• Non ci sono risultati.

View of Estimation of parameters of a power function distribution and its characterization by k-th record values

N/A
N/A
Protected

Academic year: 2021

Condividi "View of Estimation of parameters of a power function distribution and its characterization by k-th record values"

Copied!
14
0
0

Testo completo

(1)

ESTIMATION OF PARAMETERS OF A POWER FUNCTION DISTRIBUTION AND ITS CHARACTERIZATION

BY K-TH RECORD VALUES J. Saran, A. Pandey

1.INTRODUCTION

Record values are found in many situations of daily life as well as in many sta-tistical applications. Often we are interested in observing new records and in re-cording them: e.g. Olympic records or world records in sports. Motivated by ex-treme weather conditions, Chandler (1952) introduced record values and record value times. Feller (1966) gave some examples of record values with respect to gambling problems. Resnick (1973) discussed the asymptotic theory of records. Theory of record values and its distributional properties have been extensively studied in the literature. See Ahsanullah (1988, 1995), Arnold and Balakrishnan (1989), Arnold et al. (1992, 1998), Nevzorov (1987) and Kamps (1995) for reviews on various developments in the area of records.

We shall now consider the situations in which the record values (e.g. successive largest insurance claims in non-life insurance, highest water-levels or highest tem-peratures) themselves are viewed as ‘outliers’and hence the second or third largest values are of special interest. Insurance claims in some non-life insurance can be used as one of the examples. Observing successive k-th largest values in a se-quence, Dziubdziela and Kopociľski (1976) proposed the following model of k-th record values, where k is some positive integer.

Let X1, X2,...be a sequence of independent and identically distributed random

variables with cdf F(x) and pdf f (x). Let Xj:n denote the j-th order statistic of a sample (X1,X2,...,Xn). For a fixed k t 1, we define the sequence U1(k), U2(k),...of k-th upper record times of X1, X2,...as follows:

( ) 1 1 k U ( ) ( ) 1 min{ : : 1 k : k 1}, n n k k n n j j k U U k U  j !U X   !X   n = 1,2,...

(2)

The sequence {Yn(k), n t 1}, where ( ) k n

k

n U

Y X is called the sequence of k-th upper record values of the sequence {Xn, n t 1}. For convenience, we define Yo(k)

=0. Note that for k = 1 we have (1)

n

n U

Y X , n t 1, which are record values of {Xn, n t1} (Ahsanullah, 1995).

In this paper, we shall make use of the properties of the k-th upper record val-ues to develop inferential procedures such as point estimation. We shall obtain the best linear unbiased estimates of the parameters of the power function distri-bution in terms of k-th upper record values. (Ahsanullah, 1986) considered the problem of estimation of parameters for rectangular distribution based on upper record values (k = 1). At the end we give the characterization of the power func-tion distribufunc-tion using k-th upper record values.

In order to derive the estimates for the parameters of the power function dis-tribution and to give its characterization, we need some recurrence relations for single and product moments of k-th upper record values which have been estab-lished in the next section.

2.RECURRENCE RELATIONS FOR SINGLE AND PRODUCT MOMENTS

A random variable X is said to have a power function distribution if its pdf is given by 1 ( ) x , , 0 , f x x J J E D E J E D E D   § ·   ! ¨ ¸  ©  ¹ (1)

and the cdf is given by

( ) 1 x , , 0. F x x J E D E J E D  § · ¨ ¸   !  © ¹ (2)

The power function distribution is a member of Beta distributions. The Beta distribution is one of the most frequently employed to fit theoretical distribu-tions. It is also used as a prior distribution for a binomial proportion. Now, let us consider some examples of the distribution (1).

For ƣ = 1, (1) is the pdf of a two-parameter rectangular distribution. The con-sumption of fuel by an airplane during a flight may be assumed to be rectangular with parameters D and Ƣ. The thickness of steel produced by the rolling machines of steel plants may be considered as rectangular distribution with parameters D andƢ (Ahsanullah, 1986).

It can be seen that for the power function distribution defined in (1)

(3)

The relation in (3) will be employed in this paper to derive recurrence relations for the moments of k-th upper record values from the power function distribu-tion.

Let {Yn(k), n t 1} be a sequence of k-th upper record values from (1). Then, the

pdf of Yn(k) (n > 1) as given by Dziubdziela and Kopociľski (1976) is as follows:

[ ( )] 1[1 ( )] 1 ( ). ( 1)! k n n n k Y k f (x) H x F x f x n     (4)

Also the joint density function of Ym(k) and Yn(k) (1 d m < n), n = 2,3,..., as

dis-cussed by Grudzieľ (1982) is given by:

, 1 1 1 ( , ) [ ( )] [ ( ) ( )] ( ) ( 1)! ( 1)! [1 ( )] ( ) , , k k m n n m n m Y Y k k f x y H x H y H x h x m n m . F y f y x y           (5)

where H(x) =  log [1F(x)] , log is the natural logarithm and h(x) = Hc(x).

Theorem 1: Fix a positive integer k > 1. For n > 1 and r = 0,1,2,...,

( ) 1 ( ) ( ) 1 1 ( 1) E( ) E( ) E( ) . ( 1 ) 1 k r k r k r n n n r k Y Y Y r k r J E J     ª  º « »   ¬  ¼ (6)

Proof: For n > 1 and r = 0,1,2,..., we have from (4) and (3)

( ) ( ) 1 1 E( ) E( ) [ ( ) ] [1 ( )] . ( 1)! n k r k r r n k n n k Y Y x H x F x dx n E D J E     

³

Integrating by parts, taking xr as the part to be integrated and the rest of the in-tegrand for differentiation, we get (6).

Theorem 2: For 1< m < n



2 , r, s = 0,1,2,..., ( ) ( ) 1 ( ) ( ) ( ) ( ) 1 -1 E ( ) ( ) ( 1) E{( ) ( ) } E{( ) ( ) } ( 1 ) ( 1) k r k s m n k r k s k r k s m n m n Y Y s k Y Y Y Y s k E s J J   ª º ¬ ¼ ª º   « »   ¬  ¼ (7) and for m >1, r, s = 0,1,2,...,

(4)

( ) ( ) 1 1 ( ) ( ) ( ) 1 1 E ( ) ( ) ( 1) E{( ) ( ) } E( ) . ( 1 ) ( 1) k r k s m m k r k s k r s m m m Y Y s k Y Y Y s k s J E J      ª º ¬ ¼ ª º   « »   ¬  ¼ (8)

Proof: From (5), for 1 < m < n –1 and r, s = 0,1,2,..., we obtain

( ) ( ) ( ) ( ) 1 1 E ( ) ( ) E ( ) ( ) [ ( )] . ( ) ( ) , ( 1)! ( 1)! k r k s k r k s m n m n n r m Y Y Y Y k x H x h x I x dx m n m E D E   ª º ª º ¬ ¼ ¬ ¼   

³

(9) where 1 ( ) s[ ( ) ( )]n m [1 ( )]k , x I x y H y H x F y dy E J

³

   

on using the relation in (3). Upon integrating by parts, treating ys for integration, we get 1 1 2 1 1 1 ( 1) ( ) [ ( ) ( )] [1 ( )] ( ) ( 1) [ ( ) ( )] [1 ( )] ( ) . ( 1) k s n m x s n m k x n m I x y H y H x F y f y dy s k y H y H x F y f y dy s E E J                  

³

³

Substituting the above expression for I(x) in (9) and simplifying , it leads to (7). Proceeding in a similar manner for the case n = m+1, the recurrence relation given in (8) can easily be established.

3.ESTIMATION OF THE PARAMETERSD AND E WHEN SHAPE PARAMETER ƣ IS KNOWN

It can easily be shown, on using (1), (2) and (4), that

1 1 ( ) 1 E( ) log , ( 1)! n k n n k n k x x Y x dx n E D J E E E D E D E D J ª §  ·º  §  ·  « ¨ ¸» ¨ ¸ 

³

¬ ©  ¹¼ ©  ¹ 

which on further simplification gives

( ) E( ) ( ) . 1 n k n k Y k J E E D J § ·   ¨ ¸  © ¹ (10)

(5)

Similarly, one can obtain ( ) 2 2 2 E( ) ( ) 2 ( ) . 2 1 n n k n k k Y k k J J E E D E E D J J § · § ·   ¨ ¸   ¨ ¸   © ¹ © ¹ Hence 2 ( ) 2 Var( ) ( ) . 2 1 n n k n k k Y k k J J E D J J ª§ · § · º  «¨ ¸  ¨ ¸ »   © ¹ © ¹ « » ¬ ¼ (11)

Further, on using the recurrence relations given in equations (6) and (7) in the re-lation ( ) ( ) ( ) ( ) ( ) ( ) Cov(Ymk ,Ynk ) E(Ymk Ynk ) E( Ymk )E(Ynk ) , we get ( ) ( ) ( ) ( ) 1 Cov( , ) Cov( , ) , . 1 k k k k m n m n k Y Y Y Y n m k J J   !

Applying it recursively , it can easily be verified that

( ) ( ) ( ) Cov( , ) Var( ) , . 1 n m k k k m n m k Y Y Y n m k J J  § · ! ¨  ¸ © ¹ (12)

Let us consider the following transformation

( ) ( ) 1 1 k k Z Y , 1 2 ( ) ( ) ( ) 1 2 , 2, 3,..., . 1 i k k k i i i k k Z Y Y i n k k J J J J    § · §  · ¨ ¸ ¨  ¸ © ¹ © ¹

Then on using (10), we obtain

( ) 1 E( ) , 1 1 k k Z k k E J D J J § ·  ¨ ¸  ©  ¹ (13) 1 2 ( ) 2 E( ) , 2, 3,..., . 1 i k i k Z i n k k J J J E   § · ¨ ¸  © ¹ (14)

(6)

2 ( ) 2 ( ) Var( ) , 1, 2,..., . ( 2)( 1) k i k Z i n k k E D J J J    (15) Also ( ) ( ) Cov(Zik , Zjk ) 0 , for i z j, 1d  d i j n. (16) Let Zc (Z1( )k ,Z2( )k ,...,Zn( )k ) . Then E( ) Z , (17) where 1 2 1 2 1 1 1 2 1 0 1 . . , . . . . . . . 2 1 0 1 n k k k k k k k k k J J J J J J D T E J J J  § · ¨   ¸ ¨ ¸ ¨ §  · ¸ ¨ ¨ ¸ ¸  ¨ © ¹ ¸ ¨ ¸ § · ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸© ¹ ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ ¨ §  · ¸ ¨ ¨ ¸ ¸ ¨ © ¹  ¸ © ¹ A

The best linear unbiased estimates D Eˆ , ˆ of D and Ƣ, respectively (when ƣ is known), based on Y1(k), Y2(k),..., Yn(k) are given by

1 ˆ ˆ ˆ Ƣ ( ) .  ª º c c « » ¬ ¼ ƨ Į A A A Z (18) We have 2 2 2 1 ( 1) ( ) ( 1) k k k k k S k J J J J J J §§ · · ¨¨ ¸ ¸   ¨© ¹ ¸ c ¨ ¸ ¨ ¸ ¨  ¸ © ¹ A A , where

(7)

2 2 2 2 1 2 1 2 1 2 1 ... 1 1 1 2 1 1 n k k S k k k k k k k k J J J J J J J J J J    § · § · § · § · § ·  ¨  ¸ ¨ ¸ ¨  ¸ ¨ ¸ ¨  ¸ © ¹ © ¹ © ¹ © ¹ © ¹  § · § ·  ¨ ¸ ¨  ¸ © ¹ © ¹ 1 2 1 2 2 1 1 . 2 ( 1) n k k k k J J J J  ª  ­°§  · ½°º «  ®¨ ¸  ¾»  «¬ °¯© ¹ °¿»¼ Now 2 4 1 2 1 2 2 ( 1) ( 1) ( ) . ( 2) 2 ( ) 1 1 ( 1) 2 n k S k k k k k k k k k k J J J J J J J J J J J   §  · ¨  ¸  ¨ ¸ c ¨ ¸ ª  ­°§  · ½° ¨º  § · ¸ « ®¨ ¸  ¾ ¨»  ¨  ¸ ¸ © ¹ © ¹ « °¯© ¹ °¿» ¬ ¼ A A

Substituting for (AcA)1 in (18) and simplifying the resulting expression, we obtain 4 ( ) 1 3 3 1 2 1 1 2 2 ( ) ( ) 2 ˆ 2( 1) 1 ( 1) ( 1) 2 ( 2)( ) 1 2 2 . ... k n n k k n k k k k S Z k k k k k k k k k Z Z k k J J J J D J J J J J J J J J J J   ª§ ·    «¨   ¸  ª§  · º «©¬ ¹  «¨ ¸  » © ¹ « » ¬ ¼ º ­ ½   § · § · °   °» ®¨ ¸ ¨ ¸ ¾» © ¹ © ¹ ° °» ¯ ¿¼ and 1 4 2 2 ( ) 2 3 1 2 1 2 ( ) ˆ 2( 1) ( ) 2 ... ( 1) 2 ( 2)( ) 1 2 . k n n k n k k k Z k k k k k k k Z k J J J E J J J J J J J J   ª ­  « °§  ·  ®¨ ¸ «  ª§  · º °© ¹ « ¯  «¨ ¸  ¬» © ¹ « » ¬ ¼ º ½  § · °» ¨ ¸ ¾» © ¹ °» ¿¼ Hence

(8)

2 2 2 1 ˆ 2( ) ( 1) Var ( ) , ( 2) ( ) 2 1 n k S k k k k E D J D J J J J     ª§  · º  «¨ ¸ » © ¹ « » ¬ ¼ 2 1 2 ˆ 2( ) Var( ) 2 ( 2) 1 n k k k k E D J E J J J   ª§  · º  «¨ ¸  » © ¹ « » ¬ ¼ and 2 1 2 ˆ ˆ 2( ) Cov( , ) . 2 ( 2) 1 n k k k E D D E J J J    ª§  · º  «¨ ¸  » © ¹ « » ¬ ¼

The generalized variance 6ˆ ofDˆ and(6ˆ Var( ) Var( ) (Cov( , ))Dˆ Eˆ  D Eˆ ˆ 2) is

4 1 3 2( ) . 2 ( 2) 1 n k k k E D J J J   §§  · ·  ¨¨¨ ¸  ¸¸ © ¹ © ¹

On considering the two k-th upper record values Ys(k)and Yr(k) (s > r) it follows

from (10) and (12) that the best linear unbiased estimates of D and Ƣ based on these two k-th record values are given by

( ) 1 1 1 , r r k r k k Y k k J J D E J J §  · ­°§  ·  ½° ® ¾ ¨ ¸ ¨ ¸ © ¹ °¯© ¹ °¿ ( ) 1 ( ) . 1 1 r s k k s r r s k Y Y k k k J J E J J    § ·  ¨ ¸ © ¹  § ·  ¨ ¸ © ¹

The variances and covariances of D and E are

2 2 2 {( 1) ( ) ( 2) } 1 Var( ) ( ) 1 Var( ), ( ) ( 2) r r r r r r k k k k k k k J J J J D E D E J J J     ­°§  ·  ½° ®¨ ¸ ¾  °¯© ¹ °¿

(9)

2( ) 2 2 ( ) 2 1 Var( ) ( ) 2 1 1 r s r s r r s k k k k k k k k J J J J E E D J J J J    ­§  · §  · ½ °  ° ®¨ ¸ ¨ ¸ ¾ © ¹ © ¹ ° ° ¯ ¿  ­ ½   § · ° § · ° ® ¾ ¨ ¸ ¨ ¸ © ¹ °¯ © ¹ °¿ and 1 Cov( , ) 1 Var( ). r k k J D E E J ­°§  ·  ½° ®¨ ¸ ¾ © ¹ ° ° ¯ ¿

It can be shown that the generalized variance 6 of D and E

2

(6 Var(D ) Var(E ) (Cov( D E , )) ) is minimum when s = n and r = 1. Hence the best linear unbiased estimates of D and Ƣ based on two selected k-th record values are

1 1 , k k Y k k J E D J J     1 ( ) ( ) 1 1 1 . 1 1 n k k n n k Y Y k k k J J E J J    § ·  ¨ ¸ © ¹  § ·  ¨ ¸ © ¹  Also 2 2 ( ) ( ) Var( ) , ( 2) ( ) Var k k k E D E D J J J      2( 1) 1 1 2 2 1 2 {( 1) ( ) ( 2) } Var( ) ( ) 1 1 ( ) ( 2) n n n n n n k k k k k k k J J J E E D J J J J          ­§  · ½ °  °  ®¨ ¸ ¾ © ¹ ° ° ¯ ¿  and Var( ) Cov( , ) . k E D E J     Let

(10)

1 2 ˆ ˆ Var( ) Var( ) , Var( ) Var( ) e D e E D E and 12 ˆ ˆ Cov( , ) Cov( , ) e D E D E  .

Thus the generalized variance 6 of D and E is

2 1 1 1 4 2 1 1 1 {( 1) ( ) ( 2) } ( ) 1 ( ) ( 2) 1 n n n n n n k k k k k k k J J J E D J J J J           ­§  · ½ ° °  ®¨ ¸  ¾ © ¹ ° ° ¯ ¿ .

Further, it can be seen that e12= e2.

In Table 1 and Table 2, we tabulate the values of e1 and e2for n = 2, 4, 6, 10,

15, 20 and 30, ƣ = 1 and k = 2 and 3, respectively . It can be seen from the tables that the efficiency of the best linear unbiased estimate of D based on two k-th re-cord values are very high compared to the corresponding estimate based on a complete set of k-th record values.

TABLE 1

Values of e1 and e2 for k = 2

n e1 e2 2 1.0000 1.0000 4 0.9965 0.9506 6 0.9977 0.8743 10 0.9996 0.7272 15 1.0000 0.6148 20 1.0000 0.5592 30 1.0000 0.5170 TABLE 2

Values of e1 and e2 for k = 3

n e1 e2 2 1.0000 1.0000 4 0.9968 0.9688 6 0.9970 0.9148 10 0.9989 0.7846 15 0.9998 0.6492 20 1.0000 0.5613 30 1.0000 0.4725

Remark: Although Ƣ can be accurately estimated by taking large n, the estimate of

D does not improve with increasing n (asymptotically for k = 2, Var( )Dˆ =1/8 and for k = 3, Var( )Dˆ =1/15).

(11)

4.UNBIASED ESTIMATE OF ƣ WHEN D AND E ARE KNOWN

The joint density function of the first n k-th record values is given by:

1 1 1 1 1 ,..., 1 ( ) ( ,..., ) (1 ( )) ( ), .... , 1 ( ) k k n n n i k n n n n Y Y i i f y f y y k F y f y y y F y      

–

(19) (Kamps, 1995 ). Using (19), the likelihood function in this case is given by

1 -1 1 1 2 1 , ... . ( ) k n n n i n n n i y y k L y y y J E E D E E D E D E D J ­°  §  · ½°§  ·      ® ¨  ¸ ¾¨  ¸  °¯

–

© ¹ °¿© ¹ Hence

logL nlogJ logC (k 1) log E yn ,

E D J §  ·    ¨ ¸  © ¹ where 1 1 1 . ( ) n n i n i y k C E E D E D   §  · ¨  ¸ 

–

© ¹

Then the maximum likelihood estimate of ƣ is

. log n n y k J E E D  § · ¨  ¸ © ¹  Further 1 1 1 1 E( ) log ( 1)! log n k n n k n x x dx n x E D J E E J E D E D E D E E D J    ª §  ·º §  ·  « ¨ ¸» ¨ ¸  §  ·¬ ©  ¹¼ ©  ¹  ¨  ¸ © ¹

³

 1 2 ( 1)! n k z n n n k z e dz n E D J J    

³

. ( 1) n n J

(12)

Note that J is a biased estimator for ƣ. The unbiased estimator J for ƣ is given by ( 1) ( 1) , log n n n n y k J J E E D    § · ¨  ¸ © ¹ 

and it can easily be verified that

2 Var( ) , 2. (n 2) n J J !  5. CHARACTERIZATION

This section contains characterization of the power function distribution. We shall use the following result of (Lin,1986).

Theorem 3 (Lin): Let no be any fixed non-negative integer,  f < a < b d f, and

g(x) t 0 be an absolutely continuous function with g'(x) z 0 a.e. on (a, b) . Then the sequence of functions {(g(x))n e-g(x), n t n

o} is complete in L(a, b) iff g(x) is

strictly monotone on (a, b).

Theorem 4: A necessary and sufficient condition for a random variable X to be dis-tributed with pdf given by (1) is that

( ) 1 ( ) ( ) 1 1 ( 1) E( ) E( ) E( ) ( 1 ) 1 k r k r k r n n n r k Y Y Y r k r J E J     ª  º « »   ¬  ¼ , (20)

for n = 1,2,... and r = 0,1,2,..., where k > 1 is any fixed positive integer.

Proof: The necessary part follows from (6). On the other hand if the recurrence relation (20) is satisfied, we get

1 1 1 1 1 1 2 1 ( 1 ) [ ( )] [1 ( )] ( ) [ ( )] ( 1) ( 1)! ( 1)! . [1 ( )] ( ) [ ( )] ( 2)!( 1) . [1 ( )] ( ) . n n r n k r n k n r n k r k k k x H x F x f x dx x H x r n n F x f x dx k x H x n r F x f x dx E E D D E D J E J                   

³

³

³

(13)

Integrating the last integral on the right hand side of the above equation by parts, we get 1 1 1 1 1 1 1 1 1 ` 1 ( 1 ) [ ( )] [1 ( )] ( ) ( 1)! ( 1) [ ( )] ( ). [1 ( )] ( 1)! [ ( )] . [1 ( )] ( ) ( 1)!( 1) [ ( )] . [1 ( )] , ( 1)! n r n k n r n k n r n k n r n k k r k x H x F x f x dx n r k x H x f x F x dx n k x H x F x f x dx n r k x H x F x dx n E D E D E D E D J E J J                          

³

³

³

³

which after simplification reduces to

1 1 ( 1 ) [ ( )] [1 ( )] ( ) (1 ( )) ( ) 1 ( ) 0 . 1 r n k r k x H x F x x f x F x f x r k x f x dx r E D J J E J    ª      «  ¬ º  »  ¼

³

Using Theorem 3 with g(x) =  log [1F(x)] = H(x), it follows that (E x f x) ( ) J(1F x( )),

which proves that f (x) has the form (1).

Department of Statistics, JAGDISH SARAN

University of Delhi, India

Department of Statistics, APARNA PANDEY

P.G.D.A.V. College, India

ACKNOWLEDGEMENTS

The authors wish to thank the referee for giving valuable comments that led to an im-provement in the presentation of the paper.

REFERENCES

M. AHSANULLAH (1986), Estimation of the parameters of a rectangular distribution by record values, “Computational Statistical Quarterly”, 2, pp. 119-125.

M. AHSANULLAH (1988), Introduction to record Statistics, Ginn Press, Needham Heights, MA, U.S.A.

(14)

M. AHSANULLAH (1995), Record Statistics, Nova Science Publishers, Inc. Commack, New York.

B.C. ARNOLDand N. BALAKRISHNAN (1989), Relations, bounds and approximations for Order

Statis-tics, Lecture Notes is Statistics, 53, Springer-Verlag, New York.

B.C. ARNOLD, N. BALAKRISHNAN and H.N. NAGARAJA (1992), A First course in Order Statistics, John Wiley and Sons, New York.

B.C. ARNOLD, N. BALAKRISHNAN and H.N. NAGARAJA (1998), Records, John Wiley and Sons, New York.

K.M. CHANDLER(1952), The distribution and frequency of record values, “Journal of Royal Statisti-cal Society”, Ser.B, 14, pp. 220-228.

W. DZIUBDZIELA and B. KOPOCIĽSKI(1976), Limiting properties of the k-th record value, “Applied Mathematics”, 15, pp. 187-190.

W. FELLER(1966), An introduction to probability theory and its applications,Vol. 2, John Wiley and Sons, New York.

Z. GRUDZIEĽ (1982), Charakteryzacja rokladów w terminach statystyk rekordowych oraz rozklady i

momenty statystyk porzadkowych i rekordowych z prób o losowej liczebnosci. Praca doktorska, UMCS Lublin.

U. KAMPS (1995), A concept of generalized Order Statistics, “Journal of Statistical Planning and Inference”, 48, pp.1-23.

G.D. LIN (1986), On a moment problem, “Tôhoku Mathematical Journal”, 38, pp. 595-598. V.B. NEVZOROV (1987), Records, “Theory of Probability and Applications”, 32(2), pp.

201-228 (English Translation).

S.I. RESNICK (1987), Extreme values, regular variation and point processes, Springer-Verlag, New York.

RIASSUNTO

La stima dei parametri di una funzione di potenza e la sua caratterizzazione attraverso i k valori estremi Nel lavoro si derivano stime lineari e corrette dei parametri di una funzione di potenza sulla base dei k valori estremi.

SUMMARY

Estimation of parameters of a power function distribution and its characterization by k-th record values

In this paper linear unbiased estimates of the parameters of a power function distribu-tion based on k-th record values have been derived.

Riferimenti

Documenti correlati

Ma Lachelier si accinse a studiare Cousin solo piu tardi, come attesta Psicologia e Metafisica pubblicata sulla «Revue philosophique» nel 1885. Nell’intento di redigere un

risk of NAFLD Abbreviations: BMI, body mass index; FLI, fatty liver index; FT3, free triiodothyronine; FT4, free thyroxine; HOMA, homeostatic model assessment; IR, insulin

Our goals in this paper are to test our model of galaxy evolution with a top-heavy IMF in starbursts against observations of dust- obscured star-forming galaxies over the redshift

[r]

• si calcoli l'espressione dell'energia potenziale gravitazionale di una massa m puntiforme posta a distanza R da una massa M anch'essa puntiforme, dopo avere scelto la distanza

[r]

[r]

Ogni valore campionato al punto precedente è caratterizzato da un numero reale (infinite cifre), in quanto il segnale analogico di partenza è continuo e può