthe

¯

zi’sareall non-zeroonlyifeitherall x

¯

i’saredistinct, orallareequal.Infact, suppose that we havesome (butnot all) x

¯

i’s equal, then we havethat the point Q

V(

Jw

)

, that correspondstoacodeword c,isinv-blockpositionwith1

<

v

<

d.Wecanrepeatthesameargument oftheproofofLemma 7.Inparticular,wehavetwodifferentcases:

u

=

1 wecan restricttothefirst v ofequationsofa subsetof(17),whichhasjustthevariables x’s

andz’s.Inthiswaywe obtaina v

×

v system as(11).As before,

¯

z1

=

0 sinceu

=

1, soitis impossible.

u

2 andv

2.Wehaveu systems,allwiththesameVandermondematrix,havingrank v as(13). Asinthepoint(b)oftheproofofLemma 7,weobtainthat

¯

z1

= . . . = ¯

zu

=

0.

(11)

Therefore,we haveonly two possibilities for the

¯

xi’s: eitherall are differentor they coincide.The sameconsiderationistrue forthe y

¯

i’s,becausewhenwe consider(17)andwe exchangex with y, weobtainagain(17).

Sowehavetwoalternatives:

The

¯

xi’sareallequalorthe y

¯

i’sareallequal,soourpropositionistrue.

The x

¯

i’s andthe

¯

yi’s are all distinct. We willprove that they lie on anon-horizontal linethat intersectstheHermitiancurve.

Let y

= β

x

+ λ

beanon-verticallinepassing throughtwopoints inaminimumweight configu-ration.Wecandoanaffinetransformationofthistype:



x

=

x

y

=

y

+

ax

,

a

∈ F

q2

such that atleast two ofthe y’s are equal.Substituting theabove transformation in (17)and applyingsomeoperationsbetweentheequations,weobtainasystemthatisequivalent to(17). Butthisnewsystemhasall y’sequaloralldistinct, sothe y’shavetobe allequal.Hencewe canconcludethatthepointslieonasameline.

2

Wefinallyprovethefollowingtheorem:

Theorem6.Let2

d

q,thenthenumberofwordshavingweightd ofacornercodeH0dis Ad

=

q2

(

q2

1

)

q3

d

+

1 d



q d

1



.

Proof. Again, the points corresponding to minimum-weight words of a cornercode have to verify

(17).ByProposition 2,weknowthatthesepointslieintheintersectionsofanylineandtheHermitian curve

H

.

LetQ

= (¯

x1

,

. . . ,

x

¯

d

,

y

¯

1

,

. . . ,

y

¯

d

,

¯

z1

,

. . . ,

¯

zd

)

V(

Jd

)

suchthatx

¯

1

= . . . = ¯

xd,thatis,thepoints

(

¯

xi

,

y

¯

i

)

lieonaverticalline.Weknowthatthenumberofsuch Q ’sis

q2

(

q2

1

)



q d



d

! .

Nowwehavetocomputethenumberofsolutions Q

V(

Jd

)

suchthat

(

x

¯

i

,

¯

yi

)

lieonanon-vertical line.

ByLemma 5wehavethatthenumberofd-tuplesofpointsis

(

q4

q3

)



q

+

1 d



d

!,

becausewehaveq4

q3 non-verticallinesthat intersect

H

inq

+

1 points, andforanychoice ofa lineweneedjustd ofthesepoints(andthesystemisinvariant).Asregardsthenumberofthe

¯

zi’s, wehavetocomputethenumberofsolutionsofsystem(17).

Weapply anaffinetransformationtothesystem(17)toobtainahorizontalline, thatis,tohave allthex

¯

i’sdifferentandallthey

¯

i’sequal,soweobtainasystemequivalenttosystem(16).Therefore wehaveaVandermondematrix,hencethenumberofthez

¯

i’sisq2

1.So

Ad

=

d1!



q2

(

q2

1

)



qd



d

! + (

q4

q3

)(

q2

1

)



q+d1



d

!



=

q2

(

q2

1

)



q d



+ (

q2

q

)



q+1 d



=

=

q2

(

q2

1

)



(qd+1)q! d(d−1)!(qd+1)!

+ (q

2

q

)

d(d(1)q+!(1)qqd!+1)!



=

q2

(

q2

1

)



dq1



qdd+1

+

(q2−qd)(q+1)



=

q2

(

q2

1

)

q3−dd+1



dq1



.

2

(12)

3.4. Second-weightcodewords

In thissectionwe statemore theoremsforedgeandcornercodes.We studythecasewhenthe

¯

xi’scoincideorwhenthe y

¯

i’scoincide.

Theorem7.Let2

d

q,thenthenumberofwordsofweightd

+

1 withy

¯

1

= . . . = ¯

yd+1ofacornercode H0dis:

(

q2

q

)(

q4

− (

d

+

1

)

q2

+

d

)



q

+

1 d

+

1



.

WhereasforanedgecodeHdjwith1

j

d

1 thisnumbersis:

(

q2

q

)(

q2

1

)



q

+

1 d

+

1



.

Proof. Wehaveq2

q choicesforthey

¯

i’sand,byLemma 4,wehave



q+1 d+1



(

d

+

1

)

!

differentx

¯

i’s,since foranychoice ofthe y

¯

i’sthereareexactlyq

+

1 possiblevaluesforthex

¯

i’s,butweneedjustd

+

1 ofthemandanypermutationofthesewillbeagainasolution.

Nowwehavetocomputethesolutionsforthez

¯

i’s,inthetwodistinctcases.

Case H0

d.ByProposition 1 we knowthat Jd represents all thewords ofminimum weight.The firstsetofidealbasis(9)hasexactlyd(d2−1) equations,whichissystem(17)withmorevariables.1 Since y

¯

1

= . . . = ¯

yd+1,system(17)becomes

¯

z1

+ . . . + ¯

zd+1

=

0

¯

x1

¯

z1

+ . . . + ¯

xd+1

¯

zd+1

=

0

..

.

¯

x1d−2z

¯

1

+ . . . + ¯

xdd+−21

¯

zd+1

=

0 (18)

The matrix of this system is a Vandermonde matrix of rank d

1. This means that the so-lution space has linear dimension 2, hence the number of the admissible z’s is q4

− |{¯

z

i

=

0 for at least one i

}|

.Nowwecomputethenumberofsolutionssuchthatz

¯

i

=

0 foratleastone i. Ifwesetone

¯

zi

=

0,wehavealinear(solution)spaceofdimension1,thatcontainsq2solutions, corresponding tothe zero solutionand q2

1 codewords ofweight d.We have d

+

1 ofsuch subspaces.

Moreover,theintersectionofanytwoofthemisonlythezerosolution,becauseifweset

¯

zi

=

0 fortwo

¯

zi’s,we havea linearspaceofdimension 0.The numberofadmissible z’sisq4

− (

d

+

1

)

q2

+

d,obtainedbycountingtheelementsofd

+

1 subspaces andremoving thezerosolution countedd extratimes.Thus,thenumberofwordsofweightd

+

1 with y

¯

1

= . . . = ¯

yd+1 ofHd0is:

(

q2

q

)(

q4

− (

d

+

1

)

q2

+

d

)



q

+

1 d

+

1



.

Case Hdj.Inthiscasethefirstsetofidealbasis(9)contains exactly d(d2−1)

+

j equations,where 1

j

d

1.So,if j

=

1,thissetimpliesthesystem(14)withmorevariables.Whereas,if j

>

1, thenwehavetoaddthefirst j

1 ofEqs.(15)withmorevariables.

1 Wehave¯x

(13)

Since

¯

y1

= . . . = ¯

yd+1,thesystembecomes

¯

z1

+ . . . + ¯

zd+1

=

0

¯

x1

¯

z1

+ . . . + ¯

xd+1z

¯

d+1

=

0

..

.

¯

x1d−1

¯

z1

+ . . . + ¯

xdd+−11

¯

zd+1

=

0 (19)

Thismeansthat thesolutionspacehaslineardimension 1.Sothe numberofthe z’sis

|F

q2

|

=

q2

1,thenthenumberofwordsofweightd

+

1 with y

¯

1

= . . . = ¯

yd+1 ofHdjis

(

q2

q

)(

q2

1

)



q

+

1 d

+

1



.

2

Theorem8.Let2

d

q

1,thenthenumberofwordsofweightd

+

1 withx

¯

1

= . . . = ¯

xd+1ofacorner codeH0dandofanedgecodeHdjis:

q2

(

q4

− (d

+

1

)

q2

+

d

)



q d

+

1



.

Proof. ByProposition 1we knowthat Jd representsallthewordsofminimumweight.Foran edge codethefirstsetofidealbasis(9)implies,if j

=

1,thesystem(14)withmorevariablesand,if j

>

1, wehavetoadd thefirst j

1 ofEqs.(15)withmorevariables.Whereas,foracornercode,thefirst setofidealbasis(9)impliesthesystem(17)withmorevariables.

Butx

¯

1

= . . . = ¯

xd+1,soinbothcasesthesystembecomes:

¯

z1

+ . . . + ¯

zd+1

=

0

¯

y1z

¯

1

+ . . . + ¯

yd+1

¯

zd+1

=

0

..

.

¯

y1d−2

¯

z1

+ . . . + ¯

ydd+−21z

¯

d+1

=

0 (20)

Wehaveq2 choicesforthe

¯

x

i’sand,byLemma 3,wehave



q d+1



(

d

+

1

)

!

different

¯

yi’s,since forany choiceofthe

¯

xi’sthereareexactlyq possiblevaluesforthe y

¯

i’s,butweneedjustd

+

1 ofthemand anypermutationofthesewillbeagainasolution.Moreover,wehave

(

q4

− (

d

+

1

)

q2

+

d

)

possiblez’s, becausesystem(20)isanalogoustothesystem(18).

2

Theorem9.Let2

d

q,thenthenumberofwordsofweightd

+

1 ofacornercodeH0dwith

(

x

¯

i

,

¯

yi

)

lying

onanon-verticallineis:

(

q4

q3

)(

q4

− (

d

+

1

)

q2

+

d

)



q

+

1 d

+

1



.

WhereasforanedgecodeHdjwith1

j

d

1 thisnumbersis:

(

q4

q3

)(

q2

1

)



q

+

1 d

+

1



.

Proof(sketched). We haveq4

q3 non-vertical lines, intersecting

H

in a set ofq

+

1 points. We choosealineandd

+

1 pointsonit.Byanaffinetransformation,thesystemcanalwaysbe reduced tosystem(18)forcornercodes,orto system(19)foredge codes.Forcornercodeswe geta linear spaceofdimension2,whereasforedgecodeswegetalinearspaceofdimension1.

2

Remark2.Non-verticallinesincludehorizontallinesofTheorem 7,sothatTheorem 9canbe consid-eredasageneralizationofTheorem 7.

Riferimenti

Documenti correlati

La tradizione anglosassone aveva studiato la pratica della ginnastica nella sua applicazione concreta soprattutto negli sport all’aria aperta e in particolare nel Rugby, Per Arnold,

[Orban, 2007] L’aumentata consapevolezza da parte del consumatore nei confronti delle problematiche relative al comparto alimentare ha portato ad una crescente

Dall’analisi del sistema OTEC con dissalazione mediante RO al variare della taglia, della produ- zione di acqua dolce, del fluido, del materiale e del tipo di ottimizzazione si è

More precisely, I will be focusing on the issue of diversity and inclusiveness within philosophy with respect to those strategies and best practices (i) to improve the climate in

In the following, we derive a model for access requests and service operation in the cell, and show how to compute network utilization, access delay, and in general how to assess

Besides isolates which trivially only have domestic collaborations, 39 countries (50.64% of the total) have an international share equal or lower than 0.25, meaning

Inizialmente nel 2005 il Museo trova collocazione in un edifi- cio nella zona industriale dell’interland fiorentino, nel comune di Calenzano, di fronte all’edificio

Since platelets are primary involved in arterial thrombus formation [21] and an increased platelet reactivity has been found associated with several systemic immunological