• Non ci sono risultati.

Trace map and regularity of finite extensions of a DVR

N/A
N/A
Protected

Academic year: 2021

Condividi "Trace map and regularity of finite extensions of a DVR"

Copied!
12
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Journal

of

Number

Theory

www.elsevier.com/locate/jnt

Trace

map

and

regularity

of

finite

extensions

of a DVR

Fabio Tonini

Freie Universität Berlin, FB Mathematik und Informatik, Arnimallee 3, Zimmer 112A, 14195 Berlin, Germany

a r t i c l e i n f o a b s t r a c t

Article history: Received10May2016

Receivedinrevisedform20August 2016

Accepted22August2016 Availableonline8October2016

CommunicatedbyD.Goss Keywords: Regularity Tracemap Ramificationindex Tame

Weinterprettheregularity of a finite andflat extensionof a discrete valuation ring in terms of thetrace map of the extension.

©2016ElsevierInc.Allrightsreserved.

1. Introduction

LetR bearingand A beanR-algebra whichisprojective andfinitely generated as

R-module. We denote by trA/R: A −→ R the trace map and by trA/R: A −→ A∨ =

HomR(A,R) the map a −→ trA/R(a· −). It is a well known result of commutative

algebra that the étaleness of the extension A/R isentirely encoded in the trace map trA/R: A/R is étale if and only if the map trA/R: A −→ A∨ is an isomorphism (see

[Gro71,Proposition4.10]).Inthiscase,ifR isaDVR(discretevaluationring)itfollows

E-mail address:tonini@zedat.fu-berlin.de. http://dx.doi.org/10.1016/j.jnt.2016.08.019 0022-314X/©2016ElsevierInc.Allrightsreserved.

(2)

thatA is regular(thatisaproductofDedekinddomains), whiletheconverseisclearly nottruebecauseextensions ofDedekinddomainsareoftenramified.

InthispaperweshowhowtoreadtheregularityofA intermsofthetracemaptrA/R.

In order to express our result we need some notations and definitions. Let us assume from nowonthattheringR isaDVRwithresiduefieldkR.Wefirstextendthenotion

of tameextensionsand ramificationindex:givenamaximalidealp ofA weset

e(p, A/R) = dimkR(Ap⊗RkR)

[k(p) : kR]

wherek(p)= A/p,andwecallittheramificationindex ofp intheextensionA/R.Notice thate(p,A/R)∈ N (seeLemma 2.3).WesaythatA/R is tame (overthemaximal ideal of R) if the ramification indexes of allmaximal ideals of A are coprime with char kR.

Those definitionsagree withtheusualoneswhenA is aDedekinddomain.Wealso set

QA/R= Coker(A  trA/R

−→ A∨), fA/R= l(Q A/R)

where l denotesthelengthfunction.AlternativelyfA/R canbe seenasthevaluationof

the discriminant section det trA/R. We also denote by |Spec(A⊗RkR)| the numberof

primes ofA⊗RkR:thisnumbercanalsobecomputedas

| Spec(A ⊗RkR)| =



p maximal ideals of A

[Fp: kR]

where Fp denotesthemaximal separableextension ofkR insidek(p)= A/p (see

Corol-lary 2.4). Finally we will say thatA/R has separable residuefields (over themaximal idealofR)ifforallmaximalidealsp ofA thefiniteextensionk(p)/kRisseparable.The

theorem wearegoingtoproveisthefollowing:

Maintheorem. LetR beaDVR andA beafiniteandflat R-algebra.Thenwe havethe inequality

fA/R≥ rk A − | Spec(A ⊗RkR)|

and thefollowingconditionsare equivalent:

1) theequalityholdsin theinequalityabove;

2) A is regularandA/R istame withseparableresiduefields;

3) A/R is tame with separable residue fields and the R-module QA/R is defined over

(3)

Theimplication 2) =⇒ 1) is classical,becauseit follows directlyfrom the relation betweenthedifferentandramificationindexes(see[Ser79,III,§6,Proposition13]). No-ticethattheétalenessofA/R isequivalenttoanyofthefollowingconditions:fA/R= 0, rk A=|Spec(A⊗RkR)|, QA/R= 0.

TheaboveresulthasalreadybeenprovedinmyPh.D. thesis[Ton13,Theorem4.4.4]

underthe assumption thatafinite solvable groupG acts on A in away that AG = R

and using a completely different strategy: using induction and finding a filtration of

R-algebrasofR⊆ A startingfromafiltrationofnormalsubgroupsofG.Maintheorem

isanessentialingredientintheproof of[Ton15,Theorem C]whichgeneralizes [Ton13, Theorem4.4.7].

Thepaperis organizedas follows. Inthefirstsectionwe discussthenotionof tame-nessandramification index andrecall somebasicfactsof commutativealgebraand,in particular,aboutthetracemap.InthesecondsectionweprovetheMaintheorem.

1.1. Notation

Allringsandalgebras inthis paperarecommutativewith unity.

Given a ring R and aprime q we denote by k(q) the residue fieldof Rq. If A is a

finiteR-algebra wesaythatA/R hasseparable residuefieldsover aprimeq of R if for allprimesp ofA lyingoverq thefiniteextensionoffieldsk(p)/k(q) isseparable.Wesay thatA/R hasseparableresiduefields ifithasthisproperty overallprimesofR.

Thefollowingconditionsareequivalent(see[Gro64,Proposition1.4.7]):A/R isfinite, flat and finitely presented; A is finitely generated and projective as R-module; A is

finitely presented as R-module and for all primes q of R the Rq-module Aq is free. In

this situation there is a well-defined trace functionHomR(A,A) −→ R which extends

the usual trace of matrices and commutes with arbitrary extensions of scalars. The trace map of A/R, denoted by trA/R: A −→ R (or simply trA), is the composition

A−→ HomR(A,A)−→ R,wherethefirstmapisinducedbythemultiplicationinA.

If R isa local ring we denote by mR its maximal ideal and by kR its residue field.

A DVRisadiscretevaluation ring.

Ifk isafieldwe denoteby k analgebraic closureof k andbyks aseparable closure ofk.

2. Preliminariesontamenessandtrace map

We fix a ring R and a finite, flat and finitely presented R-algebra A over R, that is an R-algebra A which is finitely presented as R-module and such that Aq is a free

Rq-moduleoffiniterankforallprimeq ofR.

Definition2.1.Given aprimeidealp ofA lying abovetheprimeq ofR weset

e(p, A/R) = dimk(q)(Ap⊗Rqk(q))

(4)

and we call it the ramification index of p in the extension A/R. We say that A/R is tame in p∈ Spec A ife(p,A/R) is coprimewithchar k(q),is tame overq∈ Spec R ifit is tameover allprimesof A overq and,finally, wesaythatitistame ifitis tameover allprimes ofR (orinallprimesofA).

Remark2.2.Thenumbere(p,A/R) isalwaysanaturalnumberasshownbelow.Moreover ifR andA areDedekinddomains,thenotionoframificationindexagreeswiththeusual one.

Lemma 2.3. Let p be a prime of A lying over the prime q of R and denote by F the maximal separable extension of k(q) inside k(p). Then e(p,A/R) is a natural number and

Ap⊗Rqk(q) B1× · · · × Bswith Bi local, dimk(q)Bi= e(p, A/R)[k(p) : F ]

and s = [F : k(q)]

Proof. WecanassumethatR = k(q)= k isafieldandthatA islocal.SetalsoL= k(p) and write

L⊗kk C1× · · · × Cr, A⊗kk B1× · · · × Bs

for thedecompositions intolocal rings. Inparticular wehavethatr = s because A⊗k

k−→ L⊗kk issurjectivewithnilpotentkernel.Moreoverthismapsplitsasaproductof

surjectivemapsBi−→ Ci.DenotebyJitheirkernelsandbyφ : A⊗kk−→ B1×· · ·×Bs

thepreviousisomorphismofrings.Forallt∈ N (includingt= 0)wehave

φ((mA⊗kk)t) = J1t× · · · × Jst

Inparticular forallt∈ N wehave  Jt 1 J1t+1  × · · · ×  Jt s Jst+1  (mA⊗kk)t (mA⊗kk)t+1 mtA mt+1A ⊗kk (L ⊗kk)f (t) C1f (t)× · · · × Csf (t)

as L⊗kk-modules,where f (t)= dimL(mtA/m t+1

A ).Wecanconcludethat

 Jt i Jit+1  Cf (t) i for all i, t Inparticular dimkBi=  t∈N dimk  Jt i Jit+1  = (dimkCi)  t∈N f (t)

(5)

becauseJi isnilpotent.Similarlywehave dimkA =  t∈N dimk  mt A mt+1A  = [L : k] t∈N f (t)

Inparticular [L: k]| dimkA, so thattheramification index isanaturalnumber.Bya

directcomputation we see thateverything follows if we show thatdimkCi = [L : F ].

Since F/k is separable we know that F⊗k k k [F :k]

. Each factor corresponds to an embeddingσ : F−→ k such thatσ|k= idk and

L⊗kk L ⊗F (F ⊗kk)



σ∈Homk(F,k)

L⊗F,σk

This isexactlythe decompositioninto local rings because,sinceL/F is purely insepa-rable,alltheringsL⊗F,σk arelocal.Thisends theproof. 2

Corollary2.4. Letq beaprimeofR. Then

| Spec(A ⊗Rk(q))| =



p primes of A over q

[Fp: k(q)]

whereFp denotesthemaximal separableextensionof k(q) insidek(p).

Proof. Itfollows from Lemma 2.3 using the factthat A⊗Rk(q) is the product of the

Ap⊗Rqk(q) forp running throughallprimes ofA overq. 2

Definition2.5.Letp beaprimeofA lyingovertheprimeq ofR.Wedenotebyh(p,A/R)

thecommonlengthofthelocalizations ofAp⊗Rqk(q),thatis,following notationfrom

Lemma 2.3,h(p,A/R)= dimkBi= e(p,A/R)[k(p): F ].

Lemma2.6.Letp beaprimeofA,RbeanR-algebraandpbeaprimeofA= A⊗RR

overtheprimep. Then

h(p, A/R) = h(p, A/R)

Proof. WecanassumethatR = k andR = karefieldsandthatA islocal.Moreoverby definitionofthefunctionh(−) wecanalsoassumethatk andk arealgebraicallyclosed. Inthis caseh(p,A/k)= dimkA and, sinceA = A⊗k k is again local,h(p,A/k)=

dimkA = dimkA. 2

Corollary2.7.Letp beaprimeof A.ThenA/R is tamein p andk(p)/k(q) isseparable ifand onlyif thenumberh(p,A/R) iscoprimewith char k(q).

(6)

Proof. We canassumethatR = k = k(q) isafieldand A islocal with residuefieldL.

LetalsoF bethemaximalseparableextensionofk insideL.ThankstoLemma 2.3,the last condition inthe statementis thatthe numbere(mA,A/k)[L : F ] is coprimewith

char k. SinceL/F ispurely inseparable,sothat[L: F ] iseither1 orapowerofchar k, this isthesameas A/k beingtame andL= F ,thatisL/k is separable. 2

Remark2.8.Letq beaprimeofR,R be anR-algebraandq beaprimeofR overR.

ByLemma 2.6andCorollary 2.7itfollowsthatA/R istame overq andA⊗Rk(q) has

separableresiduefieldsifandonlyifthesameistruefortheextension(A⊗RR)/Rwith

respecttotheprimeq.Ontheotherhandtamenessalonedoesnotsatisfythesamebase changeproperty, and,inparticular,thefunctione(−) doesnotsatisfyLemma 2.6. The counterexampleisafinitepurelyinseparableextensionL/k:wehavethate(mk,L/k)=

1,so thatL/k istame,whilee(mk,L⊗kk/k)= [L: k] becauseL⊗kk islocal,so that

L⊗kk/k is nottame.

Lemma 2.9. Assume that R = k is a field, that A is local andset π : A−→ kA for the

projection. Then

trA/k= e(mA, A/k) trkA/k◦π

Proof. Set P = mA,L = kA andlet x1,i,. . . ,xri,i ∈ P

i be elements whose projections

form anL-basisofPi/Pi+1.Weset x

1,0 = 1.Letalsoy1,. . . ,ys∈ A beelementswhose

projectionsform ak-basisofL, wheres= dimkL. Itiseasytoseethatthecollection

{xα,iyβ}1≤α≤ri,1≤β≤s

isak-basisofPi/Pi+1 foralli≥ 0.Byaninverseinductionstartingfromthenilpotent

index ofP ,italsofollowsthat

Bn={xα,iyβ}1≤α≤ri,1≤β≤s,i≥n

is ak-basisofPn foralln≥ 0.Inparticular, whenn= 0 we getak-basisofA= P0.

We are going to compute the trace map trA over the basis B0. Consider an index

i> 0.Forallpossible α,β,γ,δ,j wehavethat

z = (xα,iyβ)(xγ,jyδ)∈ Pi+j ⊆ Pj+1

Thus z isa linearcombination of vectors inBj+1, which doesnot contain (xγ,jyδ). It

follows that trA(xα,iyβ) = 0 for all i > 0, that is trA(P ) = 0 which agrees with the

formula inthestatement.ItremainstocomputetrA(yβ).Write

yβyδ =



q

(7)

Itfollowsthat

trL/k(π(yβ)) =



δ

bβ,δ,δ

Let’smultiplynow with anelement xα,iyδ,obtaining

z = yβ(xα,iyδ) = xα,iuβ,δ+



q

bβ,δ,qxα,iyq

Ifi= 0,sothatα = 1 andx1,0= 1,thecoefficientofz withrespectto isbβ,δ,δbecause

uβ,δ ∈ P .Ifi> 0 thenthecoefficientofz withrespectto(xα,iyδ) isagainbβ,δ,δ because

xα,iuβ,δ ∈ Pi+1 and thuscan be writtenusing only the vectorsin Bi+1. Inconclusion

wehavethat trA(yβ) =  i,α,δ bβ,δ,δ = (  δ bβ,δ,δ)(  α,i 1) = trL(π(yβ))C with C = (  i,α 1)

ThustrA= C trL◦π and,finally,

C = ( i,α 1) = i≥0 dimL( Pi Pi+1) = dimkA [L : k] = e(mA, A/k) 2 Corollary2.10.Assumethat R andA arelocal. Then

1) trA/R(mA)⊆ mR;

2) ifkA= kR andrk A∈ R∗ thenKer trA/R ⊆ mA.

Proof. Since trA/R⊗RkR = tr(A⊗RkR)/kR point 1) follows from Lemma 2.9 because

tr(A⊗RkR)/kR(mA⊗RkR) = 0. Assume now the hypothesis of 2) and let x∈ Ker trA. If

x∈ m/ A thereexistsλ∈ R∗ suchthaty = x− λ∈ mA,so that

trA(x) = 0 = rk Aλ + trA(y)∈ R∗+ mR= R∗

whichisimpossible. 2

Lemma2.11.If R andA arelocal then

trA/R: A−→ R is surjective ⇐⇒ h(mA, A/R) and char kR are coprime

Proof. ByNakayama’slemmatrA/R: A−→ R issurjectiveifandonlyiftrA/R⊗RkR=

trA⊗kR/kR: A ⊗ kR −→ kR is so. Thus we can assume that R = k is a field. By

Lemma 2.9 trA/k is surjective ifand only iftrkA/k is surjective, i.e. kA/k is separable,

(8)

3. RegularityoffiniteextensionsofDVR

WefixaDVRR andafiniteandflatR-algebraA,sothatA isfreeoffiniterankrk A as R-module.Wewill usethefollowing notation

 trA/R: A−→ A∨, a−→ trA/R(a· −) QA/R= Coker(A  trA/R −→ A∨), fA/R= l(Q A/R)

where l denotes the length function. For simplicity we will replace A/R with A if no confusion canarise.

Remark3.1.BystandardargumentswehavethatfAcoincides withthevaluationover

R ofdet( trA).Moreoverthefollowingconditionsareequivalent:

1) A isgenericallyétaleoverR;

2) fA<∞;

3) trA: A−→ A∨ isinjective.

In particular we see that all three conditions in Main theorem implies that A/R is

genericallyétale.This alsomeansthatA/R istame withseparableresiduefields ifand onlyifA⊗RkR/kR, orA⊗RkR/kR,isso.

Ifβ ={x0,. . . ,xn} isanR-basisofA thenthematrixoftrA: A−→ A∨withrespect

to β and its dualis given byT = (trA(xixj))i,j. In particularwe canconclude that,if

trA: A−→ R is notsurjective, thenfA≥ rk A,becauseallentriesofT belongstomR.

IftrA(1)= rk A∈ R∗wehaveadecompositionA= R1⊕Ker trA.Inparticularifx0= 1

and x1,. . . ,xn∈ Ker trA (suchabasisalwaysexistslocally)thematrixT hastheform



rk A 0

0 N



and thereforeQA Coker N.

Remark3.2.LetRsbethestrictHenselizationofR andsetAs= A⊗RRs.Inparticular

Rs is adiscretevaluation ring with residuefieldthe separableclosure ks

R of kR. Using

thattheextensionR−→ Rsisfaithfullyflatand unramified,itiseasytoseethat

fA/R= fAs/Rs, | Spec(A ⊗RkR)| = | Spec(As⊗RskRs)|

thatQA/R isdefinedoverkR ifand onlyifQAs/Rs isdefinedoverkRs and thatA/R is

tame withseparableresiduefields ifandonlyifAs/Rsisso.

Since Rs is Henselian, we have a decomposition As = A

1× · · · × Aq where the Aj

(9)

|Spec(A⊗RkR)|.SincetrAs/Rs: As−→ (As) isthedirectsumofthetrAj/Rs: Aj −→ (Aj) wehave QAs/Rs j QAj/Rs and f As/Rs = j fAj/Rs

Finally we have thatthe following three conditions are equivalent: A is regular; As is regular;Aj is regularforallj = 1,. . . ,q.

Proof. (of Main theorem) By Remark 3.1 and Remark 3.2 we can assume that R is

strictly Henselian, that A is local, so that |Spec(A⊗R kR)| = 1, and that A/R is

generically étale. Moreover in this case the following three conditions are equivalent byCorollary 2.7and Lemma 2.11:A/R is tame withseparable residuefields;kA= kR

andrk A∈ R∗; trA/R: A−→ R issurjective.

Inequality and 1) ⇐⇒ 3). By Remark 3.1 we can assume that trA: A −→ R is

surjective, so thatkA = kR,rk A∈ R∗. ByCorollary 2.10 wealso haveKer trA ⊆ mA

and trA(mA)⊆ mR. Using Remark 3.1 and itsnotation, we see thatfA = vR(det N ).

Ifi,j≥ 1 then xixj ∈ mA and thustrA(xixj)∈ mR, thatisallentriesofN belongsto

mR.Ifπ∈ mR isanuniformizerofR wecanwriteN = πN whereN isamatrixwith

entriesinR.Inparticular

det N = πrk A−1det N

Applying thevaluation of R we get fA = vR(det N ) = rk A− 1+ vR(det N) and the

desiredinequality.

IfQA Coker(N) is definedover kR we obtainasurjective map krk AR −1 −→ QA⊗

kR QAandthereforethatfA= l(QA)≤ rk A− 1.Conversely,iffA= rk A− 1,which

meansthatN: Rrk A−1 −→ Rrk A−1 isanisomorphism,we haveQ

A Coker(πN),so

thatQA kRrk A−1 isdefinedoverkR asrequired.

2) =⇒ 1) Lett∈ A be ageneratorof themaximalideal.ThekR-algebraA⊗ kR is

local,with residuefieldkR and its maximalideal isgenerated by theprojection t oft.

It is easyto conclude thatA⊗ kR = kR[X](XN) where N = rk A andX corresponds

to t.ByNakayama’slemmaitfollowsthat1,t,. . . ,tN−1isanR-basisofA andthusthat

A R[Y ]/(YN− g(Y )) whereY correspondstot,deg g < N andallcoefficientsofg are

inmR.SincemA=t,mRA,theconditionthatA isregulartellsusthatvR(g(0))= 1.

We are going to compute the valuation of the determinant of trA: A −→ A∨ writing

thismapintermsofthebasis1,t,. . . ,tN−1,thatisthevaluationofthedeterminantof thematrix(trA(ti+j))0≤i,j<N (seeRemark 3.1).Setqs= trA(ts).ByCorollary 2.10ora

directcomputationwe knowthatqS ∈ mR fors> 0.Inparticular, sincevR(g(0))= 1,

wealsohavevR(qN)= 1.MoreoveritfollowsbyinductionthatvR(qs)> 1 ifs> N .Set

SN forthegroupofpermutationsoftheset{0,1,. . . ,N− 1}. Wehave

det((trA(ti+j))0≤i,j<N) =



σ∈SN

(10)

WeclaimthatvR(zσ)≥ N forallσ∈ Snbutthepermutationσ(0)= 0 andσ(i)= N−i

fori= 0,forwhichvR(zσ)= N−1.Thiswillconcludetheproof.Letσ∈ SN.Ifσ(0)= 0,

then allthe N -factors of are in mR, which implies thatvR(zσ)≥ N. Thus assume

thatσ(0)= 0.Sinceq0= trA(1)= rk A∈ R∗ weseethat is,uptoq0,theproductof

N−1 elementsofmR.Ifoneofthosefactorsisoftheformqi+σ(i)withi+ σ(i)> N then

vR(zσ)≥ N becausevR(qs)≥ 2 ifs> N . Thustheonlycaseleft iswhenσ(i)≤ N − i

for all 0< i < N and σ(0) = 0. But, arguing by induction,this σ is uniqueand it is given byσ(0)= 0 andσ(i)= N− i. Inthis casewe have

zσ= rk A(tr(tN))N−1

and thereforevR(zσ)= N− 1 asrequired.

1) =⇒ 2) Since 1) ⇐⇒ 3), we already know that A/R is tame with separable residue fields.We haveto provethatA is regular.Set k(R) forthe fraction fieldof R.

SinceA⊗ k(R) isetaleoverk(R),itisaproductoffieldsL1,. . . ,Lswhichareseparable

extensions of k(R).Let B be the integral closure of R insideA⊗ k(R). Wehave that

A⊆ B andthatB = B1× · · · × BswhereBi istheintegralclosureofR insideLi.Since

R isstrictly HenselianandtheBi aredomains, itfollowsthattheyarelocal.Moreover

sinceR isaDVRwecanalsoconcludethattheBi areDVR.Wearegoingtoprovethat

s= 1 andA= B.Noticethatrk B = rk A anddenote byj : A−→ B theinclusion.By computing trA andtrB over A⊗ k(R) B ⊗ k(R) wecanconcludethat(trB)|A= trA.

Inparticular weobtainacommutativediagram offreeR-modules

A A∨ B B∨ trA j trB j∨

Noticethatdet j = det j∨.Thustakingdeterminantsandthenvaluationsweobtainthe expression fA= 2vR(det j) + fB = 2vR(det j) + s  i=1 fBi

Sincek isseparablyclosedandthankstoCorollary 2.4wehavethat|Spec(Bi⊗Rk)|= 1.

InparticularfBi≥ rk B

i− 1 bytheinequalityinthestatement.SincefA= rk A− 1 we

get

s≥ 1 + 2vR(det j)

WearegoingtoprovethatvR(det j)≥ s− 1. Thiswillendtheproofbecauseitimplies

(11)

vR(det j) = l(B/A)≥ dimkR(B/(A + mAB))

Denote by e1,. . . ,es ∈ B the idempotents corresponding to the decomposition B =

B1×· · ·×Bs.Wewillprovethate2,. . . ,esarekR-linearlyindependentinB/(A+mAB),

thatisweprovethatif

x = x1e1+· · · + xses∈ A + mAB where x1= 0 and xi∈ R

thenallxiareinthemaximalidealmR.Noticethat,sincekA= kR,1 andmAgenerates

A as R-module. In particular A + mAB is generated by 1 and mAB as R-module.

Moreoversince themaps A−→ B −→ Bi map mA insidemBi it follows thatmAB

mB1× · · · × mBs.Thusx canbewrittenas

x = α + c1e1+· · · + cseswith α∈ R and ci∈ mBi

insideB.In particular0= x1= α + c1 inB1,whichimplies thatα∈ mB1∩ R = mR. Thusifi> 0 wehave

xi= α + ci ∈ mBi∩ R = mR

asrequired. 2

Weshowviasomeexampleshowtheconditionsoftamenessandseparabilityofresidue fieldsinMaintheorem cannotbeomitted.

Example3.3.LetR =Z2be theringof 2-adicnumbersandconsider theR-algebra

A = R[X]

(X2− c) with c∈ R

WehavethattrA(X)= 0 andtrA(X2)= 2c,sothatthematrixoftrA: A−→ A∨ is

M =  2 0 0 2c  InparticularfA= v

R(det M )≥ 2> rk A− |Spec(A⊗RkR)| andQA isdefinedoverF2

ifandonlyifc∈ R∗.

Assume c = 2t+ d2 with t,d ∈ R, so that A/m

RA F2[Y ]/(Y2), A is local with

maximalideal(mR,X− d),hasseparableresiduefieldsanditisnottame.Weseethat

QA isdefinedoverF2 ifand onlyifd∈ R∗,whileA isregularifandonlyift∈ R∗.

Assumec∈ R∗andthatc isnotasquareinF2. InthiscaseA islocalwithmaximal

idealmRA,A/R istame,itsresiduefieldisnotseparable,itisregularandQAisdefined

(12)

Acknowledgments

IwouldliketothankAngeloVistoliandDajanoTossiciforalltheusefulconversations we hadandallthesuggestionsI received.

References

[Gro64] AlexanderGrothendieck,EGA4-1- Étudelocale desschémasetdesmorphismesdeschémas (Premièrepartie)- Élémentsdegéométriealgébrique (rédigésaveclacollaborationdeJean Dieudonné), PublicationsMathématiques, vol. 20,Institut desHautesÉtudes Scientifiques, 1964.

[Gro71] AlexanderGrothendieck,Revêtementsétalesetgroupefondamental,LectureNotesin Math-ematics,vol. 224,Springer-Verlag,jun1971.

[Ser79] Jean-PierreSerre,LocalFields,GraduateTextsinMathematics,vol. 67,Springer,NewYork, 1979.

[Ton13] FabioTonini,StacksoframifiedGaloiscovers,PhDthesis,July2013.

[Ton15] Fabio Tonini, Ramified Galois covers via monoidal functors, arXiv:1507.05309, July 2015; Transform.Groups(2016),http://dx.doi.org/10.1007/s00031-016-9395-4,inpress.

Riferimenti

Documenti correlati

Since in this project we need also to recognize cars, pedestrian, bicycles and traffic signs, the use of deep learning approaches has been used on such tasks as discussed in chapter 3

Moreover, another graph constraint has been introduced, namely K-DIAMOND, that is equivalent to K- TREE with respect to LHGs existence, but it exhibits an infinite number of pairs

This is the Municipal Energy Plan (Piano Energetico Comunale - PEC). The general aim of the PEC is the integration of energy factors in territorial planning, to promote

The paper presents the Osservatorio degli italianismi nel Mondo (OIM), an online database and a homony- mous research project on Italianisms in various European target languages,

These unique cell cultures allow sustained, high level production of diverse anthocyanins with novel complexity in side chain decoration, or labelled with stable isotopes for assaying

Considering that the inflammatory status of CD patients may induce different immune responses to fungi compared to healthy subjects, we evaluated the cytokine pro files elicited by

Cardane, Giuseppe, Università degli Studi della Basilicata Conte, Antonio, Università desdi Studi della

The first section of this article (LAWS) emphasised the physical nature of the affinity between notes tied together by “simple ratio” and thus justifying the presence of the chord