• Non ci sono risultati.

Uncovering the spatial pattern of invasion of the honeybee pest small hive beetle, Aethina tumida, in Italy

N/A
N/A
Protected

Academic year: 2021

Condividi "Uncovering the spatial pattern of invasion of the honeybee pest small hive beetle, Aethina tumida, in Italy"

Copied!
6
0
0

Testo completo

(1)

REVISTA

BRASILEIRA

DE

Entomologia

AJournalonInsectDiversityandEvolution

w w w . r b e n t o m o l o g i a . c o m

Biological

Control

and

Crop

Protection

Uncovering

the

spatial

pattern

of

invasion

of

the

honeybee

pest

small

hive

beetle,

Aethina

tumida,

in

Italy

Alessandro

Cini

a,∗

,

Ugo

Santosuosso

b

,

Alessio

Papini

a

aUniversitàdegliStudidiFirenze,DipartimentodiBiologia,viaMadonnadelPiano6,Florence,Italy

bUniversitàdegliStudidiFirenze,DipartimentodiMedicinaclinicaesperimentale,LargoBrambilla3,Florence,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19September2018

Accepted27November2018

Availableonlinexxx

AssociateEditor:EduardoAlmeida

Keywords:

Apismellifera

DBSCAN

Invasivealienspecies

Pestspecies

Spatialdynamics

Smallhivebeetle

Notifiabledisease

a

b

s

t

r

a

c

t

Thefasttrackingofinvasionspatialpatternsofalienspeciesiscrucialfortheimplementationof pre-ventiveandmanagementstrategiesofthosespecies.Recently,ahoneybeepest,thesmallhivebeetle Aethinatumida(hereafterSHB),hasbeenreportedinItaly,whereitcolonizedmorethan50apiariesinan areaofabout300km2.SHBisanestparasiteandscavengerofhoneybeecoloniesnativeofSub-Saharian

Africa.Likelybeinghelpedbytheglobalizationofapiculture,SHBunderwentseveralinvasionsinthelast twentyyears,causinglocallyrelevanteconomicimpact.Whilemanyfeaturesofitsbiologyhavebeen addressed,animportantknowledgegapconcernsthespatialinvasiondynamicsininvadedareas.Inthis paperwecoupledtwospatialanalysistechniques(geographicprofilingandadensity-basedspatial clus-teringalgorithm)touncoverthepossibleinvasionpatternofSHBinItaly.Weidentifiedtheporttown ofGioiaTauroasthemostlikelypointfromwhichSHBmayhavespreadandsuggestedthepossible successiveaxesofdiffusion.TheseputativediffusionpathssuggestthattheSHBspreadinsouthItaly mighthavebeenduetoamixofnaturaldispersalbetweencloseapiariesandlongerdistancemovement throughfaster,likelyhuman-mediated,communicationroutes.

©2018PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeEntomologia.Thisisan openaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/

).

Introduction

ThefasttrackingofthespatialpatternofInvasiveAlienSpecies (hereafterIAS) invasion innewareas rightaftertheirarrival is ofoverwhelmingimportanceinordertoadoptfruitfulpreventive strategiestoreducethespreadofIASintheinvadedareas, pre-vent possiblerecurrentintroductions and preparemanagement protocols(Hulmeetal.,2008).Aneffectiveandfastreactiontothe invasionisfacilitatedbytheidentificationofthepossiblespreading centre(s)andtheearlypost-invasiondiffusionpathways.

SHBisasub-Sahariancoleopteran,exotictoEurope,whichhas beendetectedinSouthItalysinceabout5years(Mutinellietal.,

2014;Palmerietal.,2015).Morerecently,newinvasionsofthis

pestwererecorded inBrazilwhere itappears tobestillatthe beginningofitsspread(Toufailiaetal.,2017).SHBisaparasiteand scavengerofhoneybeecolonies,andbothSHBlarvaeandadults feedonhoney,pollen,beelarvaeandalsoondeadadultbees(Ellis

etal.,2002;Neumannetal.,2016).Themainimpactonhoneybee

isrelatedtolarvaefeedingoncombs,whichsometimesmayresult

∗ Correspondingauthor.

E-mail:cini.ales@gmail.com(A.Cini).

ina complete collapseofthenest (Schmolke,1974).Additional damagesmayalsobeprovokedbySHBattackingstockedhoneybee products,suchascombsinstoragecontaininghoney(Elzenetal., 1999)and,potentially,spreadingofbeeviruses(Eyeretal.,2009). WhileSHBdoesnotrepresentarelevantpestspeciesinitsnative range,itcancausefrommoderatetobigimpactsininvadedareas

(NeumannandElzen,2004;Spiewoketal.,2007).Finally,SHBhas

beensuggestedtobeabletoexploitcoloniesofotherApidae,such asbumblebeesandstinglessbees(SpiewokandNeumann,2006;

Hoffmannetal.,2008).

SHBmovedrepeatedlyacrossinternationalborders,leadingto aworldwidediasporathatbroughtittocolonizeseveralstatesin theU.S.,Australia,Korea,SouthAmericaandalsoinvadingCanada, evenifinthelattercountryfastdetection,movementrestrictions andpossiblyalsoclimaticconditionsallowedtoavoid

establish-ment(Lounsberryetal.,2010;AlToufailiaetal.,2017;Leeetal.,

2017).

Europe (where SHB is a honeybeenotifiable pest, Commis-sionDecision2004/216/EC)faced theriskofaninvasionforthe firstdocumentedtimein2004,whenSHBwasdetectedin Portu-galduringqueenbeeimportcontrolinthelaboratory(Murilhas, 2004)andrapidlydestroyed.In September2014SHBwasagain reportedinEurope,havingbeenspottedinthreehoneybeenucleus

https://doi.org/10.1016/j.rbe.2018.11.005

0085-5626/©2018PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeEntomologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://

(2)

coloniesin SouthItaly, nearthecoastlineof regionofCalabria, whereithasprobablyaccidentallyintroducedfromAfrica(Granato et al.,2017).SHB wasdetectedin 58 apiaries and one natural colony,spanningoveranareaofabout316km2 (Mutinellietal.,

2014).Newinfestedapiarieshavebeendetectedin2015,2016and

2017(http://www.izsvenezie.com/aethina-tumida-in-italy/), and

theinvasionisthusnotresolved.

Despiteresearcheffortsstronglyincreasedtheknowledgeon SHBduringthelastfewyears,manyknowledgegapsstillremain (Neumanetal.,2016).Amongthem,oneofthetopprioritiesisto understandtheinvasiondynamics,inparticularlythespatial pat-ternofdiffusionafterthearrivalinnewareas(NeumannandElzen,

2004).

Here,weproposeatwo-stepspatialanalysisinorderto iden-tifythepossiblepost-invasionspatialdynamicsofIASstartingfrom presence-onlyreports,usingtherecentinvasionofsmallhive bee-tleAethinatumidaMurray,1867(Coleoptera:Nitidulidae,hereafter SHB)asamodel.Thedetectionofspreadingcentres,inadditionto facilitatethepreventionofrecurrentIASintroduction,mayalso allowtheidentificationofthepossibleidiosyncraticfeaturesthat boostedtheinvasion(e.g.ecologicalrequirements).Startingfrom thespreadingcentre(s),diffusionmaythentakeplaceinseveral spatialways,beinginfluencedbytheecologicalneedsandlife his-torytraitsoftheIASaswellastheenvironmentalheterogeneityand possibleman-assisteddisplacement(Wilsonetal.,2009).Our anal-ysisaimsto(a)identifythemostlikelyspreadingcentre,(b)infer thelikelyearlypost-invasiondiffusionpathwaysofSHBinvasion inItalyand(c)provideamodelforotherinvasionsofA.tumidain othergeographicalareas.IASspreadingcentre(s)arethoseinvaded areas which more likely allowed the first successful establish-mentoftheIASandthankstowhichtheIASthenspreadtoother areas.

InordertoinferthepossibleinvasiondynamicsofSHBinItaly frompresencereports, wecoupledGeographicprofiling– here-afterGP–(Rossmo,2000),amodellingtechniquewidelyusedto inferspreadingcentreofinvasivespecies,togetherwitha density-basedspatial clustering algorithm (DBSCAN, Esteret al., 1996). Geographicprofiling(GP)isananalytictoolfortheidentification ofthegeometricaloriginoflinkedevents,whichhasbeenrecently appliedtoarangeofecologicalissues,amongwhichthe identifica-tionofthesourcepopulation(s)ofinvasivespeciesusingtheknown positionsoftheircurrentpopulations(Stevensonetal.,2012;Cini

etal.,2014;Faulkneretal.,2017;Papinietal.,2013,2017a,b),while

severalenhancementsofthemethodareunderstudyinorderto refinethereliabilityoftheanalysis(PapiniandSantosuosso,2017;

SantosuossoandPapini,2018).

TheDBSCANisaclusteringalgorithmdefinedasdensitybasedas itproducesclustersofpoints(onaplane)thataregroupedtogether accordingtotheconceptthateachpointoftheclustermustbeclose toatleastagivennumberpofotherpointsoftheclusterswithina givenradiusr(XuandWunsch,2005).DBSCANhasseveralfeatures thatseemadvantageousinbiological invasions,since itisquite robusttooutliers(Smithetal.,2002),minimallyaffectedbypoints orderinganditrequireslittleaprioriinformationaboutthedataset parametersvalues,suchasnumberandshapeoftheclusters(Smiti

andEloudi,2013),acasewhichistypicalofbiologicalinvasionsin

theirfirstyearsafterIASintroduction.

OuraimwastodrawthelikelyspatialpatternofSHBinvasionin Italy,thussettingthestageforfurtherimplementationofspecific monitoringprotocolsinthisarea.

Materialandmethods Datacollection

SHB presence data were retrieved from Mutinelli et al.

(2014)which providesthedata oftheNational Reference

Cen-treforApiculture(availableat

http://www.izsvenezie.it/aethina-tumida-in-italia/), collected during theapiary surveillance

pro-grammeafterthediscoveryofSHBinItaly.Briefly,asubsample oftheapiarypresentinaradiusof20and100kmfromthefirst reportwereinspected,andapiarywereconsideredinfestedifat leastonehiveshowedthepresenceofSHB,inanydevelopmental stage.Asgeoreferentiationofinfestedapiariesisnotfreely avail-ableduetoprivacyreasons,wegeoreferencedapiarysitedirectly fromthemap.Usingthisprocedureestimatedspatialaccuracywas 25metres,whichwasthusnotexpectedtoaffecttheresolution atwhichourspatialanalysiswasperformed(tenstohundredsof kilometres).Aswefocusontheveryearlypost-invasiondynamics inthearrivalzone(Calabriaregion)andweaimedat understand-ingpossibleaxesofdiffusionusingonlyearlypost-invasionsdata, wedidnottakeintoaccountthepresencereportfromSicily(one infected colonies in a 56-hives migratory apiary, likely due to humanhivetranslocation, Mutinelliet al.,2014), northe pres-encedatareferringto2015or2016surveys,anapproachalready used(Cinietal.,2014).Moreover,2015and2016datahavebeen collectedaftersanitarymeasures,suchashivedestruction,were performed,sothattheymightnotproperlyrepresenttheinitial spatialdynamicsofSHB.DataweremappedontheSouthItalymap (obtainedbytheopenaccesswebsitewww.openstreetmap.org). Identificationofthemostlikelyspreadingcentre:geographic profiling

GPusescoordinatesonamapoflinkedevents(e.g.locations whereanIAShasbeenreported)togenerateaprobabilitysurface, whichwillbesuperimposedontheoriginalmaptoproducethe so-calledgeoprofile.Suchgeoprofiles,basedonlyonpresencedata,do notprovidetheexactoriginoftheevents,butproducesdecreasing probabilitydensity,thusprioritizinggeographicalareas(Rossmo, 2000)wheremonitoringprotocolsshouldbeimplementedand tar-getedresearchescarriedout.WeusedthemodelforGeoprofiling analysisdescribedbyRossmo(2000)andmodified accordingto

Papinietal.(2013).Foreachpixelwithcoordinates(i,j)ofthe

tar-getarea,thescorefunction(p)iscalculatedasfollows(redrawn

fromStevensonetal.,2012):

Pij=k∗ c



n=1





(xi−xn)2+(yi−yn)2



f + (1−)∗B (f−g)



2B−



(xi−xn)2+(yi−yn)2



g

where: =

1, ifdistance > B 0, otherwise

ForapointPofcoordinates(i,j)theformulasumsthe prob-abilityacrossallthelocationswheretheinvadingorganismwas found.Thismodelisbasedontwocomponents:adistancedecay function(inwhichtheprobabilityofapresencereportdecreases asdistance fromtheinvasion site increases)and a bufferzone ofradiusB,withinwhichthelikelihoodincreaseswhendistance

(3)

Fig.1. GraphicalexplanationoftheDBscanalgorithm.Itemswithinagivendistance

(radius)r(indicatedascircles)fromatleastagivennumberp(threeintheexample)

ofotherpointsareassignedtothesamecluster(i.e.thebluecirclesallbelongtothe

sameclusterbecauseeachbluecircleiswithinagivenradiusrofthreeotherblue

circles).Thetwogreenitemscannotbeassignedtothebluecluster,sincetheyare

withindistancerfromfewerthanthreepointsofthebluecluster.Thereditemis

positionedatadistancethatis≥todistanceAandthereforeitdoesnotbelongto

thebluecluster.

increases.Thedistance-decayfunctioncanbeexplainedby disper-salcostswhilethebufferzonemaybeduetohabitatunsuitabilityof invasionsites.Stevensonetal.(2012)suggestedthatitis conceiv-abletousegeneral,taxonorhabitatspecificvaluesforthemodel parametersincaseswherenodataonthetargetspeciesexist.In ourcase,wechosemodelparametersaccordingtopreviously pub-lishedanalysesoninvertebrateinvasivespecies,suchasStevenson

etal.(2012)andCinietal.(2014).Sincewedonothaveany

infor-mationaboutthepossiblerealvaluesofthecrucialbufferzone radius(B)forthis orrelatedspecies,and sinceitmightdepend onseveralfactors(suchasdispersal ability,habitat heterogene-ity,etc.),weselectedthevaluesobtainedfortheonlyavailable insectspeciesfromStevensonetal.(2012)(Bvalues:0.38–0.42), which,scaledtoourmapwasaboutB=10(itisnot straightfor-wardtoobtainthisdata,sinceStevensonet al.didnotindicate howlargeisBinkmortheresolutionoftheirmap).Inorderto evaluatetherobustnessofthemodelwhenBvaries,weranthe analysisusingBvaluesrangingfromB=5toB=20 (correspond-ingtoa rangeof about0.125–5km),which spanned acrossthe valuesfoundforotherterrestrialflyinginsects(Stevensonetal., 2012,adaptedtothedifferentmapscale).Forthispurposeweused thepythonscriptwrittenbytheauthors:Geoprof205csv.pyon Bitbucket(https://bitbucket.org/ugosnt/alandugo/).

Identificationofthepossiblediffusionpathways:clusteranalysis anddensitymaps

TheDBSCANalgorithmwasusedtoproduceclustersofpoints correspondingto observations on theused map. The points of a given cluster must beclose to at least a given number p of other points within a given radius r (Xu and Wunsch, 2005) (Fig.1).Inordertoseparatedifferentclustersofobservationswe usedthefollowingalgorithmsimplemented inpython: Kmeans (number of clusters assessed with Silhouette) (Python script Kmeanssil002.py)withthefollowingspaceVoronoitessellation asproposedindetailbySantosuosso andPapini(2016)andthe Density-basedspatialclustering(DBSCAN),asdefinedbyEsteretal.

(1996). DBSCANwas implementedin Python as dbscan1.0.0.py

andafterpreliminarytrialsweusedr=6(pixels),corresponding toabout100mand p=5 (numberofpoints tobefoundwithin theradius)asparameters.Finally,inordertoinferpossiblespatial invasiondynamics,wecoupledGPandDBSCANresultsbydrawing theputativeinvasiondirectionsconsideringasastartingpointthe

centreoftheidentified95%spreadingareasidentifiedbytheGP andthetipofeachdirectionarrowsasthecentreofmassofeach clusteridentifiedbyDBSCANmethod.

Results

TheGPanalysisidentifiedanareaofabout27km2onthecoast,

north/northeast ofthe townof GioiaTauroas the95%(in red) mostlikelyspreadingcentreofSHBinSouthItaly(Fig.2a)onthe basisoftheinfectedapiaries.Overlappingtheareaidentifiedby GPasthespreadingcentre,usingasinputsourcesinfectedapiary onlyorbothinfectedandnoninfectedapiary(nullmodel,Fig.2b), showedthatthesecondareaof95%probability(inred)oforigin, waslocatedinamorenorthernpositionwithrespecttothefirst (onlyinfectedapiaries),suggestingthattheareaidentifiedbyGP wasnotsimplyreflectingapiarydensity.Theintersectionbetween thetwoareasisshowninFig.2canditcorrespondstolessthan 4%ofthetotalnumberofredpixels,whichcanbeconsidereda significantdifference.GPresultsarerobust,asvaryingtheBvalue, theresultaboutthelocalizationoftheareaofhighestprobability ofspreadingcentredidnotvarymorethanfewpixels(datanot shown).

DBSCANclusterizationassigned the57 casesofinfected api-aries tothree clustersand identified17 apiariesasoutliers(i.e. notnecessarilybelongingtoanycluster).Twoofthethree clus-tersfallindeedattheborderofthespreadingcentreidentifiedby theGPapproach(compareFig.2withFig.3).Thethirdone(as pur-pleovalsinFig.3)isabout10kmsouthwardfromGioiaTauroand about15fromtheputativespreadingcentre,asidentifiedbyGP. Consideringthiscoupledanalysis,itseemsverylikelythatamain axisofSHBspread,pointingsouthward,canbeidentified(Fig.3a andb).

Discussion

Theidentifiedareaofabout27km2 aroundthePortofGioia

TauroasthemostlikelyspreadingcentreofSHBinItalysupports thestrictrelationshipofthisinvasionwiththepresenceofoneof themostimportantportsinSouthItaly.

Theposition ofthethree main clustersof SHB identifiedby the DBSCAN analysis showed that while two are close to the supposed spreading centre (tentatively identifiedwith GP), the thirdoneispositioned15kmsouthward.Thiscoupledapproach thussuggests(a)thataport,GioiaTauro,mightbetheentrance, and (b) that SHB might have had three main diffusion direc-tions,withdifferenteasinessofpenetrationalongdifferentspatial gradients.

Theimportanceofmarineportsaslikely pointsofIASentry hasbeenwidelyrecognized(Kelleretal.,2011;McCulloughetal., 2006).Travelers’baggage,cargoandtradeitemsmayeasily intro-duceexoticinvertebratesandplantweedsfromallovertheworld. Severalalieninsectsareindeedsuspectedofhavingspreadinto newareasdiffusingfrommarineporttown.Itisthecaseof wood-boringbeetles(Haack,2001)andofthesmallfruitpestDrosophila suzukii(Cinietal.,2014).Indeed,thepossibilitythatSHBmight alsoenterthroughportshasbeenproposedfortheUSAEast-coast andAustraliainvasions(Hood,2004)andwasalreadysuggested forItaly(Mutinellietal.,2014).OurGPapproachstronglysupports thissuggestion.

Thefindingof twovery closeclustersand onemoredistant southern cluster suggeststhat SHB Italian invasion might have proceededthankstoamixofleading-edgedispersal(i.e.diffusive spread from the edge of the invasion range, likely driven by naturaldispersal)andjumpdispersal(long-distancedispersalover substantial distances likely due to accidental human mediated

(4)

Fig.2.Identificationofthepossiblediffusioncentre.(a)The95%mostlikelyspreadingcentreisinredandcorrespondstotheresultsofthegeographicprofiling(GP)applied

onlytotheinfectedapiaries;(b)anullmodel,withGPresults(theredareas)basedonalltheapiariespresentinthearea,bothinfectedanduninfected.Theredareais

localizedinamorenorthernareawithrespectto(a);(c)intersectionoftheredareas(a)and(b).Sincetheintersectionislessthan5%(inourcasethedifferenceis4%orless)

ofthetotalredarea,wecanconsiderthedifferenceassignificant.Thebluepointscorrespondtouninfectedapiariesandredpointstoinfectedapiaries.(c)ispositionedin

themiddlebetween(a)and(b)tobettershowtheintersection.×300,000.

Fig.3. PossiblespreadingpathwaysfromtheidentifiedspreadingcentrearemappedintheinvadedregiononthebasisofthealgorithmDBSCAN.Thepinkandbluelines

representtheVoronoitessellationofthespaceaftertheKmeansanalysisforthreeclusters(checkedwithSilhouettemethod,seethetext).Thedashedarrowsconnectthe

centroidoftheclustersandshouldgivesuggestionsabouttheaxesofdiffusion.(a)ResultsoftheGPanalysis.(b)Representationoftherecordedobservations(infection

cases)ontheterritorywiththerepresentativesofthedifferentclustershighlightedwithdifferentcolours.Thebluepointscorrespondtouninfectedapiaries.×250,000.

transport), in agreement with previous findings (Hood, 2004;

Spiewoketal.,2008).WemustalsoconsiderthatwindsinCalabria

blowmostcommonlynorthwardfromsouthandsoutheastregions

(FratianniandAcquaotta,2017),andthethirdmostdistantcluster

ispositionedjustsouthtothefirsttwo.Hence,dispersalappears tobeintheoppositedirectionwithrespecttothesiroccowind. Moreover,intheareaofthethirdclusternomainroadispresent, henceapparentlythespreadingwasdue toshortdistancelocal movements.Theproposalofaspreadingmodelwithbeekeepers infesting their other apiaries through ‘unintentional transfer’ was called “distance and ownership model” (EFSA, 2015) and thismodelofspreadingwouldbesupportedbyourdata.Onthe contrarythe first two northern clustersare in industrial areas wherethehumanpresenceisverycommon:herethespreading occurredatrelativelylowdistance(lessthan1km)and maybe

due partly to thenatural movement of the pest and partly by accidentaltransportbyhumanactivity.

Policiestoreducetheriskoffurtherspreadingofthepestmaybe hencecentredmainlyontheregulationoftheactivityofbeekeepers proposingguidelinesaimingtoreducethetransferofmaterialfrom onehivetoanotherortotransporthivesfromoneareatoanother. Aswithanymodellingapproach,GPhassomelimitations.First, itsreliabilityreflectstheaccuracyofpresencedata.Unfortunately, standardizedpresencedataareverydifficulttoobtainforinvasive speciesrightaftertheirinvasion.IntheSHBcasepresentedhere, contrarytowhatusuallyhappenswithmanyIAS,thepestspecies wasalreadyrecognizedasahoneybeenotifiablepest (Commis-sionDecision2004/216/EC),sothatveterinaryservicesrapidlyput inplaceastandardizedsurveyinawideareaaroundthefirstSHB reports(Mutinellietal.,2014),whichresultedinareliabledatabase,

(5)

thusprovidingstrengthtoourmodellingapproach.Asecond pos-siblesourceofbiasedsamplingisrepresentedbytheabilityofSHB tosurviveonnon-honeybeerelatedresources,suchasrottenand fermentingfruitsorotherspecies(suchasbumblebees,Hoffmann etal.,2008),whichmightrepresentarefugeforSHBallowing fur-therre-infestations(NeumannandElzen,2004).However,sofar noSHBhasbeendetectedonrottenfruitsinafieldinvestigation carriedoutintheinfestedareabetween2014and2015suggesting thatfermentingfruitsdonotrepresentapossiblealternativefood resourceforSHBinCalabria(Mutinellietal.,2015).However,ithas beenshownthatthesealternativeresourcesarelesspreferredand lesssuccessfulfoodsources,thatalsoreduceSHBfitness(Ellisetal., 2002),sothatweareconfidentthattheuseddatasetrepresenta reliablepresencedataset.

Despite these possiblelimitations, we thus believethat our resultsprovideafirstreliablehypothesisofSHBinvasiondynamics inItaly,supportingthehypothesisofaseaportmediatedinvasion

(Mutinellietal.,2014forItaly,andHood,2004forUSandAustralia),

andfurtherhighlightingtheroleofseaportsasIASintroduction sites(Macketal.,2000).TheVoronoitessellationandthedashed lineslinkinggroupsofobservations(seeFig.3a)shouldrepresent anestimateofthespreadingdirection,whilethedistancefromthe hypothesizedpointoforigin,relatedtotheguessedtimeofarrival ofSHB,shouldgiveanideaaboutthespeedofthediffusionitself intheterritory.

Moregenerally,webelieveourresultsshowthatthecouplingof GPandDBSCANmightrepresentapromisingandrapidapproach tousethesedatatoprioritizeareas,insideIASinvadedranges,in whichtofocusfuturemonitoringandmanagingefforts.

Thisanalysismaybeusedefficientlyinareaswheretheinvasion isstillatthebeginningasinBrazil(AlToufailiaetal.,2017),inorder tobetterunderstandthecausesoftheinvasionanditsspreading directionsinordertoundertakesuitableactions.

Compliancewithethicalstandards

Thisarticledoesnotcontainanystudieswithhumanorother animalparticipantsperformedbyanyoftheauthors.

Authorcontributionstatement

AC,USandAPconceivedresearch.ACcollectedthedata.AC,US andAPanalyzedthedata.ACwrotethemanuscript.Allauthors readandapprovedthemanuscript.

Conflictofinterest

Theauthorsdeclarenoconflictsofinterest. References

AlToufailia,H.,Alves,D.A.,Benà,D.deC.,Bento,J.M.S.,Iwanicki,N.S.A.,Cline,A.R.,

Ellis,J.D.,Ratnieks,F.L.W.,2017.Firstrecordofsmallhivebeetle,Aethinatumida

Murray,inSouthAmerica.J.ApiculturalRes.56(1),76–80.

Cini,A.,Anfora,G.,Escudero-Colomar,L.A.,Grassi,A.,Santosuosso,U.,Seljak,G.,

Papini,A.,2014.TrackingtheinvasionofthealienfruitpestDrosophilasuzukii

inEurope.J.PestSci.87(4),559–566.

EFSAPanelonAnimalHealthandWelfare(AHAW),2015.Survival,spreadand

estab-lishmentofthesmallhivebeetle(Aethinatumida).EFSAJ.13(12),4328.

Ellis,J.D.,Neumann,P.,Hepburn,R.,Elzen,P.J.,2002.Longevityandreproductive

successofAethinatumida(Coleoptera:Nitidulidae)feddifferentnaturaldiets.J. Econ.Entomol.95(5),902–907.

Elzen,P.J.,Baxter,J.R.,Westervelt,D.,Randall,C.,Delaplane,K.S.,Cutts,L.,Wilson,

W.T.,1999.Fieldcontrolandbiologystudiesofanewpestspecies,Aethina

tumidaMurray(Coleoptera,Nitidulidae),attackingEuropeanhoneybeesinthe WesternHemisphere.Apidologie30,361–366.

Ester,M.,Kriegel,H.P.,Sander,J.,Xu,X.,1996.Adensity-basedalgorithmfor

dis-coveringclustersinlargespatialdatabaseswithnoise.In:Simoudis,E.,Han,J., Fayyad,U.(Eds.),Proceedingsofthe2ndInternationalConferenceonKnowledge DiscoveryandDataMining.AAAIPress,pp.226–231.

Eyer,M.,Chen,Y.P.,Schäfer,M.O.,Pettis,J.,Neumann,P.,2009.Smallhivebeetle,

Aethinatumida,asapotentialbiologicalvectorofhoneybeeviruses.Apidologie 40(4),419–428.

Faulkner,S.C.,Verity,R.,Roberts,D.,Roy,S.S.,Robertson,P.A.,Stevenson,M.D.,Le

Comber,S.C.,2017.Usinggeographicprofilingtocomparethevalueofsightings

vstrapdatainabiologicalinvasion.Divers.Distrib.23(1),104–112.

Fratianni,S.,Acquaotta,F.,2017.TheclimateofItaly.In:Soldati,M.,Marchetti,M.

(Eds.),LandscapesandLandformsofItaly.WorldGeomorphologicalLandscapes. Springer,Cham.

Granato,A.,Zecchin,B.,Baratto,C.,Duquesne, V.,Negrisolo,E.,Chauzat, M.P.,

Mutinelli,F.,2017.IntroductionofAethinatumida(Coleoptera:Nitidulidae)

in the regions of Calabria and Sicily (southern Italy). Apidologie 48 (2), 194–203.

Haack, R.A., 2001. Intercepted Scolytidae (Coleoptera) at US ports of entry:

1985–2000.Integr.PestManage.Rev.3–4,253–282.

Hoffmann,D.,Pettis,J.S.,Neumann,P.,2008.Potentialhostshiftofthesmallhive

beetle(Aethinatumida)tobumblebeecolonies(Bombusimpatiens).InsectesSoc. 55(2),153–162.

Hood,W.M.,2004.Thesmallhivebeetle,Aethinatumida:areview.BeeWorld85

(3),51–59.

Hulme,P.E.,Bacher,S.,Kenis,M.,Klotz,S.,Kühn,I.,Minchin,D.,Nentwig,W.,Olenin,

S.,Panov,V.,Pergl,J.,Pyˇsek,P.,Roques,A.,Sol,D.,Solarz,W.,Vilà,M.,2008.

Grasp-ingattheroutesofbiologicalinvasions:aframeworkforintegratingpathways intopolicy.J.Appl.Ecol.45(2),403–414.

Keller,R.P.,Drake,J.M.,Drew,M.B.,Lodge,D.M.,2011.Linkingenvironmental

con-ditionsandshipmovementstoestimateinvasivespeciestransportacrossthe globalshippingnetwork.Divers.Distrib.17(1),93–102.

Lee,S.,Hong,K.J.,Cho,Y.S.,Choi,Y.S.,Yoo,M.S.,Lee,S.,2017.Reviewofthesubgenus

AethinaErichsons.str.(Coleoptera:Nitidulidae:Nitidulinae)inKorea,reporting recentinvasionofsmallhivebeetle,Aethinatumida.J.Asia-PacificEntomol.20 (2),553–558.

Lounsberry,Z.,Spiewok,S.,Pernal,S.F.,Sonstegard,T.S.,Hood,W.M.,Pettis,J.,

Neu-mann,P.,Evans,J.D.,2010.WorldwidediasporaofAethinatumida(Coleoptera:

Nitidulidae),anestparasiteofhoneybees.Ann.Entomol.Soc.Am.103(4), 671–677.

Mack,R.N.,Simberloff,D.,MarkLonsdale,W.,Evans,H.,Clout,M.,Bazzaz,F.A.,2000.

Bioticinvasions:causes,epidemiology,globalconsequences,andcontrol.Ecol. Appl.10(3),689–710.

McCullough,D.G.,Work,T.T.,Cavey,J.F.,Liebhold,A.M.,Marshall,D.,2006.

Intercep-tionsofnonindigenousplantpestsatUSportsofentryandbordercrossings overa17-yearperiod.Biol.Invasions8(4),611–630.

Murilhas,A.M.,2004.AethinatumidaarrivesinPortugal.Willitbeeradicated?

EurBeeNewsletter2,7–9.

Mutinelli,F.,Federico,G.,Carlin,S.,Montarsi,F.,Audisio,P.,2015.Preliminary

inves-tigationonotherNitidulidaebeetlesspeciesoccurringonrottenfruitinReggio Calabriaprovince(south-westernItaly)infestedwithsmallhivebeetle(Aethina tumida).J.ApiculturalRes.54(3),233–235.

Mutinelli,F.,Montarsi,F.,Federico,G.,Granato,A.,MaroniPonti,A.,Grandinetti,G.,

Chauzat,M.P.,2014.DetectionofAethinatumidaMurray(Coleoptera:

Nitiduli-dae.)inItaly:outbreaksandearlyreactionmeasures.J.ApiculturalRes.53(5), 569–575.

Neumann,P.,Elzen,P.J.,2004.Thebiologyofthesmallhivebeetle(Aethinatumida,

Coleoptera:Nitidulidae):gapsinourknowledgeofaninvasivespecies. Apidolo-gie35,229–247.

Neumann,P.,Pettis,J.S.,Schäfer,M.O.,2016.QuovadisAethinatumida?Biologyand

controlofsmallhivebeetles.Apidologie47,427–466.

Palmeri,V.,Scirtò,G.,Malacrinò,A.,Laudani,F.,Campolo,O.,2015.Ascientificnote

onanewpestforEuropeanhoneybees:firstreportofsmallhivebeetleAethina tumida,(Coleoptera:Nitidulidae)inItaly.Apidologie46(4),527–529.

Papini,A.,Santosuosso,U.,2017.Snow’scaserevisited:newtoolingeographic

profilingofepidemiology.Braz.J.Infect.Dis.21(1),112–115.

Papini,A.,Signorini,M.A.,Foggi,B.,DellaGiovampaola,E.,Ongaro,L.,Vivona,L.,

Santosuosso,U.,Tani,C.,Bruschi,P.,2017b.Historyvs.legend:retracinginvasion

andspreadofOxalispes-capraeL.inEuropeandtheMediterraneanarea.PLoS One12(12),e0190237.

Papini,A.,Mosti,S.,Santosuosso,U.,2013.Trackingtheoriginoftheinvading

Caulerpa(Caulerpales,Chlorophyta)withgeographicprofiling,acriminological techniqueforakilleralga.Biol.Invasions15(7),1613–1621.

Papini,A.,Rossmo,D.K.,LeComber,S.C.,Verity,R.,Stevenson,M.D.,Santosuosso,U.,

2017a.Theuseofjackknifingfortheevaluationofgeographicprofiling

reliabil-ity.Ecol.Informatics38,76–81.

Rossmo,D.K.,2000.GeographicProfiling.CRCPress,BocaRaton,FL.

Santosuosso,U.,Papini,A.,2018.Geo-profiling:beyondthecurrentlimits.A

pre-liminarystudyofmathematicalmethodstoimprovethemonitoringofinvasive species.Russ.J.Ecol.49(4),362–370.

Santosuosso,U.,Papini,A.,2016. Methodsfor geographicprofiling of

biologi-calinvasionswithmultipleoriginsites.Int.J.Environ.Sci.Technol.13(8), 2037–2044.

Schmolke,M.D.,1974.AStudyofAethinatumida:TheSmallHiveBeetle.University

ofRhodesia,Rhodesia,pp.178.

Smith,R.,Bivens,A.,Embrechts,M.,Palagiri,C.,Szymanski,B.,2002.Clustering

approachesforanomaly-basedintrusiondetection.In:Proceedingsofthe Intel-ligentEngineeringSystemsThroughArtificialNeuralNetworks.ASMEPress,pp. 579–584.

Smiti,A.,Eloudi,Z.,2013.SoftDBSCAN:improvingDBSCANclusteringmethodusing

(6)

Spiewok,S.,Neumann,P.,2006.Infestationofcommercialbumblebee(Bombus impa-tiens)fieldcoloniesbysmallhivebeetles(Aethinatumida).Ecol.Entomol.31(6), 623–628.

Spiewok,S.,Duncan,M.,Spooner-Hart,R.,Pettis,J.S.,Neumann,P.,2008.Smallhive

beetle,Aethinatumida,populationsII:dispersalofsmallhivebeetles.Apidologie 39(6),683–693.

Spiewok,S.,Pettis,J.S.,Duncan,M.,Spooner-Hart,R.,Westervelt,D.,Neumann,P.,

2007.Smallhivebeetle,Aethinatumida,populationsI:infestationlevelsof

hon-eybeecolonies,apiariesandregions.Apidologie38(6),595–605.

Stevenson,M.D.,Rossmo,D.K.,Knell,R.J.,LeComber,S.C.,2012.Geographicprofiling

asanovelspatialtoolfortargetingthecontrolofinvasivespecies.Ecography 35,1–12.

Wilson,J.R.,Dormontt,E.E.,Prentis,P.J.,Lowe,A.J.,Richardson,D.M.,2009.

Some-thinginthewayyoumove:dispersalpathwaysaffectinvasionsuccess.Trends Ecol.Evol.24(3),136–144.

Xu,R.,Wunsch,D.,2005.Surveyofclusteringalgorithms.IEEETrans.Neural

Riferimenti

Documenti correlati

La rivoluzione culturale determinata dal contatto prolungato con i classici e con i loro volgarizzamenti non trasformò, infatti, solo gli stili politici dei gruppi dirigenti

(a): bar plot showing gold clusters density in CTRL and NMDA stimulated neurons; (b): bar plot showing clusters size (number of gold particles/cluster) in CTRL and NMDA

The Bio-RA study is a sub-study of the Endothelial Dysfunction Evaluation for Coronary Heart Disease Risk Estimation in Rheumatoid Arthritis study (EDRA study. Inclusion criteria

Index Terms—Antenna, near-field antenna, radio frequency identification (RFID), ultra high frequency (UHF), RFID reader, near- field region, segmented loop antenna,

One advantage of the INVALSI data over the PISA data is that in the former information on students’ mark assigned by teachers is derived from

100 – artificiosamente dissimulate e/o colpite per effetto di misure sanzionatorie – id est confisca – normativamente previste, nonché il concreto pregiudizio morale

una formazione con un suffisso – ULUS /- ULA , diminutivo, e con una prima parte, GARIT -. Tanto è vero che, secondo il dizionario Pons/Genre, proprio garitto, priva di suffisso,

The study of the origin of life in the universe is the basis of this project, which investigates prebiotic chemistry in various possible scenarios, whether in polar