• Non ci sono risultati.

The cough reflex is upregulated by lisinopril microinjected into the caudal nucleus tractus solitarii of the rabbit

N/A
N/A
Protected

Academic year: 2021

Condividi "The cough reflex is upregulated by lisinopril microinjected into the caudal nucleus tractus solitarii of the rabbit"

Copied!
9
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Respiratory

Physiology

&

Neurobiology

j o ur na l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / r e s p h y s i o l

The

cough

reflex

is

upregulated

by

lisinopril

microinjected

into

the

caudal

nucleus

tractus

solitarii

of

the

rabbit

Elenia

Cinelli,

Fulvia

Bongianni,

Tito

Pantaleo,

Donatella

Mutolo

DipartimentodiMedicinaSperimentaleeClinica,SezioneScienzeFisiologiche,UniversitàdegliStudidiFirenze,VialeG.B.Morgagni63,50134Firenze,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received9June2015

Receivedinrevisedform27July2015 Accepted27July2015

Availableonline30July2015 Keywords:

Lisinopril Cough Bradykinin SubstanceP

Nucleustractussolitarii

a

b

s

t

r

a

c

t

WehavepreviouslyshownthatcoughpotentiationinducedbyintravenousadministrationoftheAT1

receptorantagonistlosartanislowerthanthatinducedbytheACEinhibitorlisinoprilinanesthetized andawakerabbits.Sincelosartanandlisinoprilcrosstheblood–brainbarrier,theircentralactionon thecoughreflexcanbehypothesized.Mechanicalstimulationofthetracheobronchialtreeandcitric acidinhalationwereusedtoinducecoughreflexresponsesinpentobarbitalsodium-anesthetized, spon-taneouslybreathingrabbits.Bilateralmicroinjections(30–50nl)oflosartan(5mM),lisinopril(1mM), bradykinin(0.05mM),HOE-140(0.2mM,abradykininB2receptorantagonist)andCP-99,994(1mM,an

NK1receptorantagonist)wereperformedintothecaudalnucleustractussolitarii,thepredominantsite

ofterminationofcough-relatedafferents.Lisinopril,butnotlosartanincreasedthecoughnumber.This effectwasrevertedbyHOE-140orCP-99,994.Coughpotentiationwasalsoinducedbybradykinin.The resultssupportforthefirsttimeacentralprotussiveactionoflisinoprilmediatedbyanaccumulationof bradykininandsubstanceP.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Coughisaveryimportantairwayprotectivereflex,butalso char-acterizesadebilitatingdiseaseunderchronicconditions.Drycough islargelyconsideredoneofthemajorsideeffectsof angiotensin-convertingenzyme(ACE)inhibitors(BerkinandBall,1988),aclass of drugs widely used for hypertension, heart failure and post-infarctiontreatment(Pauletal.,2006).AngiotensinIIisthemain effectoroftherenin-angiotensinsystem(RAS)thatcontrols cardio-vascularhemodynamicandbloodfluidhomeostasis.Inmammals therearetwoprimaryangiotensinIIreceptorsubtypes,AT1andAT2 (Pauletal.,2006;WrightandHarding,2011).Losartanandother sartansblockAT1receptors(McIntyreetal.,1997).Theyhavebeen associatedwithlowcoughincidenceinhumans,sothattheyare usuallyemployedtosubstituteACEinhibitorsinpatients display-ingassideeffectpersistentcough(e.g.,Pasteretal.,1998;Mutolo etal.,2013alsoforfurtherRefs.).ThemechanismofACE inhibitor-induced cough remains unclear, but likely involves mainlythe protussivemediatorsbradykininandsubstanceP,agentsthatare degradedbyACEandthereforeaccumulatedintherespiratory sys-temwhentheenzymeisinhibited(e.g.,Balietal.,2014;Foxetal.,

∗ Correspondingauthor.

E-mailaddress:donatella.mutolo@unifi.it(D.Mutolo).

1996;Moreauxetal.,2001;Tomakietal.,1996;Mutoloetal.,2010, 2013alsoforfurtherRefs.).

In a previous study (Mutolo et al., 2013), we have shown thatcoughupregulationinducedbyintravenousadministrationof losartan islower thanthat inducedbylisinopril both inawake and anesthetizedrabbits.Since losartan and lisinoprilcross the blood–brainbarrier(Pediconietal.,2005;Ranadiveetal.,1992; Tanetal.,2005),acentralactionofthesedrugsonthecoughreflex canbehypothesizedespeciallyatthelevelofthecaudalnucleus tractussolitarii(NTS),themaincentralterminusofcough-related afferents(KubinandDavies,1995;Kubinetal.,2006;Mutoloetal., 2007).

Apartfromtheirrolein cardiovascularregulation,RAS com-ponentswithinthecentralnervoussystemhaveotherfunctions mediatedbyAT1 and/orAT2receptors(Pauletal.,2006;Premer etal.,2013;WrightandHarding,2011).Inparticular,previous stud-ies havedemonstrated that severalneuromodulators, including angiotensinIIactingonAT1receptors,areinvolvedin cardiovascu-larregulationwithintheNTS(Arnoldetal.,2010;Chengetal.,2010, 2012;Kasparovetal.,1998;Mosqueda-Garciaetal.,1990). Accord-ingly,highlevelsofACE(Rogersonetal.,1995)andhighdensitiesof AT1receptorshavebeenfoundattheleveloftheNTSintherabbit (Aldredetal.,1993)aswellasinmanyothermammalsincluding humans(Pauletal.,2006;Premeretal.,2013;WrightandHarding, 2011).

http://dx.doi.org/10.1016/j.resp.2015.07.013 1569-9048/©2015ElsevierB.V.Allrightsreserved.

(2)

10 E.Cinellietal./RespiratoryPhysiology&Neurobiology219(2015)9–17 Anattemptwasmadetoascertainacentralactionoflosartan

andlisinoprilatthelevelofthecaudalNTSandprovideevidence supportingthehypothesisthatupregulationofthecoughreflexin therabbittreatedwithlisinoprilcouldbedue,atleastinpart,to thesamemechanismsalreadysuggestedtobeactiveatthe periph-erallevel.Thus,wecarriedoutthepresentstudyonpentobarbital sodium-anesthetized,spontaneouslybreathingrabbitsbyevoking thecoughreflexinresponsetobothmechanicalandchemical stim-ulationofthetracheobronchialtree.Changesinthecoughreflex inducedbymicroinjectionsoflisinopril,losartan,bradykinin, HOE-140(abradykininB2receptorantagonist)andCP-99,994(anNK1 receptorantagonist)intothecaudalNTSwereinvestigated. 2. Materialsandmethods

2.1. Ethicalapproval

Allanimalcareandexperimentalprocedureswereconductedin accordancewiththeItalianlegislationandtheofficialregulationsof theEuropeanCommunityCouncilontheuseoflaboratoryanimals (Directive86/609/EECand2010/63/UE).Thestudywasapproved bytheAnimalCareandUseCommitteeoftheUniversityofFlorence. Alleffortsweremadetominimizeboththenumberofanimalsused andtheirsuffering.Experimentalproceduresanddetailsaboutthe methodsemployedhavepreviouslybeendescribed(Cinellietal., 2013;Mutoloetal.,2007,2008,2009,2010,2012,2013,2014). 2.2. Animalpreparation

Experiments were performed on 43 male New Zealand white rabbits (2.8–3.5kg) anesthetized with pentobarbital sodium(40mg/kgi.v.,supplementedby2–4mg/kgevery30min; Sigma–Aldrich, St. Louis, MO). Atropine (0.15mg/kg i.m.) was administered to reduce mucosal secretion in the airways. The adequacy of anesthesia was continuously assessed during the experimentasinourpreviousstudies.Thetracheawascannulated andpolyethylene catheterswere insertedintoa femoralartery andveinformonitoringarterialbloodpressureanddrugdelivery, respectively.TheC3orC5phrenicrootononesidewasprepared for recordings.The animal wasplaced in a proneposition and fixed by a stereotaxic head holder and vertebral clamps. The headwasventroflexedforoptimalexposureofthedorsalsurface of themedulla byoccipital craniotomy.Body temperaturewas maintainedat38.5–39◦C.

2.3. Recordingprocedures

Bipolar platinum electrodes were used to record efferent phrenic nerve activity from the central stump of one cut and desheathed phrenic root. Wire electrodes were used to record abdominalmuscleelectromyographic(EMG)activity.Phrenicand abdominalactivitieswereamplified,full-waverectified,and “inte-grated”(low-passRCfilter,timeconstant100ms).Arterialblood pressureandend-tidalCO2 partialpressurewererecorded. Car-diorespiratory variables were acquired and analyzed using a personalcomputer,equippedwithananalog-to-digitalinterface (Digidata1440,MolecularDevices,Sunnyvale,CA,USA)and appro-priatesoftware(Axoscope,MolecularDevices).

2.4. Microinjectionprocedures

Bilateralmicroinjectionswereperformedattwodifferentsites alongtherostrocaudalextentofthecaudalNTS,andparticularly intothelateralcommissuralNTS.Thefirstwasatthelevelofthe caudal-mostendoftheareapostrema,0.6–0.8mmlateraltothe midlineand0.7–0.8mmbelowthedorsalmedullarysurface.The

secondwas0.5mmmorecaudal,0.4–0.5mmlateraltothemidline and0.7–0.8mmbelowthedorsalmedullarysurface.The stereo-taxiccoordinateswereselectedaccordingtotheatlasofMeessen andOlszewski(1949).

Microinjections (30–50nl) of the following drugs were per-formed:losartan(5mM;Fluka–Sigma–Aldrich),lisinopril(1mM; Sigma–Aldrich), bradykinin (0.05mM;TocrisBioscience, Bristol, UK), HOE-140 (0.2mM; Tocris Bioscience), a potent and selec-tivebradykininB2receptorantagonist,CP-99,994(1mM;giftfrom Pfizer, Groton, CT, USA), an NK1 receptor antagonist and d,l-homocysteicacid(DLH,20mM;Sigma–Aldrich),abroad-spectrum excitatoryaminoacidagonist.Onlyoneofthesedrugswastested ineachpreparationunlessotherwisestated.Drugconcentrations wereinthesamerangeasthosepreviouslyusedininvivo prepa-rations(Arnoldetal.,2010;Caligiorneetal.,1996;Kasparovetal., 1998; Mutolo et al., 2008). In particular, the concentrations of lisinoprilandlosartanwerebasedontheknowledgethatthe anti-hypertensivepotencyoflisinoprilis∼5timeshigherthanthatof losartan(see e.g.,Mutoloetal.,2013).Alldrugs weredissolved in0.9%NaClsolution.Controlinjectionsofequalvolumesofthe vehiclesolutionattheresponsivesiteswerealsoperformed.The localizationof injectionsites isillustratedin Fig.1.Green fluo-rescentlatexmicrospheres(LumaFluor,NewCity,NY,USA)were injectedforposthocconfirmationofinjectionsiteswithinthe cau-dalNTSofsomepreparations(3forlosartanand4forlisinopril). 2.5. Stimulationprocedures

Both mechanical and chemical stimulation of the tracheo-bronchial tree were employed to induce cough. Mechanical stimulation was delivered by a custom-built device recently describedandvalidated(Mutoloetal.,2014)usinga0.5mm diam-eternylonfiberwithasmoothed tipinsertedthrough a lateral portofthetrachealcannula.Thedeviceallowedtosetthenumber offorthandbackmovementsorcycles(1–3cycles),shaft veloc-ity(10–20mm/s),andshaftdisplacement(10–20mm).Mechanical stimulation wasadjusted tothe following parameters:1 cycle, 15mm/s velocity, and 15mm displacement. These parameters provedtoproduceaboutof2–4coughs.Thestimulation proto-colcomprisedthreestimulationtrialsperformedinsuccession(at ∼1mininterval)beforedrugadministration,repeated∼5minafter thecompletionofallthemicroinjectionsandatappropriate inter-vals(atleast5min)untilcompleterecoverywasobserved.

Chemical stimulation of thetracheobronchial tree was per-formedbymeansofcitricacidinhalation(fordetailsseeMutolo etal.,2009).Citricacid(1M,Sigma–Aldrich)wasfreshlydissolved in0.9%NaClsolutionandnebulized.Theopeningofthetracheal cannula,throughwhichtherabbitswerespontaneouslybreathing, wasexposedtoasteadystreamofthenebulizedcitricacid solu-tionfor∼3s.Thisshortperiodaswellastimeintervalsbetween chemicalchallenges>10minprovedtobeadequatetoavoid tachy-phylaxis.Chemicalstimulationwasalwaysapplied2–3minafter mechanically-inducedcoughandcausedaboutofseveralcoughs usuallyimmediatelyfollowedbyatachypneicresponse.Asarule, chemical stimulation was performed both before and ∼15min afterthecompletionoftheinjectionsandrepeatedat appropri-ateintervalstofollowthetimecourseoftherecoveryprocess.All stimulationprocedureswereperformedatleast5–6minaftereach supplementaldoseofpentobarbitaltoavoiditspossibleimmediate influenceontherecordedvariables.

2.6. Histology

The histologicalcontrol of pipette tracks and injectionsites wasperformedas previously described (fordetails,see Mutolo et al., 2007, 2012). Medullary sectionsin which injectionsites

(3)

Fig.1.Localizationofinjectionsitesandhistologicalcontrol.A:adiagrammaticrepresentationofadorsalviewofthemedullaoblongataoftherabbitshowingthesiteswhere multiplebilateralmicroinjections()ofdifferentdrugshavebeenperformedintothecaudalaspectofthenucleustractussolitarii(NTS).AP:areapostrema;DRG:dorsal respiratorygroup.B:diagramofacoronalsectionofthemedullaoblongataatthelevelindicatedinpanelA(dashedline)showingthelocationofrepresentativesiteswhere themicroinjectionshavebeenperformed.Tosimplifythepresentationofresults,onlythedistributionofsiteswhere1mMlisinopril(䊉)wasinjectedhasbeenreported. Thediagramalsoshowsthelocationofinjectionsites(䊏)intosomecontrolregionswherelisinoprildidnotcauseappreciablechangesinthepatternofbreathingandcough responses.Representativesitesofcontroldrugmicroinjectionsatalocation>0.8mmcaudaltotheresponsivesitesofthecaudalNTShavenotbeenillustrated.NCM:nucleus cuneatusmedialis;NDV:nucleusdorsalisnervivagi;NG:nucleusgracilis;NOI;nucleusolivarisinferior;NV:nucleustractusspinalisnervitrigemini;NXII:nucleusnervi hypoglossi;P:tractuspiramidalis.TheatlasofMeessenandOlszewski(1949)andtheatlasofSheketal.(1986)wereusedforcomparison.C:photomicrographofacoronal sectionofthemedullaoblongataatapproximatelythesamelevelasinBshowingthelocationofthefluorescentbeads(green,indicatedbythewhitearrow)microinjected intothecaudalNTS.ThesectionsarecounterstainedwithCresylViolet.Light-fieldandfluorescencephotomicrographshavebeensuperimposed.Somerelevantstructures havebeenindicated.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

weremarked by fluorescent microsphereswereexamined in a light and/or epifluorescence microscopy (Eclipse E400, Nikon, Japan)equippedwiththeNikonIntensilightC-HGFImercury-fiber illuminator.Photomicrographs weretaken witha NikonDS-Fi1 digital camera.Illustrationswere preparedin AdobePhotoshop CS3(AdobeSystemsIncorporated,SanJose,CA,USA).Theatlasof MeessenandOlszewski(1949)aswellasthemorerecentatlasof Sheketal.(1986)wereusedforcomparison.

2.7. Datacollectionandanalysis

Respiratoryvariablesweremeasuredduringeupneicbreathing andreflexresponses.Theinspiratory(TI)andexpiratory(TE)times, aswellasthetotaldurationoftherespiratorycycle(TT)were mea-suredonrecordingsofrawphrenicnerveactivity(Mutoloetal., 2014;Poliaceketal.,2011).Therespiratoryfrequencywas subse-quentlycalculated(breaths/min).Peakamplitude(arbitraryunits) ofthephrenicnerve activityandabdominal EMGactivitywere measuredonintegratedtracesandnormalizedbyexpressingthem

asafraction(orpercentage)ofthehighestachievableamplitude observedineachanimal,i.e.,inrelativeunits(RU).Breathing pat-ternvariablesweremeasuredforanaverageoffiveconsecutive breathspriortoandfollowingdrugmicroinjections.Furthermore, systolicanddiastolicbloodpressuresweremeasuredat2s inter-vals and mean arterialpressure wascalculated as thediastolic pressureplusone-thirdofthepulsepressure.Themeasurement periodsofcardiorespiratoryvariableswerethesameselectedfor cough-relatedvariables(seebelow).Owingtothesmallvariations inrespiratoryandcardiovascularvariableswithineach measure-mentperiod,averagevaluesweretakenassinglemeasurements forthepurposeofanalysis.Similarly,cardiorespiratoryvariables werealsomeasuredbeforeandafterDLHmicroinjectionsatthe timewhenthemaximumresponseoccurred.

Thecoughmotorpatterninresponsetomechanicalor chem-icalstimulationofthetracheobronchialtreeis characterizedby repeatedcoughs.Respiratoryvariablesofcoughs (cough-related variables)includedthecough-relatedTT,TIandTE,peakphrenic amplitude (RU), peak abdominal activity (RU) and the cough

(4)

12 E.Cinellietal./RespiratoryPhysiology&Neurobiology219(2015)9–17

Fig.2.Influencesof5mMlosartanand1mMlisinoprilmicroinjectedintotheselectedsitesofthecaudalNTSoncoughreflexresponseselicitedbymechanicalstimulation ofthetracheobronchialtreeinanesthetizedspontaneouslybreathingrabbits.Originalrecordingsillustratetheabsenceofappreciableeffects∼30minafterlosartan microin-jectionsandthepotentiationofthecoughreflex∼30minafterlisinoprilmicroinjections(maximumeffect).Theonsetofmechanicalstimulationisindicatedbyarrows. PhrIN:phrenicintegratedneurogram;PhrN:phrenicneurogram;AbdIEMG:abdominalintegratedelectromyographicactivity;AbdEMG:abdominalelectromyographic activity.

number,i.e., thenumber of coughs following each stimulation. Cough-relatedvariablesweremeasuredandaveragedbeforeand afterdrugadministrationatthetimewhenthemaximumresponse occurredas wellas atthetime whena completerecoverywas observed(threetrialsformechanicalstimulationandasingletrial forcitricacidinhalation).Theaveragevaluesofcough-related vari-ablesweretakenassinglemeasurementsforsubsequentstatistical analysis(GraphPadPrism5,LaJolla,CA,USA).Onsomeoccasions, anexpirationreflexcouldoccurasthefirstmotoreventinacough epoch(KorpáˇsandTomori,1979;WiddicombeandFontana,2006 forfurtherdetailsseeTataretal.,2008;Mutoloetal.,2007,2008, 2009,2012;Cinellietal.,2013).Expirationreflexeswerenot con-sideredfordataanalysis.

Comparisons were performed by means of the one-way repeated-measuresANOVAfollowedbyStudent–Newman–Keuls tests.Thesamestatisticalanalysiswasemployedtoevaluatethe reversionof thelisinopril-induced effects by thebradykinin B2 receptorantagonistHOE-140andtheNK1receptorantagonist CP-99,994.DLH-inducedchangesincardiorespiratoryvariablesaswell asthebradykinineffectsonthecoughreflexinthepresenceof CP-99,994wereevaluatedbytheStudent’spairedt-test.Allreported valuesaremeans±SE;p<0.05wastakenassignificant.

3. Results

Bilateral microinjections (n=7) of 5mM losartan (30–50nl; 150–250pmol) into thecaudal NTS didnot produceany effect

onthe coughresponse toboth mechanical and chemical stim-ulation of the tracheobronchial tree (Figs. 2 and 3; Table 1). In contrast, bilateral microinjections (n=7) of 1mM lisinopril (30–50nl;30–50pmol)increasedthenumberofcoughsinduced bymechanicalandchemicalstimulationsofthetracheobronchial tree(Figs.2and3;Table1).Theseeffectswerealreadyapparenton mechanically-inducedcoughwithin∼5minandwerefully devel-opedforbothtypesofstimulationat∼30minafterthecompletion ofthemicroinjections.Cough-relatedvariables resumedcontrol valueswithin60min.

Sincelisinopril-inducedcoughpotentiationcouldbelinkedto anaccumulationofbradykinin(Balietal.,2014;Foxetal.,1996; Moreauxetal.,2001),bilateralmicroinjections(n=7)of0.05mM bradykinin(30–0nl;1.5–2.5pmol)wereperformedintothecaudal NTS.About10minafterthemicroinjections(maximumeffect),the coughnumberincreasedfrom3.13±0.40to4.33±0.35(p<0.001) duringmechanicalstimulationandfrom3.71±0.42to5.86±0.45 (p<0.001)duringchemicalstimulation(seealsoFig.4).Nochanges intheothercough-relatedvariableswereobserved(notshown). Therecoveryoccurredwithin∼60min.Accordingly, microinjec-tionsof 0.2mM HOE-140 (30–50nl;6–10pmol) into the same caudalNTSsitesperformed∼30minafterlisinopril(n=5)reverted within∼10minlisinopril-inducedpotentiationofthecoughreflex (Fig.5A).

ToverifywhethersubstanceP accumulationisalsoinvolved in the lisinopril-induced potentiation of the cough reflex (Bali

(5)

Fig.3. Influencesof5mMlosartanand1mMlisinoprilmicroinjectedintotheselectedsitesofthecaudalNTSoncoughreflexresponseselicitedbycitricacidinhalationin anesthetizedspontaneouslybreathingrabbits.Originalrecordingsshowtheabsenceofappreciableeffects∼30minafterlosartanmicroinjectionsandthepotentiationof thecoughreflex∼30minafterlisinoprilmicroinjections(maximumeffect).Stimulationperiodsmarkedbyfilledbars.PhrIN:phrenicintegratedneurogram;PhrN:phrenic neurogram;AbdIEMG:abdominalintegratedelectromyographicactivity;AbdEMG:abdominalelectromyographicactivity.

etal.,2014;Moreauxetal.,2001;Tomakietal.,1996),wetriedto revertlisinopril-inducedeffectsbymicroinjectionsofCP-99,994, anNK1 receptorantagonist.Ithasalreadybeenshownthat sub-stancePmicroinjectedintothecaudalNTSmarkedlypotentiates coughreflexresponses(Mazzoneetal.,2005;Mutoloetal.,2007) while10mMCP-99,994microinjectedintothesamesiteabolishes them(Mutoloetal.,2008).Thus,wesearchedforaconcentration oftheNK1receptorantagonistthatinjectedintothecaudalNTS didnotcauseanyantitussiveeffectundercontrolconditions,but couldabolishlisinopril-induced potentiation.Aconcentrationof 1mMwasselectedinpreliminarytrials(n=4).Microinjectionsof

1mMCP-99,994(30–50nl;30–50pmol;n=5)intothesamecaudal NTSsitesexecuted∼30minafterlisinoprilblockedwithin∼10min lisinopril-inducedpotentiationofthecoughreflex(Fig.5B).

TheresultsshowthatboththeB2receptorantagonistandthe NK1 receptor antagonist areable to completelyabolish cough-potentiatingeffects (thefacilitatory effects onthecough reflex responses)inducedbylisinopril.Sincebradykininisknownto facil-itatethereleaseofsubstancePfromratsensoryneuronsinculture aswellasfromperipheralterminalsofcapsaicine-sensitive pri-maryafferents(forareview,seeCoutureetal.,2001),anattempt wasmadetoascertainwhetherbradykinincouldberesponsible

Table1

Cough-relatedvariablesduringmechanicalstimulationofthetracheobronchialtreeandcitricacidinhalationbeforeand∼30minafterbilateralmicroinjectionsof5mM losartan(n=7)and1mMlisinopril(n=7)intothecaudalNTS.

CN TT(s) TI(s) TE(s) PPA(RU) PAA(RU)

Mechanicalstimulation

Control 3.16±0.22 0.53±0.04 0.36±0.03 0.17±0.01 0.63±0.03 0.58±0.03

5mMLosartan 3.07±0.27 0.55±0.03 0.37±0.02 0.18±0.01 0.61±0.03 0.58±0.02

Control 2.81±0.19 0.55±0.03 0.37±0.02 0.18±0.01 0.62±0.02 0.57±0.04

1mMLisinopril 4.38±0.35* 0.56±0.02 0.38±0.02 0.17±0.01 0.66±0.03 0.57±0.03

Citricacidinhalation

Control 3.86±0.51 0.51±0.01 0.35±0.02 0.17±0.01 0.62±0.03 0.49±0.03 5mMLosartan 3.79±0.51 0.54±0.02 0.35±0.01 0.19±0.01 0.60±0.05 0.48±0.03 Control 3.43±0.48 0.55±0.02 0.37±0.02 0.18±0.01 0.61±0.03 0.50±0.03 1mMLisinopril 5.71±0.64* 0.56±0.03 0.38±0.03 0.17±0.02 0.62±0.05 0.49±0.02 Valuesaremeans±SE;n:numberofanimals;CN:coughnumber;TT:cycleduration;TI:inspiratorytime;TE:expiratorytime;PPA:peakphrenicactivityinrelativeunits

(RU);PAA:peakabdominalactivityinrelativeunits(RU).

(6)

14 E.Cinellietal./RespiratoryPhysiology&Neurobiology219(2015)9–17

Fig.4. Changesinducedby0.05mMbradykininmicroinjectedintotheselectedsitesofthecaudalNTSincoughreflexresponsesofoneanesthetizedspontaneouslybreathing rabbit.Potentiationofcoughresponsesinducedbymechanicalstimulationofthetracheobronchialtreeandbyinhalationof1Mcitricacid∼10minafterbilateral microin-jectionsofbradykinin.Onsetofmechanicalstimulation(arrows)andperiodsofcitricacidinhalation(filledbars)areindicated.PhrIN:phrenicintegratedneurogram;Phr N:phrenicneurogram;AbdIEMG:abdominalintegratedelectromyographicactivity;AbdEMG:abdominalelectromyographicactivity.

ofthe release of substanceP atthe levelof NTS.Thus, in four experiments bilateral microinjections of 0.05mM bradykinin (30–50nl; 1.5–2.5pmol) were performed∼5min afterbilateral microinjectionsof1mMCP-99,994(30–50nl;30–50pmol)intothe samecaudalNTSsites.About10minafterbradykinin microinjec-tions,thecough reflexwasnotpotentiated:the coughnumber remained fairly constant during mechanical stimulation (from 3.05±0.27to2.85±0.17;p>0.05)andduringchemicalstimulation (from4.10±0.31to3.87±0.37;p>0.05).

Althoughthemainfocusofourstudywasoncoughresponses, wealsoobservedthatbilateralmicroinjectionsoflosartan, lisino-prilorbradykinin intothecaudalNTSdidnotaffectrespiratory variablesduringeupneiccontrolbreathing(seee.g.,control recor-dings before reflex responses in Figs. 2–4; statistical data not shown).Similarly,noconsistentchanges inarterialblood pres-surewereobserved(meanarterialpressurewasalwaysbetween 96and105mmHg).Ageneralevaluationofcardiorespiratory vari-ables under control conditions has been provided in previous reports (Mutolo et al., 2007, 2008, 2009). The correspondence of lisinopril injection sites tothe NTSregions involved in car-diovascular regulation, where glutamate microinjections cause decreases in arterial blood pressure (e.g., Cheng et al., 2012; Mosqueda-Garcia et al., 1990), was also investigated. Bilateral microinjections of 20mM DLH (30–50nl;600–1000pmol),

per-formed in four preparations before lisinopril administration, consistentlydecreasedwithin3–4minmeanarterialblood pres-sure(−22.25±1.49mmHg;p<0.05).Theseinjectionsalsocaused increases in the respiratory rate (from 51.2±3.1 to 72.4±4.1 breaths/min; p<0.005) mainly due to decreases in TE (from 0.83±0.05 to 0.53±0.05 s; p<0.005) associated withthe sup-pression of the abdominal muscle activity. No attempts were made to elicit cough reflex responses during DLH-induced effects.

Infouradditionalpreparations,bilateralcontrolmicroinjections of1mMlisinoprilwereperformedatdifferentmedullarylocations sufficientlyfarfromtheresponsivesites(Cinellietal.,2013;Lipski etal.,1988;Mutoloetal.,2007,2008,2009,2012,2014;Nicholson, 1985;SykovaandNicholson,2008).Fourmicroinjectionsof1mM lisinoprilwereexecutedintoeachofthefollowingneural struc-tures (forcomparison, see Meessenand Olszewski, 1949; Shek etal.,1986):thenucleuscuneatusmedialis,thenucleustractus spinalisnervitrigeminiandtheregionlocated>0.8mmcaudalto theresponsiveNTSsites.Inallinstances,noappreciablechanges inthepatternofbreathingandcoughresponseswereobserved. InaccordancewiththeresultsofourpreviousstudiesontheNTS region(Mutoloetal.,2007,2008,2012,2014),controlinjectionsof equalvolumesofthevehiclesolutionattheresponsivesites(5trials

(7)

Fig.5. Blockadeofthelisinopril-inducedeffectsbythebradykininB2receptor antagonistHOE-140andtheNK1receptorantagonistCP-99,994microinjectedinto thecaudalNTS.A:histogramsshowingthenumberofcoughsinducedbymechanical andchemicalstimulationsundercontrolconditions,∼25minafter1mMlisinopril, and∼10minafter0.2mMHOE-140(n=5).B:histogramsshowingthenumberof coughsinducedbymechanicalandchemicalstimulationsundercontrolconditions, ∼25minafter1mMlisinoprilmicroinjections,and∼10minafter1mMCP-99,994 (n=5).Eachantagonistwasmicroinjected∼30minafterlisinopril,i.e.,duringthe maximumcough-potentiatingeffect.Valuesaremeans±SE.*p<0.001compared withcontrol;#p<0.001comparedwithlisinopril.ThecoughnumberafterHOE-140 orCP-99,994wasnotsignificantlydifferentfromcontrol.

performedin5differentpreparationsbeforedrugadministration) wereineffective.

Thelocalizationoftheinjectionsiteswasconfirmedbythe his-tologicalcontrol(fordetailsseealsoMutoloetal.,2007,2012).An exampleofthelocationoffluorescentbeadsmicroinjectedintothe caudalNTSisshowninFig.1.Thesamefigureillustratesthe local-izationofinjectionsitesonadorsalviewofthemedullaoblongata aswellasthedistributionofinjectionsiteswithinthecaudalNTS andsomecontrolregions.Onlythedistributionofsiteswhere1mM lisinoprilwasinjectedhasbeenreported.

4. Discussion

Thisstudyisthefirsttoprovideevidencethat,incontrastto losartan,theACEinhibitorlisinoprilmicroinjected intothe cau-dalNTSinducesapotentiationofthecoughreflexevokedbyboth mechanicalandchemicalstimulationofthetracheobronchialtree. Inouropinion,themainnoveltyofthepresentresultsisthatthey supportthenotionofacentralactionoflisinoprilthatinterferes withthecatabolismofbradykininandsubstancePatthelevelofthe caudalNTS,i.e.,atthelevelofaneuralstructurewithavery impor-tant,orevencrucial,roleinthemedullaryregulationofthisreflex (e.g.,Bolseretal.,2006;Bonhametal.,2004;CanningandMori, 2010,2011;Mazzoneetal.,2005;Mutoloetal.,2007,2008,2009, 2012).Inotherwords,theRAScanbesuggestedtobeinvolvedinthe centralcontrolofthecoughreflex.WhilesubstancePiswellknown

toupregulatethecoughreflexattheleveloftheNTS(Mazzoneetal., 2005;Mutoloetal.,2007),itseemsworthmentioningthatforthe firsttimeithasbeenshownthatalsobradykininwithinthecaudal NTSenhancescoughreflexresponses.

4.1. Methodologicalconsiderationandgeneralremarks

Wehavealreadydiscussedindetailsthereliabilityof microin-jections techniques and the characteristic of the spread of the injectate(Cinellietal.,2013;Mutoloetal.,2007,2008,2009,2012, 2014).Relativelyhighdrugconcentrations(mM)havebeenshown tobeasarulenecessarywhenusingmicroinjectiontechniques,as fullydiscussedinapreviousreport(Bongiannietal.,2002).The specificityofdrug-inducedeffectsissupportedbytheabsenceof changesincough-reflexresponsesinducedbybilateral microin-jectionsof thevehicle solutionintothecaudal NTS orby drug microinjections intoregions sufficientlyaway fromthe respon-sivesites.Foramoreexhaustiveappraisalanddiscussiononthe spread ofinjected drugs seealsoLipskietal., 1988;Nicholson, 1985;SykovaandNicholson,2008.Interestingly,changesinmean arterialbloodpressurethatmayaffectthecoughreflex(Poliacek etal.,2011)werenotobserved.Theabsenceofconsistentchanges inmeanarterialbloodpressurefollowingmicroinjectionsof losar-tanand lisinoprilis in agreementwithpreviousstudiesonthe effectsofdifferenttypesofACEinhibitorsorsartansmicroinjected intotheNTSofnormotensivecontrolanimals(Arnoldetal.,2010; ChitravanshiandSapru,2011;Katsunumaetal.,2003;Wangetal., 2007).Thelocalizationofresponsiveinjectionsiteswasconfirmed bythehistologicalcontrol.Itappearstocorrespondfairlywellto thatofNTSsitesofactionofagentsaffectingthecardiovascular system(e.g.,Arnoldet al.,2010;Chengetal.,2012; Mosqueda-Garciaetal.,1990;Tsengetal.,1996).Thiscorrespondencewas alsoconfirmedbyDLH-induceddepressorresponses.

4.2. Drug-inducedchangesinthecoughreflex

Theresultssupportourhypothesisthatlisinoprilcould potenti-atethecoughreflexatthecentrallevelthroughanaccumulationof protussivemediatorssuchasbradykininandsubstanceP.All com-ponentsnecessaryfortheformationandmetabolismofbradykinin and related kinins have been described in the brain, including the NTS(Bhoola et al., 1992; Diz,1985). In more detail, high-affinitybindingsitesforbradykininwerefoundintheNTS(Fior and Fuxe, 1995;Privitera et al.,1992).Thebiological effects of bradykinin are mediated by its interactions with two distinct bradykinin receptor subtypes, the bradykinin B1 and B2 recep-tors.Thebradykinin B1 receptoris expressedatverylow levels andhasalimiteddistributionundernormalconditions,butcan be induced and upregulated under certain pathological condi-tions (see e.g., Albert-Weissenberger et al., 2013).Of note, the bradykininB2receptorshavebeenfoundtobeexpressedinthe NTS(Muroneetal.,1997;Priviteraetal.,1992).Thiswasthereason whyweusedtheB2receptorantagonistHOE-140tocorroborate bradykinininvolvementinlisinopril-inducedeffects.Theabsence of bradykinin-inducedpressor effects isconsistent withsimilar resultsobtainedwithlisinoprilmicroinjectionsintothecaudalNTS thatactuallymayinducebradykininaccumulation.Onthecontrary, decreasesinmeanarterialbloodpressurehavebeenpreviously obtainedbymicroinjectionsofsimilardosesofbradykininintothe medialNTSoftherat.However,thesiteofthesemicroinjections appearstobefairlydifferent,locatedmorerostrallyatthelevelof theareapostrema(Caligiorneetal.,1996).

ThepeptidesubstancePdisplaysawidespreaddistributionin boththecentralandperipheralnervoussystem.Afterbindingto theNK1 receptors,substancePregulatesmany functionsin the central nervoussystem (fora review, see Munozand Covenas,

(8)

16 E.Cinellietal./RespiratoryPhysiology&Neurobiology219(2015)9–17 2014). In particular, at thelevel of the NTSan important role

ofsubstancePinthecentralplasticityinducedbyvagalafferent fibersaswellasincoughpotentiationhasbeensuggested(Bonham etal.,2004).Accordingly,substancePmicroinjectionsintothe cau-dalNTSpotentiatethecoughreflexinducedbybothmechanical andchemicalstimulationofthetracheobronchialtree(Mazzone etal.,2005;Mutoloetal.,2007),aneffectthatwascounteracted byintracerebroventricularadministrationofNK1receptor antago-nists(Mazzoneetal.,2005).TheantitussiveroleofNK1 receptor antagonismwas confirmedby theobservationthat microinjec-tionsof10mMCP-99,994intothecaudalNTSabolishedthecough reflexinducedbymechanicalstimulationofthetracheobronchial tree(Mutoloetal.,2008).Inthepresentstudy,relativelylow con-centrationsofthesameNK1receptorantagonistdidnotaffectthe coughreflexundercontrolconditions,butcounteracted lisinopril-inducedeffects,thussupportinganinvolvementofsubstancePin theirmediation.Inaddition,theresultsstronglysuggestthatthe completeblockadeoflisinopril-inducedcoughpotentiationeither bythebradykininB2 receptorantagonistorbytheNK1 receptor antagonistcouldbeduetoabradykinin-inducedreleaseof sub-stancePprobablyfromNTSsensoryneuronsorfromtheterminals ofprimaryafferentfibers.

Thepotentialsources of bradykinin totheNTS mayinvolve several sites in the central nervous system. Immunoreactive bradykinin-likeactivitywasdetectedinthehypothalamus, pitu-itary gland, cerebellum, cortex and, interestingly, also in the medullaoblongata(forareview,seeBhoolaetal.,1992alsofor fur-therRefs.).SubstancePmayoriginatefromdifferentsources,such asbronchopulmonaryC-fiberafferents,esophagealvagalafferents, trigeminalafferents,NTSinterneurons,andhigherbraincenters suchasmedullaryraphénuclei(forRefs.anddiscussiononthe pos-sibleroleofsubstancePseeMutoloetal.,2008).Thepresynaptic orpostsynapticsiteofactionofbradykininorsubstancePin deter-miningcoughpotentiationisamatterofspeculation.However,a probablepresynapticactionofbradykininonsensoryC-fibers lead-ingtosubstancePrelease(Bhoolaetal.,1992;Coutureetal.,2001) aswellasapostsynapticactionofsubstancePonNTSneuronsof thecoughafferentpathway(Bonhametal.,2004alsoforfurther Refs.)canbesuggested.Inagreementwiththisview,our exper-imentsshowthatthebradykinin-inducedpotentiationofcough reflexresponseswascompletelyabolishedbythepresenceofthe NK1receptorantagonistwithintheNTS.

Losartanmicroinjectionsdidnotaffectcoughreflexresponses, consistentlywithpreviousresultsobtainedbyi.v.administration (Mutoloetal.,2013).Thisoutcomestrengthensourinterpretation sinceitsinvolvementintheblockadeofAT1receptorscannotlead persetoanaccumulationofbradykininandsubstanceP.In addi-tion,theactivationofAT2receptorsbyangiotensinIImayinhibit ERK1/2activity(Fischeretal.,1998),aneffectthathasbeenproved todownregulatethecoughreflexatthelevelofthecaudalNTS (Mutoloetal.,2012).Further,theactivationofAT2receptorshas beensuggestedtohavearoleinthereleaseofendogenousopioids (Balietal.,2014)thatarewell-knowntoexertnotonlyanalgesic, butalsoantitussiveeffects(seee.g.Mutoloetal.,2008).In agree-mentwith ourinterpretation,evidencehasbeen provided that AT2receptorsarepresentintheNTS,includingitscaudalportion (Lenkeietal.,1997;LuohandChan,1998;Wangetal.,2012). Nev-ertheless,presentresultsdonotallowustoruleoutcompletely thatlosartanmicroinjectedintodifferentmedullaryareasmayhave someeffectsoncoughreflexresponses.

Consistently with our previous findings on ACE inhibitors (Mutoloetal.,2010,2013),thecoughnumberwastheonly vari-ableaffectedbylisinoprilandbradykinin.Theinterpretationofthis findingisobscure,butitcanberelatedtotheexistenceofa cen-tralgatingmechanismthatdoesnotparticipateinthecontrolof thebreathingpattern,butspecificallyregulatesthecough

num-ber(Bolser etal.,2006).By contrast,inpreviousstudiesbyour groupnotonlythecoughnumber,butalsotheintensityofother cough-relatedvariablesweremodifiedbyantitussivedrugs(Cinelli etal.,2013;Mutoloetal.,2007,2008,2009,2012,2014).However, thereasonsofthisdiscrepancyareatpresentonlyspeculative.

Inconclusion,theresultssupportourcontentionthatlisinopril, butnotlosartancausesapotentiationofthecoughreflexjustatthe levelofthecaudalNTS,themaincentralterminusofcough-related afferents,thusimplyingaroleoftheRASinthecentralregulation ofcough.TheprotussiveeffectsofACEinhibitorsmayberelated toanactiononNTSsensoryneuronsduetoabradykinin-induced releaseofsubstanceP.Sincebothpro-andantinociceptiveroles oftheRAShavealsobeendescribed(Balietal.,2014),wesuggest thatstudiesontheinvolvementoftheRASinpainandcough mod-ulationcouldleadtonoveltherapeuticapproachesespeciallyfor chronicpathologicalconditions.

Acknowledgements

This study was supported by grants from the Ministry of Education, University and Research. E. Cinelli is supported by a postdoctoral fellowship from the Fondazione Internazionale Menarini.

References

Albert-Weissenberger,C.,Siren,A.L.,Kleinschnitz,C.,2013.Ischemicstrokeand traumaticbraininjury:theroleofthekallikrein-kininsystem.Prog.Neurobiol. 101–102,65–82.

Aldred,G.P.,Chai,S.Y.,Song,K.,Zhuo,J.,MacGregor,D.P.,Mendelsohn,F.A.,1993. DistributionofangiotensinIIreceptorsubtypesintherabbitbrain.Regul.Pept. 44,119–130.

Arnold,A.C.,Isa,K.,Shaltout,H.A.,Nautiyal,M.,Ferrario,C.M.,Chappell,M.C.,Diz, D.I.,2010.Angiotensin-(1-12)requiresangiotensinconvertingenzymeand AT1receptorsforcardiovascularactionswithinthesolitarytractnucleus.Am. J.Physiol.HeartCirc.Physiol.299,H763–H771.

Bali,A.,Singh,N.,Jaggi,A.S.,2014.Renin-angiotensinsysteminpain:existingina doublelife.J.ReninAngiotensinAldosteroneSyst.15,329–340.

Berkin,K.E.,Ball,S.G.,1988.Coughandangiotensinconvertingenzymeinhibition. Br.Med.J.(Clin.Res.Ed)296,1279.

Bhoola,K.D.,Figueroa,C.D.,Worthy,K.,1992.Bioregulationofkinins:kallikreins kininogens,andkininases.Pharmacol.Rev.44,1–80.

Bolser,D.C.,Poliacek,I.,Jakus,J.,Fuller,D.D.,Davenport,P.W.,2006.Neurogenesis ofcough,otherairwaydefensivebehaviorsandbreathing:aholarchical system.Respir.Physiol.Neurobiol.152,255–265.

Bongianni,F.,Mutolo,D.,Carfi,M.,Pantaleo,T.,2002.Respiratoryresponsesto ionotropicglutamatereceptorantagonistsintheventralrespiratorygroupof therabbit.PflugersArch.444,602–609.

Bonham,A.C.,Sekizawa,S.I.,Joad,J.P.,2004.Plasticityofcentralmechanismsfor cough.Pulm.Pharmacol.Ther.17,453–457.

Caligiorne,S.M.,Santos,R.A.,Campagnole-Santos,M.J.,1996.Cardiovasculareffects producedbybradykininmicroinjectionintothenucleustractussolitariiof anesthetizedrats.BrainRes.720,183–190.

Canning,B.J.,Mori,N.,2010.Anessentialcomponenttobrainstemcoughgating identifiedinanesthetizedguineapigs.FASEBJ.24,3916–3926.

Canning,B.J.,Mori,N.,2011.Encodingofthecoughreflexinanesthetizedguinea pigs.Am.J.Physiol.Regul.Integr.Comp.Physiol.300,R369–R377.

Cheng,W.H.,Lu,P.J.,Ho,W.Y.,Tung,C.S.,Cheng,P.W.,Hsiao,M.,Tseng,C.J.,2010. AngiotensinIIinhibitsneuronalnitricoxidesynthaseactivationthroughthe ERK1/2-RSKsignalingpathwaytomodulatecentralcontrolofbloodpressure. Circ.Res.106,788–795.

Cheng,W.H.,Lu,P.J.,Hsiao,M.,Hsiao,C.H.,Ho,W.Y.,Cheng,P.W.,Lin,C.T.,Hong, L.Z.,Tseng,C.J.,2012.ReninactivatesPI3K-Akt-eNOSsignallingthroughthe angiotensinAT(1)andMasreceptorstomodulatecentralbloodpressure controlinthenucleustractussolitarii.Br.J.Pharmacol.166,2024–2035. Chitravanshi,V.C.,Sapru,H.N.,2011.Cardiovascularresponseselicitedbyanew

endogenousangiotensininthenucleustractussolitariusoftherat.Am.J. Physiol.HeartCirc.Physiol.300,H230–H240.

Cinelli,E.,Bongianni,F.,Pantaleo,T.,Mutolo,D.,2013.Suppressionofthecough reflexbyalpha2-adrenergicreceptoragonistsintherabbit.Physiol.Rep.1, e00122.

Couture,R.,Harrisson,M.,Vianna,R.M.,Cloutier,F.,2001.Kininreceptorsinpain andinflammation.Eur.J.Pharmacol.429,161–176.

Diz,D.I.,1985.Bradykininandrelatedpeptidesincentralcontrolofthe cardiovascularsystem.Peptides6(Suppl.2),57–64.

Fior,D.R.,Fuxe,K.,1995.Bradykininmodulationofalpha2-adrenoceptorsinthe nucleustractussolitariioftherat.Aninvitroautoradiographicalstudy. Neuropharmacology34,81–88.

(9)

Fischer,T.A.,Singh,K.,O’Hara,D.S.,Kaye,D.M.,Kelly,R.A.,1998.RoleofAT1and AT2receptorsinregulationofMAPKsandMKP-1byANGIIinadultcardiac myocytes.Am.J.Physiol.HeartCirc.Physiol.275,H906–H916.

Fox,A.J.,Lalloo,U.G.,Belvisi,M.G.,Bernareggi,M.,Chung,K.F.,Barnes,P.J.,1996. Bradykinin-evokedsensitizationofairwaysensorynerves:amechanismfor ACE-inhibitorcough.Nat.Med.2,814–817.

Kasparov,S.,Butcher,J.W.,Paton,J.F.,1998.AngiotensinIIreceptorswithinthe nucleusofthesolitarytractmediatethedevelopmentalattenuationofthe baroreceptorvagalreflexinpre-weanedrats.J.Auton.Nerv.Syst.74,160–168. Katsunuma,N.,Tsukamoto,K.,Ito,S.,Kanmatsuse,K.,2003.Enhanced

angiotensin-mediatedresponsesinthenucleustractussolitariiof spontaneouslyhypertensiverats.BrainRes.Bull.60,209–214.

Korpáˇs,J.,Tomori,Z.,1979.CoughandOtherRespiratoryReflexes.Karger,Basel, Switzerland.

Kubin,L.,Alheid,G.F.,Zuperku,E.J.,McCrimmon,D.R.,2006.Centralpathwaysof pulmonaryandlowerairwayvagalafferents.J.Appl.Physiol.101,618–627. Kubin,L.,Davies,R.O.,1995.Centralpathwaysofpulmonaryandairwayvagal

afferents.In:Hornbein,T.F.(Ed.),Regulationofbreathing,vol.79.79.Dekker, NewYork,pp.219–284.

Lenkei,Z.,Palkovits,M.,Corvol,P.,Llorens-Cortes,C.,1997.Expressionof angiotensintype-1(AT1)andtype-2(AT2)receptormRNAsintheadultrat brain:afunctionalneuroanatomicalreview.Front.Neuroendocrinol.18, 383–439.

Lipski,J.,Bellingham,M.C.,West,M.J.,Pilowsky,P.,1988.Limitationsofthe techniqueofpressuremicroinjectionofexcitatoryaminoacidsforevoking responsesfromlocalizedregionsoftheCNS.J.Neurosci.Methods26,169–179. Luoh,H.F.,Chan,S.H.,1998.ParticipationofAT1andAT2receptorsubtypesinthe

tonicinhibitorymodulationofbaroreceptorreflexresponsebyendogenous angiotensinsatthenucleustractussolitariiintherat.BrainRes.782,73–82. Mazzone,S.B.,Mori,N.,Canning,B.J.,2005.Synergisticinteractionsbetween

airwayafferentnervesubtypesregulatingthecoughreflexinguinea-pigs.J. Physiol.569,559–573.

McIntyre,M.,Caffe,S.E.,Michalak,R.A.,Reid,J.L.,1997.Losartan,anorallyactive angiotensin(AT1)receptorantagonist:areviewofitsefficacyandsafetyin essentialhypertension.Pharmacol.Ther.74,181–194.

Meessen,H.,Olszewski,J.A.,1994.ACytoarchitectonicAtlasofthe RhomboencephalonoftheRabbit.Karger,Basel.

Moreaux,B.,Advenier,C.,Gustin,P.,2001.Roleofbradykininandtachykininsin thepotentiationbyenalaprilofcoughinginducedbycitricacidinpigs. Fundam.Clin.Pharmacol.15,23–29.

Mosqueda-Garcia,R.,Tseng,C.J.,Appalsamy,M.,Robertson,D.,1990.

CardiovasculareffectsofmicroinjectionofangiotensinIIinthebrainstemof renalhypertensiverats.J.Pharmacol.Exp.Ther.255,374–381.

Munoz,M.,Covenas,R.,2014.InvolvementofsubstancePandtheNK-1receptorin humanpathology.AminoAcids46,1727–1750.

Murone,C.,Paxinos,G.,McKinley,M.J.,Oldfield,B.J.,Muller-Esterl,W., Mendelsohn,F.A.,Chai,S.Y.,1997.DistributionofbradykininB2receptorsin sheepbrainandspinalcordvisualizedbyinvitroautoradiography.J.Comp. Neurol.381,203–218.

Mutolo,D.,Bongianni,F.,Cinelli,E.,Fontana,G.A.,Pantaleo,T.,2008.Modulationof thecoughreflexbyantitussiveagentswithinthecaudalaspectofthenucleus tractussolitariiintherabbit.Am.J.Physiol.Regul.Integr.Comp.Physiol.295, R243–R251.

Mutolo,D.,Bongianni,F.,Cinelli,E.,Giovannini,M.G.,Pantaleo,T.,2012. SuppressionofthecoughreflexbyinhibitionofERK1/2activationinthe caudalnucleustractussolitariioftherabbit.Am.J.Physiol.Regul.Integr. Comp.Physiol.302,R976–R983.

Mutolo,D.,Bongianni,F.,Cinelli,E.,Pantaleo,T.,2009.Roleofexcitatoryamino acidsinthemediationoftracheobronchialcoughinducedbycitricacid inhalationintherabbit.BrainRes.Bull.80,22–29.

Mutolo,D.,Bongianni,F.,Evangelista,S.,Cinelli,E.,Pantaleo,T.,2010.Effectsof zofenoprilandramipriloncoughreflexresponsesinanesthetizedandawake rabbits.J.Cardiovasc.Pharmacol.Ther.15,384–392.

Mutolo,D.,Bongianni,F.,Fontana,G.A.,Pantaleo,T.,2007.Theroleofexcitatory aminoacidsandsubstancePinthemediationofthecoughreflexwithinthe nucleustractussolitariioftherabbit.BrainRes.Bull.74,284–293.

Mutolo,D.,Cinelli,E.,Bongianni,F.,Evangelista,S.,Pantaleo,T.,2013.Comparison betweentheeffectsoflisinoprilandlosartanonthecougnreflexin anesthetizedandawakerabbits.J.Physiol.Pharmacol.64,201–210. Mutolo,D.,Cinelli,E.,Bongianni,F.,Pantaleo,T.,2014.Inhibitorycontrolofthe

coughreflexbygalaninreceptorsinthecaudalnucleustractussolitariiofthe rabbit.Am.J.Physiol.Regul.Integr.Comp.Physiol.307,R1358–R1367. Nicholson,C.,1985.Diffusionfromaninjectedvolumeofasubstanceinbrain

tissuewitharbitraryvolumefractionandtortuosity.BrainRes.333, 325–329.

Paster,R.Z.,Snavely,D.B.,Sweet,A.R.,Draper,R.A.,Goldberg,A.I.,Soffer,B.A., Sweet,C.S.,1998.Useoflosartaninthetreatmentofhypertensivepatients withahistoryofcoughinducedbyangiotensin-convertingenzymeinhibitors. Clin.Ther.20,978–989.

Paul,M.,Poyan,M.A.,Kreutz,R.,2006.Physiologyoflocalrenin-angiotensin systems.Physiol.Rev.86,747–803.

Pediconi,D.,Martarelli,D.,Fontanazza,A.,Pompei,P.,2005.Effectsoflosartanand irbesartanadministrationonbrainangiotensinogenmRNAlevels.Eur.J. Pharmacol.528,79–87.

Poliacek,I.,Morris,K.F.,Lindsey,B.G.,Segers,L.S.,Rose,M.J.,Corrie,L.W.,Wang,C., Pitts,T.E.,Davenport,P.W.,Bolser,D.C.,2011.Bloodpressurechangesalter tracheobronchialcough:computationalmodeloftherespiratory-cough networkandinvivoexperimentsinanesthetizedcats.J.Appl.Physiol.111, 861–873.

Premer,C.,Lamondin,C.,Mitzey,A.,Speth,R.C.,Brownfield,M.S.,2013. ImmunohistochemicallocalizationofAT1a,AT1b,andAT2angiotensinII receptorsubtypesintheratadrenal,pituitary,andbrainwithaperspective commentary.Int.J.Hypertens175,428.

Privitera,P.J.,Daum,P.R.,Hill,D.R.,Hiley,C.R.,1992.Autoradiographicvisualization andcharacteristicsof[125I]bradykininbindingsitesinguineapigbrain.Brain Res.577,73–79.

Ranadive,S.A.,Chen,A.X.,Serajuddin,A.T.,1992.Relativelipophilicitiesand structural-pharmacologicalconsiderationsofvariousangiotensin-converting enzyme(ACE)inhibitors.Pharm.Res.9,1480–1486.

Rogerson,F.M.,Schlawe,I.,Paxinos,G.,Chai,S.Y.,McKinley,M.J.,Mendelsohn,F.A., 1995.Localizationofangiotensinconvertingenzymebyinvitro

autoradiographyintherabbitbrain.J.Chem.Neuroanat.8,227–243. Shek,J.W.,Wen,G.Y.,Wisniewski,H.M.,1986.AtlasoftheRabbitBrainandSpinal

Cord.Karger.

Sykova,E.,Nicholson,C.,2008.Diffusioninbrainextracellularspace.Physiol.Rev. 88,1277–1340.

Tan,J.,Wang,J.M.,Leenen,F.H.,2005.Inhibitionofbrainangiotensin-converting enzymebyperipheraladministrationoftrandolaprilversuslisinoprilinWistar rats.Am.J.Hypertens.18,158–164.

Tatar,M.,Hanacek,J.,Widdicombe,J.,2008.Theexpirationreflexfromthetrachea andbronchi.Eur.Respir.J.31,385–390.

Tomaki,M.,Ichinose,M.,Miura,M.,Hirayama,Y.,Kageyama,N.,Yamauchi,H., Shirato,K.,1996.Angiotensinconvertingenzyme(ACE)inhibitor-induced coughandsubstanceP.Thorax51,199–201.

Tseng,C.J.,Liu,H.Y.,Lin,H.C.,Ger,L.P.,Tung,C.S.,Yen,M.H.,1996.Cardiovascular effectsofnitricoxideinthebrainstemnucleiofrats.Hypertension27, 36–42.

Wang,G.,Coleman,C.G.,Glass,M.J.,Zhou,P.,Yu,Q.,Park,L.,Anrather,J.,Pickel, V.M.,Iadecola,C.,2012.AngiotensinIItype2receptor-couplednitricoxide productionmodulatesfreeradicalavailabilityandvoltage-gatedCa2+currents

inNTSneurons.Am.J.Physiol.Regul.Integr.Comp.Physiol.302, R1076–R1083.

Wang,W.Z.,Gao,L.,Pan,Y.X.,Zucker,I.H.,Wang,W.,2007.AT1receptorsinthe nucleustractussolitariimediatetheinteractionbetweenthebaroreflexand thecardiacsympatheticafferentreflexinanesthetizedrats.Am.J.Physiol. Regul.Integr.Comp.Physiol.292,R1137–R1145.

Widdicombe,J.,Fontana,G.,2006.Cough:what’sinaname.Eur.Respir.J.28, 10–15.

Wright,J.W.,Harding,J.W.,2011.Brainrenin-angiotensin—anewlookatanold system.Prog.Neurobiol.95,49–67.

Riferimenti

Documenti correlati

These scenarios are actively co-shaped and co-created by the actors (the interaction between the incumbent generation and successors). Incumbent generations expect some kind

Abstract: As a part of BIM4REN (Building Information Modelling based tools &amp; technologies for fast and efficient RENovation of residential buildings) H2020 project, the

L/E/N/G/UA/J/E/o: Dispositivo transatlántico de publicación &amp; republicación de textos del Seminario Euraca. Paula Pérez-Rodríguez,

Table V: COBAYN (BN using EFA) speedup w.r.t standard optimization levels (-O2 and -O3) and Random Iterative Compilation (RIC) and our previous approach of BN in [Ashouri et

Anti-angiotensin type 1 receptor antibodies associated with antibody mediated rejection in donor HLA antibody negative patients.. Philogene MC, Bagnasco S, Kraus ES,

��111�,,� :f PLEA� EDINBURGH 2017 Designed response: Informing future student inquiry using design frameworks and full-scale construction 2220 Kenneth Black

We suggest that the optimal ventilator management of patients with ARDS and intra- abdominal hypertension would include the following: (a) intra-abdominal, esophageal pressure, and

The large shear belt (former Posada-Asinara Line) that divides the HGMC to the north from the L-MGMC to the south, developed during the D 2 tectonic phase. The NW-SE trending